Low Noise Pseudomorphic HEMT
in a Surface Mount Plastic Package
Technical Data
ATF-33143
Features
Low Noise Figure
Excellent Uniformity in
Product Specifications
1600 micron Gate Width
Low Cost Surface Mount
Small Plastic Package
SOT-343 (4 lead SC-70)
Tape-and-Reel Packaging
Option Available
Specifications
1.9 GHz; 4V, 80 mA (Typ.)
0.5 dB Noise Figure
15 dB Associated Gain
22 dBm Output Power at
1 dB Gain Compression
33.5 dBm Output 3rd Order
Intercept
Applications
Tower Mounted Amplifier,
Low Noise Amplifier and
Driver Amplifier for GSM/
TDMA/CDMA Base Stations
LNA for Wireless LAN, WLL/
RLL and MMDS Applications
General Purpose Discrete
PHEMT for other Ultra Low
Noise Applications
Surface Mount Package
SOT-343
Description
Agilent’s ATF-33143 is a high
dynamic range, low noise PHEMT
housed in a 4-lead SC-70 (SOT-343)
surface mount plastic package.
Based on its featured performance,
ATF-33143 is ideal for the first or
second stage of base station LNA
due to the excellent combination
of low noise figure and enhanced
linearity
[1]
. The device is also
suitable for applications in Wire-
less LAN, WLL/RLL, MMDS, and
other systems requiring super low
noise figure with good intercept in
the 450 MHz to 10 GHz frequency
range.
Note:
1. From the same PHEMT FET family, the
smaller geometry ATF-34143 may also
be considered for the higher gain
performance, particularly in the higher
frequency band (1.8 GHz and up).
Pin Connections and
Package Marking
GATE
3Px
SOURCE
DRAIN SOURCE
Note: Top View. Package marking
provides orientation and identification.
“3P” = Device code
“x” = Date code character. A new
character is assigned for each month, year.
2
ATF-33143 Absolute Maximum Ratings[1]
Absolute
Symbol Parameter Units Maximum
VDS Drain - Source Voltage[2] V 5.5
VGS Gate - Source Voltage[2] V-5
V
GD Gate Drain Voltage[2] V-5
IDS Drain Current[2] mA Idss[3]
Pdiss Total Power Dissipation[4] mW 600
Pin max RF Input Power dBm 20
TCH Channel Temperature[5] °C 160
TSTG Storage Temperature °C -65 to 160
θjc Thermal Resistance[6] °C/W 145
Notes:
1. Operation of this device above any one
of these parameters may cause
permanent damage.
2. Assumes DC quiesent conditions.
3. VGS = 0 V
4. Source lead temperature is 25°C.
Derate 6 mW/°C for TL > 60°C.
5. Please refer to failure rates in reliability
section to assess the reliability impact
of running devices above a channel
temperature of 140°C.
6. Thermal resistance measured using
150°C Liquid Crystal Measurement
method.
Product Consistency Distribution Charts [8, 9]
V
DS
(V)
Figure 1. Typical Pulsed I-V Curves
[7]
.
(V
GS
= -0.2 V per step)
I
DS
(mA)
02 468
500
400
300
200
100
0
0 V
–0.6 V
+0.6 V
NF (dB)
Figure 2. NF @ 2 GHz, 4 V, 80 mA.
LSL=0.2, Nominal=0.53, USL=0.8
0.2 0.40.3 0.60.5 0.80.7
-3 Std +3 Std
Cpk = 1.7
Std = 0.05
120
100
80
60
40
20
0
OIP3 (dBm)
Figure 3. OIP3 @ 2 GHz, 4 V, 80 mA.
LSL=30.0, Nominal=33.3, USL=37.0
29 37
-3 Std +3 Std
Cpk = 1.21
Std = 0.94
100
80
60
40
20
03331 35
GAIN (dB)
Figure 4. Gain @ 2 GHz, 4 V, 80 mA.
LSL=13.5, Nominal=14.8, USL=16.5
13 14 15 16 17
-3 Std +3 Std
Cpk = 2.3
Std = 0.2
120
100
80
60
40
20
0
Notes:
7. Under large signal conditions, V
GS
may
swing positive and the drain current may
exceed I
dss
. These conditions are
acceptable as long as the maximum P
diss
and P
in max
ratings are not exceeded.
8. Distribution data sample size is 450
samples taken from 9 different wafers.
Future wafers allocated to this product
may have nominal values anywhere
within the upper and lower spec limits.
9.
Measurements made on production test
board. This circuit represents a trade-off
between an optimal noise match and a
realizeable match based on production
test requirements. Circuit losses have
been de-embedded from actual
measurements.
10. The probability of a parameter being
between ±1σ is 68.3%, between ±2σ is
95.4% and between ±3σ is 99.7%.
3
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measure-
ments. This circuit represents a trade-off between an optimal noise match and a realizable match based on production test
requirements. Circuit losses have been de-embedded from actual measurements.
Input
50 Ohm
Transmission
Line Including
Gate Bias T
(0.5 dB loss)
Input
Matching Circuit
Γ_mag = 0.20
Γ_ang = 124°
(0.3 dB loss)
DUT
50 Ohm
Transmission
Line Including
Drain Bias T
(0.5 dB loss)
Output
ATF-33143 DC Electrical Specifications
TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol Parameters and Test Conditions Units Min. Typ.[2] Max.
Idss [1] Saturated Drain Current VDS = 1.5 V, VGS = 0 V mA 175 237 305
VP[1] Pinchoff Voltage VDS = 1.5 V, IDS = 10% of Idss V -0.65 -0.5 -0.35
IdQuiescent Bias Current VGS = -0.5 V, VDS = 4 V mA 80
gm[1] Transconductance VDS = 1.5 V, gm = Idss /V
Pmmho 360 440
IGDO Gate to Drain Leakage Current VGD = 5 V µA 1000
Igss Gate Leakage Current VGD = VGS = -4 V µA 42 600
f = 2 GHz VDS = 4 V, IDS = 80 mA dB 0.5 0.8
NF Noise Figure VDS = 4 V, IDS = 60 mA 0.5
f = 900 MHz VDS = 4 V, IDS = 80 mA dB 0.4
VDS = 4 V, IDS = 60 mA 0.4
f = 2 GHz VDS = 4 V, IDS = 80 mA dB 13.5 15 16.5
GaAssociated Gain[3] VDS = 4 V, IDS = 60 mA 15
f = 900 MHz VDS = 4 V, IDS = 80 mA dB 21
VDS = 4 V, IDS = 60 mA 21
Output 3rd Order
f = 2 GHz VDS = 4 V, IDS = 80 mA dBm 30 33.5
OIP3 Intercept Point[3]
5 dBm Pout/Tone VDS = 4 V, IDS = 60 mA 32
f = 900 MHz VDS = 4 V, IDS = 80 mA dBm 32.5
5 dBm Pout/Tone VDS = 4 V, IDS = 60 mA 31
1 dB Compressed
f = 2 GHz VDS = 4 V, IDS = 80 mA dBm 22
P1dB Compressed Power[3]
VDS = 4 V, IDS = 60 mA 21
f = 900 MHz VDS = 4 V, IDS = 80 mA dBm 21
VDS = 4 V, IDS = 60 mA 20
Notes:
