Hardware Design Guide, Revision 10
April 5, 2005
TMXF84622 Ultramapper
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
1 Introduction
The last issue of this data shee t was July 12, 2004 - Revision 9. A change history is included in Section 13, Change History,
on page 72. Red change bars have been installed on all text, figures and tables that were added or changed. All changes
to the text a re h ighlig hted in red. Cha ng es withi n figur es, and the figure titl e itself, ar e highligh ted in red, if feasible. Format-
ting or grammatical changes have not been highlighted. Deleted sections, paragraphs, figures or tables will be specifically
mentioned.
The documentation package for the TMXF84622 Ultramapper 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
system chip consists of the following documents:
The Register Description and the System Design Guide. These two documents are available on a password-protected
website.
The Ultramapper P ro du ct De scr ipt ion , an d th e Ultramapper Hardware Design Guide (this document). These two docu-
ments are available on the public website shown below.
If the reader displays thi s document using Acrobat Reader ®, clicking on any blue text will bring the reader to that reference
point.
To access related documents, including the documents mentioned above, please go to the following public website, or con-
tact your Agere representa tive (see the last page of this document).
http://www.agere.com/enterprise_metro_access/index.html
This document describes the ha rd ware inter fa ces to the Ag er e System s Inc. TMXF84622 Ultramapper device. Information
relevant to the us e of th e de vice in a boa r d desig n is covered. Pin descriptions, dc electrical characteristics, timing
diagrams, ac timing parameters, packaging, and operating con d i tion s ar e inc lud ed.
Figure 1-1. Ultramapper Block Diagram and High-Level Interface Definition
(x3)
M13
MUX
TMUX
STS-12/
STM-4/
STS-3/
STM-1
FRM (X3)
x28/x21
DS1/J1/E1
(x3)
x28/x21
VTMPR
MRXC
DS1/J1/E1
VT/TU
DS2/E2
DS3/E3
TPG/TPM
X3
x28/x21
DS1/E1
DJA
CDR
SPEMPR
(x3)
(0-2)
CDR
MCDR
STSPP
MPUJTAG
LOPOH
x6
DS3/E3
DJA
(x3)
E13
MUX
CG
SPEMPR
(x3)
(3-5)
(x3)
STS-1
LT
6
3
1
S
T
S
X
C
System Interfaces
Switching Modes
8PSB (x16): x84/X63 DS1/J1/E1
x2016 DS0/E0
4CHI (x42): x2016 DS0/E0
Transport Modes
4DS1/J1/E1 (x30): x28/x21 + prot.
4DS2/E2 (X30): x21/x1 2 + prot.
4VT/TU (X30): x28/x21 + prot.
(x6) DS3/E3
(x3) STS-1
(x3) NSMI
(x3) STS-1
(Total of 3 STS-1 Max)
Shared Low-Speed I/O
622 Mb/STS-12/STM-4
155 Mb/STS-3/STM-1
Clock and Data
LOPOH
622/155 Mbits/s SONET/SDH
ADM Front End DS3/E3/DS2/DS1/E1/DS0 PDH
Tributary Termination
TOAC
MPU IF
CHI/PSB
Rx/Tx Clocks and Sync
POAC
DS3/E3 PLL IF
(Optional)
JTAG IF
FRM PLL IF
(x3)(x3)
66
E2,
VC12 DS3XCLK,
E3XCLK
DS2,
VC11
AIS Clocks DS1XCLK,
E1XCLK
Power and GND pins not shown
6
12
495
5
5
6
STS-3/STM-1 Mate
Interconnect
High-Speed IF
(x3)
8
Clock/Sync
6
Protection Lin k
622 Mb/STS-12/STM-4
155 Mb/STS-3/STM-1
Clock and Data
8
42
24
204
3
1
1122
01/18/02 Ultramapper
Miscellaneous
24
Table of Contents
Contents Page
2Agere Systems Inc.
Hardware Design Guide, Revision 10
April 5, 2005
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
TMXF84622 Ultramapper
1 Introduction ........................................................................................................................................................................1
2 Pin Information ...................................................................................................................................................................6
2.1 Ball Diagram ................ ... ................ .... ................ ... ... ................ .... ................ ... ... .........................................................6
2.2 Package Pin Assignments ...........................................................................................................................................7
2.3 Pin Matrix .. ... ... ................ ... .... ................ ... ................ ... .... ................ ... ................ ... ....................................................15
2.4 Pin Types ............... ................ ... ................ ... ................ .... ................ ... ................ ... ....................................................17
2.5 Pin Definitions .............. ................ ... .... ................ ... ... ................ .... ... ................ ... ... ....................................................18
3 Operating Conditions and Reliability ................................................................................................................................35
3.1 Absolute Maximum Ratings .......................................................................................................................................35
3.2 Recommended Operating Conditions .......................................................................................................................35
3.3 Handling Precautions ..................... .... ... ................ ... ... .... ... ... ................ .... ... ... ... ... .... ................................................35
3.4 Thermal Parameters (Definitions and Values) ...........................................................................................................36
3.5 Reliability ............... ... ... ................ ... .... ... ... ................ ... .... ... ................ ... .... ... ... ..........................................................37
3.6 Recommended Powerup Sequence ..........................................................................................................................37
3.7 Power Consumption .......... .... ... ... ... .... ................ ... ... ... ................. ... ... ... .... ................ ... ... ..........................................38
4 Electrical Characteristics .................................................................................................................................................39
4.1 LVCMOS Interface Specifications .............................................................................................................................39
4.2 LVDS Interface Charact eristic s .......... ... ... ... ................ .... ... ... ................ .... ... ... ... ................ .......................................40
5 Timing ..............................................................................................................................................................................41
5.1 TMUX High-Speed Interface Timing ..........................................................................................................................41
5.2 THSSYNC Characte ristics .........................................................................................................................................42
5.3 STS-3/STM-1 Mate Interconnect Timing ............ ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ................................44
5.4 TOAC, POAC, and LOPOH Timing ...........................................................................................................................45
5.5 DS3/E3/STS-1 Timing .............. ... ... .... ... ... ... .... ... ................ ... ... .... ... ... ................ ... .... ... ... ..........................................46
5.6 NSMI Timing .......................... ... ... ... ................. ... ... ... ... ................. ... ... ... ................ .... ................................................47
5.7 Shared Low-Speed Line Timing ................................................................................................................................51
5.8 CHI Timing ... ... ... .... ................ ... ... ................ .... ... ................ ... ... ................. ... ... ..........................................................51
5.9 Parallel System Bus (PSB) Timing ............................................................................................................................54
6 Reference Clocks ............................................................................................................................................................55
7 Microprocessor Interface Timing .....................................................................................................................................60
7.1 Synchronous Write Mode ..........................................................................................................................................60
7.2 Synchronous Read Mode ................... ... ... ... .... ... ... ................ ... .... ... ... ... ................ .... ... ... ... .......................................62
7.3 Asynchronous Write Mode ........................................................................................................................................63
7.4 Asynchronous Read Mode ........................................................................................................................................65
8 Other Timing ....................................................................................................................................................................67
9 Hardware Design File References ...................................................................................................................................67
10 700-Pin PBGAM1T Diagrams ........................................................................................................................................68
11 Ordering Information ......................................................................................................................................................70
12 Glossary .........................................................................................................................................................................71
13 Change History ...............................................................................................................................................................72
13.1 Changes to this Document Since Revision 9 .........................................................................................................72
13.2 Navigating Through an Adobe Acrobat ® Document .............................................................................................72
Table of Contents (continued)
Tables Page
Agere Systems Inc . 3
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Table 2-1. Package Pin Assignments in Signal Name Order.................................................................................................7
Table 2-2. Package Pin Matrix ............... ... .... .......................................................................................................................15
Table 2-3. Pin Types ............................................................................................................................................................17
Table 2-4. TMUX Block, High-Speed Interface I/O...............................................................................................................18
Table 2-5. TMUX Block, Protection Link I/O.........................................................................................................................18
Table 2-6. TMUX Block, Clock, and Sync I/O.......................................................................................................................19
Table 2-7. STS Cross Connect (STSXC) Block, STS-3/STM-1 Mate Interconnect..............................................................20
Table 2-8. Synchronous Payload Envelope (SPE) Mapper Block, External PLL Control.....................................................20
Table 2-9. Multirate Cross Connect (MRXC) Block, TOAC Input and Output Channels......................................................21
Table 2-10. Multirate Cross Connect (MRXC) Block, POAC Input and Output Channels....................................................21
Table 2-11. DS3/E3/STS-1 Out............................................................................................................................................22
Table 2-12. DS3/E3/STS-1 In.... ...........................................................................................................................................22
Table 2-13. NSMI/STS-1 In. ... ..............................................................................................................................................23
Table 2-14. NSMI/STS-1 Out ...............................................................................................................................................24
Table 2-15. Shared Low-Speed Line In................................................................................................................................24
Table 2-16. Shared Low-Speed Line Out.............................................................................................................................25
Table 2-17. TDM Concentration Highway (CHI) In...............................................................................................................26
Table 2-18. TDM Concentration Highway (CHI) Out............................................................................................................27
Table 2-19. Framer (FRM) Block, CHI/Parallel System Bus (PSB) Clock and Sync............................................................28
Table 2-20. Reference Clocks.......... ... ... ... .... ................ ... ... ... .... ... ... ................ .... ... ... ... ... ....................................................29
Table 2-21. Low-Order Path Overhead Access, Transmit Direction ....................................................................................29
Table 2-22. Low-Order Path Overhead Access, Receive Direction .....................................................................................30
Table 2-23. Clock Generator................................................................................................................................................30
Table 2-24. Microprocessor Interface............... ... ... ................ .... ... ... ... .... ................ ... ... ... .... ... ... ..........................................31
Table 2-25. Boundary Scan (IEEE® 1149.1)........................................................................................................................32
Table 2-26. General-Purpose Interface................................................................................................................................32
Table 2-27. CDR Interface... ... ... ... .... ... ................ ... .... ... ... ... ................ .... ... ... ... .... ... .............................................................32
Table 2-28. Analog Power and Ground Signals......... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ................................33
Table 2-29. Digital Power and Ground Signals ................ ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ...................................34
Table 3-1. Absolute Maximum Ratings.................................................................................................................................35
Table 3-2. Recommended Operating Conditions............................. ... .... ... ... ... .... ... ... ... ... .... ... ... ..........................................35
Table 3-3. ESD Tolerance....................................................................................................................................................35
Table 3-4. Thermal Parameter Values .................................................................................................................................36
Table 3-5. Reliability Data ....................................................................................................................................................37
Table 3-6. Moisture Sensitivity Level....................................................................................................................................37
Table 3-7. Typical Power Consumption by Application........................................................................................................38
Table 3-8. Typical Power Consumption Per Block...............................................................................................................38
Table 4-1. LVCMOS Input Specifications.............................................................................................................................39
Table 4-2. LVCMOS Output Specifications..........................................................................................................................39
Table 4-3. LVCMOS Bidirectional Specifications .................................................................................................................39
Table 4-4. LVDS Interface dc Characteristics ......................................................................................................................40
Table 5-1. High-Speed Interface Inputs Specifications ........................................................................................................41
Table 5-2. Protection Link Inputs Specifications...................................................................................................................42
Table 5-3. High-Speed Interface Outputs Specifications......................................................................................................42
Table 5-4. Protection Link Output Specifications..................................................................................................................42
Table 5-5. STS-3/STM-1 Mate Interconnect Input Specifications ........................................................................................44
Table 5-6. STS-3/STM-1 Mate Interconnect Output Specifications......................................................................................44
Table 5-7. TOAC, POAC, and LOPOH Inputs Specifications...............................................................................................45
Table 5-8. TOAC, POAC, and LOPOH Outputs Specifications............................................................................................45
Table 5-9. DS3/E3 Inputs Specifications..............................................................................................................................46
Table 5-10. STS-1 Inputs Specifications..............................................................................................................................46
Table 5-11. DS3/E3/STS-1 Outputs Specifications..............................................................................................................46
Table 5-12. NSMI Inputs Specifications ..................... ... ... ... ... .... ... ... ................ .... ... ... ... ... .... ................................................50
Table 5-13. NSMI Outputs Specifications.............................................................................................................................50
Table 5-14. Shared Low-Speed Line Timing Input Specifications........................................................................................51
Table of Contents (continued)
Tables Page
4Agere Systems Inc.
