NE5517/5517A Dual Operational Transconductance Amplifier **Product Specification** #### DESCRIPTION The NE5517 contains two current-controlled transconductance amplifiers, each with a differential input and pushpull output. The NE5517 offers significant design and performance advantages over similar devices for all types of programmable gain applications. Circuit performance is enhanced through the use of linearizing diodes at the inputs which enable a 10dB signal-to-noise improvement referenced to 0.5% THD. The NE5517 is suited for a wide variety of industrial and consumer applications and is recommended as the preferred circuit in the Dolby* HX (Headroom Extension) system. Constant impedance buffers on the chip allow general use of the NE5517. These buffers are made of Darlington transistor and a biasing network which changes bias current in dependence of IABC. Therefore, changes of output offset voltages are almost eliminated. This is an advantage of the NE5517 compared to LM13600. With the LM13600, a burst in the bias current I_{ABC} guides to an audible offset voltage change at the output. With the constant impedance buffers of the NE5517 this effect can be avoided and makes this circuit preferable for high quality audio applications. #### **FEATURES** - Constant impedance buffers - △V_{BE} of buffer is constant with amplifier I_{BIAS} change - Pin compatible with LM13600 - Excellent matching between amplifiers - Linearizing diodes - High output signal-to-noise ratio #### **APPLICATIONS** - Multiplexers - Timers - Electronic music synthesizers - DolbyTM HX Systems - Current-controlled amplifiers, filters - Current-controlled oscillators, impedances Dolby is a registered trademark of Dolby Laboratories Inc., San Francisco, Calif. #### PIN CONFIGURATION #### PIN DESIGNATION | PIN NO. | SYMBOL | NAME AND FUNCTION | |---------|----------------------|------------------------| | 1 | I _{ABC} | Amplifier bias input A | | 2 | D | Diode bias A | | 3 | +IN | Non-inverting input A | | 4 | -IN | Inverting input A | | 5 | V _O | Output A | | 6 | V- | Negative supply | | 7 | IN _{BUFFER} | Buffer input A | | 8 | VO _{BUFFER} | Buffer output A | | 9 | VO _{BUFFER} | Buffer output B | | 10 | IN _{BUFFER} | Buffer input B | | 11 | V+ | Positive supply | | 12 | V _O | Output B | | 13 | -IN | Inverting input B | | 14 | + IN | Non-inverting input B | | 15 | D | Diode bias B | | 16 | I _{ABC} | Amplifier bias input B | #### CIRCUIT SCHEMATIC ### **CONNECTION DIAGRAM** #### ORDERING INFORMATION | DESCRIPTION | TEMPERATURE RANGE | ORDER CODE | | | |--------------------|-------------------|------------|--|--| | 16-Pin Plastic DIP | 0 to +70°C | NE5517N | | | | 16-Pin Plastic DIP | 0 to +70°C | NE5517AN | | | | 16-Pin SO DIP | 0 to +70°C | NE5517D | | | #### **ABSOLUTE MAXIMUM RATINGS** | SYMBOL | PARAMETER | RATING | UNIT | | |-------------------|--|--|----------|--| | Vs | Supply voltage ¹
NE5517
NE5517A | 36 V _{DC} or ± 18
44 V _{DC} or ± 22 | V
V | | | P _D | Power dissipation,
$T_A = 25$ °C (still air) ²
NE5517N, NE5517AN
NE5517D | 1500
1125 | mW
mW | | | V _{IN} | Differential input voltage | ± 5 | ٧ | | | l _D | Diode bias current | 2 | mA | | | I _{ABC} | Amplifier bias current | 2 | mA | | | I _{SC} | Output short-circuit duration | Indefinite | | | | lout | Buffer output current ³ | 20 | mA | | | TA | Operating temperature range