1. Guaranteed at wafer probe level.
2. Typical value determined from a sample size of 450 parts from 9 wafers.
3. Measurements obtained using production test board described in Figure 5.
4
ATF-33143 Typical Performance Curves
Notes:
1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 4V
80 mA bias. This circuit represents a trade-off between optimal noise match, maximum gain match and a realizable match based on
production test board requirements. Circuit losses have been de-embedded from actual measurements.
2. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease
depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches
P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant
current source as is typically done with active biasing.
Figure 8. P
1dB
vs. Bias
[1,2]
at 2 GHz. Figure 9. P
1dB
vs. Bias
[1,2]
Tuned for NF
@ 4V, 80 mA at 900 MHz.
Figure 10. NF and G
a
vs. Bias
[1]
at
2 GHz.
Figure 11. NF and G
a
vs. Bias
[1]
at
900 MHz.
I
DSQ
(mA)
Figure 6. OIP3, IIP3 vs. Bias
[1]
at
2 GHz.
OIP3, IIP3 (dBm)
0 120
40
30
20
10
04020 1008060
2 V
3 V
4 V
I
DSQ
(mA)
Figure 7. OIP3, IIP3 vs. Bias
[1]
at
900 MHz.
OIP3, IIP3 (dBm)
40
30
20
10
0
2 V
3 V
4 V
0 1204020 1008060
I
DSQ
(mA)
P
1dB
(dBm)
25
20
15
10
5
0
2 V
3 V
4 V
0 1204020 80 10060
NF
G
a
I
DSQ
(mA)
G
a
(dB)
16
15
14
13
12
11
10
1.4
1.2
1.0
0.8
0.6
0.4
0.2
NOISE FIGURE (dB)
2 V
3 V
4 V
0 1204020 80 10060
I
DSQ
(mA)
G
a
(dB)
22
21
20
19
18
17
16
1.2
1.0
0.8
0.6
0.4
0.2
0
NOISE FIGURE (dB)
2 V
3 V
4 V
NF
G
a
0 1204020 80 10060
I
DSQ
(mA)
P
1dB
(dBm)
25
20
15
10
5
0
2 V
3 V
4 V
0 1204020 80 10060
5
ATF-33143 Typical Performance Curves, continued
Notes:
1. Measurements made on a fixed tuned test fixture that was tuned for noise figure at 4V 80 mA bias. This circuit represents a trade-off
between optimal noise match, maximum gain match and a realizable match based on production test requirements. Circuit losses have
been de-embedded from actual measurements.
2. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease
depending on frequency and dc bias point. At lower values of Idsq the device is running closer to class B as power output approaches
P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant
current source as is typically done with active biasing.
Figure 12. F
min
vs. Frequency and
Current at 4V.
Figure 13. Associated Gain vs.
Frequency and Current at 4V.
FREQUENCY (MHz)
Figure 15. P
1dB
, OIP3
vs. Frequency
and Temp at V
DS
= 4V, I
DS
= 80 mA.
P
1dB
, OIP3 (dBm)
0 8000
40
35
30
25
20
15 40002000 6000
25°C
-40°C
85°C
Figure 16. OIP3, P
1dB
, NF and Gain vs.
Bias
[1,2]
at 3.9 GHz.
Figure 17. OIP3, P
1dB
, NF and Gain vs.
Bias
[1,2]
at 5.8 GHz.
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
FREQUENCY (GHz)
F
min
(dB)
010
1.5
1.0
0.5
04286
80 mA
60 mA
FREQUENCY (GHz)
G
a
(dB)
010
30
25
20
15
10
5
04286
80 mA
60 mA
FREQUENCY (GHz)
G
a
(dB)
NOISE FIGURE (dB)
25
20
15
10
5
2.0
1.5
1.0
0.5
0
25°C
-40°C
85°C
0104286
Figure 14. F
min
and G
a
vs. Frequency
and Temp at V
DS
= 4V, I
DS
= 80 mA.
I
DSQ
(mA)
OIP3, P
1dB
(dBm), GAIN (dB)
35
30
25
20
15
10
5
0
NOISE FIGURE (dB)
P
1dB
OIP3
Gain
NF
0 1204020 80 10060
I
DSQ
(mA)
OIP3, P
1dB
(dBm), GAIN (dB)
35
30
25
20
15
10
5
0
NOISE FIGURE (dB)
3
2
1
0
P
1dB
OIP3 NF
Gain
01204020 80 10060
6
ATF-33143 Typical Performance Curves, continued
Note:
1. Measurements made on a fixed tuned test board that was tuned for optimal gain match with reasonable noise figure at 4V 80 mA bias.
This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production
test board requirements. Circuit losses have been de-embedded from actual measurements.
I
DS
(mA)
Figure 18. P
1dB
vs. I
DS
Active Bias
[1]
Tuned for NF @ 4V, 80 mA at 2 GHz.
P
1dB
(dBm)
25
20
15
10
5
00 1204020 80 10060
I
DS
(mA)
Figure 19. P1dB vs. IDS Active Bias[1]
Tuned for NF @ 4V, 80 mA at 900 MHz.
P
1dB
(dBm)
25
20
15
10
5
00 1204020 80 10060
7
Notes:
1. Measurements made on ATN LP1 power load pull system.
2. Quicescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease
depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches
P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant
current source as is typically done with active biasing.
