Infineon® LITIX™ Power
Multitopology LITIXTM Power DC/DC Controller IC
TLD5095EL
Infineon® LITIX™ Power
Multitopology LITIXTM Power DC/DC Controller IC
Automotive Power
Data Sheet
Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Table of Contents
Data Sheet 2 Revision 1.4 2015-03-11
Not for Customers
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 Oscillator and Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.1 Electrical Characteristics Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Typical Performance Characteristics of Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7 Enable and Dimming Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8 Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9 Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
10.1 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table of Contents
PG-SSOP-14
Type Package Marking
TLD5095EL PG-SSOP-14 TLD5095
Data Sheet 3 Revision 1.4, 2015-03-11
TLD5095EL Infineon® LITIX™ Power
1 Overview
Wide Input Voltage Range from 4.75 V to 45 V
Constant Current or Constant Voltage Regulation
Drives LEDs in Boost, Buck, Buck-Boost, SEPIC and Flyback
Topology
Very Low Shutdown Current: IQ< 10 µA
Flexible Switching Frequency Range, 100 kHz to 500 kHz
Synchronization with external clock source
Output Open Circuit Diagnostic Output
PWM Dimming
Internal Soft Start
300mV High Side Current Sense to ensure highest flexibility and LED current accuracy
Internal 5 V Low Drop Out Voltage Regulator
Wide LED current range via simple adaptation of external components
Available in a small thermally enhanced PG-SSOP-14 package
Output Overvoltage Protection
Over Temperature Shutdown
Automotive AEC Qualified
•Green Product (RoHS) Compliant
Description
The TLD5095EL is a smart multitopology LED controller with built in protection and diagnostic features. The main
function of this device is to regulate a constant LED current. The constant current regulation is especially beneficial for
LED color accuracy and longer lifetime. The controller concept of the TLD5095EL allows a multi-purpose usage such as
Boost, Buck, Buck-Boost, SEPIC and Flyback configuration with various load current levels by simply adjusting the
external components. The TLD5095EL has a PWM output for dimming a LED load. The diagnostics are communicated
on a status output (pin ST) to indicate a fault condition such as an LED open circuit. The switching frequency is adjustable
in the range of 100 kHz to 500 kHz and can be synchronized to an external clock source. The TLD5095EL features an
enable function reducing the shut-down current consumption to <10 µA. The current mode regulation scheme of this
device provides a stable regulation loop maintained by small external compensation components. The integrated soft-
start feature limits the current peak as well as voltage overshoot at start-up. This IC is suited for use in the harsh
automotive environments and provides protection functions such as output overvoltage protection and
overtemperature shutdown.
Application
Automotive Exterior and Interior Lighting
Data Sheet 4 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Block Diagram
2 Block Diagram
Figure 2-1 Block Diagram TLD5095EL
EN / PWMI
COMP
IN
FBL
FBH
FREQ/
SYNC
GND
ST
Oscillator
14
13
10
8
11
12
3
9
6
7
SWCS
4
SWO
2
IVCC
1
Diagnostics
Logic
LDO
OVFB
SGND
Soft
Start
Slope
Comp.
Internal
Supply
On/Off
Logic
Leading Edge
Blanking
5PWMO
EN_INT/
PWM_INT
Thermal
Protection
Open Load
Detection
Over Volage
Protection
PWM
Generator
Power Switch
Gate Driver
Feedback Voltage
Error Amplifier
Dimming Switch
Gate Driver
Power On
Reset
EN_INT/
PWM_INT
BlockD iagr am .vsd
Switch Current
Error Amplifier
Data Sheet 5 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Pin Configuration
3 Pin Configuration
3.1 Pin Assignment
Figure 3-1 Pin Configuration TLD5095EL
3.2 Pin Definitions and Functions
Table 3-1 Pin Definition and Function
# Symbol Direction Type Function
1IVCC Internal LDO Output;
Used for internal biasing and gate drive. Bypass with
external capacitor. Pin must not left open.
2SWO Switch Output;
Connect to gate of external switching MOSFET
3SGND Current Sense Ground;
Ground return for current sense switch
4SWCS Current Sense Input;
Detects the peak current through switch
5PWMO PWM Dimming Output;
Connect to gate of external MOSFET
6FBH Voltage Feedback Positive;
Non inverting Input (+)
7FBL Voltage Feedback Negative;
Inverting Input (-)
IN
COMP
OVFB
ST
FREQ/SYNC
GND
EN/PWMI
IVCC
FBL
PWMO
SGND
SWCS
SWO
1
2
3
4
5
6
7
14
9
10
11
12
13
8
FBH EP
Data Sheet 6 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Pin Configuration
8COMP Compensation Input;
Connect R and C network to pin for stability
9OVFB Output Overvoltage Protection Feedback;
Connect to resistive voltage divider to set overvoltage
threshold.
10 ST Status Output;
Open drain diagnostic output to indicate fault condition.
Connect pull up resistor to pin.
11 FREQ / SYNC Frequency Select or Synchronization Input;
Connect external resistor to GND to set frequency.
Or apply external clock signal for synchronization within
frequency capture range.
12 GND Ground;
Connect to system ground.
13 EN / PWMI Enable or PWM Input;
Apply logic high signal to enable device or PWM signal for
dimming LED.
14 IN Supply Input;
Supply for internal biasing.