Hardware Design Guide, Revision 9
April 5, 2005
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
TMXF84622 Ultramapper
Table 5-15. Shared Low-Speed Line Timing Output Specifications.....................................................................................51
Table 5-16. CHIRXGCLK and CHITXGCLK Timing Specifications......... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ...................51
Table 5-17. CHI Interface Timing Specifications..................................................................................................................52
Table 5-18. PSB Inputs Specifications.................................................................................................................................54
Table 5-19. PSB Output Specifications................................................................................................................................54
Table 6-1. High-Speed Interface Input Clocks Specifications ..............................................................................................55
Table 6-2. Protection Link Input Clock Specifications ..........................................................................................................55
Table 6-3. DS3/E3/STS-1 Input Clocks Specifications.........................................................................................................55
Table 6-4. DS1/E1 DJA Input Clocks Specifications............................................................................................................55
Table 6-5. M13/E13 Input Clocks Specifications..................................................................................................................56
Table 6-6. DS3/E3 DJA Input Clocks Specifications............................................................................................................56
Table 6-7. LOPOH Input Clock Specifications......................................................................................................................56
Table 6-8. Microprocessor Interface Input Clocks Specifications.........................................................................................56
Table 6-9. Framer PLL Input Clocks Specificat ions ................... ... ... ... .... ... ... ................ ... .... ................ ................................56
Table 6-10. CHI Input Clocks Specifications.............. ... ... ... ... .... ... ... ... .... ................ ... ... ... .... ... ... ... .......................................56
Table 6-11. PSB Input Clocks Specifications.......................................................................................................................57
Table 6-12. High-Speed Interface Output Clocks Specifications... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ..........................57
Table 6-13. Protection Link Output Clocks Specifications.......... ... ... ... .... ... ...... .... ... ... ... ... .... ... ... ... .... ... ... .............................57
Table 6-14. Line Timing Interface Output Clocks Specifications..........................................................................................57
Table 6-15. TOAC Output Clocks Specifications..................................................................................................................57
Table 6-16. POAC Output Clocks Specificat ions ....................... ... ... ... ................. ... ... ... ... .... ... .............................................58
Table 6-17. DS3/E3/STS-1 Output Clocks Specifications....................................................................................................58
Table 6-18. LOPOH Output Clock Specifications............................. ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ................................58
Table 6-19. NSMI Output Clocks Specifications...................................................................................................................58
Table 6-20. Framer PLL Output Clocks Specifications.........................................................................................................58
Table 6-21. Shared Low-Speed Receive Line Input/Output Clocks Specifications..............................................................58
Table 6-22. Shared Low-Speed Transmit Line Input/Output Clocks Specifications.............................................................59
Table 6-23. NSMI Input/Output Clocks Specifications..........................................................................................................59
Table 7-1. Microprocessor Interface Synchronous Write Cyc le Specific at ions .......... ... ... .... ... ... ... .... ... ... ... ... .... ... ................61
Table 7-2. Microprocessor Interface Synchronous Read Cycle Specifications....................................................................62
Table 7-3. Microprocessor Interface Asynchronous Write Cycle Specifications ..................................................................64
Table 7-4. Microprocessor Interface Asynchronous Read Cycle Specifications..................................................................66
Table 8-1. General-Purpose Inputs Specifications................. .... ... ... ... .... ... ... ................ ... .... ... ... ... .... ...................................67
Table 8-2. Miscellaneous Output Specifications...................................................................................................................67
Table 8-3. General-Purpose Output Specifications................ .... ... ................ ... .... ... ... ................ ... .... ... ................................67
Table 11-1. Ordering Information .........................................................................................................................................70
Table 13-1. Document Changes... .... ... ... ... .... ... ....................................................................................................................72
Table of Contents (continued)
Figures Page
Agere Systems Inc . 5
Hardware Design Guide, Revision 10
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
TMXF84622 Ultramapper
Figure 1-1. Ultramapper Block Diagram and High-Level Interface Definition.........................................................................1
Figure 2-1. Ultramapper Package Diagram (Top View) .........................................................................................................6
Figure 5-1. TMUX LVDS Signal Rise/Fall Timing.................................................................................................................41
Figure 5-2. TMUX LVDS Clock and Data Timing .................................................................................................................41
Figure 5-3. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 1)................................................................................42
Figure 5-4. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 0)................................................................................43
Figure 5-5. THSSYNC Timing Diagram for Synchronized VTs............................................................................................43
Figure 5-6. Relationship Between THSSYNC and THSD ....................................................................................................43
Figure 5-7. STS-3/STM-1 Mate Rise/Fall Timing .......... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ................................44
Figure 5-8. STS-3/STM-1 Mate Clock and Data Timing...................... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... .............................44
Figure 5-9. TOAC, POAC Timing .........................................................................................................................................45
Figure 5-10. LOPOH Timing.................................................................................................................................................45
Figure 5-11. DS3/E3 Interface Diagram in M13/E13 B lock ........... ... ... .... ... ... ... .... ................ ... ... ... .... ...................................46
Figure 5-12. NSMI Clock and Data Timing for the STS-1 Mode ............. ... ... ... ................ .... ... ... ... .... ... ... ... ... .......................47
Figure 5-13. NSMI Clock and Data Diagram for SPEMPR NSMI Mode...............................................................................47
Figure 5-14. NSMI Clock and Data Diagram for M13 NSMI Mode (NSMI <---> M13 <---> DS3 External I/O).....................48
Figure 5-15. NSMI Clock and Data Diagram for E13 NSMI Mode 1 (NSMI <---> E13 <---> E3 External I/O.......................48
Figure 5-16. NSMI Clock and Data Diagram for E13 NSMI Mode 2 (NSMI <--> E13 <--> SPEMPR <--> STM-N) .............49
Figure 5-17. NSMI Clock and Data Diagram for Framer (FRM) NSMI Mode.......................................................................50
Figure 5-18. Shared Low-Speed Line Clock and Data Timing.............................................................................................51
Figure 5-19. CHI Clock Timing .............................................................................................................................................51
Figure 5-20. CHI Bus Timing................................................................................................................................................52
Figure 5-21. Typical Receive CHI Timing (Non-CMS Mode—FRM_CMS = 0)....................................................................52
Figure 5-22. Transmit CHI Timing (Non-CMS Mode—FRM_CMS = 0)................................................................................53
Figure 5-23. Typical Receive CHI Timing (CMS Mode—FRM_CMS = 1, CHIRX/TXGCLK Š 4 MHz).................................53
Figure 5-24. Transmit CHI Timing (CMS Mode—FRM_CMS = 1, CHIRX/TXGCLK Š 4 MHz))...........................................53
Figure 5-25. PSB Clock and Data Timing.............................................................................................................................54
Figure 7-1. Microprocessor Interface Synchronous Write Cycle—MPMODE Pin = 1..........................................................60
Figure 7-2. Microprocessor Interface Synchronous Read Cycle—MPMODE Pin = 1................ ... .... ... ... ... ... .... ... ... ... .... ......62
Figure 7-3. Microprocessor Interface Asynchronous Write Cycle—MPMODE Pin = 0 ........................................................63
Figure 7-4. Microprocessor Interface Asynchronous Read Cycle—MPMODE Pin = 0........................................................65
Figure 10-1. 700-Pin PBGAM1T Physical Dimension..........................................................................................................68
Figure 10-2. Bottom View of 700-Pin PBGAM1T Balls Location..........................................................................................69
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
66 Agere Systems Inc.
2 Pin Information
2.1 Ball Diagram
The TMXF84622 Ultramapper is housed in a 700-pin plastic ball grid array. Figure 1-1 shows the ball assignment viewed
from the top of the package. The pins are spaced on a 1.0 mm pitch.
Figure 2-1. Ultramapper Package Diagram (Top View)
T
D
H
AL
F
K
B
P
M
L
J
AH
R
C
E
Y
N
U
AN
G
AD
V
AM
AJ
AG
AE
AC
AA
W
AP
AK
AF
AB
A
19 30
26 28
24 32
22
20
18
46 8 10 12 14 16
234
523
25731
29
15 21
327
11 17
913133
T
D
H
AL
F
K
B
P
ML
J
AH
R
C
E
Y
N
U
AN
G
AD
V
AM
AJ
AG
AE
AC
AA
W
AP
AK
AF
AB
A
19 30
26 28
24 32
22
20
18
4681012 14 16234
523
25731
2915 21
327
11 17
913133
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 7
2.2 Package Pin Assignments
Table 2-1. Package Pin Assignments in Signal Name Order
Signal Name Pin Signal Name Pin
ADDR[0] E2 CHIRXDATA[21] R29
ADDR[1] F3 CHIRXDATA[22] N34
ADDR[2] D1 CHIRXDATA[23] P32
ADDR[3] H5 CHIRXDATA[24] N33
ADDR[4] F2 CHIRXDATA[25] P30
ADDR[5] E1 CHIRXDATA[26] M34
ADDR[6] G2 CHIRXDATA[27] P29
ADDR[7] J6 CHIRXDATA[28] M33
ADDR[8] J5 CHIRXDATA[29] L34
ADDR[9] F1 CHIRXDATA[30] M32
ADDR[10] K6 CHIRXDATA[31] N29
ADDR[11] H3 CHIRXDATA[32] L33
ADDR[12] H2 CHIRXDATA[33] K34
ADDR[13] L6 CHIRXDATA[34] L32
ADDR[14] G1 CHIRXDATA[35] M30
ADDR[15] J3 CHIRXDATA[36] J34
ADDR[16] J2 CHIRXDATA[37] K33
ADDR[17] H1 CHIRXDATA[38] M29
ADDR[18] L5 CHIRXDATA[39] L30
ADDR[19] M6 CHIRXDATA[40] H34
ADDR[20] K2 CHIRXDATA[41] J33
ADSN D2 CHIRXDATA[42] J32
APS_INTN R2 CHIRXGFS Y33
BYPASS AJ15 CHIRXGCLK W29
CG_PLLCLKOUT AL33 CHIRXGTCLK Y32
CHIRXDATA[1] Y34 CHITXDATA[1] AJ27
CHIRXDATA[2] V29 CHITXDATA[2] AN31
CHIRXDATA[3] W33 CHITXDATA[3] AP32
CHIRXDATA[4] W34 CHITXDATA[4] AK29
CHIRXDATA[5] V30 CHITXDATA[5] AJ29
CHIRXDATA[6] V32 CHITXDATA[6] AJ30
CHIRXDATA[7] V33 CHITXDATA[7] AM34
CHIRXDATA[8] U33 CHITXDATA[8] AG30
CHIRXDATA[9] U32 CHITXDATA[9] AJ33
CHIRXDATA[10] U30 CHITXDATA[10] AK34
CHIRXDATA[11] T34 CHITXDATA[11] AH33
CHIRXDATA[12] T33 CHITXDATA[12] AF29
CHIRXDATA[13] U29 CHITXDATA[13] AF30
CHIRXDATA[14] R34 CHITXDATA[14] AJ34
CHIRXDATA[15] R33 CHITXDATA[15] AE29
CHIRXDATA[16] T29 CHITXDATA[16] AG32
CHIRXDATA[17] R32 CHITXDATA[17] AG33
CHIRXDATA[18] P34 CHITXDATA[18] AD29
CHIRXDATA[19] R30 CHITXDATA[19] AH34
CHIRXDATA[20] P33 CHITXDATA[20] AF32
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
88 Agere Systems Inc.
CHITXDATA[21] AF33 DATA[15] R6
CHITXDATA[22] AG34 DS1XCLK AK20
CHITXDATA[23] AD30 DS2AISCLK R1
CHITXDATA[24] AC29 DS3DATAINCLK[1] U5
CHITXDATA[25] AE33 DS3DATAINCLK[2] V2
CHITXDATA[26] AF34 DS3DATAINCLK[3] W1
CHITXDATA[27] AC30 DS3DATAINCLK[4] W2
CHITXDATA[28] AD32 DS3DATAINCLK[5] Y3
CHITXDATA[29] AE34 DS3DATAINCLK[6] Y5
CHITXDATA[30] AD33 DS3DATAOUTCLK[1] Y6
CHITXDATA[31] AB29 DS3DATAOUTCLK[2] AC2
CHITXDATA[32] AC32 DS3DATAOUTCLK[3] AC3
CHITXDATA[33] AD34 DS3DATAOUTCLK[4] AD3
CHITXDATA[34] AC33 DS3DATAOUTCLK[5] AG1
CHITXDATA[35] AA29 DS3DATAOUTCLK[6] AD6
CHITXDATA[36] AC34 DS3NEGDATAIN[1] T1
CHITXDATA[37] AA30 DS3NEGDATAIN[2] U2
CHITXDATA[38] AB33 DS3NEGDATAIN[3] V5
CHITXDATA[39] AA32 DS3NEGDATAIN[4] V6
CHITXDATA[40] AB34 DS3NEGDATAIN[5] Y1
CHITXDATA[41] Y29 DS3NEGDATAIN[6] AA2
CHITXDATA[42] AA33 DS3NEGDATAOUT[1] AB1
CHITXGCLK Y30 DS3NEGDATAOUT[2] AA6
CHITXGFS AA34 DS3NEGDATAOUT[3] AD2
CLKIN_PLL AJ32 DS3NEGDATAOUT[4] AF1
CSN C1 DS3NEGDATAOUT[5] AC6
CTAPRH AK8 DS3NEGDATAOUT[6] AF3
CTAPRP AK9 DS3POSDATAIN[1] T2
CTAPTH AJ9 DS3POSDATAIN[2] U3
CTAPTL AJ13 DS3POSDATAIN[3] V3
DATA[0] J1 DS3POSDATAIN[4] W6
DATA[1] M5 DS3POSDATAIN[5] Y2
DATA[2] L3 DS3POSDATAIN[6] AA1
DATA[3] K1 DS3POSDATAOUT[1] AB2
DATA[4] L2 DS3POSDATAOUT[2] AA5
DATA[5] N6 DS3POSDATAOUT[3] AD1
DATA[6] M3 DS3POSDATAOUT[4] AE1
DATA[7] L1 DS3POSDATAOUT[5] AD5
DATA[8] M2 DS3POSDATAOUT[6] AF2
DATA[9] P6 DS3RXCLKOUT[1] AA3
DATA[10] M1 DS3RXCLKOUT[2] AC1
DATA[11] P5 DS3RXCLKOUT[3] AB6
DATA[12] N2 DS3RXCLKOUT[4] AC5
DATA[13] P3 DS3RXCLKOUT[5] AE2
DATA[14] N1 DS3RXCLKOUT[6] AH1
Table 2-1. Package Pin Assignments in Signal Name Order (continued)
Signal Name Pin Signal Name Pin
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 9
DS3XCLK A21 LINERXDATA[4] C17
DSN E3 LINERXDATA[5] A16
DTN P1 LINERXDATA[6] F17
E1XCLK AP21 LINERXDATA[7] B15
E2AISCLK U6 LINERXDATA[8] C15
E3XCLK F18 LINERXDATA[9] E15
ECSEL AM15 LINERXDATA[10] F15
ETOGGLE AJ16 LINERXDATA[11] C14
EXDNUP AL17 LINERXDATA[12] E14
HP_INTN R3 LINERXDATA[13] F14
IC3STATEN AP24 LINERXDATA[14] A11
IDDQ AM24 LINERXDATA[15] F13
LINERXCLK[1] A19 LINERXDATA[16] A10
LINERXCLK[2] C18 LINERXDATA[17] E12
LINERXCLK[3] B17 LINERXDATA[18] B10
LINERXCLK[4] E17 LINERXDATA[19] E11
LINERXCLK[5] B16 LINERXDATA[20] B9
LINERXCLK[6] A15 LINERXDATA[21] A7
LINERXCLK[7] F16 LINERXDATA[22] B8
LINERXCLK[8] A14 LINERXDATA[23] F10
LINERXCLK[9] B14 LINERXDATA[24] E9
LINERXCLK[10] A13 LINERXDATA[25] B7
LINERXCLK[11] B13 LINERXDATA[26] B6
LINERXCLK[12] A12 LINERXDATA[27] A4
LINERXCLK[13] B12 LINERXDATA[28] B5
LINERXCLK[14] C12 LINERXDATA[29] F8
LINERXCLK[15] B11 LINERXDATA[30] A3
LINERXCLK[16] C11 LINETXCLK[1] L29
LINERXCLK[17] A9 LINETXCLK[2] H32
LINERXCLK[18] F12 LINETXCLK[3] F34
LINERXCLK[19] A8 LINETXCLK[4] J29
LINERXCLK[20] C9 LINETXCLK[5] E34
LINERXCLK[21] F11 LINETXCLK[6] H30
LINERXCLK[22] C8 LINETXCLK[7] F32
LINERXCLK[23] A6 LINETXCLK[8] E32
LINERXCLK[24] F9 LINETXCLK[9] D33
LINERXCLK[25] A5 LINETXCLK[10] F30
LINERXCLK[26] E8 LINETXCLK[11] F29
LINERXCLK[27] C6 LINETXCLK[12] A32
LINERXCLK[28] C5 LINETXCLK[13] F27
LINERXCLK[29] B4 LINETXCLK[14] B30
LINERXCLK[30] E6 LINETXCLK[15] A31
LINERXDATA[1] B19 LINETXCLK[16] B29
LINERXDATA[2] E18 LINETXCLK[17] B28
LINERXDATA[3] B18 LINETXCLK[18] E26
Table 2-1. Package Pin Assignments in Signal Name Order (continued)
