1/27December 2005
M48T08
M48T 08 Y, M48 T1 8
5V, 64 Kbit (8 Kb x8) TIMEKEEPER® SRAM
Rev 7.0
FEATURES SUMMARY
INTEGRAT ED ULTRA LOW PO WER SRAM,
REAL TIME CLOCK, PO WER-FAIL
CONTR OL CIRCUIT, AND BATTERY
BYTEWI D E™ RAM-LIKE CLOC K ACC ESS
BCD CO DED YEAR, MONTH, DAY, DAT E,
H OURS, MINUTES, and SECONDS
TYPICAL CLOCK ACCURA CY OF ±1
MINUTE A MONTH, AT 25°C
AUTOMATIC POWER-FAIL CHIP
DESELECT AND WRI TE PROTECTION
WRITE PRO TECT VOLTAGES
(VPFD = Power-fail Deselect Voltage):
M48T08: VCC = 4.75 to 5.5V
4.5V VPFD 4.75V
M48T18/T08Y: VCC = 4.5 to 5.5V
4.2V VPFD 4.5V
SOFT WARE CONTRO LLED CLOCK
CALIBRATION FOR HIGH ACCURACY
APPLICATIONS
SELF-CONTAINED BAT TERY AND
CRYSTA L IN THE CAPHAT™ DIP
PACKAGE
PACKAGING INCL UDES A 28-LEAD SOIC
AND SNAPHAT® TO P (to be ordered
separately)
SOIC PACKAGE PROVIDES DIRECT
CONNECTION FOR A SNAP HAT TOP
WHICH CO NTAIN S THE BATTERY AND
CRYSTAL
PIN AND FUNCTION COMPATIBLE WITH
D S1643 and JEDEC STA NDARD 8K x8
SRAMs
RoHS COMPLIANCE
Lead-free components are com pliant with the
RoHS Di recti ve.
Figure 1. 28-pin PCDIP, CAPHAT™ Packag e
Figu re 2. 28- pi n S OI C Package
28
1
PCDIP28 (PC)
Battery/Crystal
CAPHAT
28
1
SNAPHAT (SH)
Battery/Crystal
SOH28 (MH)
M48T08, M48T08Y, M48T18
2/27
TABLE OF CONTENTS
FEATUR ES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. 28-pin PCDIP, CAPHAT™ Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. 28-pin SOIC Packag e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUM MARY DESCRIPT ION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. Logi c Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1. Signa l Na mes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. DIP Connectio ns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5. S OIC Connect ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 7. RE AD Mode AC Wavefo rms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. REA D Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
WRITE M ode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 8. WRI TE Enable Controlle d, WRITE AC Wave form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 9. Chip Enable C ontrolled, WRITE AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 4. WRITE Mode AC Characteristi cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Data Re tention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Power-fail Interrupt Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
CLOCK O PERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Reading the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3
Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3
Stopping and Starting the Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10.Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 11.Clock Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5
VCC Noise And Negative Going Transie nts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12.Supply Voltage Protect ion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
MAXIMU M RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 6. Absolute Maximum Rati ngs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
DC AND AC PARAM ETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 7. Operating a nd AC Measurement Cond itions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 13.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8
Table 8. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8
Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9
Figure 14.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3/27
M48T08, M48T08Y, M48T18
Table 10. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
PACKAGE MECHANICAL INFORMATIO N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 15.PCDIP28 – 28-pin Plastic DI P , battery CAPHAT, Pack age Outline . . . . . . . . . . . . . . . . 21
Table 12. PCDI P28 – 28-pin Plastic DIP, bat tery CAPH AT, Package Mecha nical Data. . . . . . . . . 21
Figure 16. SOH28 – 28-lead Plastic Small Outline, 4-socket bat tery SNAPHA T, Package Outline. 22
Table 13. S OH28 – 28-lead Plastic SO, 4-socket battery SNAPHAT, Packag e Mech. Data . . . . . 22
Figure 17.SH – 4-pin SNAPHA T Housing for 48mAh Ba ttery & Crystal, Package Outline . . . . . . . 23
Table 14. SH – 4-pin SNAPH AT Housing for 48mAh Ba ttery & Crystal, P ack age M ech. Data . . . . 23
Figure 18.SH – 4-pin SNAPHA T Housing for 120mAh B attery & Crystal, P ack age Ou tline . . . . . . 24
Table 15. SH – 4-pin SNAPH AT Housing for 120mAh B attery & Crystal, P ackage M ec h. Data . . . 24
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 16. Orde ring Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 17. SNAPHAT Batte ry Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
REVISION HISTO RY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 18. Document Revi sion History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
M48T08, M48T08Y, M48T18
4/27
S UM MARY DESCRIPTION
The M48T08/18/08Y TIMEKEEPER® RAM is an
8K x 8 non-volatile static RAM and real time clock
which is pin and functional compatible with the
DS1643. The monolithic chip is available in two
special packages to provide a highly integrated
battery back ed-up memory and real time clock so-
lution.
The M48T08/18/08Y is a non-v olatile pin and func-
tion equivalent to any JEDEC standard 8K x 8
SRAM. It also easily fits into many ROM, EPROM,
and EEPROM sockets, providing the non-volatility
of PROMs without any requirement for special
WRITE timing or limitations on the number of
WRITEs that can be performed.
The 28-pin, 600mil DIP CAPHAT™ houses the
M48T08/18/08Y silicon with a quartz crystal and a
long- life lit hium button cell in a single package.