15 EP Exposed Pad;
Connect to external heat spreading Cu area with
electrically GND (e.g. inner GND layer of multilayer PCB
with thermal vias)
Table 3-1 Pin Definition and Function
# Symbol Direction Type Function
Data Sheet 7 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
General Product Characteristics
4 General Product Characteristics
4.1 Absolute Maximum Ratings
Tj = -40°C to +150°C; all voltages with respect to ground (unless otherwise specified)
Table 4-1 Absolute Maximum Ratings1)
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Voltages
IN
Supply Input
VIN -0.3 45 V P_4.1.1
EN / PWMI
Enable or PWM Input
VEN -40 45 V P_4.1.2
FBH-FBL;
Feedback Error Amplifier
Differential
VFBH-VFBL -5.5 5.5 V P_4.1.3
FBH;
Feedback Error Amplifier
Positive Input
VFBH -0.3 45 V P_4.1.4
FBL
Feedback Error Amplifier
Negative Input
VFBL -0.3 45 V P_4.1.5
OVFB
Over Voltage Feedback Input
VOVP -0.3 5.5 V P_4.1.6
OVFB
Over Voltage Feedback Input
VOVP -0.3 45 V t < 10s P_4.1.7
SWCS
Switch Current Sense Input
VSWCS -0.3 5.5 V P_4.1.8
SWCS
Switch Current Sense Input
VSWCS -0.3 6.2 V t < 10s P_4.1.9
SWO
Switch Gate Drive Output
VSWO -0.3 5.5 V P_4.1.10
SWO
Switch Gate Drive Output
VSWO -0.3 6.2 V t < 10s P_4.1.11
SGND
Current Sense Switch GND
VSGND -0.3 0.3 V P_4.1.12
COMP
Compensation Input
VCOMP -0.3 5.5 V P_4.1.13
COMP
Compensation Input
VCOMP -0.3 6.2 V t < 10s P_4.1.14
Data Sheet 8 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
General Product Characteristics
Note:
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
FREQ / SYNC; Frequency and
Synchronization Input
VFREQ / SYNC -0.3 5.5 V P_4.1.15
FREQ / SYNC; Frequency and
Synchronization Input
VFREQ / SYNC -0.3 6.2 V t < 10s P_4.1.16
PWMO
PWM Dimming Output
VPWMO -0.3 5.5 V P_4.1.17
PWMO
PWM Dimming Output
VPWMO -0.3 6.2 V t < 10s P_4.1.18
ST VST -0.3 45 V P_4.1.19
Diagnostic Status Output IST -5 5 mA P_4.1.20
IVCC
Internal Linear Voltage
Regulator Output
VIVCC -0.3 5.5 V P_4.1.21
IVCC
Internal Linear Voltage
Regulator Output
VIVCC -0.3 6.2 V t < 10s P_4.1.22
Temperatures
Junction Temperature Tj-40 150 °C P_4.1.23
Storage Temperature Tstg -55 150 °C P_4.1.24
ESD Susceptibility
ESD Resistivity to GND VESD,HBM -2 2 kV HBM2) P_4.1.25
ESD Resistivity to GND VESD,CDM -500 500 V CDM3) P_4.1.26
ESD Resistivity Pin 1,7,8,14
(corner pins) to GND
VESD,CDM,C -750 750 V CDM3) P_4.1.27
1) Not subject to production test, specified by design.
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001 (1.5kW, 100pF)
3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1
Table 4-1 Absolute Maximum Ratings1)
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Data Sheet 9 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
General Product Characteristics
4.2 Functional Range
Note: Within the functional range the IC operates as described in the circuit desc rip tio n. The el ec tric al
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3 Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards.
For more information, go to www.jedec.org.
Table 4-2 Functional Range
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Supply Voltage VIN 4.75 45 V VIVCC > VIVCC,RTH,d P_4.2.1
Feedback Voltage
Input
VFBH; VFBL 4.5 45 V P_4.2.2
Junction
Temperature
Tj-40 150 °CP_4.2.3
Table 4-3 Thermal Resistance
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Junction to Case1)2)
1) Not subject to production test, specified by design.
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed to
ambient temperature). Ta=25°C is dissipating 1W.
RthJC 10 K/W P_4.3.1
Junction to Ambient3)
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink
area at natural convection on FR4 board; The device was simulated on a 76.2 x 114.3 x 1.5mm board. The 2s2p board
has 2 outer copper layers (2 x 70µm Cu) and 2 inner copper layers (2 x 35µm Cu), A thermal via (diameter = 0.3mm and
25µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner layer and
second outer layer (bottom) of the JEDEC PCB. Ta=25°C, IC is dissipating 1W
RthJA 42 K/W 2s2p P_4.3.2
Junction to Ambient RthJA 42 K/W 1s0p + 600mm2P_4.3.3
Junction to Ambient RthJA 42 K/W 1s0p + 300mm2P_4.3.4
Data Sheet 10 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Regulator
5 Regulator
5.1 Description
The TLD5095 regulator is suitable for Boost, Buck, Buck-Boost, SEPIC and Flyback configurations. The
constant output current is especially useful for light emitting diode (LED) applications. The regulator function
is implemented by a pulse width modulated (PWM) current mode controller.
The PWM current mode controller uses the peak current through the external power switch and error in the
output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The
current mode controller it provides a PWM signal to an internal gate driver which then outputs the same PWM
signal to external n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch.
The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which
is a characteristic of current mode controllers operating at high duty cycles (>50% duty).
An additional built-in feature is an integrated soft start that limits the current through the inductor and
external power switch during initialization. The soft start function gradually increases the inductor and switch
current over 1 ms (typical) to minimize potential overvoltage at the output.
Figure 5-1 Block Diagram Buck Regulator
Oscillator
FREQ/
SYNC
&
&
R
Q
S
OFF
when H
Q
Clock
>
1
Error-FF
Low when
Tj
> 175 °C
EA
FBH
COMP
H when
OVFB >1.25V
Output Stage
OFF when
Low
NOR
&
NAND 2
&
&
R
Q
SQ
PWM-FF
1
INV
Gate
Driver
Gate Driver
Supply
SWO
IVCC
Current
Sense
I
Soft start
VRef
0.3 V =
Slope Comp
t
FBL
x1
gmEA
VRef
1.25V
=
SGND
SWCS
Current
Comp
OVFB
ISLOPE
IEA
ICS
High when
l
EA
-I
SLOPE
-I
CS
>0
VRef
4.0V
=
High when
IVCC < 4.0V
UV IVCC
OV FB
TLD5095
Data Sheet 11 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Regulator
5.2 Electrical Characteristics
VIN = 6 V to 40 V; 4.5V VFBH 40V, 4.5V VFBL 40V, Tj = -40°C to +150°C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Table 5-1 Electrical Characteristics: Buck Regulator
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Regulator
Feedback Reference
Voltage
VREF 0.28 0.30 0.32 V VIN = 19 V;
VREF= VFBH -VFBL
P_5.2.1
Voltage Line
Regulation
Δ
V
REF
/ΔVIN
0.15 %/V VIN = 6 to 19 V;
VBO= 30 V;
IBO = 500 mA
Figure 10-11
P_5.2.2
Voltage Load
Regulation
V
REF
/
VREF)
/ΔIBO
––5%/A
VIN = 6 V;
VBO = 30V;
IBO = 100 to 500 mA
Figure 10-11
P_5.2.3
Switch Peak Over
Current Threshold
VSWCS 130 150 170 mV VIN = 6 V
VFBH = VFBL = 5 V
VCOMP = 3.5V
P_5.2.4
Maximum Duty Cycle DMAX,fixed 90 93 95 % Fixed frequency
mode
P_5.2.5
Maximum Duty Cycle DMAX,sync 88 % Synchronization
mode
P_5.2.6
Soft Start Ramp tSS 350 1000 1500 µs VFB rising from 5%
to 95% of VFB, typ.