Signal Name Pin Signal Name Pin
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
1010 Agere Systems Inc.
LINETXCLK[19] F25 LOPOHVALIDIN A22
LINETXCLK[20] B27 LOPOHVALIDOUT E20
LINETXCLK[21] A28 LOSEXT AN21
LINETXCLK[22] B26 LP_INTN T6
LINETXCLK[23] E24 MODE0_PLL AG29
LINETXCLK[24] B25 MODE1_PLL AK32
LINETXCLK[25] E23 MODE2_PLL AK30
LINETXCLK[26] A25 MPCLK F5
LINETXCLK[27] F22 MPMODE F6
LINETXCLK[28] A24 NSMIRXCLK[1] AP26
LINETXCLK[29] F21 NSMIRXCLK[2] AP27
LINETXCLK[30] E21 NSMIRXCLK[3] AJ24
LINETXDATA[1] G34 NSMIRXDATA[1] AK23
LINETXDATA[2] H33 NSMIRXDATA[2] AK24
LINETXDATA[3] K29 NSMIRXDATA[3] AP28
LINETXDATA[4] J30 NSMIRXSYNC[1] AN25
LINETXDATA[5] G33 NSMIRXSYNC[2] AN26
LINETXDATA[6] F33 NSMIRXSYNC[3] AN27
LINETXDATA[7] D34 NSMITXCLK[1] AP29
LINETXDATA[8] E33 NSMITXCLK[2] AP30
LINETXDATA[9] H29 NSMITXCLK[3] AM29
LINETXDATA[10] C34 NSMITXDATA[1] AJ25
LINETXDATA[11] E30 NSMITXDATA[2] AN28
LINETXDATA[12] E29 NSMITXDATA[3] AP31
LINETXDATA[13] B31 NSMITXSYNC[1] AK26
LINETXDATA[14] C30 NSMITXSYNC[2] AN29
LINETXDATA[15] C29 NSMITXSYNC[3] AN30
LINETXDATA[16] E27 PAR[0] P2
LINETXDATA[17] A30 PAR[1] R5
LINETXDATA[18] F26 PHASEDETDOWN[1] AG3
LINETXDATA[19] A29 PHASEDETDOWN[2] AG5
LINETXDATA[20] C27 PHASEDETDOWN[3] AF6
LINETXDATA[21] F24 PHASEDETDOWN[4] AK1
LINETXDATA[22] C26 PHASEDETDOWN[5] AJ1
LINETXDATA[23] A27 PHASEDETDOWN[6] AJ3
LINETXDATA[24] F23 PHASEDETUP[1] AG2
LINETXDATA[25] A26 PHASEDETUP[2] AE6
LINETXDATA[26] C24 PHASEDETUP[3] AF5
LINETXDATA[27] B24 PHASEDETUP[4] AH2
LINETXDATA[28] C23 PHASEDETUP[5] AJ2
LINETXDATA[29] B23 PHASEDETUP[6] AL1
LINETXDATA[30] A23 PMRST AM21
LOPOHCLKIN B22 REF10 AJ6
LOPOHCLKOUT F20 REF14 AK6
LOPOHDATAIN C21 RESHI AP3
LOPOHDATAOUT B21 RESLO AJ8
Table 2-1. Package Pin Assignments in Signal Name Order (continued)
Signal Name Pin Signal Name Pin
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 11
RHSCN AN5 TLSDATAP[2] AN15
RHSCP AN4 TLSDATAP[3] AN17
RHSDN AM6 TMS AP23
RHSDP AM5 TPOACCLK AN20
RHSFSYNCN AJ20 TPOACDATA AJ19
RLSCLK AK15 TPOACSYNC AM20
RLSDATAN[1] AP14 TPSCN AP9
RLSDATAN[2] AP16 TPSCP AP8
RLSDATAN[3] AP18 TPSDN AP11
RLSDATAP[1] AP13 TPSDP AP10
RLSDATAP[2] AP15 TRST AJ21
RLSDATAP[3] AP17 TSTMODE AK17
RPOACCLK AN19 TSTPHASE AJ14
RPOACDATA AJ18 TSTSFTLD AM14
RPOACSYNC AP20 TTOACCLK AL18
RPSCN AN11 TTOACDATA AP19
RPSCP AN10 TTOACSYNC AK18
RPSDN AM9 TXDATAEN[1] AJ26
RPSDP AM8 TXDATAEN[2] AK27
RSTN AP22 TXDATAEN[3] AM30
RTOACCLK AM17 VDD15 G9
RTOACDATA AJ17 VDD15 G10
RTOACSYNC AM18 VDD15 G11
RWN H6 VDD15 G12
RXDATAEN[1] AJ23 VDD15 G13
RXDATAEN[2] AM26 VDD15 G14
RXDATAEN[3] AM27 VDD15 G15
SCAN_EN AN24 VDD15 G16
SCANMODE AP25 VDD15 G19
SCK1 AM23 VDD15 G20
SCK2 AJ22 VDD15 G21
TCK AN22 VDD15 G22
TDI AK21 VDD15 G23
TDO AN23 VDD15 G24
THSCN AP7 VDD15 G25
THSCON AP5 VDD15 G26
THSCOP AP4 VDD15 J7
THSCP AP6 VDD15 J28
THSDN AN8 VDD15 K7
THSDP AN7 VDD15 K28
THSSYNC AL15 VDD15 L7
TLSCLK AL14 VDD15 L28
TLSDATAN[1] AN14 VDD15 M7
TLSDATAN[2] AN16 VDD15 M28
TLSDATAN[3] AN18 VDD15 N7
TLSDATAP[1] AN13 VDD15 N16
Table 2-1. Package Pin Assignments in Signal Name Order (continued)
Signal Name Pin Signal Name Pin
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
1212 Agere Systems Inc.
VDD15 N17 VDD15 AC7
VDD15 N18 VDD15 AC28
VDD15 N19 VDD15 AD7
VDD15 N28 VDD15 AD28
VDD15 P7 VDD15 AE7
VDD15 P16 VDD15 AE28
VDD15 P17 VDD15 AF7
VDD15 P18 VDD15 AF28
VDD15 P19 VDD15 AH9
VDD15 P28 VDD15 AH10
VDD15 R7 VDD15 AH11
VDD15 R28 VDD15 AH12
VDD15 T7 VDD15 AH13
VDD15 T13 VDD15 AH14
VDD15 T14 VDD15 AH15
VDD15 T21 VDD15 AH16
VDD15 T22 VDD15 AH19
VDD15 T28 VDD15 AH20
VDD15 U13 VDD15 AH21
VDD15 U14 VDD15 AH22
VDD15 U21 VDD15 AH23
VDD15 U22 VDD15 AH24
VDD15 V13 VDD15 AH25
VDD15 V14 VDD15 AH26
VDD15 V21 VDD15A_CDR1 AK11
VDD15 V22 VDD15A_CDR2 AJ10
VDD15 W7 VDD15A_DS3PLL C20
VDD15 W13 VDD15A_E3PLL B20
VDD15 W14 VDD15A_X4PLL AK14
VDD15 W21 VDD33 A2
VDD15 W22 VDD33 A33
VDD15 W28 VDD33 B1
VDD15 Y7 VDD33 B3
VDD15 Y28 VDD33 B32
VDD15 AA7 VDD33 B34
VDD15 AA16 VDD33 C2
VDD15 AA17 VDD33 C33
VDD15 AA18 VDD33 D5
VDD15 AA19 VDD33 D8
VDD15 AA28 VDD33 D11
VDD15 AB7 VDD33 D14
VDD15 AB16 VDD33 D17
VDD15 AB17 VDD33 D20
VDD15 AB18 VDD33 D23
VDD15 AB19 VDD33 D26
VDD15 AB28 VDD33 D29
Table 2-1. Package Pin Assignments in Signal Name Order (continued)
Signal Name Pin Signal Name Pin
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 13
VDD33 E31 VDD33 AN34
VDD33 F4 VDD33 AP2
VDD33 G8 VDD33 AP33
VDD33 G17 VDD33A_SFPLL AK33
VDD33 G18 VSS A1
VDD33 G27 VSS A17
VDD33 H7 VSS A18
VDD33 H28 VSS A34
VDD33 H31 VSS B2
VDD33 J4 VSS B33
VDD33 L31 VSS C3
VDD33 M4 VSS C32
VDD33 P31 VSS D6
VDD33 R4 VSS D9
VDD33 U7 VSS D12
VDD33 U28 VSS D15
VDD33 U31 VSS D18
VDD33 V4 VSS D21
VDD33 V7 VSS D24
VDD33 V28 VSS D27
VDD33 Y31 VSS D30
VDD33 AA4 VSS E4
VDD33 AC31 VSS E5
VDD33 AD4 VSS F31
VDD33 AF31 VSS H4
VDD33 AG4 VSS J31
VDD33 AG7 VSS L4
VDD33 AG28 VSS M31
VDD33 AH8 VSS N13
VDD33 AH17 VSS N14
VDD33 AH18 VSS N21
VDD33 AH27 VSS N22
VDD33 AJ31 VSS P4
VDD33 AK4 VSS P13
VDD33 AL6 VSS P14
VDD33 AL9 VSS P21
VDD33 AL12 VSS P22
VDD33 AL21 VSS R31
VDD33 AL24 VSS T16
VDD33 AL27 VSS T17
VDD33 AL30 VSS T18
VDD33 AM2 VSS T19
VDD33 AM33 VSS U1
VDD33 AN1 VSS U4
VDD33 AN3 VSS U16
VDD33 AN32 VSS U17
Table 2-1. Package Pin Assignments in Signal Name Order (continued)
