©2002 Fairchild Semiconductor Corporation HUF75545P3 / HUF75545S3 / HUF75545S3S Rev. C
HUF75545P3, HUF75545S3, HUF75545S3S
75A, 80V, 0.010 Ohm, N-Channel,
UltraFET® Power MOSFET
Packaging
Symbol
Features
Ultra Low On-Resistance
-r
DS(ON) = 0.010Ω, VGS = 10V
Simulation Models
- Temperature Compensated PSPICE® and SABER™
Electrical Models
- Spice and SABER Thermal Impedance Models
- www.fairchildsemi.com
Peak Current vs Pulse Width Cur ve
UIS Rating Curve
Ordering Information
Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified
Product r e liability infor m a tion can be found at http ://www.fairchildsemi.com/products/dis crete/reliability/index . ht m l
For severe environments, see our Automotive HUFA series.
All Fairchi ld semiconductor products are manufactured, assembled and t ested under ISO9000 and QS9000 quality systems certificat ion.
JEDEC TO-220AB JEDEC TO-263AB
JEDEC TO-262AA
DRAIN
(FLANGE)
DRAIN
SOURCE
GATE
HUF75545P3
GATE
SOURCE
DRAIN
(FLANGE)
HUF75545S3S
DRAIN
(FLANGE)
DRAIN
SOURCE
GATE
HUF75545S3
D
G
S
PART NUMBER PACKAGE BRAND
HUF75545P3 TO-220AB 75545P
HUF75545S3 TO-262AA 75545S
HUF75545S3S TO-263AB 75545S
NO TE: Whe n orde ring, use the enti re pa rt nu mber . A dd th e suf fix T to
obtain the TO-263AB variant in tape and reel, e.g., HUF75545S3ST.
HUF75545P3, HUF75545S3,
HUF75545S3S UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDSS 80 V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR 80 V
Gate to Sou rc e Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
GS ±20 V
Drain Current
Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
Continuous (TC= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
75
73
Figure 4
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figure 6
Powe r Dis sipatio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
1.8 W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 175 oC
Maximum Temperature for Solder ing
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
P ackage Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg 300
260
oC
oC
NOTES:
1. TJ = 25oC to 150oC.
CAUTION: Stresse s above those listed in “Ab solute Maximum Ratings” may cause perman ent damage to the device. This is a stre ss only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Data Sheet September 2002
©2002 Fairchild Semiconductor Corporation HUF75545P3 / HUF75545S3 / HUF75545S3S Rev. C
Electrical Specifications TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 11) 80 - - V
Zero Gate Voltage Drain Current IDSS VDS = 75V, VGS = 0V - - 1 µA
VDS = 70V, VGS = 0V, TC = 150oC - - 250 µA
Gate to Source Leakage Current IGSS VGS = ±20V - - ±100 nA
ON STAT E SPECIFICATIONS
Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V
Drain to Source On Resistance rDS(ON) ID = 75A, VGS = 10V (Figure 9) - 0.0082 0.010
THERMAL SP ECIFICA T I ONS
Thermal Resistance Junction to Case RθJC TO-220 and TO-263 - - 0.55 oC/W
Thermal Resistance Junction to
Ambient RθJA --62
oC/W
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time tON VDD = 40V, ID = 75A
VGS = 10V,
RGS = 2.5
- - 210 ns
Turn-On Delay Time td(ON) -14-ns
Rise Time tr- 125 - ns
Turn-Off Delay Time td(OFF) -40-ns
Fall Ti me tf- 90 - ns
Turn-Off Time tOFF - - 195 ns
GATE CHARGE SPECIFICATIONS
Total Gate Charge Qg(TOT) VGS = 0V to 20V VDD = 40V,
ID = 75A,
Ig(REF) = 1.0mA
(Figure 13)
- 195 235 nC
Gate Charge at 10V Qg(10) VGS = 0V to 10V - 105 125 nC
Threshold Gate Charge Qg(TH) VGS = 0V to 2V - 6.8 8. 2 nC