NE5517N, NE5517AN | 0°C to +70 | °C | | | V _{DC} | DC input voltage | +V _S to -V _S | | | | T _{STG} | Storage temperature range | -65°C to +150 | °C | | | T _{SOLD} | Lead soldering temperature (10sec max) | 300 | °C | | #### NOTES # DC ELECTRICAL CHARACTERISTICS1 | SYMBOL | PARAMETER | TEST CONDITIONS | NE5517 | | | NE5517A | | | | |-------------------|----------------------------------|--|--------|-------|--------|---------|-------|-------------|----------------| | | | | Min | Тур | Max | Min | Тур | Max | UNIT | | Vos | Input offset voltage | Over temperature range | | 0.4 | 5
5 | | 0.4 | 2
5
2 | mV
mV
mV | | | ΔV _{OS} /ΔT | Avg. TC of input offset voltage | | 7 | | | 7 | | μV/°C | | | V _{OS} including diodes | Diode bias current (I _D) = 500μA | | 0.5 | 5 | | 0.5 | 2 | mV | | Vos | Input offset change | 5μA ≤ 1 _{ABC} ≤ 500μA | | 0.1 | | | 0.1 | 3 | mV | | los | input offset current | | | 0.1 | 0.6 | | 0.1 | 0.6 | μΑ | | | ΔI _{OS} /ΔT | Avg. TC of input offset cur-
rent | | 0.001 | | | 0.001 | | μΑ/°C | | 1 _{BIAS} | Input bias current | Over temperature range | | 0.4 | 5
8 | | 0.4 | 5
7 | μA
μA | | | $\Delta I_{B}/\Delta T$ | Avg. TC of input current | | 0.01 | | | 0.01 | | μA/°C | ^{1.} For selections to a supply voltage above $\pm 22V$, contact factory. ^{2.} The following derating factors should be applied above 25°C: N package at 12.0mW/°C D package at 9.0mW/°C ^{3.} Buffer output current should be limited so as to not exceed package dissipation. ## DC ELECTRICAL CHARACTERISTICS¹ (Continued) | SYMBOL | PARAMETER | TEST CONDITIONS | NE5517 | | | NE5517A | | | | |----------------------|---|--|--------------|-----------------|------------|-----------------|---|------------|----------------| | | | | Min | Тур | Max | Min | Тур | Max | UNIT | | 9м | Forward transconductance | Over temperature range | 6700
5400 | 9600 | 13000 | 7700
4000 | 9600 | 12000 | μmho
μmho | | | g _M tracking | | | 0.3 | | | 0.3 | | dB | | l _{out} | Peak output current | $R_L = 0$, $I_{ABC} = 5\mu A$
$R_L = 0$, $I_{ABC} = 500\mu A$
$R_L = 0$, | 350
300 | 5
500 | 650 | 3
350
300 | 5
500 | 7
650 | μΑ
μΑ
μΑ | | V _{OUT} | Peak output voltage
Positive
Negative | $R_L = \infty$, $5\mu A \le I_{ABC} \le 500\mu A$
$R_L = \infty$, $5\mu A \le I_{ABC} \le 500\mu A$ | + 12
-12 | + 14.2
-14.4 | | + 12
-12 | + 14.2
- 14.4 | | V | | Icc | Supply current | I _{ABC} = 500μA, both channels | | 2.6 | 4 | | 2.6 | 4 | mA | | | V _{OS} sensitivity
Positive
Negative | Δ V _{OS} /Δ V+
Δ V _{OS} /Δ V- | | 20
20 | 150
150 | | 20
20 | 150
150 | μV/V
μV/V | | CMRR | Common-mode rejection ration | | 80 | 110 | | 80 | 110 | | dB | | | Common-mode range | | ± 12 | ± 13.5 | | ± 12 | ± 13.5 | | ٧ | | | Crosstalk | Referred to input ² 20Hz < f < 20kHz | | 100 | | | 100 | | dB | | I _{IN} | Differential input current | $I_{ABC} = 0$, input = $\pm 4V$ | | 0.02 | 100 | | 0.02 | 10 | nA | | | Leakage current | I _{ABC} = 0 (Refer to test circuit) | | 0.2 | 100 | | 0.2 | 5 | nA | | R _{IN} | Input resistance | | 10 | 26 | | 10 | 26 | | kΩ | | B _W | Open-loop bandwidth | | | 2 | | | 2 | | MHz | | SR | Slew rate | Unity gain compensated | | 50 | | | 50 | | V/µs | | IN _{BUFFER} | Buff. input current | 5 | | 0.4 | 5 | | 0.4 | 5 | μА | | VO _{BUFFER} | Peak buffer output voltage | 5 | 10 | | | 10 | *************************************** | | V | | | ΔV_{BE} of buffer | Refer to Buffer V _{BE} test ³ circuit | | 0.5 | 5 | | 0.5 | 5 | mV | #### NOTES: ^{1.