P_5.2.7
Feedback Input
Current
IFBx -10 -50 -100 µA VFBH - VFBL = 0.3 V P_5.2.8
Switch Current
Sense Input Current
ISWCS 10 50 100 µA VSWCS = 150 mV P_5.2.9
Input Undervoltage
Shutdown
VIN,off 3.75 V VIN decreasing P_5.2.10
Input Voltage
Startup
VIN,on 4.75 V VIN increasing P_5.2.11
Gate Driver for External Switch
Gate Driver Peak
Sourcing Current1) ISWO,SRC 380 mA VSWO = 3.5V P_5.2.12
Gate Driver Peak
Sinking Current
ISWO,SNK 550 mA VSWO = 1.5V P_5.2.13
Gate Driver Output
Rise Time
tR,SWO –3060nsCL,SWO = 3.3nF;
VSWO = 1V to 4V
P_5.2.14
Data Sheet 12 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Regulator
Gate Driver Output
Fall Time
tF,SWO –2040nsCL,SWO = 3.3nF;
VSWO = 1V to 4V
P_5.2.15
Gate Driver Output
Voltage
VSWO 4.5 5.5 V CL,SWO = 3.3nF P_5.2.16
1) Not subject to production test, specified by design
Table 5-1 Electrical Characteristics: Buck Regulator
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Data Sheet 13 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Oscillator and Synchronisation
6Oscillator and Synchronisation
Description
R_OSC vs. switching frequency
The internal oscillator is used to determine the switching frequency of the multitopology regulator. The
switching frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the
switching frequency with an external resistor the following formula can be applied.
(6.1)
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized
frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the
internal oscillator synchronizes to this external clock frequency and the multitopology regulator switches at the
synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.
Figure 6-1 Oscillator and Synchronization Block Diagram and Simplified Application Circuit
Figure 6-2 Synchronization Timing Diagram
[]
()
[]
ΩΩ
Ω
=
3
12 105.3
1
)10141(
1
s
f
s
R
FREQ
FREQ
TLD5095
Oscillator
Clock Frequency
Detector
FREQ
/ SYNC
Multiplexer PWM
Logic
Gate
Driver
SWO
R
FREQ
V
CLK
Os ci ll ator _ BlkD i ag_ SyncF ixedM ode .v sd
VSYNC
t
VSYNC,H
VSYNC,L
TSYNC = 1 / fSYNC
tSYNC,PWH
Data Sheet 14 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Oscillator and Synchronisation
6.1 Electrical Characteristics Oscillator
VIN = 6 V to 40 V; 4.5V VFBH 40V, 4.5V VFBL 40V, Tj = -40°C to +150°C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Table 6-1 Electrical Characteristics
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Oscillator
Oscillator Frequency fFREQ 250 300 350 kHz RFREQ = 20kΩP_6.1.1
Oscillator Frequency
Adjustment Range
fFREQ 100 500 kHz 17% internal
tolerance + external
resistor tolerance
P_6.1.2
FREQ / SYNC Supply
Current
IFREQ -700 µA VFREQ = 0 V P_6.1.3
Frequency Voltage VFREQ 1.16 1.24 1.32 V fFREQ = 100 kHz P_6.1.4
Synchronisation
Synchronization
Frequency Capture
Range
fSYNC 250 500 kHz P_6.1.5
Synchronization
Signal
High Logic Level
Valid
VSYNC,H 3.0 V 1)
1) Synchronization of external PWM ON signal to falling edge
P_6.1.6
Synchronization
Signal
Low Logic Level Valid
VSYNC,L ––0.8V
1) P_6.1.7
Synchronization
Signal
Logic High Pulse
Width
tSYNC,PWH 200 ns 1) P_6.1.8
Data Sheet 15 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Oscillator and Synchronisation
6.2 Typical Performance Characteristics of Oscillator
Figure 6-3 Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ/SYNC
[kHz ]
Data Sheet 16 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Enable and Dimming Function
7Enable and Dimming Function
Description
The enable function powers on or off the device. A valid logic low signal on enable pin EN/PWMI powers off the
device and current consumption is less than 10 µA. A valid logic high enable signal on enable pin EN/PWMI
powers on the device. The enable function features an integrated pull down resistor which ensures that the IC
is shut down and the power switch is off in case the enable pin EN is left open.
In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM)
input signal that is fed through to an internal gate driver. The internal gate driver outputs the same PWM signal
on the PWMO pin to an external n-channel enhancement mode MOSFET for PWM dimming an LED load. PWM
dimming an LED is a commonly practiced dimming method to prevent color shift in an LED light source.
Moreover the PWM output function may also be used for to drive other types of loads besides LED.
The enable and PWM input function share the same pin. Therefore a valid logic low signal at the EN/PWMI pin
needs to differentiate between an enable power off signal or an PWM low signal. The device differentiates
between an enable off command and PWM dimming signal by requiring the signal at the EN/PWMI pin to stay
low for a minimum of 8 ms.