The 28-pin, 330mil SOIC provides sockets with
gold plated contacts at both ends for direct con-
nection to a separate SNAPHAT® housing con-
taining the battery and cry stal. The unique d esign
allows the SNAPHAT battery package to be
mounted on top of the SOIC package after the
completion of the surface mount process. Inser-
tion of the SNAPHAT housing after reflow pre-
vents pote ntial b attery and crystal dam age due to
the high temperatures required for device surface-
mounting. The SNA PHAT housing is k ey ed to pre-
vent reverse insertion.
The SOIC and battery/crystal packages are
shipped separately in plastic anti-static tubes or in
Tape & Reel form. F or t he 2 8 le ad S OIC , t he bat-
tery/crystal package (e.g., SNAPHAT) part num-
ber is “M4T28-BR12SH” or “M4T32-BR12SH”
(see Table 17., page 25 ).
Figure 3. Logic Diagram Tabl e 1. Signal Names
AI01020
13
A0-A12
W
DQ0-DQ7
VCC
M48T08
M48T08Y
M48T18
G
E2
VSS
8
E1 INT
A0-A12 Address Inputs
DQ0-DQ7 Data Inputs / Outputs
INT Power Fail Interrupt (Open Drain)
E1 Chip Enable 1
E2 Chip Enable 2
GOutput Enable
WWRITE Enable
VCC Supply Voltage
VSS Ground
5/27
M48T08, M48T08Y, M48T18
Figu re 4. DIP C on ne ctions Figu r e 5. S OI C Co nn e ct io ns
Figu re 6. Blo ck Diagram
A1
A0
DQ0
A7
A4
A3
A2
A6
A5
E2
A10
A8
A9
DQ7
W
A11
G
E1
DQ5DQ1
DQ2 DQ3VSS DQ4
DQ6
A12
INT VCC
AI01182
M48T08
M48T18
8
1
2
3
4
5
6
7
9
10
11
12
13
14 16
15
28
27
26
25
24
23
22
21
20
19
18
17
AI01021B
8
2
3
4
5
6
7
9
10
11
12
13
14
22
21
20
19
18
17
16
15
28
27
26
25
24
23
1
A1
A0
DQ0
A7
A4
A3
A2
A6
A5
E2
A10
A8
A9
DQ7
W
A11
G
E1
DQ5DQ1
DQ2 DQ3VSS DQ4
DQ6
A12
INT VCC
M48T08Y
AI01333
LITHIUM
CELL
OSCILLATOR AND
CLOCK CHAIN
VPFD
INTVCC VSS
32,768 Hz
CRYSTAL
VOLTAGE SENSE
AND
SWITCHING
CIRCUITRY
8 x 8 BiPORT
SRAM ARRAY
8184 x 8
SRAM ARRAY
A0-A12
DQ0-DQ7
E1
E2
W
G
POWER
M48T08, M48T08Y, M48T18
6/27
OPERATION MODES
As Figure 6., page 5 shows, the static memory ar-
ray and the quartz-controlled clock osc illator of the
M48T08/18/08Y are integrated on one silicon chip.
The two circuits are interconnected at the upper
eight memory locations to provide user accessible
BYTEWIDE™ clock information in the bytes with
addresses 1FF8h-1FFFh.
The clock locations contain t he year, month, date,
day, hour, minute, and second in 24 hour BCD for-
mat. Corrections f or 28, 29 (leap yea r - valid unt il
2100), 30, and 31 day months are made automat-
ically. Byte 1FF8h is the clock control regis ter. This
byte controls user access to the c lock inform ation
and also stores the clock calibration setting.
The eight clock bytes are not the actual clock
counters themselves; they are memory locations
consisting of BiPORT™ READ/WRITE memory
cells. The M48T08/18/08Y includes a clock control
circuit which updates the clock bytes with current
information once per second. The information can
be accessed by the user in the same manner as
any ot her location in t he stati c memory array.
The M48T08/18/08Y also has its own Power-fail
Detect circuit. The control circuitry constantly mon-
itors the single 5V supply for an out of tolerance
condition. When VCC is out of tolerance, the circuit
write protects the SRAM, providing a high degree
of data sec urity i n the m idst of unpredictable sys-
tem operation brought on by low VCC. As VCC falls
below the Battery Back-up Switchover Voltage
(VSO), the control circuitry connects the battery
which maintains data and cl ock operati on until val-
id power re turns.
Table 2. Operating Modes
No te: X = VIH or VIL; VSO = B atte ry Back-u p Sw i tch over Vo l tag e.
1. See Table 11., page 20 for details.
Mode VCC E1 E2 G W DQ0-DQ7 Power
Deselect
4.75 to 5.5V
or
4.5 to 5.5V
VIH X X X High Z Standby
Deselect X VIL X X High Z Standby
WRITE VIL VIH XVIL DIN Active
READ VIL VIH VIL VIH DOUT Active
READ VIL VIH VIH VIH High Z Active
Deselect VSO to VPFD(min)(1) X X X X High Z CMOS Standby
Deselect VSO(1) X X X X High Z Battery Back-up Mode
7/27
M48T08, M48T08Y, M48T18
READ Mode
The M4 8T08/18/08Y i s in the RE AD M ode when-
ever W (WRITE Enable) is hig h, E 1 (Chip Enable
1) is low, and E 2 (Chip Enable 2) is hi gh. The de-
vice architecture allows ripple-through access of
data from eight of 65,536 locations in the static
storage array. Thus, the unique address specif ied
by the 13 address inputs defines w hich one of the
8,192 bytes of data is to be accessed. Va lid data
will be available at the Data I/O pins within address
access time (tAVQV) after the last address input
signal is stable, providing that the E1, E2, and G
access ti mes are a lso satisfied. If the E 1, E2 and
G access times are not met, valid data will be
available af ter the latter of the Chip Enable Access
tim e s (tE1LQV or tE2HQV) or Output Ena ble Access
tim e (tGLQV).