3. PAE (%) = ((Pout – Pin) / Pdc) X 100
4. Gamma out is the reflection coefficient of the matching circuit presented to the output of the device.
ATF-33143 Power Parameters Tuned for Max P1dB, VDS = 4 V, IDSQ = 80 mA
Freq P1dB IdG1dB PAE1dB P3dB IdPAE3dB Γ Γ
Γ Γ
Γ Out_mag Γ Γ
Γ Γ
Γ Out_ang
(GHz) (dBm) (mA) (dB) (%) (dBm) (mA) (%) (Mag.) (°)
0.9 20.7 89 23.2 33 23.2 102 51 0.39 160
1.5 21.2 91 20.7 36 23.8 116 51 0.43 165
1.8 21.1 80 19.2 40 23.0 94 52 0.43 170
2.0 21.6 81 18.1 44 23.2 89 57 0.42 174
4.0 23.0 97 11.9 48 24.6 135 48 0.40 -150
6.0 24.0 130 5.9 36 25.2 136 36 0.37 -124
P
in
(dBm)
Figure 20. Swept Power Tuned for
Max P
1dB
V
DS
=4V, I
DSQ
= 80 mA, 2 GHz.
P
out
(dBm), G (dB), PAE (%)
70
60
50
40
30
20
10
0
-10
-20
-40 -30 -10-20 10 200
Pout
Gain
PAE
8
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system.
From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
ATF-33143 Typical Noise Parameters
VDS = 2V, IDS = 40 mA
Freq. Fmin ΓΓ
ΓΓ
Γopt Rn/50 Ga
GHz dB Mag. Ang. - dB
0.5 0.26 0.45 26.00 0.07 24.74
0.9 0.30 0.38 42.20 0.07 21.02
1.0 0.31 0.36 44.80 0.07 20.36
1.5 0.34 0.31 69.50 0.06 17.40
1.8 0.34 0.26 93.60 0.04 16.50
2.0 0.39 0.27 108.60 0.05 15.82
2.5 0.51 0.28 150.70 0.03 14.59
3.0 0.53 0.32 165.60 0.03 13.13
4.0 0.61 0.41 -162.10 0.04 11.27
5.0 0.70 0.49 -136.80 0.06 9.92
6.0 0.82 0.53 -113.60 0.11 8.70
7.0 0.93 0.59 -91.50 0.23 7.71
8.0 1.04 0.62 -72.60 0.38 6.69
9.0 1.12 0.67 -55.90 0.59 6.04
10.0 1.21 0.69 -42.20 0.77 5.73
ATF-33143 Typical Scattering Parameters, VDS = 2V, IDS = 40 mA
Freq. S11 S21 S12 S22
MSG/MAG
(GHz) Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. (dB)
0.5 0.88 -72.70 22.08 12.81 134.40 -27.02 0.045 54.50 0.28 -118.70 24.54
0.8 0.79 -112.10 19.46 9.41 111.20 -24.13 0.062 40.70 0.37 -149.90 21.81
1.0 0.78 -119.80 18.86 8.86 106.50 -23.93 0.064 38.00 0.38 -155.40 21.41
1.5 0.75 -149.60 16.11 6.44 88.30 -22.57 0.075 29.80 0.42 -176.20 19.34
1.8 0.74 -162.80 14.70 5.47 79.80 -22.14 0.079 26.80 0.45 174.70 18.40
2.0 0.74 -170.10 13.84 4.94 74.80 -21.84 0.082 24.90 0.46 169.40 17.80
2.5 0.74 172.30 11.98 3.98 63.00 -21.24 0.088 20.80 0.49 160.10 16.56
3.0 0.75 159.10 10.37 3.31 53.10 -20.68 0.094 17.10 0.51 152.10 15.46
4.0 0.75 137.00 7.95 2.50 35.00 -19.59 0.106 9.30 0.53 139.20 13.73
5.0 0.76 117.20 6.20 2.05 17.20 -18.56 0.119 -0.70 0.54 124.70 11.44
6.0 0.78 98.10 4.69 1.73 -1.30 -17.83 0.129 -12.80 0.54 108.00 9.80
7.0 0.80 80.10 3.12 1.44 -19.30 -17.42 0.135 -26.00 0.57 90.40 8.35
8.0 0.83 64.50 1.68 1.22 -35.20 -17.29 0.137 -37.30 0.60 74.80 7.43
9.0 0.83 50.30 0.48 1.07 -49.30 -17.08 0.140 -46.80 0.63 62.70 6.45
10.0 0.86 36.30 -0.46 0.96 -64.30 -16.59 0.148 -58.30 0.65 50.90 6.41
11.0 0.88 21.50 -1.50 0.85 -80.20 -16.53 0.149 -71.30 0.68 37.40 6.14
12.0 0.90 7.20 -2.70 0.74 -95.80 -16.81 0.144 -83.90 0.72 21.40 5.64
13.0 0.91 -5.00 -4.24 0.62 -110.20 -17.38 0.135 -95.60 0.75 5.80 4.60
14.0 0.91 -15.50 -5.49 0.54 -121.90 -17.78 0.129 -103.90 0.77 -5.70 3.64
15.0 0.92 -27.50 -6.42 0.49 -134.20 -18.00 0.126 -113.70 0.80 -15.80 3.44
16.0 0.93 -40.50 -7.26 0.44 -146.80 -17.87 0.128 -124.20 0.82 -25.70 3.22
17.0 0.94 -52.30 -8.20 0.40 -160.40 -18.07 0.125 -136.40 0.83 -37.90 3.11
18.0 0.93 -61.20 -9.51 0.34 -171.00 -18.79 0.115 -145.10 0.85 -49.70 1.79
FREQUENCY (GHz)
Figure 21. MSG/MAG and |S
21
|
2
vs.
Frequency at 2V, 40 mA.
MSG/MAG and |S
21
|
2
(dB)
020
40
30
20
10
0
-10 10515
MSG
MAG
|S
21
|
2
9
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system.