Signal Name Pin Signal Name Pin
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
1414 Agere Systems Inc.
VSS U18 VSS AK2
VSS U19 VSS AK3
VSS U34 VSS AK5
VSS V1 VSS AK31
VSS V16 VSS AL2
VSS V17 VSS AL5
VSS V18 VSS AL8
VSS V19 VSS AL11
VSS V31 VSS AL20
VSS V34 VSS AL23
VSS W16 VSS AL26
VSS W17 VSS AL29
VSS W18 VSS AM1
VSS W19 VSS AM3
VSS Y4 VSS AM11
VSS AA13 VSS AM12
VSS AA14 VSS AM32
VSS AA21 VSS AN2
VSS AA22 VSS AN6
VSS AA31 VSS AN9
VSS AB13 VSS AN12
VSS AB14 VSS AN33
VSS AB21 VSS AP1
VSS AB22 VSS AP12
VSS AC4 VSS AP34
VSS AD31 VSSA_CDR1 AK12
VSS AF4 VSSA_CDR2 AJ12
VSS AG6 VSSA_DS3PLL F19
VSS AG31 VSSA_E3PLL A20
VSS AJ4 VSSA_SFPLL AL34
VSS AJ5 VSSA_X4PLL AJ11
Table 2-1. Package Pin Assignments in Signal Name Order (continued)
Signal Name Pin Signal Name Pin
Hardware Design Guide, Revision 10
March 7, 2005 TMXF84622 Ultramapper
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 15
2.3 Pin Matrix
Table 2-2. Package Pin Matrix
1 2 3 4 5 6 78 91011121314151617
AVSS VDD33 LINERXDATA[30] LINERXDATA
[27] LINERXCLK[25] LINERXCLK[23] LINERXDATA
[21] LINERXCLK[19] LINERXCLK[17] LINERXDATA
[16] LINERXDATA
[14] LINERXCLK[12] LINERXCLK[10] LINERXCLK[8] LINERXCLK[6] LINERXDATA[5] VSS
BVDD33 VSS VDD33 LINERXCLK
[29] LINERXDATA[28] LINERXDATA[26] LINERXDATA
[25] LINERXDATA
[22] LINERXDATA
[20] LINERXDATA
[18] LINERXCLK
[15] LINERXCLK[13] LINERXCLK[11] LINERXCLK[9] LINERXDATA[7] LINERXCLK[5] LINERXCLK[3]
CCSN VDD33 VSS LINERXCLK[28] LINERXCLK[27] LINERXCLK[22] LINERXCLK[20] LINERXCLK
[16] LINERXCLK[14] LINERXDATA
[11] LINERXDATA[8] LINERXDATA[4]
DADDR[2] ADSN VDD33 VSS —VDD33 VSS —VDD33 VSS —VDD33 VSS —VDD33
EADDR[5] ADDR[0] DSN VSS VSS LINERXCLK[30] LINERXCLK[26] LINERXDATA
[24] LINERXDATA
[19] LINERXDATA
[17] LINERXDATA
[12] LINERXDATA[9] LINERXCLK[4]
FADDR[9] ADDR[4] ADDR[1] VDD33 MPCLK MPMODE LINERXDATA
[29] LINERXCLK
[24] LINERXDATA
[23] LINERXCLK
[21] LINERXCLK
[18] LINERXDATA
[15] LINERXDATA
[13] LINERXDATA
[10] LINERXCLK[7] LINERXDATA[6]
GADDR[14] ADDR[6] VDD33 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD33
HADDR[17] ADDR[12] ADDR[11] VSS ADDR[3] RWN VDD33 ————————
JDATA[0] ADDR[16] ADDR[15] VDD33 ADDR[8] ADDR[7] VDD15 ————————
KDATA[3] ADDR[20] ADDR[10] VDD15 ————————
LDATA[7] DATA[4] DATA[2] VSS ADDR[18] ADDR[13] VDD15 ————————
MDATA[10] DATA[8] DATA[6] VDD33 DATA[1] ADDR[19] VDD15 ————————
NDATA[14] DATA[12] DATA[5] VDD15 —————VSS VSS —VDD15 VDD15
PDTN PAR[0] DATA[13] VSS DATA[11] DATA[9] VDD15 —————VSS VSS —VDD15 VDD15
RDS2AISCLK APS_INTN HP_INTN VDD33 PAR[1] DATA[15] VDD15 ————————
TDS3NEGDATAIN[1] DS3POSDATAIN[1] LP_INTN VDD15 —————VDD15 VDD15 —VSS VSS
UVSS DS3NEGDATAIN[2] DS3POSDATAIN[2] VSS DS3DATAINCLK[1] E2AISCLK VDD33 —————VDD15 VDD15 —VSS VSS
VVSS DS3DATAINCLK[2] DS3POSDATAIN[3] VDD33 DS3NEGDATAIN[3] DS3NEGDATAIN[4] VDD33 —————VDD15 VDD15 —VSS VSS
WDS3DATAINCLK[3] DS3DATAINCLK[4] DS3POSDATAIN[4] VDD15 —————VDD15 VDD15 —VSS VSS
YDS3NEGDATAIN[5] DS3POSDATAIN[5] DS3DATAINCLK[5] VSS DS3DATAINCLK[6] DS3DATAOUTCLK[1] VDD15 ————————
AA DS3POSDATAIN[6] DS3NEGDATAIN[6] DS3RXCLKOUT[1] VDD33 DS3POSDATAOUT[2] DS3NEGDATAOUT[2] VDD15 —————VSS VSS —VDD15 VDD15
AB DS3NEGDATAOUT
[1] DS3POSDATAOUT
[1] DS3RXCLKOUT[3] VDD15 —————VSS VSS —VDD15 VDD15
AC DS3RXCLKOUT[2] DS3DATAOUTCLK
[2] DS3DATAOUTCLK
[3] VSS DS3RXCLKOUT[4] DS3NEGDATAOUT[5] VDD15 ————————
AD DS3POSDATAOUT
[3] DS3NEGDATAOUT
[3] DS3DATAOUTCLK
[4] VDD33 DS3POSDATAOUT[5] DS3DATAOUTCLK[6] VDD15 ————————
AE DS3POSDATAOUT
[4] DS3RXCLKOUT[5] PHASEDETUP[2] VDD15 ————————
AF DS3NEGDATAOUT
[4] DS3POSDATAOUT
[6] DS3NEGDATAOUT
[6] VSS PHASEDETUP[3] PHASEDETDOWN[3] VDD15 ————————
AG DS3DATAOUTCLK
[5] PHASEDETUP[1] PHASEDETDOWN
[1] VDD33 PHASEDETDOWN[2] VSS VDD33 ————————
AH DS3RXCLKOUT[6] PHASEDETUP[4] VDD33 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD33
AJ PHASEDETDOWN
[5] PHASEDETUP[5] PHASEDETDOWN
[6] VSS VSS REF10 RESLO CTAPTH VDD15A_CDR2 VSSA_X4PLL VSSA_CDR2 CTAPTL TSTPHASE BYPASS ETOGGLE RTOACDATA
AK PHASEDETDOWN
[4] VSS VSS VDD33 VSS REF14 CTAPRH CTAPRP VDD15A_CDR1 VSSA_CDR1 —VDD15A_X4PLL RLSCLK TSTMODE
AL PHASEDETUP[6] VSS ——VSS VDD33 —VSS VDD33 —VSS VDD33 TLSCLK THSSYNC EXDNUP
AM VSS VDD33 VSS RHSDP RHSDN RPSDP RPSDN VSS VSS TSTSFTLD ECSEL RTOACCLK
AN VDD33 VSS VDD33 RHSCP RHSCN VSS THSDP THSDN VSS RPSCP RPSCN VSS TLSDATAP[1] TLSDATAN[1] TLSDATAP[2] TLSDATAN[2] TLSDATAP[3]
AP VSS VDD33 RESHI THSCOP THSCON THSCP THSCN TPSCP TPSCN TPSDP TPSDN VSS RLSDATAP[1] RLSDATAN[1] RLSDATAP[2] RLSDATAN[2] RLSDATAP[3]
TMXF84622 Ultramapper
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 Hardware Design Guide, Revision 10
April 5, 2005
16 Agere Systems Inc.
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
AVSS LINERXCLK[1] VSSA_E3PLL DS3XCLK LOPOHVALIDIN LINETXDATA[30] LINETXCLK
[28] LINETXCLK[26] LINETXDATA
[25] LINETXDATA
[23] LINETXCLK[21] LINETXDATA
[19] LINETXDATA
[17] LINETXCLK[15] LINETXCLK[12] VDD33 VSS
BLINERXDATA[3] LINERXDATA[1] VDD15A_E3PLL LOPO-
HDATAOUT LOPOHCLKIN LINETXDATA[29] LINETXDATA
[27] LINETXCLK[24] LINETXCLK[22] LINETXCLK[20] LINETXCLK[17] LINETXLCK[16] LINETXCLK[14] LINETXDATA
[13] VDD33 VSS VDD33
CLINERXCLK[2] VDD15A_DS3PLL LOPO-
HDATAIN LINETXDATA[28] LINETXDATA
[26] LINETXDATA
[22] LINETXDATA
[20] LINETXDATA
[15] LINETXDATA
[14] —V
SS VDD33 LINETXDATA
[10]
DVSS —VDD33 VSS —VDD33 VSS —VDD33 VSS —VDD33 VSS LINETXCLK[9] LINETXDATA[7]
ELINERXDATA[2] LOPOHVALIDOUT LINETXCLK
[30] LINETXCLK[25] LINETXCLK
[23] LINETXCLK[18] LINETXDATA
[16] LINETXDATA
[12] LINETXDATA
[11] VDD33 LINETXCLK[8] LINETXDATA[8] LINETXCLK[5]
FE3XCLK VSSA_DS3PLL LOPOHCLKOUT LINETXCLK
[29] LINETXCLK[27] LINETXDATA[24] LINETXDATA
[21] LINETXCLK
[19] LINETXDATA
[18] LINETXCLK[13] LINETXCLK[11] LINETXCLK[10] VSS LINETXCLK[7] LINETXDATA[6] LINETXCLK[3]
GVDD33 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD33 —————LINETXDATA[5]LINETXDATA[1]
H ———VDD33 LINETXDATA[9] LINETXCLK[6] VDD33 LINETXCLK[2] LINETXDATA[2] CHIRXDATA[40]
J ———VDD15 LINETXCLK[4] LINETXDATA[4] VSS CHIRXDATA[42] CHIRXDATA[41] CHIRXDATA[36]
K ———VDD15 LINETXDATA[3] CHIRXDATA[37] CHIRXDATA[33]
L ———VDD15 LINETXCLK[1] CHIRXDATA[39] VDD33 CHIRXDATA[34] CHIRXDATA[32] CHIRXDATA[29]
M ———VDD15 CHIRXDATA[38] CHIRXDATA[35] VSS CHIRXDATA[30] CHIRXDATA[28] CHIRXDATA[26]
NVDD15 VDD15 —VSS VSS ———VDD15 CHIRXDATA[31] CHIRXDATA[24] CHIRXDATA[22]
PVDD15 VDD15 —VSS VSS ———VDD15 CHIRXDATA[27] CHIRXDATA[25] VDD33 CHIRXDATA[23] CHIRXDATA[20] CHIRXDATA[18]
R ———VDD15 CHIRXDATA[21] CHIRXDATA[19] VSS CHIRXDATA[17] CHIRXDATA[15] CHIRXDATA[14]
TVSS VSS —VDD15 VDD15 ———VDD15 CHIRXDATA[16] CHIRXDATA[12] CHIRXDATA[11]
UVSS VSS —VDD15 VDD15 ———VDD33 CHIRXDATA[13] CHIRXDATA[10] VDD33 CHIRXDATA[9] CHIRXDATA[8] VSS
VVSS VSS —VDD15 VDD15 ———VDD33 CHIRXDATA[2] CHIRXDATA[5] VSS CHIRXDATA[6] CHIRXDATA[7] VSS
WVSS VSS —VDD15 VDD15 ———VDD15 CHIRXGCLK CHIRXDATA[3] CHIRXDATA[4]
Y ———VDD15 CHITXDATA[41] CHITXGCLK VDD33 CHIRXGTCLK CHIRXGFS CHIRXDATA[1]
AA VDD15 VDD15 —VSS VSS ———VDD15 CHITXDATA[35] CHITXDATA[37] VSS CHITXDATA[39] CHITXDATA[42] CHITXGFS
AB VDD15 VDD15 —VSS VSS ———VDD15 CHITXDATA[31] CHITXDATA[38] CHITXDATA[40]
AC ———VDD15 CHITXDATA[24] CHITXDATA[27] VDD33 CHITXDATA[32] CHITXDATA[34] CHITXDATA[36]
AD ———VDD15 CHITXDATA[18] CHITXDATA[23] VSS CHITXDATA[28] CHITXDATA[30] CHITXDATA[33]
AE ———VDD15 CHITXDATA[15] CHITXDATA[25] CHITXDATA[29]
AF ———VDD15 CHITXDATA[12] CHITXDATA[13] VDD33 CHITXDATA[20] CHITXDATA[21] CHITXDATA[26]
AG ———VDD33 MODE0_PLL CHITXDATA[8] VSS CHITXDATA[16] CHITXDATA[17] CHITXDATA[22]
AH VDD33 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD33 —————CHITXDATA[11]CHITXDATA[19]
AJ RPOACDATA TPOACDATA RHSFSYNCN TRST SCK2 RXDATAEN[1] NSMIRX-
CLK[3] NSMITXDATA[1] TXDATAEN[1] CHITXDATA[1] CHITXDATA[5] CHITXDATA[6] VDD33 CLKIN_PLL CHITXDATA[9] CHITXDATA[14]
AK TTOACSYNC DS1XCLK TDI NSMIRXDATA[1] NSMIRX-
DATA[2] NSMITX-
SYNC[1] TXDATAEN[2] CHITXDATA[4] MODE2_PLL VSS MODE1_PLL VDD33A_SFPLL CHITXDATA[10]
AL TTOACCLK VSS VDD33 —VSS VDD33 —VSS VDD33 —VSS VDD33 CG_PLLCLKOUT VSSA_SFPLL
AM RTOACSYNC TPOACSYNC PMRST SCK1 IDDQ RXDATAEN[2] RXDATAEN[3] NMITXCLK[3] TXDATAEN[3] VSS VDD33 CHITXDATA[7]
AN TLSDATAN[3] RPOACCLK TPOACCLK LOSEXT TCK TDO SCAN_EN NSMIRXSYNC
[1] NSMIRXSYNC
[2] NSMIRXSYNC
[3] NSMITXDATA[2] NSMITXSYNC
[2] NSMITXSYNC
[3] CHITXDATA[2] VDD33 VSS VDD33
AP RLSDATAN[3] TTOACDATA RPOACSYNC E1XCLK RSTN TMS IC3STATEN SCANMODE NSMIRXCLK[1] NSMIRXCLK[2] NSMIRXDATA
[3] NSMITXCLK[1] NSMITXCLK[2] NSMITXDATA[3] CHITXDATA[3] VDD33 VSS
Table 2-2. Package Pin Matrix (continued)
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 17
2.4 Pin Types
Table 2-3 describes each type of input, output, and I/O pin used in the Ultramapper.
Table 2-3. Pin Types
Type Label Description
ILVCMOS Input, LVTTL Switching Thresholds.
I pd LVCMOS Input, LVTTL Switching Thresholds with Internal 50 k Pull-Down Resistor.
I pu LVCMOS Input, LVTTL Switching Thresholds with Internal 50 kPull-Up Resistor.
OLVCMOS Output.
O od Open Drain Out pu t .
LIN LVDS Inputs.
LOUT LVDS Outputs.
I/O Bidirectional Pin. LVCMOS input with LVTTL switching thresholds and LVCMOS output.
I/O pd Bidirectional Pin. LVCMOS input with LVTTL switching thresholds with internal 50 kpull-down resistor
and LVCMOS output.
Power, Ground, Analog Inputs for External Resistors, Capacitors, Voltage References, etc.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
1818 Agere Systems Inc.
2.5 Pin Definitions
This section describ es the fu nc tio n of ea ch of the device pins. All LVDS input buffers have built-in 100 terminating
resistor with a center ta p pin available for external capacitor connection. All unused LVDS inputs may be lef t uncon ne cted .
Pin functionality is descr iptive information . Th e act ual fu nctionality is dependent upon the device configuration via the
registers.
Table 2-4. TMUX Block, High-Speed Interface I/O
Pin Symbol Type Name/Description
AM5 RHSDP LIN Receive High-S peed Data . 622/155 Mbit s/s input data. Also, input to internal clock and data
recovery (CDR). CDR may be bypassed in 155 Mbits/s mode. In 622 Mbits/s mode, the
internal CDR must be used.
AM6 RHSDN
AN4 RHSCP LIN Receive High-Spe ed Clock. 155 MHz input clock for 155 Mbits/s data if CDR is bypassed.
Not used in 622 Mbits/s mode.
AN5 RHSCN
AK8 CTAPRH Center Tap RH. LVDS buffer terminator ce nter tap fo r RHSDP/N and RHSCP/N. An optional
0.1 µF capacitor, connected between CTAP pin and ground, will improve the common-mode
rejection of the LVDS input buffers.
AN21 LOSEXT I pu External Loss of Signal Input. Active level is programmable by register
TMUX_LOSEXT_LEVEL. Default to active-low. This pin can be part of the high-priority
interrupt when active. Usually connected to optical transceiver to indicate loss of signal.
AN7 THSDP LOUT T ransmit High-S peed Data. 622/155 Mbits/s output data. Th e fram e location in slave mode
is determined by THSSYNC and transmit high-speed control parameter register
(TMUX_TFRAMEOFFSETA). In master mode the frame timing is arbitrary.
AN8 THSDN
AP4 THSCOP LOUT Transmit High-Speed Clock Output. 622/155 MHz transmit output clock associated with
THSDP/N.
AP5 THSCON
AP3,
AJ8 RESHI,
RESLO Resistor. A 100 , 1% resistor is required betwee n RESHI and RESLO pins as a reference
for the LVDS input buffer termination.
AJ6 REF10*IReference 1.0 V. External 1 V reference voltage pin. (Optional).
AK6 REF14*IReference 1.4 V. External 1.4 V refere nce voltage pin. (Option al).