The state of the eight three-state Da ta I/O si gnals
is controlled by E1, E2 and G. If the outputs are ac-
tivated before tAVQV, the dat a lines will be driven to
an indeterminate state until tAVQV. If the address
inputs are changed whil e E1, E2 and G remain ac-
tive, output data will remai n valid for Output Data
Hold time (tAXQX) but will go indeterminate until the
next address access.
Figure 7. READ Mode AC Waveforms
No te: W RITE Enable (W) = Hig h.
AI00962
tAVAV
tAVQV tAXQX
tE1LQV
tE1LQX
tE1HQZ
tGLQV
tGLQX
tGHQZ
VALID
A0-A12
E1
G
DQ0-DQ7
tE2HQV
tE2HQX
VALID
tE2LQZ
E2
M48T08, M48T08Y, M48T18
8/27
Table 3. READ M ode AC Characteristics
Note: 1. Val i d fo r Ambien t Operat in g T em pera t ure: TA = 0 to 70 ° C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (ex cept whe re noted) .
Symbol Parameter(1)
M48T08/M48T18/T08Y
Unit–100/–10 (T08Y) –150/–15 (T08Y)
MinMaxMinMax
tAVAV READ Cycle Time 100 150 ns
tAVQV Address Valid to Output Valid 100 150 ns
tE1LQV Chip Enable 1 Low to Output Valid 100 150 ns
tE2HQV Chip Enable 2 High to Output Valid 100 150 ns
tGLQV Output Enable Low to Output Valid 50 75 ns
tE1LQX Chip Enable 1 Low to Output Transition 10 10 ns
tE2HQX Chip Enable 2 High to Output Transition 10 10 ns
tGLQX Output Enable Low to Output Transition 5 5 ns
tE1HQZ Chip Enable 1 High to Output Hi-Z 50 75 ns
tE2LQZ Chip Enable 2 Low to Output Hi-Z 50 75 ns
tGHQZ Output Enable High to Output Hi-Z 40 60 ns
tAXQX Address Transition to Output Transition 5 5 ns
9/27
M48T08, M48T08Y, M48T18
WRITE Mod e
The M48T08/18/ 08Y is in the WRITE Mode when-
ever W, E1, and E2 are active. The start of a
WRITE is ref erenced from the latter occurring fal l -
ing edge of W or E1, or the rising edge of E2. A
WRITE is terminated by the earlier rising edge of
W or E1, or the f alling edge of E2. The addres ses
must be held valid throughout the cycle. E1 or W
must return high or E2 low for a minimum of tE1HAX
or tE2LAX from Chi p Enable or tWHAX from WRITE
Enable prior to the initiation of another READ or
WRITE Cycle. Data-in must be valid tDVWH prior to
the end of WRITE and remain valid for tWHDX af-
terward. G should be kept high during WRITE Cy-
cles to avoid bus contention; however, if the output
bus has been activated by a low on E1 and G and
a high on E2, a low o n W will disable the outp uts
tWLQZ after W fa lls .
Figure 8. WRITE Enable Controlled, WRITE AC Wavefo rm
AI00963
tAVAV
tWHAX
tDVWH
DATA INPUT
A0-A12
E1
W
DQ0-DQ7
VALID
E2
tAVWH
tAVE1L
tAVE2H
tWLWH
tAVWL
tWLQZ
tWHDX
tWHQX
M48T08, M48T08Y, M48T18
10/27
Figu re 9 . Chip Enable Controlled, WRITE AC Wav eforms
AI00964B
tAVAV
tE1HAX
tDVE1H
tDVE2L
A0-A12
E1
W
DQ0-DQ7
VALID
E2
tAVE1H
tAVE1L
tAVWL
tAVE2L
tE1LE1H
tE2LAX
tAVE2H tE2HE2L
tE1HDX
tE2LDX
DATA INPUT
11/27
M48T08, M48T08Y, M48T18
Table 4. WRITE Mo de AC Characteristics
Note: 1. Val i d fo r Ambien t Operat in g T em pera t ure: TA = 0 to 70 ° C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (ex cept whe re noted) .