From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
ATF-33143 Typical Noise Parameters
VDS = 3 V, IDS = 40 mA
Freq. Fmin ΓΓ
ΓΓ
Γopt Rn/50 Ga
GHz dB Mag. Ang. - dB
0.5 0.24 0.45 28.40 0.07 25.26
0.9 0.29 0.38 40.90 0.07 21.26
1.0 0.31 0.34 42.60 0.07 20.50
1.5 0.37 0.28 66.30 0.07 17.67
1.8 0.34 0.25 90.10 0.05 16.57
2.0 0.38 0.25 105.80 0.05 15.93
2.5 0.51 0.28 147.40 0.03 14.72
3.0 0.52 0.31 162.80 0.03 13.29
4.0 0.58 0.40 -165.20 0.03 11.45
5.0 0.68 0.46 -138.50 0.05 10.05
6.0 0.80 0.54 -115.00 0.09 8.97
7.0 0.89 0.57 -92.50 0.20 7.90
8.0 1.01 0.61 -72.80 0.35 6.90
9.0 1.09 0.65 -56.40 0.53 6.26
10.0 1.18 0.68 -42.60 0.69 5.99
ATF-33143 Typical Scattering Parameters, VDS = 3V, IDS = 40 mA
Freq. S11 S21 S12 S22
MSG/MAG
(GHz) Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. (dB)
0.5 0.87 -72.20 22.51 13.42 134.40 -27.20 0.044 54.40 0.27 -109.80 24.84
0.8 0.78 -111.60 19.88 9.87 111.20 -24.27 0.061 40.60 0.35 -143.70 22.09
1.0 0.77 -119.30 19.28 9.26 106.50 -24.06 0.063 37.90 0.36 -150.10 21.67
1.5 0.74 -149.00 16.52 6.73 88.30 -22.79 0.073 29.80 0.40 -172.10 19.64
1.8 0.73 -162.20 15.11 5.72 79.90 -22.34 0.077 26.90 0.42 178.40 18.71
2.0 0.73 -169.50 14.24 5.17 74.80 -22.13 0.079 25.00 0.43 172.90 18.16
2.5 0.73 172.90 12.38 4.17 63.10 -21.41 0.086 21.10 0.46 163.10 16.85
3.0 0.74 159.70 10.78 3.46 53.30 -20.91 0.091 17.50 0.48 154.80 15.80
4.0 0.74 137.60 8.37 2.62 35.20 -19.79 0.103 10.00 0.50 141.20 14.06
5.0 0.75 117.70 6.63 2.15 17.30 -18.80 0.115 0.00 0.51 126.50 11.53
6.0 0.77 98.60 5.10 1.80 -1.30 -17.99 0.126 -11.90 0.52 109.80 9.99
7.0 0.79 80.60 3.54 1.51 -19.50 -17.58 0.132 -24.90 0.55 92.10 8.57
8.0 0.82 64.90 2.10 1.28 -35.50 -17.44 0.134 -36.00 0.57 76.20 7.64
9.0 0.83 50.70 0.92 1.12 -49.60 -17.13 0.139 -45.50 0.60 64.00 6.69
10.0 0.86 36.60 -0.04 1.00 -64.90 -16.64 0.147 -57.00 0.63 52.10 6.65
11.0 0.88 21.90 -1.11 0.89 -81.00 -16.58 0.148 -70.10 0.66 38.60 6.38
12.0 0.90 7.50 -2.32 0.77 -96.80 -16.81 0.144 -82.70 0.70 22.60 6.00
13.0 0.91 -4.80 -3.86 0.64 -111.40 -17.38 0.135 -94.40 0.73 6.80 4.90
14.0 0.91 -15.40 -5.11 0.56 -123.30 -17.78 0.129 -103.00 0.76 -5.00 3.90
15.0 0.92 -27.40 -6.05 0.50 -135.90 -17.93 0.127 -112.80 0.79 -15.10 3.71
16.0 0.93 -40.40 -6.95 0.45 -148.70 -17.87 0.128 -123.40 0.81 -25.10 3.48
17.0 0.94 -52.30 -7.91 0.41 -162.30 -18.00 0.126 -135.70 0.82 -37.30 3.41
18.0 0.93 -61.30 -9.25 0.35 -172.90 -18.72 0.116 -144.30 0.84 -49.10 1.94
FREQUENCY (GHz)
Figure 22. MSG/MAG and |S
21
|
2
vs.
Frequency at 3V, 40 mA.
MSG/MAG and |S
21
|
2
(dB)
020
40
30
20
10
0
-10 10515
MSG
MAG
|S
21
|
2
10
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system.
From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
ATF-33143 Typical Noise Parameters
VDS = 3 V, IDS = 60 mA
Freq. Fmin ΓΓ
ΓΓ
Γopt Rn/50 Ga
GHz dB Mag. Ang. - dB
0.5 0.23 0.43 29.20 0.06 25.64
0.9 0.28 0.35 42.40 0.06 21.62
1.0 0.29 0.35 45.00 0.07 20.87
1.5 0.34 0.26 68.80 0.06 17.84
1.8 0.34 0.23 93.30 0.04 16.89
2.0 0.38 0.22 109.70 0.05 16.24
2.5 0.52 0.25 150.60 0.03 14.93
3.0 0.53 0.30 167.50 0.03 13.52
4.0 0.61 0.39 -160.30 0.04 11.65
5.0 0.68 0.47 -134.70 0.06 10.28
6.0 0.83 0.52 -112.10 0.11 9.09
7.0 0.91 0.58 -89.70 0.22 8.09
8.0 1.04 0.61 -71.50 0.36 7.07
9.0 1.09 0.66 -54.80 0.56 6.43
10.0 1.13 0.70 -41.40 0.73 6.15
ATF-33143 Typical Scattering Parameters, VDS = 3 V, IDS = 60 mA
Freq. S11 S21 S12 S22
MSG/MAG
(GHz) Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. (dB)
0.5 0.87 -75.30 22.95 14.06 133.00 -28.18 0.039 55.10 0.27 -124.20 25.57
0.8 0.78 -114.70 20.22 10.26 110.00 -25.19 0.055 42.60 0.36 -153.90 22.71
1.0 0.77 -122.30 19.59 9.56 105.50 -24.89 0.057 40.50 0.37 -158.80 22.24
1.5 0.74 -151.60 16.78 6.91 87.60 -23.37 0.068 33.50 0.41 -178.70 20.07
1.8 0.73 -164.60 15.35 5.87 79.30 -22.87 0.072 30.80 0.43 172.60 19.11
2.0 0.73 -171.80 14.47 5.30 74.40 -22.53 0.075 29.00 0.44 167.50 18.49