* Optional: selected by MPU/top-level register UMPR_LVDS_REF_SEL. External reference voltage can be sourced from a low-impedance resistor
(less than 1 k) divider circuit decoupled with a 0.1 µF capacitor . Please refer to Table 4-4 LVDS Interface dc Characteristics, on page 40 for addi-
tional information.
Table 2-5. TMUX Block, Protection Link I/O
Pin Symbol Type Name/Description
AM8 RPSDP LIN Receive Protection High-Speed Data. 622/155 Mbits/s protection input data. Also input to
internal protection CDR. CDR may be bypassed in 155 Mbits/s mode. In 622 Mbits/s mode,
the internal CDR must be used.
AM9 RPSDN
AN10 RPSCP LIN Receive Protection High-Speed Clock. 155 MHz input clock for 155 Mbits/s data if protec-
tion CDR is bypassed. Not used in 622 Mbits /s mode.
AN11 RPSCN
AK9 CTAPRP Center Tap RP. LVDS buffer terminator center tap for RPSDP/N and RPSCP/N. An optional
0.1 µF capacitor, connected between the CTAP pin and ground, will improve the common-
mode rejection of the LVDS input buffers.
AP10 TPSDP LOUT Transmit Protection High-Speed Data. 622/155 Mbits/s protection output data.
AP11 TPSDN
AP8 TPSCP LOUT T ransmit Protection High-Speed Clock. 622/155 MHz transmit output clock associated with
TPSDP/N.
AP9 TPSCN
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 19
Table 2-6. TMUX Block, Clock, and Sync I/O
Pin Symbol Type Name/Description
AP6 THSCP LIN Transmit High-Speed Clock. 622 MHz/155 MHz input clock for transmit
622/155 Mbits/s data. Also used as a reference clock for all CDRs. There are five CDR cir-
cuits. The high-speed data and protection high-speed data have CDRs which operate at
155 MHz or 622 MHz. The mate inputs have three CDRs which operate at 155 MHz. The
clock on this pin is also internally routed to the DS1/E1 framers and is used as an internal
master clock.
Note: A 622 MHz clock must be supplied when the device operates in 622 Mbits/s mode. A
155 MHz clock must be supplied when the device operates in 155 Mbits/s mode.
For version 3.0 devices and later, th e following applies: A 622 MHz clock must be sup-
plied when the device operates in 622 Mbits/s mode. A 155 MHz or 622 MHz clock can
be supplied when the device operates in 155 Mbits/s mode (choice provisionable via
UMPR_OC3THSC_MODE).
AP7 THSCN
AJ9 CTAPTH Center Tap TH. LVDS buffer terminator center tap for THSCP/N. An optional 0.1 µF capaci-
tor, connected between CTAP pin and ground, will improve the common-mode rejection of
the LVDS input buffers.
AJ20 RHSFSYNCN O Receive High-Speed Frame Sync. This output indicates the start of the frame in the high-
speed data input. Only present when a valid frame signal is detected on the RHSDP/N
inputs. It is an active-low pulse with width almost equal to one E1 clock period or approxi-
mately 500 ns.
AK15 RLSCLK O Receive Low-Speed Clock. 19.44 MHz receive output clock divided down from either
RHSCP/N or the recovere d high-speed clock (when the CDR is used). May be used as a
system timing reference.
AL14 TLSCLK O Transmit Low-Speed Clock. 19.44 MHz transmit output clock divided down from
THSCP/N.
AL15 THSSYNC I/O pd Transmit High-Speed Frame Sync. 2 kHz/8 kHz composite frame sync signal that identi-
fies the locations of the J0, J1-1, J1-2, J1-3 . . . J1-12 , and V1-1 bytes. This signal is used to
align transmit frames before multiplexing.
Note: J0, J1-1, J1-2, and J1-3 . . . , J1-12 occur every 125 µs. V1-1 occurs every 500 µs.
If register MPU_MASTER_SLAVE = 1, THSSYNC is an output; otherwise, THSSYNC is an
input.
The positive 8 kHz and 2 kHz pulses are synchronized to TLSCLK (in master mode only).
The rising edge is referenced for frame location. For master/slave configuration, the
THSSYNC of all Ultramappers (up to four) must be connected together. The master can be
one of the Ultramappers, and it sou rc es th e fra me syn c pu lse to oth er Ultramappers. All
Ultramappers can also be configured as slaves and receive frame sync from the external
system frame sync.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
2020 Agere Systems Inc.
Table 2-7. STS Cross Connect (STSXC) Block, STS-3/STM-1 Mate Interconnect
Pin Symbol Type Name/Description
AP17, AP15,
AP13 RLSDATAP[3:1] LOUT Receive Low-S peed Data. These pins are usually used in 622 Mbit s/s appli-
cations (however, they can be used in a 155 Mbits/s applica tion). These pin s
are used on the device interfacing to the high-speed STS-N/STM-N line.
Connect thes e pin s to th e hig h- sp ee d data inputs (RHSDP/N) of th e slav e
devices.
This 155 Mbits/s signal uses a SONET structure. The overhe ad s su pp or te d
are the A1/A2 and B2 bytes a nd line RDI. The data is scrambled. Data from
the RHSD is routed via the STSXC.
AP18, AP16,
AP14 RLSDATAN[3:1]
AN17, AN15,
AN13 TLSDATAP[3:1] LIN Transmit Low-Speed Data . These pins are usually used in 622 Mbits/s ap-
plications (however, they can be used in a 155 Mbits/s application). These
pins are used on the device interfacing to the high-speed STS- N/STM-N line.
Connect these pins to the high-speed data outputs (THSDP/N) of the slave
devices. This 155 Mbits/s input receives data from the slave high-speed out-
puts.
These input s have built-in clock and data recovery (CDR). The frame locatio n
expects a fixed relationship to the high-speed transmit frame sync
(THSSYNC).
AN18, AN16,
AN14 TLSDATAN[3:1]
AJ13 CTAPTL Center Tap TL. LVDS buffer terminator center tap for TLSDATAP/N. An op-
tional 0.1 µF capacitor, connected between CTAP pin and ground, will im-
prove the common-mode rejection of the LVDS input buffers.
Table 2-8. Synchronous Payload Envelope (SPE) Mapper Block, External PLL Control
Pin Symbol Type Name/Description
AL1, AJ2,
AH2, AF5,
AE6, AG2
PHASEDETUP[6:1] O Phase Detector Up. Signal out to external PLL filter and oscillator circuits.
Used if SPEMPR outputs DS3/E3 data without going through internal DS3/E3
DJA. If TSTMODE is high, then these pins are used for TSTMUX[5:0] (test
mode output). For version 3.0 devices and later, th ese pins are no longer
used. Therefore, the DS3/E3 DJA must be used. PHASEDETUP [6] becomes
a transmit CHI frame sync output (CHITXGFS_O) which is only applicable in
CHI compression mode.
AJ3, AJ1,
AK1, AF6,
AG5, AG3
PHASEDETDOWN[6:1] O Phase Detector Down. Signal out to external PLL filter and oscillator circuits.
Used if SPEMPR outputs DS3/E3 data without going through internal DS3/E3
DJA. If TSTMODE is high, PHASEDETDOWN[4:1] are used for
TSTMUX[9:6] (test mode output). For version 3.0 devices and later, these
pins are no longer used. Therefore, the DS3/E3 DJA must be used.
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 21
Table 2-9. Multirate Cross Connect (MRXC) Block, TOAC Input and Output Channels
Pin Symbol Type Name/Description
AM17 RTOACCLK O Receive Transport Overhea d Access Channel Clock. The frequency of
this clock is determined by the TOAC provisioning registers.
AJ17 RTOACDATA O Receive Transport Overhead Access Channel Data. 622/155 Mbits/s
transport overhead bytes are outp ut on this pin. The content is determined by
the TOAC provisioning registers.
AM18 RTOACSYNC O Receive Transport Overhead Access Chann el Sync. Active-high 8 kHz
frame sync. It is active during the clock period of the first bit of each frame.
AL18 TTOACCLK O Transmit Transport Overhead Access Channel Clock. The frequency of
this clock is determined by the TOAC provisioning registers.
AP19 TTOACDATA I pd Transmit Transport Overhead Access Channel Data. Input for the
transport overhead bytes.
AK18 TTOACSYNC O Transmit Transport Overhead Access Channel Sync. Active-high 8 kHz
frame sync. It is active during the clock period of the first bit of each frame.
Table 2-10. Multirate Cross Connect (MRXC) Block, POAC Input and Output Channels
Pin Symbol Type Name/Description
AN19 RPOACCLK O Receive Path Overhead Access Channel Clock. Output for the path
overhead bytes. This is a 3-state output pin controlled by register provi-
sioning.
AJ18 RPOACDATA O Receive Path Overhead Access Channel Data. Output for the path
overhead bytes. This pin can be 3-stated.
AP20 RPOACSYNC O Receive Path Overhead Access Channel Sync. Output for POAC
channel. Active-high during the first bit of each frame when the POAC is
connected to either the TMUX or STS1LT. Active-high during the LSB of
the last byte of the frame when connected to the SPEMPR. This pin can
be individually 3-stated.
AN20 TPOACCLK O Transmit Path Overhead Access Channel Clock. Serial access chan-
nel clock output for the path overhead bytes. This pin can be individua lly
3-stated.
AJ19 TPOACDATA I pd T ransmit Path Overh ead Access Channel Dat a. Serial access channel
data inpu t for the path overhead bytes.
AM20 TPOACSYNC O Transmit Path Overhead Access Channel Sync. Output for POAC
channel. Active-high during the first bit of each frame when the POAC is
connected to either the TMUX, the STS1L T, or the SPEMPR. This pin can
be individually 3-stated.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
2222 Agere Systems Inc.
Table 2-11. DS3/E3/STS-1 Out
Pin Symbol Type Name/Description
AF2, AD5,
AE1, AD1,
AA5, AB2
DS3POSDATAOUT[6:1] O DS3/E3/STS-1 Positive Dat a Output. Cont ai ns either the positive r ail of
the B3ZS/HDB3 encoded output data, or single rail NRZ data.
AF3, AC6,
AF1, AD2,
AA6, AB1
DS3NEGDATAOUT[6:1] O DS3/E3/STS-1 Negative Data Output. Negative rail B3ZS/HDB3 encod-
ed output data. Not used in single rail mode (held low in this case).
AD6, AG1,
AD3, AC3,
AC2, Y6
DS3DATAOUTCLK[6:1] I pd DS3/E3/STS-1 Data Output Clock. 44.736 MHz, 34.368 MHz, or
51.84 MHz clock input and is typically connected to a crystal oscillator or
clocking chip.
This clock is required for M13, E13, or STS1LT applications. For DS3/E3
to SONET/SDH mapping applications, this clock is required only if an ex-
ternal clock smoothing PLL is used. If the DS3/E3 DJA is used, this clock
is not required. DS3XCLK/E3XCLK is needed for DS3/E3 DJA in this
case. For STS-1 to SONET mapping applications, the TMUX can be used
to supply the STS-1 rate DATAOUT clock and this clock is therefore not
needed. For STS-1 PDH applications, a 51.84 MHz clock must be sup-
plied at this pin.
AH1, AE2,
AC5, AB6,
AC1, AA3
DS3RXCLKOUT[6:1] O DS3/E3/STS-1 Receive Clock Ou tput. 44.736 MHz
DS3/34.368 MHz E3/51.84 MHz STS-1 clock out to external circuit.
Table 2-12. DS3/E3/STS-1 In
Pin Symbol Type Name/Description
AA1, Y2, W6,
V3, U3, T2 DS3POSDATAIN[6:1] I pd DS3/E3/STS-1 Positive Data Input. Contains either the positive rail of
the B3ZS/HDB3 encoded input data, or single rail NRZ data.
AA2, Y1, V6,
V5, U2, T1 DS3NEGDATAIN[6:1] I pd DS3/E3/STS-1 Negative Data Input. Contains either the negative rail of
the B3ZS/HDB3 encoded input data or, in single rail mode, this input may
be used to count bipolar violations.
Y5, Y3, W2,
W1, V2, U5 DS3DATAINCLK[6:1] I pd DS3/E3/STS-1 Data Input Clock. 44.736 MHz, 34.368 MHz, or
51.84 MHz clock for the DS3/E3/STS-1 positive and negative data in-
puts.
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 23
Table 2-13. NSMI/STS-1 In
Pin Symbol Type Name/Description
AP28, AK24,
AK23 NSMIRXDATA[3:1] I pd Network Ser ial Multiplex Interface (NSMI) Receive* Data. Used in
the following applications:
51.84 Mbit s/s serial data input that is used to bring in multiplexed DS1
or E1 channels to FRM.
STS-1 rate clear-channel receive data to SPEMPR.
DS3/E3 rate clear-channel receive data to M13/E13.
Additionally, it could be used as a SONET compliant STS- 1 input signal
to STS1LT from external LIU. For V3.0 devices, these pins may also be
used for DS3 clear channel (positive-rail or single-rail) input data (to the
SPEMPR block).
AJ24, AP27,
AP26 NSMIRXCLK[3:1] I/O pd NSMI Receive Clock. Used in the following applications:
Input (51.84 MHz) for the DS1/E1 application.
Output (51.84 MHz) for the STS-1 rate clear-channel application.
Output (44.736/34.368 MHz) for the DS3/E3 application.
Additionally, it could be used as an input clock for SONET compliant
STS-1 to STS1LT from external LIU. For V3.0 devices, these pins may
also be used for DS3 clear channel DS3 rate input clock for positive
(and negative) data inputs.
AN27, AN26,
AN25 NSMIRXSYNC[3:1] I/O pd NSMI Receive Frame Sync. Used in the following applications:
Input receive NSMI control for FRM.
Output receive control frame sync signal for M13/E13.
Output receive control frame sync signal for SPEMPR.
Additionally, it could be used to carry STS- 1 input transmit clock for
STS1LTs. For V3.0 de vices, these pin s may also be used for DS3 clear
channel negative-rail input data (to the SPEMPR block).
AM27, AM26,
AJ23 RXDATAEN[3:1] O NSMI Receive Data Enable. In FRM NSMI mode, this pin is not used.
In the SPEMPR NSMI mode, the signal on this output will be high during
the POH of the SPE.
In M13 NSMI mode, the sig nal output on this pin goes low during the M1
byte of the first M1 frame of the DS3 frame.
In E13 NSMI mode, the signal output on this pin goes low during the
overhead bytes and control bits of the E3 frame.