Figure 7-1 Block Diagram and Simplified Application Circuit Enable and LED Dimming
EN / PWMI
IN
13
SWO
2
IVCC
1
LDO
Enable / PWMI
Logic
5
PWMO
EN_PWMI_BlockDiagram.svg
14
Gate
Driver
Microcontroller
Gate
Driver
Enable
Enable
PWMI
Data Sheet 17 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Enable and Dimming Function
Figure 7-2 Timing Diagram Enable and LED Dimming
7.1 Electrical Characteristics
VIN = 6 V to 40 V, Tj = -40°C to +150°C, all voltages with respect to ground (unless otherwise specified)
Table 7-1 Electrical Characteristics
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Enable / PWM Input
Enable/PWMI
Turn On Threshold
VEN/PWMI,ON 3.0 V P_7.1.1
Enable/PWMI
Turn Off Threshold
VEN/PWMI,OFF ––0.8V P_7.1.2
Enable/PWMI
Hysteresis
VEN/PWMI,HYS 50 200 400 mV P_7.1.3
Enable/PWMI
High Input Current
IEN/PWMI,H ––30µAVEN/PWMI = 16.0 V P_7.1.4
VEN/PWMI
VEN/PWMI,ON
VIVCC
VIVCC,ON
VPWMO
VSWO
VEN/PWMI,OFF
tEN,OFF,DEL
t
t
t
t
VIVCC,RTH
Power Off
Iq < 10 μA
Power Off Delay Time
Normal
SWO On
PWMO On
Dim
PWMO Off
SWO Off
EN_PWMI_Timing.svg
tPWMI,H
TPWMI
Dim
PWMO Off
SWO Off
Power On Normal
SWO On
PWMO On
Normal
SWO On
PWMO On
TFREQ = 1
fFREQ
tEN,START
Data Sheet 18 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Enable and Dimming Function
Enable/PWMI
Low Input Current
IEN/PWMI,L –0.1AVEN/PWMI = 0.5 V P_7.1.5
Enable Turn Off
Delay Time
tEN,OFF,DEL 81012ms P_7.1.6
PWMI Min Duty Time tPWMI,H 4–µs P_7.1.7
Enable Startup Time tEN,START 100 µs P_7.1.8
Gate Driver for Dimming Switch
PWMO Gate Driver
Peak Sourcing
Current1)
IPWMO,SR
C
230 mA VPWMO = 3.5V P_7.1.9
PWMO Gate Driver
Peak Sinking Current
IPWMO,SN
K
370 mA VPWMO = 1.5V P_7.1.10
PWMO Gate Driver
Output Rise Time
tR,PWMO 50 100 ns CL,PWMO = 3.3nF;
VPWMO = 1V to 4V
P_7.1.11
PWMO Gate Driver
Output Fall Time
tF,PWMO 30 60 ns CL,PWMO = 3.3nF;
VPWMO = 1V to 4V
P_7.1.12
PWMO Gate Driver
Output Voltage
VPWMO 4.5 5.5 V CL,PWMO = 3.3nF P_7.1.13
Current Consumption
Current
Consumption,
Shutdown Mode
Iq_off ––10µAVEN/PWMI = 0.8 V;
Tj 105C; VIN = 16V
P_7.1.14
Current
Consumption,
Active Mode2)
Iq_on ––7mAVEN/PWMI 4.75 V;
IBO = 0 mA;
VIN = 16V
VSWO = 0% Duty
P_7.1.15
1) Not subject to production test, specified by design
2) Dependency on switching frequency and gate charge of external switches.
Table 7-1 Electrical Characteristics
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Data Sheet 19 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Linear Regulator
8Linear Regulator
Description
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current
up to ILIM,min (parameter 8.2.2). An external output capacitor with ESR lower than RIVCC,ESR (parameter
8.2.5) is required on pin IVCC for stability and buffering transient load currents. During normal operation the
external MOSFET switches will draw transient currents from the linear regulator and its output capacitor.
Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the
external MOSFET switches.
Integrated Undervoltage Protection for the External Switching MOSFET
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and resets
the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold (VIVCC,RTH,d).
The undervoltage reset threshold for the IVCC pin helps to protect the external switches from excessive power
dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level n-channel
MOSFET.
Figure 8-1 Voltage Regulator Block Diagram and Simplified Application Circuit
EN / PWMI
IN
13
IVCC
1
Linear Regulator
Li nReg _Bl ck Di ag.v sd
14
Gat e
Drivers
Data Sheet 20 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Linear Regulator
8.1 Electrical Characteristics
VIN = 6 V to 40 V; 4.5V VFBH 40V, 4.5V VFBL 40V, Tj = -40°C to +150°C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Table 8-1 Electrical Characteristics
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Output Voltage VIVCC 4.6 5 5.4 V 6 V VIN 45 V
0.1 mA IIVCC 35
mA
P_8.1.1
Output Current
Limitation
ILIM 51 90 mA VIN = 13.5 V
VIVCC = 4.5V
P_8.1.2
Drop out Voltage VDR 1.4 V IIVCC = 50mA 1)
1) Measured when the output voltage VCC has dropped 100 mV from its nominal value.
P_8.1.3
Output Capacitor CIVCC 0.47 µF 2)
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
P_8.1.4
Output Capacitor
ESR
RIVCC,ESR 0.5 W f = 10kHz P_8.1.5
Undervoltage Reset
Headroom
VIVCC,HDRM 100 mV VIVCC decreasing
VIVCC - VIVCC,RTH,d
P_8.1.6
Undervoltage Reset
Threshold
VIVCC,RTH,d 4.0 V VIVCC decreasing P_8.1.7
Undervoltage Reset
Threshold
VIVCC,RTH,i ––4.5VVIVCC increasing P_8.1.8
Data Sheet 21 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Protection and Diagnostic Functions
9 Protection and Diagnostic Functions
9.1 Description
The TLD5095EL has integrated circuits to diagnose and protect against output overvoltage, open load, open
feedback and overtemperature faults. In case any of the four fault conditions occur the Status output ST will output
an active logic low signal to communicate that a fault has occurred. During an overvoltage or open load condition
the gate driver outputs SWO and PWMO will turn off. Figure 9-3 illustrates the various open load and open
feedback conditions. In the event of an overtemperature condition (Figure 9-6) the integrated thermal shutdown
function turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature
is 175°C. After cooling down the IC will automatically restart operation. Thermal shutdown is an integrated
protection function designed to prevent immediate IC destruction and is not intended for continuous use in normal
operation.