2.5 0.73 171.00 12.60 4.27 62.80 -21.76 0.082 25.10 0.47 158.50 17.17
3.0 0.74 158.10 10.99 3.54 53.10 -21.07 0.089 21.40 0.50 151.00 16.00
4.0 0.75 136.40 8.56 2.68 35.40 -19.79 0.103 13.20 0.52 138.60 14.15
5.0 0.75 116.90 6.80 2.19 17.70 -18.68 0.117 2.80 0.52 124.40 11.53
6.0 0.77 97.80 5.28 1.84 -0.60 -17.88 0.128 -9.70 0.53 107.80 10.03
7.0 0.79 79.90 3.71 1.53 -18.60 -17.42 0.135 -23.20 0.56 90.20 8.66
8.0 0.82 64.50 2.26 1.30 -34.40 -17.29 0.137 -34.60 0.59 74.70 7.75
9.0 0.83 50.40 1.07 1.13 -48.50 -17.03 0.141 -44.50 0.62 62.70 6.81
10.0 0.86 36.40 0.12 1.02 -63.50 -16.49 0.150 -56.20 0.65 50.90 6.72
11.0 0.88 21.60 -0.94 0.90 -79.50 -16.43 0.151 -69.40 0.68 37.40 6.46
12.0 0.90 7.30 -2.13 0.78 -95.10 -16.71 0.146 -82.10 0.71 21.40 6.04
13.0 0.91 -5.00 -3.67 0.66 -109.70 -17.27 0.137 -94.00 0.74 5.80 4.99
14.0 0.91 -15.50 -4.93 0.57 -121.40 -17.72 0.130 -102.70 0.77 -6.10 3.98
15.0 0.92 -27.50 -5.85 0.51 -133.90 -17.86 0.128 -112.40 0.80 -15.80 3.78
16.0 0.93 -40.60 -6.70 0.46 -146.60 -17.72 0.130 -123.00 0.82 -25.80 3.54
17.0 0.94 -52.30 -7.61 0.42 -160.30 -17.92 0.127 -135.30 0.82 -37.90 3.45
18.0 0.93 -61.40 -8.97 0.36 -170.90 -18.64 0.117 -144.00 0.84 -49.70 2.08
FREQUENCY (GHz)
Figure 23. MSG/MAG and |S
21
|
2
vs.
Frequency at 3V, 60 mA.
MSG/MAG and |S
21
|
2
(dB)
020
40
30
20
10
0
-10 10515
MSG
MAG
|S
21
|
2
11
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system.
From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
ATF-33143 Typical Noise Parameters
VDS = 4 V, IDS = 40 mA
Freq. Fmin ΓΓ
ΓΓ
Γopt Rn/50 Ga
GHz dB Mag. Ang. - dB
0.5 0.30 0.44 31.50 0.08 25.59
0.9 0.33 0.36 42.70 0.07 21.43
1.0 0.34 0.33 44.50 0.08 20.63
1.5 0.38 0.26 68.70 0.06 17.72
1.8 0.37 0.25 90.70 0.05 16.65
2.0 0.40 0.23 106.40 0.05 15.99
2.5 0.53 0.27 145.80 0.04 14.70
3.0 0.54 0.31 162.00 0.03 13.32
4.0 0.60 0.38 -165.30 0.04 11.47
5.0 0.68 0.46 -138.80 0.05 10.17
6.0 0.82 0.49 -115.40 0.09 8.93
7.0 0.89 0.56 -93.20 0.19 7.99
8.0 1.00 0.60 -73.10 0.33 7.00
9.0 1.07 0.66 -56.60 0.50 6.40
10.0 1.16 0.68 -42.80 0.65 6.11
ATF-33143 Typical Scattering Parameters, VDS = 4V, IDS = 40 mA
Freq. S11 S21 S12 S22
MSG/MAG
(GHz) Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. (dB)
0.5 0.87 -72.50 22.73 13.74 134.30 -27.39 0.043 54.10 0.26 -104.90 25.04
0.8 0.78 -111.80 20.07 10.09 111.00 -24.42 0.060 40.40 0.33 -140.20 22.26
1.0 0.77 -119.40 19.46 9.43 106.40 -24.20 0.062 37.70 0.34 -147.10 21.82
1.5 0.73 -149.10 16.69 6.85 88.20 -22.90 0.072 29.80 0.38 -169.70 19.78
1.8 0.72 -162.20 15.28 5.82 79.80 -22.44 0.076 26.90 0.40 -179.30 18.84
2.0 0.72 -169.50 14.41 5.26 74.70 -22.23 0.078 25.00 0.41 175.10 18.29
2.5 0.72 173.00 12.55 4.24 63.00 -21.58 0.084 21.20 0.44 165.10 17.03
3.0 0.73 159.80 10.95 3.53 53.20 -21.07 0.089 17.80 0.46 156.50 15.98
4.0 0.74 137.70 8.54 2.68 35.10 -19.93 0.101 10.40 0.48 142.50 14.23
5.0 0.75 117.90 6.80 2.19 17.10 -18.92 0.113 0.70 0.49 127.70 11.54
6.0 0.77 98.80 5.28 1.84 -1.60 -18.11 0.124 -11.20 0.50 111.00 10.07
7.0 0.79 80.80 3.72 1.54 -19.80 -17.68 0.130 -24.10 0.53 93.40 8.68
8.0 0.82 65.10 2.29 1.30 -35.90 -17.50 0.133 -35.10 0.56 77.30 7.77
9.0 0.83 50.90 1.10 1.14 -50.20 -17.23 0.137 -44.60 0.59 64.90 6.80
10.0 0.86 36.80 0.15 1.02 -65.60 -16.69 0.146 -56.10 0.62 53.00 6.78
11.0 0.88 22.00 -0.93 0.90 -81.80 -16.58 0.148 -69.10 0.65 39.50 6.55
12.0 0.90 7.60 -2.14 0.78 -97.60 -16.81 0.144 -81.70 0.69 23.50 6.13
13.0 0.91 -4.70 -3.69 0.66 -112.40 -17.32 0.136 -93.50 0.72 7.50 5.03
14.0 0.91 -15.30 -4.97 0.57 -124.50 -17.78 0.129 -102.10 0.76 -4.30 4.06
15.0 0.92 -27.20 -5.92 0.51 -137.30 -17.93 0.127 -112.20 0.79 -14.60 3.87
16.0 0.93 -40.30 -6.85 0.46 -150.10 -17.79 0.129 -122.80 0.81 -24.50 3.62
17.0 0.94 -52.20 -7.83 0.41 -163.80 -18.00 0.126 -135.10 0.82 -36.80 3.54
18.0 0.93 -61.20 -9.19 0.35 -174.60 -18.72 0.116 -143.80 0.84 -48.70 2.05
FREQUENCY (GHz)
Figure 24. MSG/MAG and |S
21
|
2
vs.