Gate to Source Gate Charge Qgs -15-nC
Gate to Drain “Miller” Charge Qgd -43-nC
CAPACITANCE SPECIFICATIONS
Input Capacitance CISS VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
- 3750 - pF
Output Capacitance COSS - 1100 - pF
Reverse Transfer Capacitance CRSS - 350 - pF
Sour ce to Drain Diode Specific ations
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage VSD ISD = 75A - - 1.25 V
ISD = 35A - - 1.00 V
Reverse Recovery Time trr ISD = 75A, dISD/dt = 100A/µs - - 100 ns
Reverse Recovered Charge QRR ISD = 75A, dISD/dt = 100 A/ µs - - 300 nC
HUF75545P3, HUF75545S3, HUF75545S3S
©2002 Fairchild Semiconductor Corporation HUF75545P3 / HUF75545S3 / HUF75545S3S Rev. C
Typical Performance Curves
FIGURE 1. NORMALIZED PO WER DISSIPA TION vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
FIGURE 4. PEAK CURRENT CAPABILITY
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00 25 50 75 100 175
0.2
0.4
0.6
0.8
1.0
1.2
125 150
20
40
60
80
50 75 100 125 150
025
ID, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
VGS = 10V
175
0.1
1
2
10-4 10-3 10-2 10-1 100101
0.0110-5
t, RECTANGULAR PULSE DURATION (s)
ZθJC, NORMALIZED
THERMAL IMPED ANCE
SINGLE PULSE NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.01
0.02
100
2000
50
10-4 10-3 10-2 10-1 100101
10-5
IDM, PEAK CURRENT (A)
t, PULSE WIDTH (s)
TC = 25oC
I = I25 175 - TC
150
FOR TEMPERATURES
ABO VE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
VGS = 10V
1000
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
HUF75545P3, HUF75545S3, HUF75545S3S
©2002 Fairchild Semiconductor Corporation HUF75545P3 / HUF75545S3 / HUF75545S3S Rev. C
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
NOT E: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS
FIGURE 9. NORMALIZED DRAIN T O SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE FIGURE 10. NORMALIZED GATE THRESHOLD V OLT AGE vs
JUNCTION TEMPERATURE
Typical Performance Curves (Continued)
10
100
110100
600
1
200
100µs
10ms
1ms
VDS, DRAIN TO SOURCE VOLTAGE (V)
ID, DRAIN CURRENT (A)
LIMITED BY rDS(ON)
AREA MAY BE
OPERATION IN THIS
TJ = MAX RATED
TC = 25oC
SINGLE PULSE
10
100
600
0.001 0.01 0.1 10
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
STARTING TJ = 25oC
STARTING TJ = 150oC
1
30
60
90
120
150
23456
0
ID, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
TJ = 175oC
TJ = 25oC TJ = -55oC30
60
90
120
150
01234
0
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS =5V
VGS = 20V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
VGS = 10V VGS = 7V
VGS = 6V
0.5
1.0
1.5
2.0
2.5
-80 -40 0 40 80 120 200
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
VGS = 10V, ID = 75A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
160 0.4
0.8
1.0
1.2
-80 -40 0 40 80 120 200
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
THRESHOLD VOLTAGE
0.6
160
HUF75545P3, HUF75545S3, HUF75545S3S
©2002 Fairchild Semiconductor Corporation HUF75545P3 / HUF75545S3 / HUF75545S3S Rev. C
FIGURE 11. NORMALIZED DRAIN T O SOURCE BREAKDO WN
VOLTAGE vs JUNCTIO N TEMP ERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
NOT E : Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Typical Performance Cur ves (Contin ued)
0.9
1.0
1.1
1.2
-80 -40 0 40 80 120 160 200
0.8
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
ID = 250µA
1000
10000
0.1 1 10 80
100
C, CAPACITANCE (pF)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
COSS CDS + CGD
CRSS = CGD
2
4
6
8
10
0 30 60 90 120
0