Figure 9-1 Protection and Diagnostic Function Block Diagram
Figure 9-2 Status Output Truth Table
Output
Overvoltage
Open Load
Overtemperature
Protection and
Diagnostic Circuit
SWO and PWMO
Gate Driver Off
Linear Regualtor
Off
Input Output
Pro_Diag_BlckDiag.vsd
Open Feedback
Input
Undervoltage
OR
OR
Output
SWO PWMO IVCCST
Input
Overvoltage
Open Load
Overtemperature
L LL
Pr o _Di ag_ TT .vs d
Level *
False
True
Condition
HH or Sw *Sw* Active
L LL
HH or Sw *Sw*
L LL Shutdown
HH or Sw *Sw*
*Note:
Sw = Switching
False = Condition does not exist
True = Condition does exist
False
True
False
True
Open Feedback L LL
HH or Sw *Sw*False
True
Active
Active
Active
Active
Active
Active
Data Sheet 22 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Protection and Diagnostic Functions
Figure 9-3 Open Load and Open Feedback Conditions
Figure 9-4 Overvoltage Protectio n Description
FBH
FBL
OVFB
PWMO
TLD5095
ROVH
ROVL
RFB
TDIM
5
7
6
9
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
Overvoltage
Compartor
Feedback Voltage
Error Amplifier
VBO
Open Circuit 1
Open Circuit 2
Open Circuit 3
Open Circuit 4
+
VREF
-
VOVFB,TH
Open Circuit
Condition
1
Fault Condition
Open FBH
2
3
4
Open FBL
Open VBO
Open PWMO
Fault Threshold Voltage
V
REF
-20 to -100 mV
0.5 to 1.0 V
V
FBx
< V
FBx ,min
= 4.5V
Detected by overvoltage
V
REF
Min Threshold = 0.5 V
Max Threshold = -20 mV
Max Threshold = 1.0 V
Min Threshold = -100 mV
Open FBL
Open FBH
Open VBO
Typical V
REF
= 0.3 V
Output Open Circuit Conditions
V
OVFB
t
V
OVFB,TH
1.25V
Overvoltage Protection is
disabled
Overvoltage Protection
ACTIVE
V
OVP,max
OVFB
TLD5095
GND
12
example : V
OUT,max=40V
9
R
OVL
R
OVH
1.25V
1k
1.25mA
Ω k
mA
V2.33
25.1
40
Data Sheet 23 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Protection and Diagnostic Functions
Figure 9-5 Status Output Timing Diagram
ShutdownNormal Thermal
Shutdown
Overvoltage Open Load /
Feedback
Startup
V
IVCC
V
FBH -
V
FBL
t
V
ST
t
T
J
t
t
SD
t
SD
t
SD
t
V
REF,2
V
REF,1
T
J,SD
T
J, S D, HY S T
V
IVCC,RTH,i
V
IVCC,RTH ,d
0.3 V Typ
t
SS
t
SS
1
1
2
3
3
V
BO
t
V
OVFB
V
OVFB,TH
2
Status Output Timing Diagram
V
OVFB
< V
OVFB,T L
Data Sheet 24 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Protection and Diagnostic Functions
Figure 9-6 Device Overtemperature Protection Behavior
V
SWO
t
I
LED
t
ΔΤ
V
EN/PWMI
t
H
L
T
j
t
Ta
T
jSD
T
jSO
I
peak
t
Normal Operation
Device
OFF
Overtemp
Fault
ON
Overtemp
Fault
ON
Overtemp
Fault
ON
Over temp
Fault
V
ST and
V
IVCC
5V
V
PWMO
t
Data Sheet 25 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Protection and Diagnostic Functions
9.2 Electrical Characteristics
VIN = 6 V to 40 V; 4.5V VFBH 40V, 4.5V VFBL 40V, Tj = -40°C to +150°C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified)
Note: Inte grated pr otection functions are designed to prevent IC de struction und er fault cond itions described in
the data sheet. Fau lt conditions are consid ered as “out side” norm al operating r ange. Protection fu nctions
are not designed for continuous re petitive operation.
Table 9-1 Electrical Characteristics
Parameter Symbol Values Unit Note or
Test Condition
Number
Min. Typ. Max.