Symbol Parameter(1)
M48T08/M48T18/T08Y
Unit–100/–10 (T08Y) –150/–15 (T08Y)
MinMaxMinMax
tAVAV WRITE Cycle Time 100 150 ns
tAVWL Address Valid to WRITE Enable Low 0 0 ns
tAVE1L Address Valid to Chip Enable 1 Low 0 0 ns
tAVE2H Address Valid to Chip Enable 2 High 0 0 ns
tWLWH WRITE Enable Pulse Width 80 100 ns
tE1LE1H Chip Enable 1 Low to Chip Enable 1 High 80 130 ns
tE2HE2L Chip Enable 2 High to Chip Enable 2 Low 80 130 ns
tWHAX WRITE Enable High to Address Transition 10 10 ns
tE1HAX Chip Enable 1 High to Address Transition 10 10 ns
tE2LAX Chip Enable 2 Low to Address Transition 10 10 ns
tDVWH Input Valid to WRITE Enable High 50 70 ns
tDVE1H Input Valid to Chip Enable 1 High 50 70 ns
tDVE2L Input Valid to Chip Enable 2 Low 50 70 ns
tWHDX WRITE Enable High to Input Transition 5 5 ns
tE1HDX Chip Enable 1 High to Input Transition 5 5 ns
tE2LDX Chip Enable 2 Low to Input Transition 5 5 ns
tWLQZ WRITE Enable Low to Output Hi-Z 50 70 ns
tAVWH Address Valid to WRITE Enable High 80 130 ns
tAVE1H Address Valid to Chip Enable 1 High 80 130 ns
tAVE2L Address Valid to Chip Enable 2 Low 80 130 ns
tWHQX WRITE Enable High to Output Transition 10 10 ns
M48T08, M48T08Y, M48T18
12/27
Data Retention Mode
With valid VCC applied, the M 48T08/18/08Y oper-
ates as a convention al BY TEWIDE™ st atic RA M.
Should t he suppl y volt age decay, the RAM wil l au-
tomatically power-fail de se lect, write protecting it-
self when VCC falls within the VPFD (max), VPFD
(min) window. All outputs become high imped-
ance, and all inputs are treated as “Don't care.”
Note: A power failure during a WRITE cycle may
corrupt data at the currently addressed location,
but does not jeopardize the rest of t he RAM's con-
tent. At voltages below VPFD (min), the user can be
assured the memory will be in a write protected
state, provided t he VCC fall time i s not less than tF.
The M48T08/18/08Y may respond to transient
noise spikes on VCC that reach into the deselect
window during the time the device is sampling
VCC. Therefore, decoupling of the power supply
lines is re comm ended.
When VCC drops below VSO, the control circuit
switches power to the internal battery which pre-
serves data and powers the clock. The internal
button cell will maintain data in the M48T08/18/
08Y for an accumulated period of at least 10 years
when VCC is less than VSO.
Note: Requires use of M4T32-BR12SH
SNAPHAT® t op when using the SOH28 pack age.
As system power returns and VCC rises above
VSO, the battery is disconnected and the power
supply is switched to external VCC.
Write protecti on cont inues until VCC reaches VPFD
(min) plus trec (min ). E1 should be kept high or E2
low a s VCC rises past VPFD (m in) to prevent i nad-
ver tent WRITE cyc les prior t o syst em stabilization.
Normal RAM operation can resume trec after VCC
exceeds VPFD (max).
For more information on Battery Storage Li fe refer
to the A pp lication Note AN101 2.
Power-fail Interrupt Pin
The M48T08/18/08Y continuously monitors VCC.
When VCC falls to the power-fail detect trip point,
an interrupt is immediate ly generated. An internal
clock provides a delay of between 10µs and 40µs
before automatically deselecting the M48T08/18/
08Y. The INT pin is an open drain output and re-
quires an external pull up r esistor, even if t he inter-
rupt output function is not being us ed .
13/27
M48T08, M48T08Y, M48T18
CL OCK OP ERATIONS
Reading the Clock
Updates to the TIMEKEEPER® registers should
be halted before clock data is read to prevent
reading data in transition. The BiPORT™ TIME-
KEEPER cell s i n the RAM a r r ay are o n ly dat a r eg -
isters and not the actual clock counters, so
updating the registers can be halted without dis-
turbing the clock i tself.
Updating is halted when a '1' is written to the
READ Bit, the seventh bit in the control register.
As long as a '1' rem ains in that po si tion, updating
is halted. After a halt is issued, the registers reflect
the count; that is, the day, dat e, and the time that
were current at the moment the halt command was
issued.
All of the TIMEKEEPER registe rs are up dated si-
multaneously. A halt will not interrupt an update in
progress. Updating is within a second af ter the bit
is re se t to a '0.'
S etti ng the C l ock
The eighth bit of the cont rol register is the WRI TE
Bit. Setting the WRITE Bit to a '1,' like the READ
Bit, halts updates to the TIMEKEEPER registers.
The user can then load them with the correct day,
date, and ti me data in 24 hour BCD format (on Ta-
ble 5.). Resetting the WRITE Bit to a '0' then trans-
fers t he v alues of all time registers (1FF9h-1FFFh )
to the actual TIMEKEEPER counters and allows
normal operation to resume. The FT Bit and the
bits marked as '0' in T able 5. must be written to '0'
to allow for normal TIMEKEEPER and RAM oper-
ation.
See the Application Note AN923, “TIMEKEEPER®
Rolling Into the 21st Century” for information on
Century Rollover.