* The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed inputs, e.g., NSMIRXDATA,
on the transmit path are labeled receive. Low-speed outputs, e.g., NSMITXDATA on the receive path are labeled transmit.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
2424 Agere Systems Inc.
The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed
inputs, e.g., LINERXDATA, on the transmit path are labeled receive. Low-speed outputs, e. g., LINETXDATA, on the
receive path are labeled trans mit.
Table 2-14. NSMI/STS-1 Out
Pin Symbol Type Name/Description
AP31, AN28,
AJ25 NSMITXDATA[3:1] O NSMI Transmit* Data. NSMI outputs or STS-1 Tx data outputs from
STS1LTs. NSMI output data from either the FRM, SPEMPR, or
M13/E13 block. For V3.0 de vices, th ese pins may a lso be used for DS3
clear channel (positive-rail or single-rail) output data (from the DS3 DJA
block).
AM29, AP30,
AP29 NSMITXCLK[3:1] O NSMI Transmit Clock Output or STS-1 Tx Clock Outputs from
STS1LTs. Output clock at 51.84 MHz for the DS1/E1 application, the
(51.84 MHz) STS-1 rate clear-channel application, or a (44.736 MHz/
34.368 MHz) output clock for the DS3/E3 application. For V3.0 devices,
these pins may also be used for DS3 clear channel DS3 rate output
clock (from the DS3 DJA block).
AN30, AN29,
AK26 NSMITXSYNC[3:1] O Transmit System Frame Sync Output. Output transmit control frame
sync signal from FRM, M13/E13, or SPEMPR. For V3.0 devices, these
pins may also be used for DS3 clear channel negative-rail output data
(from the DS3 DJA block).
AM30, AK27,
AJ26 TXDATAEN[3:1] O Transmit Data Enable for NSMI Mode. This ou tput is used to request
data for a particular link when the FRM NSMI is operating in nonloop
timing mode. This output acts as a sync signal when the FRM NSMI
operates in loop-timing mode.
In the SPEMPR NSMI mode, the signal on this output will be high during
the POH of the SPE.
In M13 NSMI mode, the signal output on this pin goes low during the M1
byte of the first M1 frame of the DS3 frame.
In E13 NSMI mode, the signal output on this pin goes low during the
overhead bytes and control bits of the E3 frame.
* The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed inputs, e.g., NSMIRXDATA, on the
transmit path are labeled receive. Low-speed outputs, e. g., NSMITXDATA on the receive path are labeled transmit.
Table 2-15. Shared Low-Speed Line In
Pin Symbol Type Name/Description
A3, F8, B5, A4, B6,
B7, E9, F10, B8, A7,
B9, E11, B10, E12,
A10, F13, A11, F14,
E14, C14, F15, E15,
C15, B15, F17, A16,
C17, B18, E18, B19
LINERXDATA[30:1] I pd Line Receive Data [30:1]. Inputs to the internal multirate cross connect.
The signals support a variety o f transport modes such as DS1 , E1, VT,
or VC. The signals are used fo r r eceived po sitive-ra il or sing le- rail DS1 /
E1 line data input sourced from an external LIU. In this mode, these sig-
nals will be routed via the cross connect to the VT mapper, the M13 mul-
tiplexer, E13 multiplexer, or the receive line inputs of the DS1/E1
framers. These signals may also be used as input data for DS2/E2 ap-
plications (see the Ultramapper Family System Design Guide).
E6, B4, C5, C6, E8,
A5, F9, A6, C8, F11,
C9, A8, F12, A9,
C1 1, B1 1, C12, B12,
A12, B13, A13, B14,
A14, F16, A15, B16,
E17, B17, C18, A19
LINERXCLK[30:1] I/O pd Line Receive Clock [30:1]. Configurable inputs to the internal multi-
rate cross connect. These inputs are typically used for asynchronous
clocks associated with the line receive data inputs from external line
interface units or payload termination functions. For transport mode
only. In certain cases, this input can be used as an output. These pins
may be used for DS2/E2 clocks in DS2/E2 applications. More informa-
tion can be foun d in an applicatio n n ote: Configuring Ultramapper Fam-
ily of Devices for Ported DS2 Applications. For input specifications,
Table 6-21 applies to these pins.
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 25
The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed
inputs, e.g., LINERXDATA, on the transmit path are labeled receive. Low-speed outputs, e. g., LINETXDATA, on the
receive path are labeled trans mit.
The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed
inputs, e.g., CHIRXDATA, on the tran sm it path are labe led receive. Low-speed outputs, e.g., CHITXDATA, on the receive
path are labeled transmit.
Table 2-16. Shared Low-Speed Line Out
Pin Symbol Type Name/Description
A23, B23, C23,
B24, C24, A26,
F23, A27, C26,
F24, C27, A29,
F26, A30, E27,
C29, C30, B31,
E29, E30, C34,
H29, E33, D34,
F33,G33, J30,
K29, H33, G34
LINETXDATA[30:1] O Line Transmit Data [30:1]. Outputs from the internal multirate cross con-
nect. The outputs support a variety of transport modes such as asynchro-
nous DS1, E1, and synchronous VT or VC.
The signals are used to transmit positive-rail or sing le-rail DS1/E1 line dat a
output sourced to an external LIU. In this mode, these signals will be routed
via the cross connect from the VT mapper, the M13 multiplexer, E13
multiplexer, or the transmit line outputs of the DS1/E1 framers.
Each of these outputs comes from the internal MRXC and can be individu-
ally set to high-impedance. These pins may be used fo r output dat a in DS2 /
E2 applications (see the Ultramapper Family System Design Guide).
E21, F21, A24,
F22, A25, E23,
B25, E24, B26,
A28, B27, F25,
E26, B28, B29,
A31, B30, F27,
A32, F29, F30,
D33, E32, F32,
H30, E34, J29,
F34, H32, L29
LINETXCLK[30:1] I/O
pd Line Transmit Clock [30:1]. Configurable outputs from the internal
multirate cross connect. Th ese output s are typically u sed for asynchro nous
clocks associated with the line transmit data outputs to external line
interface units or payload termination functions. For transport mode only.
Each of these outputs comes from the internal MRXC and can be
individually set to high impedance.
In certain cases (DS2/E2 applications), this output is used as an input
(input DS2/E2 clocks). More information can be found in an application
note: Configuring Ultramapper Family of Devices for Ported DS2
Applications.
For output specifications, Table 6-22 applies to these pins.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
2626 Agere Systems Inc.
Table 2-17. TDM Concentr ation Highway (CHI) In
Pin Symbol Type Name/Description
J32, J33, H34,
L30, M29, K33,
J34, M30, L32,
K34, L33, N29,
M32, L34,
M33, P29,
M34, P30,
N33, P32, N34,
R29, P33, R30,
P34, R32, T29,
R33, R34, U29,
T33, T34, U30,
U32, U33, V33,
V32, V30,
W34, W33,
V29, Y34
CHIRXDATA[42:1] I pd CHI Receive Data [42:1]. Configurable synchronous TDM inputs to the
internal multirate cross connect. Can be used in one of the following
modes:
CHI mode: Receive TDM input highways. Can be configured to operate at
2.048 Mbits/s, 4.096 Mbits/s, 8.192 Mbits/s, or 16.384 Mbits/s.
Parallel system bus mode: The parallel system bus is a 16-bit wide
19.44 Mbits/s synchr onous TDM high way. Bits [16:9] are used for time- slot
data. Bits [8:1] are used for robbed-bit signaling data in a ASM like fashion
and are optional. CHIRXGF S is the frame synchron ization input for th e par -
allel system bu s an d CHIRXGCLK is the 19.44 MHz clock input.
CHIRXDATA[42:17] are not used.
Asynchronous mode: In this mode, these inputs are used for DS1/E1
received nega ti ve rail da ta. May also be used for 8 kHz fra me synchron iza -
tion inputs that indicate the po sition of the F-bits in the line re ceive data.
VT mapper mode: 8 kHz sync for DS1/E1 or 2 kHz sync signal for VC.
These pins may be used as input data for DS2/E2 applications. More infor-
mation can be found in an application note: Configuring Ultramapper Fam-
ily of Devices for Ported DS2 Applications.
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 27
The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed
inputs, e.g., CHIRXDATA, on the transmit path are labeled receive. Low-speed outputs, e. g., CHITXDATA, on the receive
path are labeled transmit.
Table 2-18. TDM Concentr ation Highway (CHI) Out
Pin Symbol Type Name/Description
AA33, Y29, AB34,
AA32, AB33, AA30,
AC34, AA29, AC33,
AD34, AC32, AB29,
AD33, AE34, AD32,
AC30, AF34, A E33 ,
AC29, AD30, AG34,
AF33, AF32, AH34,
AD29, AG33, AG32,
AE29, AJ34, AF30,
AF29, AH33, AK34,
AJ33, AG30, AM34,
AJ30, AJ29, AK29,
AP32, AN31, AJ27
CHITXDATA[42:1] I/O CHI Transmit Data [42: 1]. Configurable synchronous TDM outputs
from the internal multirate cross connect. Can be used in one of the
following modes:
CHI mode: Transmit TDM output highways. Can be configured to
operate at 2.048 Mbits/s, 4.096 Mbits/s, 8.192 Mbits/s, or at
16.384 Mbits/s.
Parallel system bus mode: The parallel system bus is a 16-bit wide
19.44 Mbits/s synchronous TDM highway. Bits [16:9] are used for
time-slot data. Bits [8:1] are used for robbed-bit signaling data in a
ASM like fashion and are optional. CHITXGFS is the frame synchro-
nization input for the parallel system bus and CHITXGCLK is the
19.44 MHz clock input.
CHITXDATA[42:17] are not used.
Asynchronous mode: In this mode, these outputs are used for DS1/
E1 transmit negative rail data. May also be used for 8 kHz frame syn-
chronization outputs that indicate the position of the F-bits in the line
transmit data.
VT mapper mode: 8 kHz frame sync output for DS1/E1 or 2 kHz
frame sync output signal for VC.
Each of these outputs comes from the internal MRXC and can be
individually set to high impedance.
In rare cases, this output can be used as an input. These pins have
various functionalities in DS2/E2 applications. More information can
be found in an application note: Configuring Ultramapper Family of
Devices for Ported DS2 Applications.
When running in CHI compression mode, CHITXDATA[17] becomes
a frame sync output from th e device , which sign ifie s the beg inn ing o f
the CHI output frame. This feature is only available in V3.0 devices
and later.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
2828 Agere Systems Inc.
Table 2-19. Framer (FRM) Block, CHI/Parallel System Bus (PSB) Clock and Sync
Pin Symbol Type Name/Description
Y32 CHIRXGTCLK I pd Global Transmit Line Clock. This is the transmit line clock for the DS1 or E1 framer.
Normally this input is not used and the transmit clock is generated by an internal phase-
lock loop which uses CLKIN_PLL as a reference. Note that if this input is used, all the
transmit framers must ru n at the same ra te , either 1.54 4 MHz or 2.048 MHz. This signal
could be used for both CHI and parallel system bus.
W29 CHIRXGCLK I pd Receive Global System Clock. This signal is used for both CHI and p arallel system
bus. In CHI mode, it is a 2.048 MHz, a 4.096 MHz, a 8.192 MHz, or a 16.384 MHz TDM
clock. In parallel system bus mode, it is a 19.44 MHz clock.
Y33 CHIRXGFS I pd Receive Sy stem Frame Sync. This signal is used fo r both CHI and parallel system bus.
In CHI mode, it is an 8 kHz pulse th at refer enc es the location of time slot s in the receive
CHI inputs. Its polarity, sampling edge, and offset from time slots in the concentration
highways may all be programmed.
In parallel system bus mode, it is an 8 kHz reference for time slots within the parallel sys-
tem bus input highways. In this mode, the frame strobe is a positive pulse with active
edge provisioned by a register.
AA34 CHITXGFS I pd Transmit System Frame Sync. This signal is used for both CHI and parallel system
bus. In CHI mode, it is an 8 kHz pulse which references the location of time slots in the
transmit CHI outputs. Its polarity, sampling edge, and offset from time slots in the con-
centration highways may all be programmed.
In parallel system bus mode, it is an 8 kHz reference for time slots within the parallel sys-
tem bus output highways. In this mode, the frame strobe is a positive pulse with active
edge provisioned by a register.
For version 3. 0 de vices an d later, CHITXGFS also ser ve s as a re qu ire d 8 kHz fram e
sync when operating in NSMI slip mode.
Y30 CHITXGCLK I pd Transmit Global System Clock. This signal is us ed for both CHI and parallel system
bus. In CHI mode, it is a 2.048 MHz, a 4.096 MHz, a 8.192 MHz, or a 16.384 MHz TDM
clock. In parallel system bus mode, it is a 19.44 MHz clock.
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 29
Table 2-20. Reference Clocks
Pin Symbol Type Name/Description
R1 DS2AISCLK I pd DS2 AIS Clock. More information can be found in an application note: Configuring
Ultramapper Family of Devices for Ported DS2 Applications.
VC1 1 AIS Clock. A 1.664 MHz clock inp ut. In the VT mapper mode, this clock is used
to generate VC11 AIS. The clock is used when VC11 is sent from the
LINETXDATA[30:1] outputs.
The 1.664 MHz clock is for a VC11 payload. There are 27 bytes per VT1.5 in each
STS-1 frame, excluding the VT overhead (1 byte), 26 bytes/125 µs = 1.664 Mbits/s.
(VC11 rate is 1.728 Mbits/s.)
If used, this input can be provided by a free-running crystal oscillator, or a clocking
chip.
U6 E2AISCLK I pd E2 AIS Clock. More information can be found in an application note: Configuring
Ultramapper Family of Devices for Ported DS2 Applications.
VC12 AIS Clock. A 2.240 MHz clock input. In the VT mapper mode, this clock is
used to generate VC12 AIS. The clock is used when VC12 is sent from the
LINETXDATA[30:1] outputs.
The 2.240 MHz clock is for a VC12 pa yload. There are 36 bytes per VT2.0 in each
STS-1 frame, excluding the VT overhead (1 byte), 35 bytes/125 µs = 2.240 Mbits/s.
(VC12 rate is 2.30 4 Mb its/s.)
If used, this input can be provided by a free-running crystal oscillator, or a clocking
chip.
AP21 E1XCLK I pd E1 X Clock. This clock signal is used for three purposes: to generate E1 AIS (all 1s),
as a reference to the E1 DJA, and as a clock source for the test p attern generator and
test pattern mon itor. This input may be provided b y a 2.048 MHz, a 32.768 MHz, or a
65.536 MHz ± 50 ppm free-running crystal oscillator, or clocking chip.
Note: For the E1 DJA, an input of 32.768 MHz or 65.536 MHz must be used.