Status Output
Status Output
Voltage Low
VST,LOW ––0.4VIST = 1mA P_9.2.1
Status Sink Current
Limit
IST,MAX 2––mAVST = 1V P_9.2.2
Status Output
Current
IST,HIGH ––1µAVST = 5V P_9.2.3
Status Delay Time tSD 81012ms P_9.2.4
Temperature Protection
Overtemperature
Shutdown
Tj,SD 160 175 190 °C P_9.2.5
Overtemperature
Shutdown
Hystereses
Tj,SD,HYST –15–°C P_9.2.6
Overvoltage Protection
Output Over Voltage
Feedback Threshold
Increasing
VOVFB,TH 1.21 1.25 1.29 V P_9.2.7
Output Over Voltage
Feedback Hysteresis
VOVFB,HYS 50 150 mV Output Voltage
decreasing
P_9.2.8
Over Voltage
Reaction Time
tOVPRR 2–10µsOutput Voltage
decreasing
P_9.2.9
Over Voltage
Feedback Input
Current
IOVFB -1 0.1 1 µA VOVFB = 1.25 V P_9.2.10
Open Load and Open Feedback Diagnostics
Open Load/Feedback
Threshold
VREF,1,3 -100 -20 mV VREF = VFBH - VFBL
Open Circuit 1 or 3
P_9.2.11
Open Feedback
Threshold
VREF,2 0.5 1 V VREF = VFBH - VFBL
Open Circuit 2
P_9.2.12
Data Sheet 27 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
10 Application Information
Note: The followin g information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
Figure 10-1 Boost to Ground Application Circuit - B2G (Boost configuration)
Figure 10-2 Bill of Materials for B2G Application Circuit
EN / PWMI
COMP
IN
FBH
FBL
OVFB
SWO
SWCS
FREQ / SYNC
PWMO
GND
SGND
IC
1
TLD5095
ST
IVCC
C
IN
L
BO
D
BO
T
SW
R
CS
R
FREQ
R
COMP
C
COMP
C
IVCC
R
OVH
R
OVL
C
BO
R
FB
T
DIM
14
13
11
8
1
12
5
7
6
9
3
4
2
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
8
D
9
D
10
V
REF
I
LED
IC
2
Microcontroller
(e.g. XC866)
Digital Dimming
Spread
Spectrum
10
STATUS
R
ST
V
CC
or V
IVCC
Classic Boost Setup:
VOUT > VIN
V
IN
= 4.75V to 45V
PWMI
PWMO
LBO
Reference
Designator
DBO
Part
Number
Manufacturer
CIN , CBO
TDIM,TSW
RCS
RFB
ROVH
D1 - 10
ROVL
CCOMP
RCOMP
CIVCC
RFREQ, RST
IC2
IC1
Osram LUW H9GP
Vishay
Coilcraft MSS1278T-104ML
EEEFK1H101GPPanasonic
Value
White
100 uH
100 uF, 50V
EPCOS
Type
LED
Diode
Capacitor
Capacitor
Capacitor
IC
IC
Inductor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Transistor
EPCOS1uF , 6.3V MLCC CCNPZC105KBW X7R
Infineon TLD5095--
Infineon XC866--
Infineon IPG20N06S4L-26
Dual N-ch enh. (60V, 20A)
820 m, 1% Panasonic ERJ14BQFR82U
20 k, 1% Panasonic ERJ3EKF 2002V
33.2 k, 1% Panasonic ERJ3EKF3322V
1 k, 1% Panasonic ERJ3EKF 1001V
50 m, 1% Panasonic ERJB1CFR05U
SS3H10Schottky , 3 A, 100 VR
10 nF X7R
Panasonic10 k, 1% ERJ3EKF 1002V
Quantity
10
1
2
1
1
1
1
1
1
1
2
1
1
1
1
TransistorInfineon IPG20N10S4L-22
alternativ: 100V N-ch, 35A 2
TransistorInfineon BSP 318Salternativ : 60V N-ch, 2.6A 2
Data Sheet 28 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
Figure 10-3 SEPIC Application Circuit (Buck-Boost configuration)
Figure 10-4 Bill of Materials for SEPIC Application Circuit
EN / PWMI
COMP
IN
FBH
FBL
OVFB
SWO
SWCS
FREQ / SYNC
PWMO
GND
SGND
IC
1
TLD5095
VIN
IVCC
ISW
CIN
L1DBO
TSW
RCS
RFREQ RCOMP
CCOMP
CIVCC
ROVH
ROVL
CBO
R
FB
TDIM
14
13
11
8
12
5
7
6
9
3
4
2
V
REF
I
LED
CSEPIC
L2
1
DPOL RPOL
IC
2
Microcontroller
(e.g. XC866)
Digital Dimming
Spread Spectrum
PWMI
PWMO
V
IN
= 4.75V to 45V
ST
10
STATUS
RST
VCC or VIVCC D1
D2
D3
D4
D5
D6
D7
Dn
Number of LEDs could be
variable independent from VIN:
ÆBU CK-BOOST con f ig ur a t io n
L
1
, L
2
Reference
Designator
D
BO
Part
Number
Manufacturer
C
IN ,
C
BO
T
DIM
,T
SW
R
CS
R
FB
R
OVH
D
1 - n
R
OVL
C
COMP
R
COMP,
R
POL
C
IVCC
R
FREQ,
R
ST
IC
2
IC
1
Osram LUW H9GP
Vishay
Coilcraft MSS1278T-473ML
EEEFK1H101GPPanasonic
Value
White
47 uH
100 uF, 50V
EPCOS
Type
LED
Diode
Capacitor
Capacitor
Capacitor
IC
IC
Inductor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Transistor
EPCOS1uF , 6.3V X7R
Infineon TLD5095--
Infineon XC866--
Infineon IPG20N06S4L-26
Dual N-ch enh. (60V, 20A)
820 m, 1% Panasonic ERJ14BQFR82U
20 k, 1% Panasonic ERJ3EKF2002V
33.2 k, 1% Panasonic ERJ3EKF3322V
1 k, 1% Panasonic ERJ3EKF1001V
50 m, 1% Panasonic ERJB 1CFR05U
SS3H10Schottky, 3 A, 100 V
R
10 nF X7R
Panasonic10 k, 1% ERJ3EKF 1002V
Quantity
variable
1
2
1
1
1
1
2
2
1
2
1
1
1
1
TransistorInfineon IPD35N10S3L-26
alternativ: 100V N-ch, 35A 2
TransistorInfineon BSP318Salternativ : 60V N-ch, 2.6A 2
InductorCoilcraft MSD1278-223MLD
alternativ: 22uH coupled
inductor 1
C
SEPIC
X7R, Low ESREPCOS3.3 uF, 20V Capacitor 1
D
POL
Diode80V Diode Infineon BAS1603W 1
Data Sheet 29 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
Figure 10-5 Flyback Application Circuit (Buck-Boost configuration)
Figure 10-6 Bill of Materials for Flyback Application Circuit
EN / PWMI
COMP
IN
FBH
FBL
OVFB
SWO
SWCS
FREQ / SYNC
PWMO
GND
SGND
IC
1
TLD5095
V
IN
IVCC
I
SW
C
IN
L
1
D
BO
T
SW
R
CS
R
FREQ
R
COMP
C
COMP
C
IVCC
R
OVH
R
OVL
C
BO
R
FB
T
DIM
14
13
11
8
12
5
7
6
9
3
4
2
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
n
V
REF
I
LED
L
2
1
D
POL
R
POL
IC
2
Microcontroller