Table 5. Register Map
Keys: S = SIGN Bit
FT = FREQUENCY TEST Bit (Set to '0' for normal clock operation)
R = READ Bit
W = WRI T E Bi t
ST = STOP Bit
0 = Must be set to '0'
Address Data Function/Range
BCD Format
D7 D6 D5 D4 D3 D2 D1 D0
1FFFh 10 Years Year Year 00-99
1FFEh 0 0 0 10 M Month Month 01-12
1FFDh 0 0 10 Date Date Date 01-31
1FFCh 0 FT 0 0 0 Day Day 01-07
1FFBh 0 0 10 Hours Hours Hours 00-23
1FFAh 0 10 Minutes Minutes Minutes 00-59
1FF9h ST 10 Seconds Seconds Secon ds 00-59
1FF8h W R S Calibration Control
M48T08, M48T08Y, M48T18
14/27
Stopping and Starting the Oscillator
The oscillator may be stopped at any time. If the
device is going to spend a significant amount of
time on the shelf, the oscillator can be turned off to
minimize current drain on the battery. The ST OP
Bit (ST) is the MSB of the seconds register. Setting
it to a '1' stops the os cillator. Th e M4 8T08/ 18/08Y
(in the PCDIP28 package) is shipped from STMi-
croelectronics with the STOP Bit set to a '1.' When
reset to a '0,' the M48T08/18/08Y oscillator starts
within one second.
Note: To guarantee oscillator start-up after initial
power-up, first write the STOP B it (ST) to '1,' then
re set to '0. '
Ca libr a tin g t h e C lock
The M48T08/18/08Y is driven by a quartz-con-
trolled oscillator with a nominal frequency of
32,768 Hz. A typical M48T08/18/08Y is accurate
within 1 minute per mont h at 25°C without cal i bra-
tion. The devices are tested not to exceed ± 35
ppm (parts per million) oscillator frequency error at
25°C, which equates to about ±1.53 minutes per
month. With the calibration bits properly set, the
accuracy of each M48T08/18/08Y improves to
better than +1/–2 ppm at 25°C.
The oscillation rate of any crystal changes with
temperature. Figure 10., page 15 shows the fre-
quency error that can be expected at vari ous tem-
peratures. Most clock chips compensate for
crystal frequency a nd tem perature shift error with
cumbersome “trim” capacitors. The M48T08/18/
08Y design, however, employs periodic counter
correction. The calibr ation circuit adds or subtract s
counts from the oscillator divider circuit at the di-
vide by 256 stage, as shown in Figure
11., page 15. The number of times pulses are
blanked (subtracted, negative calibration) or split
(added, positive calibration) depends upon the
value loaded into the five-bit Calibration Byte
found in the Control Register. Adding counts
speeds the clock up, sub tracting counts slows the
clock down.
The Calibration Byte occupies the five lower order
bits in the Control register. This by te can be set t o
represent any value between 0 and 31 in binary
form. The sixt h bi t is the Sign Bit; '1' indicates pos-
itive calibration, '0' indicates negative calibration.
Calibration occurs within a 64 minute cycle. The
fi rst 62 minutes i n the cycle may, o nce per minut e,
have one second either shortened by 128 or
lengthene d by 256 oscillato r cycles. If a binary '1'
is l oaded into the register, only the first 2 minutes
in the 64 minute cycle will be modified ; if a binary
6 is loaded, the first 12 will be affected, and so on.
Therefore, each calibration step has the effect of
adding 512 or subtracting 256 osc illator cycles for
every 125,829,120 actual oscillator cycles; that is
+4.068 or –2.034 ppm of adjustment per calibra-
tion step i n t he cal ibration register. Assum ing that
the oscillator is in fact running at exactly 32,768Hz ,
each of the 31 increments in the Calibration Byte
would represent +10.7 or –5.35 seconds per
month which c orresponds to a total range of +5.5
or –2.75 minutes per month.
Two methods are available for ascertaining how
much calibration a given M48T08/1 8/08 Y may re-
quire. The first involves simply setting the clock,
letting it run for a month and comparing it to a
known accurate reference (lik e WWV broadcasts) .
While that may seem crude, it allows the designer
to give the end user the ability to calibrate his clock
as his environment may require, even after the fi-
nal product is packaged in a non-user servi ceable
enclosure. All the d esigner has t o do i s provide a
simple utility that accesses the Calibration Byte.
The second approach is better suited to a m anu-
facturing environment, and involves the use of
standard test equipment. When the Frequency
Test (FT) Bit, the seventh-most significant bit in
the Day Regis ter , is s et to a '1 ,' an d the oscilla tor
is running at 32,768 Hz, the LSB (DQ0) of the Sec-
onds Register will toggle at 512 Hz. Any deviation
from 51 2 Hz in dicat es th e degree and direction of
oscillator frequency shift at the test temperature.
For example, a reading of 512.01024 Hz would in-
dicate a +20 ppm oscillator frequency error, requir-
ing a –10 (WR001010) to be loaded into the
Calibration Byte for correction.
Note: Setting or changing the Calibration Byte
does not affect the Frequency Test output fre-
quency. The device must be selected and ad-
dresses must be stable at Address 1FF9h when
reading the 512 Hz on DQ0.
The LSB of th e S econds Regist er is m onitored by
holding the M48T08/18/08Y in an extended READ
of the Seconds Register, but without having the
READ Bit set. The FT Bit MUST be reset to '0' for
normal clock operations to resume.
For more i nformation on cali bration, see the A ppli-
cation Note AN934, “TIMEKEEPER® Calibra t ion.”