AK20 DS1XCLK I pd DS1 X Clock. This clock signal is used for three purposes: to generate DS1 AIS (all
1s), as a reference to the DS1 DJA, and as a clock source for the test pattern gener-
ator and test pattern monitor. This input may be provided by a 1.544 MHz, a
24.704 MHz, or a 49.408 MHz ± 32 ppm free-running crystal oscillator, or clocking
chip.
Note: For the DS1 DJA, an input of 24.704 MHz or 49.408 MHz must be used.
A21 DS3XCLK I pd DS3 X Clock. A 44.736 MHz ± 20 ppm clock input for DS3 DJA and TPG. This input
may be provided by a 44.736 MHz ± 20 ppm free-running crystal oscillator, or
clocking chip.
F18 E3XCLK I pd E3 X Clock. A 34.368 MHz ± 20 ppm clock input for E3 DJA and TPG. This input may
be provided by a 34.368 MHz ± 20 ppm free-running crystal oscillator, or clocking
chip.
Table 2-21. Low-Orde r Path Overhead Access, Transmit Direction
Pin Symbol Type Name/Description
B22 LOPOHCLKIN I pd Low-Order Path Overhead Clock. 19.44 MHz clock supplied from external circuits
that provide the low-order path overhead data.
C21 LOPOHDATAIN I pd Low-Order Path Overhead Da ta. The following p arts of th e low-order ( VT) overhead
are presented at this pin: communication cha nnel bits (O bits), V5, J2, Z6/N2, Z7, and
K4 byte.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
3030 Agere Systems Inc.
A22 LOPOHVALIDIN I pd Low-Order Path Overhead Dat a Input V alid. This signal is a mask that indicates the
location of the over he a d byt es in the LOPOHDATAIN.
Table 2-22. Low-Order Path Overhead Access, Receive Direction
Pin Symbol Type Name/Description
F20 LOPOHCLKOUT O Low-Order Path Overhead Clock. 19.44 MHz clock supplied to external circuits
that receive the low-order path overhead data.
B21 LOPOHDATAOUT O Low-Order Path Overhead Data. Line and path REI and RDI, O-bits, V5, J2, Z6/
N2, and Z7/K4 byte.
E20 LOPOHVALIDOUT O Low-Order Path Overhead Data Output Valid. This signal is a mask that indi -
cates the location of the overhead bytes in the LO PO HDATAOUT.
Table 2-23. Clock Generator
Pin Symbol Type Name/Description
AJ32 CLKIN_PLL I pd Transmit Line Clock Generator Reference Input. The clock generator is used to
derive the transmit line clocks for DS1/E1 synchronized to CLKIN_PLL. The
derived clock is used in the DS1/E1 transmit framer sections.
AL33 CG_PLLCLKOUT O Framer PLL Test Mode Output. Framer PLL clock (1.544 MHz, 2.048 MHz)
selected by device register.
AK30,
AK32,
AG29
MODE[2:0]_PLL I pd Framer PLL Input Clock Mode Select Bits. The settings of these mode select
pins must correspond to th e frequency of CLKIN_PLL as shown below.
MODE[2:0]_PLL CLKIN_PLL MODE[2:0]_PLL CLKIN_PLL
000 Reserved 100 16.384 MHz
001 51.840 MHz 101 8.192 MHz
010 26.624 MHz 110 4.096 MHz
011 19.440 MHz 111 2.048 MHz
Table 2-21. Low-Orde r Path Overhead Access, Transmit Direction
Pin Symbol Type Name/Description
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 31
Table 2-24. Microprocessor Interface
Pin Symbol Type Name/Description
F5 MPCLK I Microprocessor Clock. This clock is required to properly sample address, data,
and control signals from the microprocessor in both asynchronous and synchro-
nous modes of operation.
F6 MPMODE I Microprocessor Mode. If th e microproces so r inte rf ac e is synchronous,
MPMODE should be set to 1. If the microprocessor interface is asynchronous,
MPMODE should be set to 0.
C1 CSN I pu Chip Select. Active-low, high-order address signal. Chip select must be set low
at the beginning of any read or write access and returned high at the end of the
cycle.
D2 ADSN I Address Strobe. Active-low address strobe that indicates the beginning of a
read or write access. It is a one MPCLK cycle-wide pulse for synchronous mode.
In asynchronous mode, it is active for the en tire read/write cycle. Address bus
signals, ADDR[20:0], are available to the Ultramapper when ADSN is low. The
address bus should r emain valid for the duration of ADSN.
H6 RWN I Read/Write. RWN is set high during a read cycle, or set low during a write cycle.
E3 DSN I Data Strobe. For a read cycle, the contents of the internal register will be output
on DATA [15:0]; and for a write cycle DATA [15:0] will be clocked into the internal
register. To initiate the start of the read/write operation, DSN must be low during
the entire read/write cycle. This signal should only be used for asynchronous
mode.
K2, M6, L5,
H1, J2, J3,
G1, L6, H2,
H3, K6, F1,
J5, J6, G2,
E1, F2, H5,
D1, F3, E2
ADDR[20:0] I Address [20:0]. ADDR[20] is the most significant bit and ADDR[0] is the least
significant bit for addressing all the internal registers during microprocessor
access cycles. All addresses are 21-bit word addresses; hence, in a typical appli-
cation ADDR[0] of the TMXF84622 device would be connected to address bit 1
of a byte addressable system address bus.
Note: The Ultramapper is little-endian, i.e., the least significant byte is stored in
the lowest address and the most sig nificant byte is stored in the highest ad-
dress. Care must be exercised in connectio n to microprocessors that use
big-endian byte order ing.
R6, N1,
P3, N2, P5,
M1, P6,
M2, L1,
M3, N6,
L2, K1, L3,
M5, J1
DATA[15:0] I/O Data [15:0]. 16-bit data bus input for write operations and outp ut for read opera-
tions. DATA[15] is the MSB, and DATA[0] is the LSB.
R5, P2 PAR[1:0] I/O Data Parity . Byte-wide parity bits for data. P AR[1] is the parity for DA TA[15:8], and
PAR[0] is the parity for DATA[7:0]
P1 DTN O Data Transfer Acknowledge. The delay associated with DTN going low depends
on the Ultramapper block being accessed. In asynchronous mode, when ADSN
or DSN is deasserted, the deassertion will drive the DTN signal high. When inac-
tive, CSN will drive DTN to be 3-stated. The microprocessor should wait after DTN
is deasserted before starting the next operation.
R3, T6 HP_INTN,
LP_INTN O od High-Priority and Low-Priority Interrupt. Active-low. Each of the functional
blocks contain their individual low-priority interrupts. High-priority interrupts are
generated by TMUX and E13 blocks. Each interrupt is individually maskable. Re-
quires an external 5 k pull-up resistor.
R2 APS_INTN O od Automatic Protection Switch Interrupt. Active-low. See the TM UX sectio n in
the Register Description for specific interrupts. Each interrupt is individually
maskable. Requires an external 5 k pull-up resistor.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
3232 Agere Systems Inc.
Table 2-25. Boundary Scan (IEEE® 1149.1)
Pin Symbol Type Name/Description
AN22 TCK I Test Clock. This signal provides timing for boundary scan test operations.
AK21 TDI I pu T est Data In. Boundary scan test data input signal, sampled on the rising edge
of TCK.
AP23 TMS I pu Test Mode Sele ct . Con trols boundary sca n test operations. TMS is samp led
on the rising edge of TCK.
AJ21 TRST I pu Test Reset (Active-Low). This signal provides an asynchronous reset for the
boundary scan TAP controller.
AN23 TDO O Test Data Out. Boundary-scan test data output signal is updated on the fall-
ing edge of TCK. The TDO output will be high-impedance except when trans-
mitting test data.
Table 2-26. General-Purpose Interface
Pin Symbol Type Name/Description
AP22 RSTN I pu Global Hardware Reset. Active-low. Initializes all internal registers to their
default state. This is an asynchronous reset on the falling edge, but RSTN
should be held low for at least 1 µs. RSTN should be held low until both
power supplies (1.5 V and 3.3 V) are stabilized upon powerup.
AM21 PMRST I/O pd Performance Monitor Reset. Resets error counters. When enabled as an
input, it is a 1 s square wave that forces an update of PM counters upon the
rising edge. When the PMRST is generated internally from the MPU clock,
this pin is an output.
AP24 IC3STATEN I pu Output Enable. When high, output buffers will operate normally. When low,
all outputs will be forced to a high-impedance state. IC3STATEN should be
held low until both power supplies (1.5 V and 3.3 V) are stabilized upon pow-
erup.
AM23 SCK1 I pd Scan Clock 1. Reserved. Do not connect.
AJ22 SCK2 I pd Scan Clo c k 2. Reserved. Do not connect.
AN24 SCAN_EN I pd Scan Enable. Reserved. Do not connect.
AP25 SCANMODE I pd Serial Scan Input for Testing. Reserved. Do not conn ec t.
AM24 IDDQIIDDQ Input. This pin must be externally pulled down with a 1 k resistor.
Table 2-27. CDR Interface
Pin Symbol Type Name/Description
AJ15 BYPASS I pd High-Speed CDR Bypass. Reserved. Do not connect.
AJ14 TSTPHASE I pd Test Phase. Reserved. Do not connect.
AM15 ECSEL I pd External Clock Select. Reserved. Do not connect.
AJ16 ETOGGLE I pd External Toggle. Reserved. Do not connect.
AL17 EXDNUP I pd External Down Up. Reserved. Do not connect.
AK17 TSTMODE I pd Test Mode. Reserved. Do not connect.
AM14 TSTSFTLD I pd Test Shift Load. Reserv ed . Do no t co nn ec t.
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 33
Table 2-28. Analog Power and Ground Signals
Pin Symbol Type Name/Description
AK12 VSSA_CDR1 CDR1 Ground. Isolated ground for the internal CDR1.
AJ12 VSSA_CDR2 CDR2 Ground. Isolated ground for the interna l CDR2.
AJ11 VSSA_X4PLL X4PLL Ground. Isolated ground for the internal X4PLL.
AL34 VSSA_SFPLL SFPLL Ground. Isolated ground for the internal SFPLL.
F19 VSSA_DS3PLL DS3PLL Ground. Isolated ground for the internal DS3PLL.
A20 VSSA_E3PLL E3PLL Ground. Isolated ground for the internal E3PLL.
AK11 VDD15A_CDR1 CDR1 Power. 1.5 V power supply for the internal CDR1, which is used by
the high-speed receive CDR, the protection receive CDR and the three
CDRs associated with the mate interconnect ports. Good engineering prac-
tice needs to be applied; refer to the evaluation boa rd schematic.
AJ10 VDD15A_CDR2 CDR2 Power. 1.5 V power supply for the internal CDR2, which is used by
the high-speed receive CDR, the protection receive CDR and the three
CDRs associated with the mate interconnect ports. Good engineering prac-
tice needs to be applied; refer to the evaluation board schematic.
AK14 VDD15A_X4PLL X4PLL Power. 1.5 V power supply for the internal X4PLL, which is used for
the transmit protection 1 + 1 port. Good engineering practice nee ds to be
applied; refer to the System Design Guide.
C20 VDD15A_DS3PLL DS3PLL Power. 1.5 V power supply for the internal DS3PLL, which is used
by the DS3DJA. Good engineering practice needs to be applied; refer to the
evaluation bo ar d sch e matic.
B20 VDD15A_E3PLL E3PLL Power. 1.5 V power supply for the internal E3PLL, which is used by
the E3DJA. Good engineering practice needs to be applied; refer to the Sys-
tem Design Guide.
AK33 VDD33A_SFPLL SFPLL Power. 3.3 V power supply for the internal SFPLL, which is used by
the CG block. Good engineering p ractice needs to be applied; refer to the
evaluation bo ar d sch e matic.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
3434 Agere Systems Inc.
Table 2-29. Digital Power and Ground Signals
Pin Symbol Type Name/Description
AA7, AA16, AA17, AA18, AA19, AA28, AB7, AB16, AB17, AB18, AB19, AB28,
AC7, AC28, AD7, AD28, AE7, AE28, AF7, AF28, AH9, AH10, AH11, AH12,
AH13, AH14, AH15, AH16, AH19, AH20, AH21, AH22, AH23, AH24, AH25,
AH26, G9, G10, G11, G12, G13, G14, G15, G16, G19, G20, G21, G22, G23,
G24, G25, G26, J7, J28, K7, K28 , L7, L28, M7, M28, N7, N16, N17, N18, N1 9,
N28, P7, P16, P17, P18, P19, P28, R7, R28, T7, T13, T14, T21, T22, T28, U13,
U14, U21, U22, V13, V14, V21, V22,W7, W13, W14, W21, W28, Y7, Y28, W22
VDD15 Common power
signals for 1.5 V VDD.
A2, A33, AA4, AC31, AD4, AF31, AG4, AG7, AG28, AH8, AH17, AH18, AH27,
AJ31, AK4, AL6, AL9, AL12, AL21, AL24, AL27, AL30, AM2, AM33, AN1, AN3,
AN32, AN34, AP2, AP33, B1, B3, B32, B34, C2, C33, D5, D8, D11, D14, D17,
D20, D23, D26, D29, E31, F4, G8, G17, G18, G27, H7, H28, H31, J4, L31, M4,
P31, R4, U7, U28, U31, V28, V4, V7, Y31
VDD33 Common power
signals for 3.3 V VDD.
A1, A17, A18, A34, AA13, AA14, AA21, AA22, AA31, AB13, AB14, AB21,
AB22, AC4, AD31, AF4, AG6, AG31, AJ4, AJ5, AK2, AK3, AK5, AK31, AL2,
AL5, AL11, AL20, AL23, AL26, AL29, AL8, AM1, AM3, AM11, AM12, AM32,
AN2, AN6, AN9, AN12, AN33, AP1, AP12, AP34, B2, B33, C3, C32, D6, D9,
D12, D15, D18, D21, D24, D27, D30, E4, E5, F31, H4, J31, L4, M31, N13, N14,
N21, N22, P4, P13, P14, P21, P22, R31, T16, T17, T18, T19, U1, U4, U16, U17,
U18, U19, U34, V1, V16, V17, V18, V19, V31, V34, W16, W17, W18, W19, Y4
VSS Common ground
signals.