(e.g. XC866)
Digital Dimming
Output
PWMO
PWMI
V
IN
= 4.75V to 45V
ST
10
STATUS
R
ST
V
CC
or V
IVCC
Number of LEDs could be
variable independent from VIN:
ÆBUCK-B OOST configurat ion
L
1
, L
2
Reference
Designator
D
BO
Part
Number
Manufacturer
C
IN
T
DIM
,T
SW
R
CS
R
FB
R
OVH
D
1 - n
R
OVL
C
COMP
R
COMP,
R
POL
C
IVCC
R
FREQ,
R
ST
IC
2
IC
1
Osram LUW H9GP
Vishay
EPCOS Transformer EHP 16
EEEFK1H101GPPanasonic
Value
White
1 µH / 9 uH
100 uF, 50V
EPCOS
Type
LED
Diode
Capacitor
Capacitor
Capacitor
IC
IC
Inductor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Transistor
EPCOS1uF, 6.3V X7R
Infineon TLD 5095--
Infineon XC866--
Infineon IPG20N06S4L-26
Dual N-ch enh. (60V, 20A)
820 m, 1%
Isabellenhütte
SMS – Power Resistor
10 k, 1% Panasonic ERJ3EKF1002V
56.2 k, 1% Panasonic ERJ3EKF5622V
1.24 k, 1% Panasonic ERJ3EKF 1241V
5 m, 1%
Isabellenhütte
SMS - Power Resistor
SS3H10Schottky, 3 A, 100 V
R
47 nF X7R
Panasonic10 k, 1% ERJ3EKF 1002V
Quantity
variable
1
1
1
1
1
1
1
2
1
2
1
1
1
1
TransistorInfineon IPG20N10S4L-22
alternativ: 100V N-ch, 35A
2
TransistorInfineon BSP318Salternativ : 60V N-ch, 2.6A 2
C
BO
X7R, Low ESREPCOS3.3 uF, 50V (100V) Capacitor 1
D
POL
Diode80 V Diode Infineon BAS1603W 1
Data Sheet 30 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
Figure 10-7 Boost to Battery Application Circuit - B2 B (Buck-Boost configuration)
Figure 10-8 Bill of Materials for B2B Application Circuit
IN
FBH
FBL
OVFB
SWO
SWCS
PWMO
GND
SGND
IC
1
TLD5095
14
5
12
9
3
4
2
6
7
EN / PWMI
COMP
IVC C
IC
2
Microcontroller
(e.g. XC866)
Digital Dimming
Spread Spectrum
13
11 8
1
C
IN
T
DIM1
L
BO
D
BO
I
LED
V
OUT
R
FB
D
1
D
n
T
DIM2
R
OVH
R
OVL
T
SW
R
CS
I
SW
R
FRE Q
R
COMP
C
COMP
C
IVCC
C
BO
R
DIM2
R
DIM1
D
Z
FREQ / SYNC
V
CC
or V
IVCC
ST
10
STATUS
R
ST
V
IN
= 4.75V to 45V
PWMI
PWMO
Number of LEDs could be
variable independent from VIN:
ÆBUCK-BOO S T co nf igu r a t i o n
L
BO
Reference
Designator
D
BO
Part
Number
Manufacturer
C
BO
T
DIM1
,T
DIM2
R
CS
R
FB
R
OVH
D
1 - n
R
OVL
C
COMP
R
COMP,
R
DIM1,
R
DIM2
C
IVCC
R
FREQ,
R
ST
IC
2
IC
1
Osram LUW H9GP
Vishay
Coilcraft MSS1278T-104ML_
EEVFK1K101QPanasonic
Value
White
100 uH
100 uF, 80V
EPCOS
Type
Diode
Diode
Capacitor
Capacitor
Capacitor
IC
IC
Inductor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Transistor
EPCOS1 uF, 6.3V
MLCC CCNPZC105KBW X7R
Infineon TLD5095--
Infineon XC866--
Infineon BSO615CG60V Dual N-ch (3.1A) and P -ch. enh. (2A)
820 m, 1% Panasonic ERJ14BQFR82U
20 k, 1% Panasonic ERJ3EKF2002V
33.2 k, 1% Panasonic ERJP06F5102V
1 k, 1% Panasonic ERJ3EKF1001V
Panasonic
SS3H10Schottky, 3 A, 100 V
R
10 nF X7R
Panasonic10 k, 1%ERJ3EKF 1002V
Quantity
variable
1
1
1
1
1
1
1
3
1
2
1
1
1
1
Appl i cat iond ra wi ng _pl us _ BO M _B 2B_ T
LD5095 _Apri l 2012 . vsd
T
SW
TransistorInfineon IPD35N10S3L-26
N-ch, OptiMOS-T2 100V, 35A
1
C
IN
EEEFK1H101GPPanasonic100 uF, 50V Capacitor 1
50 m, 1% ERJB1CFR05U
D
Z
Vishay DiodeZener5V 1
TransistorInfineon IPD30N06S4L-23
alternativ: 60V N-ch, 30A
1
TransistorInfineon BSP318Salternativ : 60V N-ch, 2.6A 1
TransistorInfineon BSP 123
alternativ: 100V N-ch (0.37A),
1
TransistorInfineon BSP171P
alternativ: 60V P-ch (1.9A)
1
Data Sheet 31 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
Figure 10-9 Buck Application Circuit
Figure 10-10 Bill of Materials for Buck Application Circuit
EN / PWMI
COMP
IN
FBH
FBL
OVFB
SWO
SWCS
FREQ / SYNC
PWMO
GND
SGND
IC
1
TLD5095
V
IN
= 4.75V to 45V
IVCC
C
IN
L
BO
D
BO
T
SW
R
CS
R
FREQ
R
COMP
C
COMP
C
IVCC
R
FB
14
13
11
8
1
12
5
7
6
9
3
4
2
D
1
D
2
V
REF
I
LED
IC
2
Microcontroller
(e.g. XC866)
Spread Spectrum
BUCK Setup:
VIN > VOUT
Enable
C
BO
ST
10
STATUS
R
ST
V
CC
or V
IVCC
L1
Reference
Designator
DBO
Part
Number
Manufacturer
CBO
TSW
RCS
RFB
D1 -2
CCOMP
RCOMP
CIVCC
RFREQ, RST
IC2
IC1
Osram LE UW Q9WP
Vishay
Coilcraft MSS1278T
X7REPCOS
Value
White
22 µH
4.7 uF, 50V
EPCOS
Type
LED
Diode
Capacitor
Capacitor
Capacitor
IC
IC
Inductor
Resistor
Resistor
Resistor
Resistor
Transistor
EPCOS1uF, 6.3V
MLCC CCNPZC105KBW X7R
Infineon TLD5095--
Infineon XC866--
Infineon IPG20N10S4L-22
100V, N-ch, 35A
820 m, 1% Isabellenhütte SMS – Power Resistor
20 k, 1% Panasonic ERJ3EKF2002V
50 m, 1% Isabellenhütte SMS - Power Resistor
SS3H10Schottky , 3 A, 100 VR
47 nF X7R
Panasonic10 k, 1% ERJ3EKF1002V
Quantity
2
1
1
1
1
1
1
1
1
1
2
1
1
TransistorInfineon IPD30N06S4L-23alternativ : 60V N-ch, 30A 1
CIN EEEFK1H101GPPanasonic100 uF, 50V Capacitor 1
Data Sheet 32 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
Figure 10-11 Boost Voltage Application Circuit
Figure 10-12 Bill of Materials for Boost Voltage Application Circuit
Note: The application drawings and corresponding bill of materials are simplified examples. Optimization of the
external components must be done accordingly to specific application requirements.