15/27
M48T08, M48T08Y, M48T18
Figure 10. Crys tal Accuracy Acro ss Tem p eratur e
Figu re 11 . Cl ock C al ib r at i on
AI02124
-80
-60
-100
-40
-20
0
20
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
F= -0.038 (T - T
0
)
2
± 10%
Fppm
C2
T
0
= 25 °C
ppm
°C
AI00594B
NORMAL
POSITIVE
CALIBRATION
NEGATIVE
CALIBRATION
M48T08, M48T08Y, M48T18
16/27
VCC Noise And Negative Go ing Transients
ICC transients, including those produced by output
switching, can produce voltage fluctuations, re-
sulting in spi kes on the VCC bus. These trans ien ts
can be reduced if capaci tors are used to store en-
ergy which stabilizes the VCC bus. The energy
stored in the bypass c apacit ors will be released as
low going spikes are generated or energy will be
absorbed when overshoots occur. A ceramic by-
pass capaci tor value of 0.1µF (as shown in Figure
12.) is recomm ended in order to provide the need-
ed filtering.
In addition to t ransients that are caused by normal
SRAM operation, power cycling can generat e neg-
ative voltage s pikes on VCC that drive it to values
below VSS by as much as one volt. These negative
spikes can cause data corruption in the SRAM
while in battery backup mode. To protect from
these voltage spikes, it is recommended to con-
nect a schottky diode from VCC to VSS (cathode
connected to VCC, ano de to VSS). Schottky diode
1N5817 is recommended for through hole and
MBRS120T3 is recommended for surface mount.
Figure 12. Supply Voltage Protection
AI02169
VCC
0.1µF DEVICE
VCC
VSS
17/27
M48T08, M48T08Y, M48T18
MAXI MUM RAT IN G
Stressing the device above t he rating l isted in t he
“Absolute Maximum Ratings” table may cause
permanent damage to the device. These are
stress ratings only and operation of the device at
these or any other conditions above those indicat-
ed in the Oper ating sections of this specification is
not impl ied. Exposure to Absol ute Max imum Ra t-
ing conditions for extended periods may affect de-
vice reliability. Refer also to the
STMicroelectronics S URE P rogram and other rel-
evant quality documents.
Table 6. Absolute Maximum Ratings
Note: 1. For DIP package: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not t o exceed 150°C for longer
th an 30 seconds).
2. For SO packag e, s tandard (SnPb) lead fini sh: Re flow at peak temperatu re of 225° C (tota l thermal budget not t o excee d 180°C fo r
betw een 90 t o 150 sec o nds) .
3. For SO package, Lead-fr ee (Pb-f ree) lead fini sh: Refl ow at peak tem perature of 260°C (t ot al thermal budget not to exceed 24C
for greater than 30 seconds).
CAUTION: N egative undershoots be l ow –0.3V are not allowed on any pin while in the Batt ery B ack- up mode.
CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPH AT so ckets.
Symbol Parameter Value Unit
TAAmbient Operating Temperature 0 to 70 °C
TSTG S torage Te mperat ure (VCC Off, Oscillator Off) –40 to 85 °C
TSLD(1,2,3) Lead Solder Temperature for 10 seconds 260 °C
VIO Input or Output Voltages –0.3 to 7 V
VCC Supply Voltage –0.3 to 7 V
IOOutput Current 20 mA
PDPower Dissipation 1 W
M48T08, M48T08Y, M48T18
18/27
DC AND AC PARAM ETERS
This section summarizes the operating and mea-
surement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests pe rf ormed unde r t he Measure-
ment Condition s listed in the relevant tables. De-
signers should check that the operating conditions
in their projects match the measurement condi-
tions when using the quoted parameters.
Table 7. Operating and AC Measurem en t Conditions
Note: Output Hi -Z is defi ned as the point where dat a i s no longer driv en.
Fi gure 13. AC Testi ng Load Cir cuit
Table 8. Capacitance
Note: 1. Effective c apacitance me asured with power supply at 5V; s ampled only, not 100% tested.
2. At 25° C, f = 1MHz.
3. Outputs deselected .
Parameter M48T08 M48T18/T08Y Unit
Supply Voltage (VCC)4.75 to 5.5 4.5 to 5.5 V
Ambient Operating Temperature (TA)0 to 70 0 to 70 °C
Load Capacitance (CL)100 100 pF
Input Rise and Fall Times 5 5ns
Input Pulse Voltages 0 to 3 0 to 3 V
Input and Output Timing Ref. Voltages 1.5 1.5 V
AI01019
5V
OUT
CL = 100pF
CL includes JIG capacitance
1.8k
DEVICE
UNDER
TEST
1k
Symbol Parameter(1,2) Min Max Unit
CIN Input Capacitance 10 pF
CIO(3) Input / Output Capacitance 10 pF
19/27
M48T08, M48T08Y, M48T18
Table 9. DC Characteristics
Note: 1. Val i d fo r Ambien t Operat in g T em pera t ure: TA = 0 to 70 ° C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (ex cept whe re noted) .
2. Outputs deselected .
3. Mea su re d with Cont rol Bits se t as fo ll ows: R = '1'; W, ST, FT = ' 0 .'
4. The INT pin is Open Drain.
Symbol Parameter Test Condition(1) M48T08/M48T18/T08Y Unit
Min Max
ILI Input Leakage Current 0V VIN VCC ±1 µA
ILO(2) Output Leakage Current 0V VOUT VCC ±1 µA
ICC Supply Current Outputs open 80 mA
ICC1(3) Supply Current (Standby) TTL E1 = VIH, E2 = VIL 3mA
ICC2(3) Supply Current (Standby) CMOS E1 = VCC – 0.2V,
E2 = VSS + 0.2V 3mA
VIL Input Low Voltage –0.3 0.8 V
VIH Input High Voltage 2.2 VCC + 0.3 V
VOL Output Low Voltage IOL = 2.1mA 0.4 V
Output Low Voltage (INT)(4) IOL = 0.5mA 0.4 V
VOH Output High Voltage IOH = –1mA 2.4 V
M48T08, M48T08Y, M48T18
20/27
Figure 14. Power Down /U p Mode AC Waveform s
Note : Inp uts may or may n ot b e rec ogni zed at this time . Caut ion sho uld be tak en to ke ep E1 hi gh or E2 low as V CC rises past VPFD (min).