VGS, GATE TO SOURCE VOLTAGE (V)
VDD = 40V
Qg, GATE CHARGE (nC)
ID = 75A
ID = 35A
WAVEFORM S IN
DESCENDING ORDER:
HUF75545P3, HUF75545S3, HUF75545S3S
©2002 Fairchild Semiconductor Corporation HUF75545P3 / HUF75545S3 / HUF75545S3S Rev. C
HUF75545P3, HUF75545S3, HUF75545S3S
Test Circuits and Waveforms
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. SWITCHING TIME WAVEFORM
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PE AK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
RL
VGS +
-
VDS
VDD
DUT
Ig(REF)
VDD
Qg(TH)
VGS = 2V
Qg(10)
VGS = 10V
Qg(TOT)
VGS = 20V
VDS
VGS
Ig(REF)
0
0
Qgs Qgd
VGS
RL
RGS DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
©2002 Fairchild Semiconductor Corporation HUF75545P3 / HUF75545S3 / HUF75545S3S Rev. C
PSPICE Elec trical Model
.SUBCKT HUF75545 2 1 3 ; rev 21 May 1999
CA 12 8 5.4e-9
CB 15 14 5.3e-9
CIN 6 8 3.4e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 87.4
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEM P 20 6 18 22 1
IT 8 17 1
LDRA IN 2 5 1.0 e - 9
LGATE 1 9 5.1e-9
LSOURCE 3 7 4.4e-9
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 4.80e-3
RGATE 9 20 0.87
RLDRAIN 2 5 10
RLGATE 1 9 51
RLSOURCE 3 7 44
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 1.6e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AM OD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VA LUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*320) ,3))}
.MODEL DBODYMOD D (IS = 3.6e-12 RS = 2.1e-3 TRS1 = 1.5e-3 TRS2 = 5.1e-6 CJO = 4.6e-9 TT = 3.3e-8 M = 0.55)
.MODEL DBREAKMOD D (RS = 2.3e-1 TRS1 = 0 TRS2 = -1.8e-5)
.MODEL DPLCAPMOD D (CJO = 4.8e-9 IS = 1e-30 N = 10 VJ = 1 M = 0.8)
.MODEL MMEDMOD NMOS (VTO = 3.04 KP = 6 IS = 1e-3 0 N = 10 T OX = 1 L = 1u W = 1u RG = 0.87)
.MODEL MSTROMOD NMOS (VTO = 3.5 KP = 105 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MOD EL MWEAKMOD NMOS (VTO = 2.65 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8. 7 )
.MODEL RBREAKMOD RES (TC1 = 1.3e-3 TC2 = -1e-6)
.MODEL RDRAINMOD R ES (TC1 = 9e-3 TC2 = 2.8e-5)
.MODEL RSLCMOD RES (TC1 = 1.53e- 3 TC2 = 2e-5)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -2.3e-3 TC2 = -1.2e-5)
.MODEL RVTEMPMOD RES (TC1 = -2.9e-3 TC2 = 5e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5 VOFF= -3)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3 VOFF= -5)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF= 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.5)
.ENDS
NOT E: For furth er discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the P ower MOSFET Feat ur ing Global
Temperature Options; IEEE Po wer Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. F rank Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
HUF75545P3, HUF75545S3, HUF75545S3S
©2002 Fairchild Semiconductor Corporation HUF75545P3 / HUF75545S3 / HUF75545S3S Rev. C
HUF75545P3, HUF75545S3, HUF75545S3S
SABER Electrical Model
REV 21 may 1999
template huf75545 n2 ,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 3. 6e-12, cjo = 4.6e-9, tt = 3.3e-8, m = 0. 55)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 4.8 e-9, is = 1e-30, vj=1.0, m = 0.8 )
m..model mmedmod = (type=_n, v to = 3.04, kp = 6, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.5, kp = 105, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.65, kp = 0.12, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5, voff = -3)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -3, voff = -5)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.5, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.5)