FBH
FBL
OVFB
SWO
SWCS
GND
SGND
EN / PWMI
COMP
IVCC
R
FREQ
R
COMP
C
COMP
13
11
8
1
IN
14
7
6
9
3
4
2
12
FREQ / SYNC
C
IN
L
BO
D
BO
T
SW
R
CS
R
OVH
R
OVL
C
BO
R
FB1
R
FB2
R
FB3
R
L
PWMO
5
IC1
TLD5095
IC
2
Microcontroller
(e.g. XC866)
Enable
Spread Spectrum
I
Load
V
REF
C
IVCC
constant
V
OUT
V
IN
= 4.75V to 45V
ST
10
STATUS
R
ST
V
CC
or V
IVCC
L
BO
Reference
Designator
D
BO
Part
Number
Manufacturer
C
BO
R
CS
R
FB1
,R
FB 3
R
OVH
R
OVL
C
COMP
R
COMP
C
IVCC
R
FREQ,
R
ST
IC
2
IC
1
Vishay
Coilcraft MSS1278T-104ML_
EEVFK 1K101QPanasonic
Value
100 uH
100 uF, 80V
EPCOS
Type
Diode
Capacitor
Capacitor
Capacitor
IC
IC
Inductor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Panasonic1 uF, 6.3V X7R
Infineon TLD5095--
Infineon XC866--
51 kohms, 1% Panasonic ERJ3EKF5102V
20 kohms, 1% Panasonic ERJ3EKF2002V
33.2 kohms, 1% Panasonic ERJ3EKF3322V
1 kohms, 1% Panasonic ERJ3EKF1001V
Panasonic
SS3H10Schottky , 3 A, 100 V
R
10 nF, 16V X7R
Panasonic10 kohms, 1% ERJ3EKF1002V
Quantity
1
1
1
1
1
1
1
1
1
2
1
1
1
T
SW
TransistorInfineon IPD35N10S3L-26 N-ch, OptiMOS-T2 100V 1
C
IN
EEEFK1H101GPPanasonic100 uF, 50V Capacitor 1
50 mohms, 1% ERJB1CFR05U
R
FB2
Resistor1 kohms, 1% Panasonic ERJ3EKF1001 V 1
Data Sheet 33 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Application Information
10.1 Further Application Information
For further information you may contact http://www.infineon.com/
Application Note: TLD509x DC-DC Multitopology Controller IC “Dimensioning and Stability Guideline -
Theory and Practice”
Data Sheet 34 Revision 1.4
2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Package Outlines
11 Package Outlines
Figure 11-1 Outline PG-SSOP-14 Dimensions in mm
Green Product (RoHS Compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Note: For further package information, please visit our website: http://www.infineon.com/packages.
PG-SSOP-14-1,-2,-3-PO V02
17
14 8
14
17
8
14x
0.25±0.05 2)
M
0.15 DC A-B
0.65 C
Stand Off
0 ... 0.1
(1.45)
1.7 MAX.
0.08 C
A
B
4.9±0.11)
A-BC0.1 2x
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion
Bottom View
±0.2
3
±0.2
2.65
0.2
±0.2
D6MD 8x
0.64
±0.25
3.9±0.11)
0.35 x 45˚
0.1 CD
+0.06
0.19
8
˚
MAX.
Index Marking
Exposed
Diepad
Data Sheet 35 Revision 1.4 2015-03-11
Infineon® LITIX™ Power
TLD5095EL
Revision History
Revision 1.4, 2015-03-11
Page or Item Subjects (major changes since previous revision) Responsible Date
Rev1.0 to Rev
1.4
Initial Data Sheet for TLD5095EL 2009-11-30 to
2014-03-10
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™, EasyPIM™,
EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™, i-
Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,
UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT
Forum. CIPURSE™ of OSPT Alliance. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale.
IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of
Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc.,
USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies,
Inc. Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of
Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA,
Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Trademarks Update 2014-11-12
Edition 2015-03-11
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
Doc_Number
Legal Disclaimer
The information given in this document shall in
no event be regarded as a guarantee of
conditions or characteristics. With respect to any
examples or hints given herein, any typical
values stated herein and/or any information
regarding the application of the device, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation, warranties of non-
infringement of intellectual property rights of
any third party.
Information
For further information on technology, delivery
terms and conditions and prices, please contact
the nearest Infineon Technologies Office
(www.infineon.com).
Warnings
Due to technical requirements, components
may contain dangerous substances. For
information on the types in question, please
contact the nearest Infineon Technologies
Office. Infineon Technologies components may
be used in life-support devices or systems only
with the express written approval of Infineon
Technologies, if a failure of such components
can reasonably be expected to cause the failure
of that life-support device or system or to affect
the safety or effectiveness of that device or
system. Life support devices or systems are
intended to be implanted in the human body or
to support and/or maintain and sustain and/or
protect human life. If they fail, it is reasonable to
assume that the health of the user or other
persons may be endangered.
www.infineon.com