Some syste ms may perform ina dvertent WRITE cycles after VCC rises above VPFD (min ) but befo re normal system oper ations begin.
Even though a power on reset is being applied to the processor, a reset condition may not occur until after the system clock is running.
Table 10. Power Down/U p AC Characteri stics
Note: 1. Val i d fo r Ambien t Operat in g T em pera t ure: TA = 0 to 70 ° C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (ex cept whe re noted) .
2. VPFD (max) to VPFD (min) fall time of les s than t F may result in deselection/wri te protection not occurring until 200µs after VCC p a ss-
es VPFD (mi n).
3. VPFD (min) to VSS fall time of less than tFB may c ause corruption of RAM data.
Table 11. Power Down/U p Trip Points DC Characteristic s
Note: 1. All voltages referen ced to VSS.
2. Vali d for Ambient Operating Tem perature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (ex cept where noted) .
3. At 55°C, VCC = 0V; tDR = 8.5 years (typ) at 70°C. Requires use of M4T32-BR12SH SNAPHAT® t op when using the SOH28 package.
Symbol Parameter(1) Min Max Unit
tPD E1 or W at VIH or E2 at VIL before Po wer Down s
tF(2) VPFD (max) to VPFD (min) VCC Fall Time 300 µs
tFB(3) VPFD (min) to VSS VCC Fall Time 10 µs
tRVPFD (min) to VPFD (max) VCC Rise Time s
tRB VSS to VPFD (min) VCC Rise Time s
trec E1 or W at VIH or E2 at VIL before Power Up 1ms
tPFX INT Low to Auto Deselect 10 40 µs
tPFH VPFD (max) to INT High 120 µs
Symbol Parameter(1,2) Min Typ Max Unit
VPFD Power-fail Dese lect Voltage M48T08 4.5 4.6 4.75 V
M48T18/T08Y 4.2 4.3 4.5 V
VSO Battery Back-up Switchover Voltage 3.0 V
tDR Expected Data Retention Time 10(3) YEARS
AI00566
VCC
INPUTS
INT
(PER CONTROL INPUT)
OUTPUTS
DON'T CARE
HIGH-Z
tF
tFB
tPFX
tR
tPFH
trec
tPD tRB
tDR
VALID VALID
NOTE
(PER CONTROL INPUT)
RECOGNIZEDRECOGNIZED
VPFD (max)
VPFD (min)
VSO
21/27
M48T08, M48T08Y, M48T18
P ACKAGE MECHANICAL INFO RMATION
Figure 15. PCDIP28 – 28-pi n Plastic DIP, battery CAPHAT, Package Outline
No te : D rawing is not to scale.
Table 12. PCDIP28 – 28-pin Plastic DIP , battery CAPHAT, Package Me chanica l Data
Symb mm inches
Typ Min Max Typ Min Max
A 8.89 9.65 0.350 0.380
A1 0.38 0.76 0.015 0.030
A2 8.38 8.89 0.330 0.350
B 0.38 0.53 0.015 0.021
B1 1.14 1.78 0.045 0.070
C 0.20 0.31 0.008 0.012
D 39.37 39.88 1.550 1.570
E 17.83 18.34 0.702 0.722
e1 2.29 2.79 0.090 0.110
e3 29.72 36.32 1.170 1.430
eA 15.24 16.00 0.600 0.630
L 3.05 3.81 0.120 0.150
N28 28
PCDIP
A2
A1
A
L
B1 B e1
D
E
N
1
C
eA
e3
M48T08, M48T08Y, M48T18
22/27
Figure 16. SO H28 – 28-le ad Plas tic S m all Outlin e, 4 -socket battery SNAP HAT, Package Outline
No te : D rawing is not to scale.
Table 13. SOH28 – 28-lead Plastic SO, 4-socket battery SNAPHAT, Package Mech. Data
Symb mm inches
Typ Min Max Typ Min Max
A 3.05 0.120
A1 0.05 0.36 0.002 0.014
A2 2.34 2.69 0.092 0.106
B 0.36 0.51 0.014 0.020
C 0.15 0.32 0.006 0.012
D 17.71 18.49 0.697 0.728
E 8.23 8.89 0.324 0.350
e1.27– 0.050
eB 3.20 3.61 0.126 0.142
H 11.51 12.70 0.453 0.500
L 0.41 1.27 0.016 0.050
α
N 28 28
CP 0.10 0.004
SOH-A
E
N
D
C
LA1 α
1
H
A
CP
Be
A2
eB
23/27
M48T08, M48T08Y, M48T18
Figure 17. SH – 4-pin SNA PH AT Ho using for 4 8m Ah Batt ery & Crystal, Package Ou tline
No te : D rawing is not to scale.