Frequency at 4V, 40 mA.
MSG/MAG and |S
21
|
2
(dB)
020
40
30
20
10
0
-10 10515
MSG
MAG
|S
21
|
2
12
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system.
From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
ATF-33143 Typical Noise Parameters
VDS = 4 V, IDS = 60 mA
Freq. Fmin ΓΓ
ΓΓ
Γopt Rn/50 Ga
GHz dB Mag. Ang. - dB
0.5 0.29 0.42 31.40 0.08 25.91
0.9 0.33 0.33 44.70 0.07 21.80
1.0 0.34 0.32 48.00 0.07 21.00
1.5 0.38 0.26 71.90 0.06 18.14
1.8 0.39 0.22 94.00 0.05 16.96
2.0 0.42 0.22 109.70 0.05 16.29
2.5 0.47 0.25 149.40 0.03 14.95
3.0 0.51 0.29 166.80 0.03 13.58
4.0 0.63 0.39 -160.60 0.04 11.74
5.0 0.72 0.46 -135.30 0.06 10.36
6.0 0.82 0.51 -112.40 0.11 9.17
7.0 0.93 0.57 -90.90 0.21 8.18
8.0 1.03 0.61 -71.80 0.37 7.19
9.0 1.13 0.66 -55.50 0.55 6.56
10.0 1.22 0.69 -41.80 0.72 6.29
ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 60 mA
Freq. S11 S21 S12 S22
MSG/MAG
(GHz) Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. (dB)
0.5 0.86 -75.60 23.20 14.45 132.90 -28.18 0.039 54.80 0.26 -118.50 25.69
0.8 0.77 -115.00 20.45 10.53 109.80 -25.35 0.054 42.20 0.34 -150.00 22.90
1.0 0.76 -122.50 19.80 9.77 105.30 -25.04 0.056 40.20 0.35 -155.50 22.42
1.5 0.73 -151.80 16.98 7.06 87.50 -23.61 0.066 33.20 0.39 -176.10 20.29
1.8 0.72 -164.60 15.55 5.99 79.20 -22.97 0.071 30.60 0.41 175.00 19.26
2.0 0.72 -171.80 14.66 5.41 74.20 -22.73 0.073 28.90 0.42 169.80 18.70
2.5 0.72 171.00 12.79 4.36 62.70 -21.94 0.080 25.10 0.45 160.60 17.36
3.0 0.73 158.20 11.17 3.62 53.00 -21.31 0.086 21.60 0.47 152.70 16.24
4.0 0.74 136.50 8.76 2.74 35.20 -20.00 0.100 13.70 0.49 139.90 13.79
5.0 0.75 117.00 7.00 2.24 17.50 -18.86 0.114 3.40 0.50 125.70 11.57
6.0 0.77 98.00 5.48 1.88 -1.00 -17.99 0.126 -8.90 0.51 109.10 10.15
7.0 0.79 80.20 3.92 1.57 -19.00 -17.52 0.133 -22.30 0.54 91.60 8.80
8.0 0.82 64.70 2.48 1.33 -34.90 -17.39 0.135 -33.60 0.57 75.90 7.88
9.0 0.83 50.60 1.29 1.16 -49.10 -17.08 0.140 -43.40 0.60 63.70 6.92
10.0 0.86 36.60 0.34 1.04 -64.30 -16.54 0.149 -55.20 0.63 52.00 6.92
11.0 0.88 21.80 -0.72 0.92 -80.40 -16.48 0.150 -68.40 0.66 38.50 6.69
12.0 0.90 7.50 -1.94 0.80 -96.20 -16.71 0.146 -81.10 0.70 22.50 6.27
13.0 0.91 -4.80 -3.48 0.67 -110.80 -17.27 0.137 -92.90 0.73 6.70 5.14
14.0 0.91 -15.40 -4.73 0.58 -122.80 -17.65 0.131 -101.60 0.76 -5.20 4.12
15.0 0.92 -27.30 -5.68 0.52 -135.40 -17.79 0.129 -111.60 0.79 -15.20 3.90
16.0 0.93 -40.40 -6.56 0.47 -148.30 -17.72 0.130 -122.20 0.81 -25.10 3.72
17.0 0.94 -52.20 -7.54 0.42 -162.10 -17.92 0.127 -134.70 0.82 -37.30 3.59
18.0 0.93 -61.20 -8.87 0.36 -172.80 -18.56 0.118 -143.30 0.84 -49.20 2.19
FREQUENCY (GHz)
Figure 25. MSG/MAG and |S
21
|
2
vs.
Frequency at 4V, 60 mA.
MSG/MAG and |S
21
|
2
(dB)
020
40
30
20
10
0
-10 10515
MSG
MAG
|S
21
|
2
13
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system.