c.ca n12 n8 = 5. 4e-9
c.cb n15 n14 = 5.3e-9
c.ci n n6 n8 = 3. 4e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplc ap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 5.1e-9
l.lsou rce n3 n7 = 4.4e-9
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc 1 = 1.3e-3, tc2 = -1e-6
res.rdbody n71 n5 = 2.1e-3, tc1 = 1.5e-3, tc2 = 5.1e-6
res.rdbreak n72 n5 = 2.3e-1, tc1 = 0, tc2 = -1.8e-5
res.rdrain n50 n16 = 4.8e-3 , tc1 = 9e-3, tc2 = 2.8e-5
res.rgate n9 n20 = 0.87
res.rldrain n2 n5 = 10
res.r l gate n1 n9 = 51
res.rlsource n3 n7 = 44
res.rslc1 n5 n51 = 1e- 6, tc1 = 1. 53e-3, tc2 = 2e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1.6e-3, tc1 = 1e-3, tc2 = 1e -6
res.rvtemp n18 n19 = 1, tc1 = -2.9e-3, tc2 = 5e-7
res.rvthres n22 n8 = 1, tc1 = -2.3e-3, tc2 = -1.2e-5
spe.e b reak n11 n7 n17 n18 = 87.4
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n1 9 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equa tions {
i (n51- >n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+ab s(v(n5,n51))))*((abs(v(n5,n51)*1e6/320))** 3))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
RDBODY
RDBREAK
72
71
©2002 Fairchild Semiconductor Corporation HUF75545P3 / HUF75545S3 / HUF75545S3S Rev. C
SPICE Thermal Model
REV 21 May 1999
HUF75545T
CTHERM1 th 6 6.4e-3
CTHERM2 6 5 3.0e-2
CTHERM3 5 4 1.4e-2
CTHERM4 4 3 1.6e-2
CTHERM5 3 2 5.5e-2
CTHERM6 2 tl 1.5
RTHERM1 th 6 3.2e-3
RTHERM2 6 5 8.1e-3
RTHERM3 5 4 2.3e-2
RTHERM4 4 3 1.3e-1
RTHERM5 3 2 1.8e-1
RTHERM6 2 tl 3.8e-2
SABER Thermal Model
SABER thermal mode l HUF75545T
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 6.4e-3
ctherm.ctherm2 6 5 = 3.0e-2
ctherm.ctherm3 5 4 = 1.4e-2
ctherm.ctherm4 4 3 = 1.6e-2
ctherm.ctherm5 3 2 = 5.5e-2
ctherm.ctherm 6 2 tl = 1.5
rtherm.rtherm1 th 6 = 3.2e-3
rtherm.rtherm2 6 5 = 8.1e-3
rtherm.rtherm3 5 4 = 2.3e-2
rtherm.rtherm4 4 3 = 1.3e-1
rtherm.rtherm5 3 2 = 1.8e-1
rtherm.rtherm6 2 tl = 3.8e-2
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
HUF75545P3, HUF75545S3, HUF75545S3S
Rev. I1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not
intended to be an exhaustive list of all such trademarks.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHE R NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used herein:
1. Life support devices or s yst ems are dev ices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
ACEx™
ActiveArray™
Bottomless™
CoolFET™
CROSSVOLT™
DOME™
EcoSPARK™
E2CMOS™
EnSigna™
FACT™
FACT Quiet Series
FAST®
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
I2C™
ImpliedDisconnect
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
MSX
MSXPro
OCX
OCXPro
OPTOLOGIC®
OPTOPLANAR™
PACMAN™
POP™
Power247
PowerTrench®
QFET™
QS™
QT Optoelectronics
Quiet Serie s™
RapidConfigure
RapidConnect
SILENT SWITCHER®
SMART START™
SPM™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET®
VCX™
Across the board. Around the world.
The Power Franchise™
Programmable Active Droop™
Datasheet Identification Product Status Definition
Advance Inf ormation F ormative or In
Design This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary First Production This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semi conductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed Full Production This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete Not In Production This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.