Tabl e 14. SH 4- pi n S N APH AT Housing for 48mAh Batte ry & Crystal, Pack age Me ch. Da t a
Symb mm inches
Typ Min Max Typ Min Max
A 9.78 0.385
A1 6.73 7.24 0.265 0.285
A2 6.48 6.99 0.255 0.275
A3 0.38 0.015
B 0.46 0.56 0.018 0.022
D 21.21 21.84 0.835 0.860
E 14.22 14.99 0.560 0.590
eA 15.55 15.95 0.612 0.628
eB 3.20 3.61 0.126 0.142
L 2.03 2.29 0.080 0.090
SHTK-A
A1 A
D
E
eA
eB
A2
BL
A3
M48T08, M48T08Y, M48T18
24/27
Figure 18. SH – 4-pin SNAPHAT Housin g for 120mAh Battery & Crystal, Package Outline
No te : D rawing is not to scale.
Table 15. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal , Package Mech. Data
Symb mm inches
Typ Min Max Typ Min Max
A 10.54 0.415
A1 8.00 8.51 0.315 .0335
A2 7.24 8.00 0.285 0.315
A3 0.38 0.015
B 0.46 0.56 0.018 0.022
D 21.21 21.84 0.835 0.860
E 17.27 18.03 0.680 .0710
eA 15.55 15.95 0.612 0.628
eB 3.20 3.61 0.126 0.142
L 2.03 2.29 0.080 0.090
SHTK-A
A1 A
D
E
eA
eB
A2
BL
A3
25/27
M48T08, M48T08Y, M48T18
PART NUMBERING
Table 16. Ordering Information Scheme
Note: 1. The M48T08 /1 8 part is offered with the PCDIP28 (e.g., CA P HAT™) package only.
2. The SOIC pac kage (S OH28) requires the SNA P HAT® ba tt ery/crystal p ackage which is ordered separate l y under t he part number
“M4 T XX- BR12S H” in pl as tic tube o r “M4T XX- BR12S HTR” in T a pe & Reel fo rm (s ee Table 17.). The M48T08Y part is offered in the
SOH28 (SNA P HAT) package o nl y.
Caution: Do not place the SNAPHAT battery package “M4TXX-BR12SH” in conductive foam as it will drain the lithium button-cell bat-
tery.
For other options, or for more information on any aspec t of t his device, pl ease contact the ST Sales Of fice
nearest you.
Table 17. SNAPHAT Battery Table
Example: M48T 18 –100 PC 1 E
Device Type
M48T
Supply Voltage and Write Protect Voltage
08(1) = VCC = 4.75 to 5.5V; VPFD = 4.5 to 4.75V
18/08Y = VCC = 4.5 to 5.5V; VPFD = 4.2 to 4.5V
Speed
–100 = 100ns
–150 = 150ns
–10 = 100ns (M48T08Y)
Package
PC(1) = PCDIP28
MH(2) = SOH28
Temperature Range
1 = 0 to 70°C
Shipping Method
For SOH28:
blank = Tubes (Not for New Design - Use E)
E = ECOPACK Package, Tubes
F = ECOPACK Package, Tape & Reel
TR = Tape & Reel (Not for New Design - Use F)
For PCDIP28:
blank = ECOPACK Package, Tubes
Part Number Descript ion Package
M4T28-BR12SH Lithium Battery (48mAh) SNAPHAT SH
M4T32-BR12SH Lithium Battery (120mAh) SNAPHAT SH
M48T08, M48T08Y, M48T18
26/27
REVISION HISTORY
Table 18. Document Revi sion History
Date Version Revision Details
December 1999 1.0 First Issue
07-Feb-00 2.0 From Preliminary Data to Data Sheet; Battery Low Flag paragraph changed; 100ns
speed class identifier changed (Tables 3, 4)
11-Jul-00 2.1 tFB changed (Table 10); Watchdog Timer paragraph changed
16-Jul-01 3.0 Reformatted; SNAPHAT battery table added (Table 17); added temp./voltage info. to
tables (Tables 8, 9, 3, 4, 10, 11)
01-Aug-01 3.1 Reference to App. Note corrected in “Calibrating the Clock” section
21-Dec-01 3.2 Changes to text in document to reflect addition of M48T08Y option
06-Mar-02 3.3 Fix Ordering Information table and add to footnote (Table 16)
20-May-02 3.4 Modify reflow time and temperature footnotes (Table 6)
29-Aug-02 3.5 tDR specification temperature updated (Table 11)
28-Mar-03 4.0 v2.2 template applied; updated test conditions (Table 10)
10-Dec-03 5.0 Reformatted
30-Mar-04 6.0 Reformatted; Lead-free (Pb-free) information package update (Table 6, 16)
13-Dec-05 7.0 Updated template, Lead-free information, removed footnote (Table 9, 16)
27/27
M48T08, M48T08Y, M48T18
Information fur nished is believed to b e accurate and relia ble. However, STMicroelectronics a ssumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for us e as c ri t i cal com ponents in lif e support devices or syste m s without express written approv al of STMi croelect ronics.
The ST l ogo i s a regist ered tra dem ark of STMi croelectron ics.
All other names are th e property of their respec tive owners
© 200 5 STMicr oel ectro ni cs - All ri ghts reserved
STM i croelectron ics group of co mpanies
Aus tralia - B el gium - B razil - Ca nada - Ch i na - Czech Republic - F i nl and - Fra nce - Germ any - Hong K ong - India - Isra el - It aly - Ja pan -
Malaysia - M a l t a - Moroc co - S i ngapore - Spain - Sweden - Swit zerlan d - United Kingdom - United States of Am eri ca
www.st.com