From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
ATF-33143 Typical Noise Parameters
VDS = 4V, IDS = 80 mA
Freq. Fmin ΓΓ
ΓΓ
Γopt Rn/50 Ga
GHz dB Mag. Ang. - dB
0.5 0.30 0.42 34.50 0.08 26.23
0.9 0.35 0.32 46.40 0.07 21.96
1.0 0.35 0.32 50.40 0.07 21.16
1.5 0.40 0.23 74.80 0.06 18.47
1.8 0.42 0.20 98.80 0.05 17.18
2.0 0.45 0.19 114.10 0.05 16.48
2.5 0.49 0.23 153.70 0.04 15.09
3.0 0.55 0.28 171.50 0.03 13.70
4.0 0.68 0.38 -156.70 0.04 11.85
5.0 0.75 0.48 -133.30 0.07 10.49
6.0 0.90 0.52 -110.70 0.13 9.27
7.0 1.00 0.57 -89.60 0.25 8.27
8.0 1.12 0.62 -70.80 0.43 7.28
9.0 1.19 0.67 -54.60 0.65 6.66
10.0 1.33 0.69 -40.80 0.85 6.31
ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 80 mA
Freq. S11 S21 S12 S22
MSG/MAG
(GHz) Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang. (dB)
0.5 0.86 -77.20 23.39 14.76 132.20 -28.82 0.036 55.30 0.26 -125.40 26.13
0.8 0.77 -116.60 20.60 10.71 109.20 -25.86 0.051 43.40 0.34 -154.80 23.22
1.0 0.76 -124.00 19.93 9.91 104.80 -25.49 0.053 41.70 0.36 -159.50 22.72
1.5 0.73 -153.00 17.09 7.15 87.10 -23.86 0.064 35.20 0.39 -179.10 20.48
1.8 0.72 -165.80 15.66 6.06 78.90 -23.31 0.068 32.70 0.41 172.40 19.50
2.0 0.72 -172.90 14.77 5.47 74.00 -22.95 0.071 31.00 0.42 167.30 18.87
2.5 0.72 170.10 12.89 4.41 62.50 -22.03 0.079 27.20 0.45 158.50 17.47
3.0 0.73 157.40 11.27 3.66 53.00 -21.39 0.085 23.50 0.48 151.00 16.34
4.0 0.74 136.00 8.84 2.77 35.30 -20.00 0.100 15.30 0.50 138.80 13.59
5.0 0.75 116.70 7.09 2.26 17.70 -18.86 0.114 4.80 0.51 124.80 11.56
6.0 0.77 97.70 5.57 1.90 -0.70 -17.99 0.126 -7.80 0.52 108.40 10.17
7.0 0.79 80.00 4.00 1.58 -18.70 -17.47 0.134 -21.30 0.55 90.90 8.84
8.0 0.82 64.50 2.55 1.34 -34.50 -17.34 0.136 -32.80 0.58 75.40 7.93
9.0 0.83 50.50 1.36 1.17 -48.70 -17.03 0.141 -42.80 0.61 63.30 6.98
10.0 0.86 36.50 0.43 1.05 -63.80 -16.49 0.150 -54.60 0.63 51.60 6.96
11.0 0.88 21.70 -0.65 0.93 -79.90 -16.38 0.152 -67.80 0.66 38.10 6.73
12.0 0.90 7.40 -1.85 0.81 -95.60 -16.66 0.147 -80.60 0.70 22.10 6.26
13.0 0.91 -4.80 -3.39 0.68 -110.20 -17.21 0.138 -92.60 0.73 6.40 5.21
14.0 0.91 -15.40 -4.64 0.59 -122.00 -17.59 0.132 -101.10 0.76 -5.00 4.20
15.0 0.92 -27.30 -5.57 0.53 -134.80 -17.79 0.129 -111.20 0.79 -15.40 3.98
16.0 0.93 -40.40 -6.46 0.47 -147.60 -17.65 0.131 -121.90 0.81 -25.30 3.73
17.0 0.94 -52.20 -7.40 0.43 -161.40 -17.85 0.128 -134.30 0.82 -37.50 3.65
18.0 0.93 -61.20 -8.75 0.36 -172.10 -18.56 0.118 -143.10 0.84 -49.30 2.24
FREQUENCY (GHz)
Figure 26. MSG/MAG and |S
21
|
2
vs.
Frequency at 4V, 80 mA.
MSG/MAG and |S
21
|
2
(dB)
020
40
30
20
10
0
-10 10515
MSG
MAG
|S
21
|
2
14
Noise Parameter
Applications Information
Fmin values at 2 GHz and higher
are based on measurements while
the Fmins below 2 GHz have been
extrapolated. The Fmin values are
based on a set of 16 noise figure
measurements made at 16
different impedances using an
ATN NP5 test system. From these
measurements, a true Fmin is
calculated. Fmin represents the
true minimum noise figure of the
device when the device is pre-
sented with an impedance
matching network that trans-
forms the source impedance,
typically 50, to an impedance
represented by the reflection
coefficient Γo. The designer must
design a matching network that
will present Γo to the device with
minimal associated circuit losses.
The noise figure of the completed
amplifier is equal to the noise
figure of the device plus the
losses of the matching network
preceding the device. The noise
figure of the device is equal to
Fmin only when the device is
presented with Γo. If the reflec-
tion coefficient of the matching
network is other than Γo, then the
noise figure of the device will be
greater than Fmin based on the
following equation.
NF = F
min
+ 4 R
n
|Γ
s
Γ
o
| 2
Zo (|1 + Γ
o
|2)(1 Γ
s
|2)
Where Rn/Zo is the normalized
noise resistance, Γo is the opti-
mum reflection coefficient
required to produce Fmin and Γs is
the reflection coefficient of the
source impedance actually
presented to the device. The
losses of the matching networks
are non-zero and they will also
add to the noise figure of the
device creating a higher amplifier
noise figure. The losses of the
matching networks are related to
the Q of the components and
associated printed circuit board
loss. Γo is typically fairly low at
higher frequencies and increases
as frequency is lowered. Larger
gate width devices will typically
have a lower Γo as compared to
narrower gate width devices.
Typically for FETs, the higher Γo
usually infers that an impedance
much higher than 50 is required
for the device to produce Fmin. At
VHF frequencies and even lower
L Band frequencies, the required
impedance can be in the vicinity
of several thousand ohms.
Matching to such a high imped-
ance requires very hi-Q compo-
nents in order to minimize circuit
losses. As an example at 900 MHz,
when airwwound coils (Q >100)
are used for matching networks,
the loss can still be up to 0.25 dB
which will add directly to the
noise figure of the device. Using
muiltilayer molded inductors with
Qs in the 30 to 50 range results in
additional loss over the airwound
coil. Losses as high as 0.5 dB or
greater add to the typical 0.15 dB
Fmin of the device creating an
amplifier noise figure of nearly
0.65 dB. A discussion concerning
calculated and measured circuit
losses and their effect on ampli-
fier noise figure is covered in
Agilent Application 1085.
Reliability Data
Nominal Failures per million (FPM) 90% confidence Failures per million (FPM)
for different durations for different durations
Channel (FITs) 1 year 5 year 10 year 30 year (FITs) 1 year 5 year 10 year 30 year
Temperature 1000 1000
(oC) hours hours
100 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
125 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 11
140 <0.1 <0.1 <0.1 <0.1 160 <0.1 <0.1 6 160 9.3K
150 <0.1 <0.1 2 140 26K <0.1 0.3 780 8800 131K
160 <0.1 <0.1 920 21K 370K <0.1 67 24K 120K 520K
180 <0.1 4400 450K 830K 1000K 21 53K 590K 850K 1000K
NOT
recommended
Predicted failures with temperature extrapolated from failure distribution and activation energy data of
higher temperature operational life STRIFE of PHEMT process
15
ATF-33143 Die Model
This model can be used as a
design tool. It has been tested on
MDS for various specifications.