} These specifications apply for V_S = ± 15V, T_A = 25°C, amplifier bias current (I_{ABC}) = 500 µA, Pins 2 and 15 open unless otherwise specified. The inputs to the buffers are grounded and outputs are open. ^{2.} These specifications apply for $V_S = \pm 15V$, $I_{ABC} = 500\mu A$, $R_{OUT} = 5k\Omega$ connected from the buffer output to $-V_S$ and the input of the buffer is connected to the transconductance amplifier output. ^{3.} V_S = \pm 15, R_{OUT} = 5k Ω connected from Buffer output to $-V_S$ and 5 μ A \ll I_{ABC} \ll 500 μ A. #### TYPICAL PERFORMANCE CHARACTERISTICS #### TYPICAL PERFORMANCE CHARACTERISTICS (Continued) ## TYPICAL PERFORMANCE CHARACTERISTICS (Continued) #### **APPLICATIONS** #### CIRCUIT DESCRIPTION The circuit schematic diagram of one-half of the NE5517, a dual operational transconductance amplifier with linearizing diodes and impedance buffers, is shown in Figure 1. #### 1. Transconductance Amplifier The transistor pair, Q4 and Q5, forms a transconductance stage. The ratio of their collector currents (I_4 and I_5 , respectively) is defined by the differential input voltage, V_{IN} , which is shown in equation 1. $$V_{IN} = \frac{KT}{q} \ln \frac{I_5}{I_4} \tag{1}$$ Where VIN is the difference of the two input voltages KT ≅ 26mV at room temperature (300°K). Transistors Q1, Q2 and diode D1 form a current mirror which focuses the sum of current I4 and I5 to be equal to amplifier bias current IB: $$I_4 + I_5 = I_B$$ (2) If V_{iN} is small, the ratio of I_5 and I_4 will approach unity and the Taylor series of In function can be approximated as $$\frac{KT}{q} \ln \frac{I_5}{I_4} \approx \frac{KT}{q} \frac{I_5 - I_4}{I_4}$$ (3) (1) and $I_4 \approx I_5 \approx \frac{1}{2}I_B$ $$\frac{KT}{q} \ln \frac{I_5}{I_4} \approx \frac{KT}{q} \frac{I_5 - I_4}{\frac{1}{2}I_B} = \frac{2KT}{q} \frac{I_5 - I_4}{I_B} = V_{IN}$$ $$I_5 - I_4 = V_{IN} \frac{(I_B^q)}{2KT}$$ (4) The remaining transistors (Q₆ to Q₁₁) and $I_4 = \frac{1}{2}(I_B - I_0)$, $I_5 = \frac{1}{2}(I_B + I_0)$ diodes (D₄ to D₆) form three current mirrors that produce an output current equal to Is $$V_{IN} \left\{ l_B \frac{q}{2KT} \right\} = l_0$$ (5) The term $\frac{(I_B^q)}{2KT}$ is then the transconductance of the amplifier and is proportional to IB. #### 2. Linearizing Diodes For V_{IN} greater than a few millivolts, equation 3 becomes invalid and the transconductance increases nonlinearly. Figure 2 shows how the internal diodes can linearize the transfer function of the operational amplifier. Assume D2 and D3 are biased with current sources and the input signal current is Is. Since (4) $$I_4 + I_5 = I_B$$ and $I_5 - I_4 = I_0$, that is: $$I_4 = \frac{1}{2}(I_B - I_0), I_5 = \frac{1}{2}(I_B + I_0)$$ For the diodes and the input transistors that have identical geometries and are subject to similar voltages and temperatures, the following equation is true: $$\frac{T}{q} \ln \frac{\frac{I_D}{2} + I_S}{\frac{I_D}{2} - I_S} = \frac{KT}{q} \ln \frac{\frac{1}{2}(I_B + I_0)}{\frac{1}{2}(I_B - I_0)}$$ $$I_0 = I_S \frac{(2^I B)}{I_D} \text{ for } |I_S| < \frac{I_D}{2}$$ (6) The only limitation is that the signal current should not exceed $\frac{1}{2}$ I_D. #### 3. Impedance Buffer #### **APPLICATIONS** #### **Voltage-Controlled Amplifier** In Figure 3, the voltage divider R₂, R₃ divides the input-voltage into small values (mV range) so the amplifier operates in a linear manner. It is: $$I_{OUT} = -V_{IN} \times \frac{R_3}{R_2 + R_3} \times g_M;$$ $$V_{OUT} = I_{OUT} \times R_L;$$ $$A = \frac{V_{OUT}}{V_{IN}} = \frac{R_3}{R_2 + R_3} g_M R_L;$$ $$A = \frac{R_3}{R_2 + R_3} \times g_M \times R_L$$ (3) $$g_M = 19.2 I_{ABC}$$ (g_M in μmhos for I_{ABC} in mA) Since g_M is directly proportional to I_{ABC} , the amplification is controlled by the voltage V_C in a simple way. When V_{C} is taken relative to $-V_{CC}$ the following formula is valid: $$I_{ABC} = \frac{(V_C - 1.2V)}{R_1}$$ The 1.2V is the voltage across two baseemitter baths in the current mirrors. This circuit is the base for many applications of the NE5517. # Stereo Amplifier With Gain Control Figure 4 shows a stereo amplifier with variable gain via a control input. Excellent tracking of typical 0.3dB is easy to achieve. With the potentiometer, Rp, the offset can be adjusted. For AC-coupled amplifiers, the potentiometer may be replaced with two 510Ω resistors. #### **Modulators** Because the transconductance of an OTA (Operational Transconductance Amplifier) is directly proportional to I_{ABC}, the amplification of a signal can be controlled easily. The output current is the product from transconductance × input voltage. The circuit is effective up to approximately 200kHz. Modulation of 99% is easy to achieve. # Voltage-Controlled Resistor (VCR) Because an OTA is capable of producing an output current proportional to the input voltage, a voltage variable resistor can be made. Figure 6 shows how this is done. A voltage presented at the R_X terminals forces a voltage at the input. This voltage is multiplied by g_M and thereby forces a current through the R_X terminals: $$R_{X} = \frac{R + R_{A}}{g_{M} \times R_{A}}$$ where g_M is approximately 19.21 μ MHOs at room temperature. Figure 7 shows a Voltage Controlled Resistor using linearizing diodes. This improves the noise performance of the resistor. #### **Voltage-Controlled Filters** Figure 8 shows a Voltage Controlled Low-Pass Filter. The circuit is a unity gain buffer until XC/gM is equal to R/RA. Then, the requency response rolls off at a 6dB per octave with the –3dB point being defined by the given equations. Operating in the same manner, a Voltage Controlled High-Pass Filter is shown in Figure 9. Higher order filters can be made using additional amplifiers as shown in Figures 10 and 11. #### **Voltage-Controlled Oscillators** Figure 12 shows a voltage-controlled triangle-square wave generator. With the indicated values a range from 2Hz to 200kHz is possible by varying I_{ABC} from 1mA to 10 μ A. The output amplitude is determined by $I_{\text{OUT}} \times R_{\text{OUT}}.$ Please notice the differential input voltage is not allowed to be above 5V. With a slight modification of this circuit you can get the sawtooth pulse generator, as shown in Figure 13. #### **APPLICATION HINTS** To hold the transconductance g_M within the linear range, I_{ABC} should be chosen not greater than 1 mA. The current mirror ratio should be as accurate as possible over the entire current range. A current mirror with only two transistors is not recommended. A suitable current mirror can be built with a PNP transistor array which causes excellent matching and thermal coupling among the transistors. The output current range of the DAC normally reaches from 0 to –2 mA. In this application, however, the current range is set through R_{REF} (10k Ω) to 0 to –1 mA. $$I_{DAC\ MAX} = 2 \times \frac{V_{REF}}{R_{REF}} = 2 \times \frac{5V}{10k} = 1mA$$