LTC2345-16
22
234516f
For more information www.linear.com/LTC2345-16
applicaTions inForMaTion
Bipolar SoftSpan Input Ranges
For channels configured in SoftSpan ranges 7, 6, 3, or
2, the LTC2345-16 digitizes the differential analog input
voltage (VIN+ – VIN–) over a bipolar span of ±VREFBUF,
±VREFBUF/1.024, ±0.5 • VREFBUF, or ±0.5 • VREFBUF/1.024,
respectively, as shown in Table 1a. These SoftSpan ranges
are useful for digitizing input signals where IN+ and IN–
swing above and below each other. Traditional examples
include fully differential input signals, where IN+ and
IN– are driven 180 degrees out-of-phase with respect
to each other centered around a common mode voltage
(VIN+ + VIN–)/2, and pseudo-differential bipolar input
signals, where IN+ swings above and below a reference
level, driven on IN–. Regardless of the chosen SoftSpan
range, the wide common mode input range and high CMRR
of the IN+/IN– analog inputs allow them to swing with an
arbitrary relationship to each other, provided each pin
remains between ground and VDD. The output data format
for all bipolar SoftSpan ranges is two’s complement.
Unipolar SoftSpan Input Ranges
For channels configured in SoftSpan ranges 5, 4, or 1, the
LTC2345-16 digitizes the differential analog input voltage
(VIN+ – VIN–) over a unipolar span of 0V to VREFBUF, 0V
to VREFBUF/1.024, or 0V to 0.5 • VREFBUF, respectively, as
shown in Table 1a. These SoftSpan ranges are useful for
digitizing input signals where IN+ remains above IN–. A
traditional example includes pseudo-differential unipolar
input signals, where IN+ swings above a ground reference
level, driven on IN–. Regardless of the chosen SoftSpan
range, the wide common mode range and high CMRR of
the IN+/IN– analog inputs allow them to swing with an
arbitrary relationship to each other, provided each pin
remains between ground and VDD. The output data format
for all unipolar SoftSpan ranges is straight binary.
INPUT DRIVE CIRCUITS
The initial voltage on each channel’s sampling capacitors
at the start of acquisition must settle to the new input
pin voltages during the acquisition interval. The external
circuitry connected to IN+ and IN– must source or sink
the charge that flows through RIN as this settling occurs.
The LTC2345-16 sampling network RC time constant of
5.2ns implies a 16-bit settling time to a full-scale step of
approximately 11•(RIN•CIN)=57ns. The impedance and
self-settling of external circuitry connected to the analog
input pins will increase the overall settling time required.
Low impedance sources can directly drive the inputs of
the LTC2345-16 without gain error, but high impedance
sources should be buffered to ensure sufficient settling
during acquisition and to optimize the linearity and distor-
tion performance of the ADC. Settling time is an important
consideration even for DC input signals, as the voltages on
the sampling capacitors will differ from the analog input
pin voltages at the start of acquisition.
Most applications should use a buffer amplifier to drive the
analog inputs of the LTC2345-16. The amplifier provides
low output impedance, enabling fast settling of the analog
signal during the acquisition phase. It also provides isola-
tion between the signal source and the charge flow at the
analog inputs when entering acquisition.
Input Filtering
The noise and distortion of an input buffer amplifier and
other supporting circuitry must be considered since they
add to the ADC noise and distortion. Noisy input signals
should be filtered prior to the buffer amplifier with a low-
bandwidth filter to minimize noise. The simple one-pole
RC lowpass filter shown in Figure 5 is sufficient for many
applications.
At the output of the buffer, a lowpass RC filter network
formed by the 130Ω sampling switch on-resistance (RIN)
and the 40pF sampling capacitance (CIN) limits the input
bandwidth on each channel to 31MHz, which is fast enough
to allow for sufficient transient settling during acquisition
while simultaneously filtering driver wideband noise. A
buffer amplifier with low noise density should be selected
to minimize SNR degradation over this bandwidth. An
additional filter network may be placed between the buf-
fer output and ADC input to further minimize the noise
contribution of the buffer and reduce disturbances to the
buffer from ADC acquisition transients. A simple one-pole
lowpass RC filter is sufficient for many applications. It is
important that the RC time constant of this filter be small