However, for more precise and
accurate design, please refer to
the measured data in this data
sheet. For future improvements
Agilent reserves the right to
change these models without
prior notice.
ATF-33143 Model
NFET=yes
PFET=no
Vto=0.95
Beta=0.48
Lambda=0.09
Alpha=4
B=0.8
Tnom=27
Idstc=
Vbi=0.7
Tau=
Betatce=
Delta1=0.2
Delta2=
Gscap=3
Cgs=1.6 pF
Gdcap=3
Cgd=0.32 pF
Rgd=
Tqm=
Vmax=
Fc=
Rd=.125
Rg=1
Rs=0.0625
Ld=0.00375 nH
Lg-0.00375 nH
Ls=0.00125 nH
Cds=0.08 pF
Crf=0.1
Rc=62.5
Gsfwd=1
Gsrev=0
Gdfwd=1
Gdrev=0
Vjr=1
Is=1 nA
Ir=1 nA
Imax=0.1
Xti=
N=
Eg=
Vbr=
Vtotc=
Rin=
Taumd1=no
Fnc=1E6
R=0.17
C=0.2
P=0.65
wVgfwd=
wBvgs=
wBvgd=
wBvds=
wldsmax=
wPmax=
Al lParams=
Statz Model
MESFETM1
GATE
SOURCE
INSIDE Package
Port
G
Num=1
C
C1
C=0.1 pF
Port
S1
Num=2
SOURCE
DRAIN
Port
S2
Num=4
Port
D
Num=4
L
L6
L=0.2 nH
R=0.001
C
C2
C=0.11 pF
L
L7
C=0.6 nH
R=D 001
MSub
TLINP
TL4
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL10
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
VIA2
V1
D=20 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40 mil
VIA2
V2
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
TLINP
TL3
Z=Z2 Ohm
L=25 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINPTL9
Z=Z2 Ohm
L=10.0 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
VAR
VAR1
K=5
Z2=85
Z1=30
Var
Ean
TLINP
TL1
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=D 0000
F=1 GHz
TanD=0.001
TLINP
TL2
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL8
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL7
Z=Z2/2 Ohm
L=5.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL5
Z=Z2 Ohm
L=26.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL6
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
VIA2
V3
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
VIA2
V4
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
L
L1
L=0.6 nH
R=0.001
L
L4
L=0.2 nH
R=0.001
GaAsFET
FET1
Model=MESFETN1
Mode=nonlinear
MSUB
MSub1
H=25.0 mil
Er=9.6
Mur=1
Cond=1 DE+50
Hu=3.9e+0.34 mil
T=0.15 mil
TanD=D
Rou
g
h=D mil
16
Part Number Ordering Information
No. of
Part Number Devices Container
ATF-33143-TR1 3000 7" Reel
ATF-33143-TR2 10000 13" Reel
ATF-33143-BLK 100 antistatic bag
Package Dimensions
Outline 43 (SOT-343/SC-70 4 lead)
E
D
A
A1
b TYP
e
E1
1.30 (0.051)
BSC
1.15 (.045) BSC
θ
h
C TYP
L
DIMENSIONS ARE IN MILLIMETERS (INCHES)
DIMENSIONS
MIN.
0.80 (0.031)
0 (0)
0.25 (0.010)
0.10 (0.004)
1.90 (0.075)
2.00 (0.079)
0.55 (0.022)
0.450 TYP (0.018)
1.15 (0.045)
0.10 (0.004)
0
MAX.
1.00 (0.039)
0.10 (0.004)
0.35 (0.014)
0.20 (0.008)
2.10 (0.083)
2.20 (0.087)
0.65 (0.025)
1.35 (0.053)
0.35 (0.014)
10
SYMBOL
A
A1
b
C
D
E
e
h
E1
L
θ
1.15 (.045) REF
1.30 (.051) REF
1.30 (.051)2.60 (.102)
0.55 (.021) TYP 0.85 (.033)
17
Tape Dimensions
For Outline 4T
Device Orientation
USER
FEED
DIRECTION COVER TAPE
CARRIER
TAPE
REEL
END VIEW
8 mm
4 mm
TOP VIEW
P
P
0
P
2
FW
C
D
1
D
E
A
0
8° MAX.
t
1
(CARRIER TAPE THICKNESS) T
t
(COVER TAPE THICKNESS)
5° MAX.
B
0
K
0
DESCRIPTION SYMBOL SIZE (mm) SIZE (INCHES)
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A
0
B
0
K
0
P
D
1
2.24 ± 0.10
2.34 ± 0.10
1.22 ± 0.10
4.00 ± 0.10
1.00 + 0.25
0.088 ± 0.004
0.092 ± 0.004
0.048 ± 0.004
0.157 ± 0.004
0.039 + 0.010
CAVITY
DIAMETER
PITCH
POSITION
D
P
0
E
1.55 ± 0.05
4.00 ± 0.10
1.75 ± 0.10
0.061 ± 0.002
0.157 ± 0.004
0.069 ± 0.004
PERFORATION
WIDTH
THICKNESS W
t
1
8.00 ± 0.30
0.255 ± 0.013 0.315 ± 0.012
0.010 ± 0.0005
CARRIER TAPE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
CAVITY TO PERFORATION
(LENGTH DIRECTION)
F
P
2
3.50 ± 0.05
2.00 ± 0.05
0.138 ± 0.002
0.079 ± 0.002
DISTANCE
WIDTH
TAPE THICKNESS C
T
t
5.4 ± 0.10
0.062 ± 0.001 0.205 ± 0.004
0.0025 ± 0.00004
COVER TAPE
3Px 3Px 3Px 3Px
www.agilent.com/semiconductors
For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(408) 654-8675
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (+65) 271 2451
India, Australia, New Zealand: (+65) 271 2394
Japan: (+81 3) 3335-8152(Domestic/International), or
0120-61-1280(Domestic Only)
Korea: (+65) 271 2194
Malaysia, Singapore: (+65) 6271 2054
Taiwan: (+65) 271 2654
Data subject to change.
Copyright © 2002 Agilent Technologies, Inc.
Obsoletes 5988-4211EN
April 1, 2002
5988-5906EN