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 35
3 Operating Conditions and Reliability
3.1 Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage t o th e de vice . Th es e are abso lu te
stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those
given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can
adversely affect device reliability.
3.2 Recommended Operating Conditions
Table 3-2 lists the voltages, along with the tolerances, that are required for proper operation of the TMXF84622 device.
Table 3-2. Recommended Operat ing Conditions
* Internal reference voltage is used if UMPR_LVDS_REF_SEL = 1, or else external voltage is used.
3.3 Handling Precautions
Although electrost atic discharge (ESD) protectio n cir cuitr y ha s been d esign ed into this device, pr oper prec autions must be
taken to avoid exposure to ESD and electrical overstress (EOS) during all handling, assembly, and test operations. Agere
employs both a human-body model (HBM) and a charged-device model (CDM) qualification requirement in order to
determine ESD-susceptibility limits and protection design evaluation. ESD voltage thresholds are dependent on the circuit
parameters used in each of the models, as defined by JEDEC’s JESD22-A114 (HBM) and JESD22-C101 (CDM)
standards.
Table 3-1. Absolute Maximum Ratings
Parameter Min Max Unit
Supply Voltage (VDD33)–0.54.2V
Supply Voltage (VDD15)–0.32.0V
Input Voltage:
LVCMOS
LVDS –0.3
–0.3 5.25
VDD33 + 0.3 V
V
Power Dissipation mW
Storage Temperature Range –65 125 °C
Parameter Symbol Min Typ Max Unit
3.3 V Power Supply VDD33 3.14 3.3 3.47 V
1.5 V Power Supply VDD15 1.4 1.5 1.6 V
Ground VSS —0.0 V
1.0 V: LVDS Reference* REF10 1.0 V
1.4 V: LVDS Reference* REF14 1.4 V
Ambient Temperature TA–40 85 °C
Table 3-3. ESD Tolerance
Device Minimum Threshold
HBM CDM
TMXF84622 2000 V 500 V
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
3636 Agere Systems Inc.
3.4 Thermal Parameters (Definitions and Values)
System and circuit board level performance depends not only on device electrical characteristics, but also on device thermal
characteristics. The thermal characteristics frequently determine the li mits of circuit boar d or system performan ce, and they
can be a major cost adder or cost avoidance factor. When the die temperature is kept below 125 °C, temp erature-activa ted
failure mechanisms are minimized . The ther mal par am eters that Agere p rovid es for its p ackage s help th e chip and system
designer choose the best package for their applications, including allowing the system designer to thermally design and in-
tegrate their syste m s.
It should be noted that all the pa rameters listed below are affected, to varying degree s, by package design (including paddle
size) and choice of materials, the amount of copper in the test board or system board, and system airflow.
ΘJA - Junction to Air Thermal Resistance
ΘJA is a number used to express the thermal performance of a part under JEDEC standard natural convection conditions.
ΘJA is calculated using the following formula:
ΘJA = (TJ – Tamb) / P; where P = power
ΘJMA - Junction to Moving Air Thermal Resistance
ΘJMA is effectively identical to ΘJA but represents per formance of a par t mounted on a JEDEC four layer board inside a wind
tunnel with forced air convection. ΘJMA is reported at airflows of 200 LFPM and 500 LFPM (linear feet per minute), which
roughly correspond to 1 m/s and 2.5 m/s (respectively). ΘJMA is calculated using the following formula:
ΘJMA = (TJ – Tamb) / P
ΘJC - Junction to Case Thermal Resistance
ΘJC is the thermal resi stan ce from junction to th e top of the case. Th is number is dete rmined by forcing ne arly 100% of the
heat generated in the die out the top of the package by lowering the top case temperature. This is done by placing the top
of the package in contact with a copper slug kept at room temperature using a liquid refrigeration unit. ΘJC is calculated using
the following formula:
ΘJC = (TJ – TC) / P
ΘJB - Junction to Board Thermal Resistance
ΘJB is the thermal resistance fr om junction to board. This number is determined by forcing the hea t generated in the die out
of the package through the leads or balls by lowering the board temperature and insulating the package top. This is done
using a special fixture, which keeps the board in contact with a water chilled copper slug around the perimeter of the package
while insulating the package top. ΘJB is calculated using the following formula:
ΘJB = (TJ – TB) / P
ΨJT - Junction Temperature to Case Temperature
ΨJT correlates the junction temperature to the case temperature. It is generally used by the customer to infer the junction
temperature while the pa rt is operating in their system. It is no t considered a true therma l resistance. ΨJT is calculated using
the following formula:
ΨJT = (TJ – TC) / P
Table 3-4. Thermal Parameter Values
Parameter Temperature °C/Watt
ΘJA 13
ΘJMA (1 m/s) 9.7
ΘJMA (2.5 m/s) 8.2
ΘJC 2.5
ΘJB 7.8
ΨJT 1
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 37
3.5 Reliability
Product reliability can be calculated as the probability that the product will perform under normal operating conditions for a
set period of time. Factors influencing the reliability of a product cover a range of variables, including design and manufac-
turing. The failure rate of a product is given as the number of units failing per unit time. This failure rate is known as FIT,
which is as follows:
1 FIT = 1 failure/1 x 109 hours.
Another unit used for failure rate is known as MTBF, which is 1/FIT. Many assumptions are made when calculating the failure
rate for a product, such as the average junction temperature and activation energy. The assumptions made for calculating
FIT and MTBF are shown in Table 3-5:
Moisture Sens itivity Level—This is based on IPC/JEDEC test method J-STD-020 (which lists a means of testing and clas-
sifying devices for a certain level of moisture sensitivity).
3.6 Recommended Powerup Sequence
The Ultramapper de vic e re qu ire s du al po we r supp lies, a 3.3 V supply for the I/O and a 1.5 V supply for the core.
During powerup, RSTN should be held low (holding the device in reset) and IC3STATEN should be held low (3 -stating all
output buffers). After the 3.3 V and 1.5 V supplies are stable, MPCLK (which affects the de vice reset) should be applied and
must be present for at least two clock cycles before RSTN and IC3STATEN are released. It is then recommended that
IC3STATEN be released concurrent with, or after, the release of RSTN. There are no constraints as to which supply (3.3 V
or 1.5 V) must come up first, nor does it matter how long it takes the second supply to come up after the first supply.
Additionally, it is recommende d that the TRST pin be held low (or pulsed low) upon startup.
Table 3-5. Reliability Data
Junction Temperature FIT (Per 1 x 109 Device Hours) MTBF Activation Energy
55 °C 22 4.55 x 107 hours 0.7eV
Table 3-6. Moisture Sensitivity Level
Device Level
TMXF84622 2A
L-TMXF84622 (Pb-free ) 3
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
3838 Agere Systems Inc.
3.7 Power Consumption
The power consumption of the device is application depend ent since it is not possible to use all th e de vice fea tu re s simu l-
taneously. The nominal measured values for power per block are shown in Table 3-8.
Testing has shown that, on the average, approximately 0.35 W can be saved by utilizing the divide by 16 MPU clock power
down feature. Please refer to MPU register 0x0019 in the Ultramapper Register Description document for further information.
Additional MPU clock diviso r op tion s ar e av aila ble .
Additional power can be saved by powering down unused LVDS buffers. For de tails, please see MPU register 0x0026 in the
Ultramapper Register Description document.
Table 3-7. Typical Power Consumption by Application
Application Conditions T yp 1.5 V
Power T yp 3.3 V
Power Typ Total
Power
OC12 to 84 DS1 Cross Connect
CHI Loopback TMUX, three SPEMPRs, th ree VTMPRSs, three
DS1DJAs, three FRMs, and CHI at 8 Mbits/s 1.65 W 0 .55 W 2.20 W
OC12 to 84 DS1 Transport Mode TMUX, three SPEMPRs, three VTMPRSs, three
DS1DJAs, and three FRMs 1.60 W 0 .50.W 2.10 W
OC12 to 6 DS3 Clear Channel TMUX, six SPEMPRs, one DS3DJA, and six DS3 I/Os 1.00 W 0.75 W 1.75 W
OC12 to STSPP High-speed loopback through STSPP and TMUX 0.90 W 0.50 W 1.40 W
OC12 to 84 DS1 Por tless Trans-
MUX Application, Transport
Mode
TMUX, three STS1LTs, five SPEMPRs, three
VTMPRs, two M13s, three DS1DJAs, a nd thre e FRMs 1.70 W 0 .85 W 2.55 W
OC12 to 84 DS1 TransMUX
Application, Transport Mode TMUX, three STS1LTs, three SPEMPRs, three
VTMPRs, three M13s, three DS1DJ A s, an d th re e
FRMs
1.70 W 0 .60 W 2.30 W
Table 3-8. Typical Power Consumption Per Block
Typical power by block refers to all instances being used.
Block Maximum Instance Typical, Per Single Instance Unit
TMUX 1 0.120 W
STSPP 1 0.020 W
STSXC 1 0.200 W
MRXC 1 0.050 W
SPEMPR 6 0.009 W
STS1LT 3 0.028 W
VTMPR 3 0.015 W
E13 3 0.013 W
M13 3 0.013 W
TPG/TPM 1 TBD W
FRM 3 0.195 W
DS1DJA 3 0.026 W
DS3DJA 1 0.050 W
MPU 1 0.420* W
CDR/PLL 1 0.150 W
LVDS I/O 15 0.020 W
NSMI I/O 3 0.032 W
DS3 I/O 6 0.050 W
* Measured with a 50 MHz MPCLK. With a 25 MHz MPCLK, the typical per single instance value of MPU power is approximately 0.2 W.
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 39
4 Electrical Characteristics
4.1 LVCMOS Interface Specifications
Table 4-1. LVCMOS Input Specifications
Parameter Symbol Conditions Min Typ Max Unit
Input Leakage Current IIVSS < VIN < VDD33 1.0* µA
High-input Voltage VIH —2.0V
Low-input Voltage VIL —VSS —0.8V
Input Capacitance CI——1.5pF
* Excludes current due to pull-up or pull-down resistors.
Table 4-2. LVCMOS Output Specifications
Parameter Symbol Conditions Min Typ Max Unit
Output Voltage Low VOL IOL = max VSS —0.5V
Output Voltage High VOH IOL = max VDD – 0.5 VDD V
Output Current Low IOL ——6*mA
Output Current High IOH ——6*mA
Output Capacitance CO——3pF
HIZ Output Leakage Current IOZ ——10µA
* Output current = 10 mA (maximum) for DTN, NSMITXCLK[3:1], and CHITXDATA[1, 3, 4, 5, 6, 10, 11].
Table 4-3. LVCMOS Bidirectional Specifications
Parameter Symbol Conditions Min Typ Max Unit
Leakage Current ILVSS < VIN < VDD33 —— 11 µA
High-input Voltage VIH —2.0VDD33 + 0.3 V
Low-input Voltage VIL —VSS —0.8 V
Biput Capacitance CIB ——5.0pF
Output Voltage Low VOL IOL = –6 mA* 0.5 V
Output Voltage High VOH IOH = 6 mA* 2.4 V
Output Current Low IOL ——6mA
Output Current High IOH ——6mA
* The following bidirectional pins can sink/source 10 mA: NSMIRXCLK[3:1].
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
4040 Agere Systems Inc.
4.2 LVDS Interface Characteristics
3.3 V ± 5% VDD, –40 °C to +125 °C junction temperature.
.
Table 4-4. LVDS Interface dc Characteristics
Parameter Symbol Test Conditions Min Typ Max Unit
Input Buffer Parameters
Input Voltage Range:
High (VIA or VIB)
Low (VIA or VIB)
VI
VIH
VIL
|VGPD| < 925 mV, dc—1 MHz
0
2.4
V
V
Input Differential Threshold VIDTH dc— 450 MHz –100 100 mV
Input Differential Hysteresis VHYST (+VIDTH) – (–VIDTH)—*mV
Receiver Differential Input
Impedance RIN With build-in termination, center-tapped 80 100 120
Output Buffer Parameters
Output Voltage:
High (VOA or VOB)
Low (VOA or VOB)VOH
VOL RLOAD = 100 ± 1%
RLOAD = 100 ± 1%
0.925
1.475
V
V
Output Differential Voltage|VOD|RLOAD = 100 ± 1% 0.25 0. 45 V
Output Offset Voltage VOS RLOAD = 100 ± 1% 1.125 1.275 V
Output Impedance, Single Ended ROVCM = 1.0 V and 1.4 V 80 100 120
RO Mismatch Betwe en A and B ROVCM = 1.0 V and 1.4 V 10 %
Change in Differential Voltage
Between Complementary States |VOD|RLOAD = 100 ± 1% 25 mV
Change in Output Offset Voltage
Between Complementary States VOS RLOAD = 100 ± 1% 25 mV
Output Current ISA, ISB Driver shorted to VSS ——24mA
Output Current ISAB Drivers shorted together 12 mA
* The buffer will not produce output transitions when input is open-circuited. When the true and complement inputs are floating, the input buffer will not
oscillate.
250 mV |VA – VB| 450 mV
Notes:
The characteristics in the table above apply under the following conditions:
External LVDS reference chosen (UMPR_LVDS_REF_SEL = 0).
REF10 = 1.0 V ±3% and REF14 = 1.4 V ±3%.
Internal LVDS reference chosen (UMPR_LVDS_REF_SEL = 1).
VDD33 supply controlled to within ± 3%.
When UMPR_LVDS_REF_SEL = 1, the internal reference levels are derived using a resistor ladder from VDD33. These levels will vary as much as the
VDD33 supply does and are therefore only as accurate as the VDD33. If VDD33 cannot be controlled to within ± 3%, one or more IEEE specifications
may be violated. While this may not necessarily lead to data errors during transmission, interoperability issues may arise due to specification noncompli-
ance.
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 41
5 Timing
5.1 TMUX High-Speed Interface Timing
Figure 5-1. TMUX LVDS Signal Rise/Fall Timing
Figure 5-2. TMUX LVDS Clock and Data Timing
Table 5-1. High-Speed Interface Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
RHSDP/N (622 MHz)*
* Input serial data stream should have minimum eye opening of 0.4 UIp-p, and no more than 60 consecutive bits that have no transitional edge
within one minute. It must meet 100 ps maximum phase variation limit over a 200 ns interval; this translates to a frequency change of 500 ppm.
Asynchronous 0.5 0.5
RHSDP/N (155 MHz)*Asynchronous 0.5 0.5
RHSDP/N (155 MHz) RHSCP/N R/F 1.0 1.0 2 0
tF
tR
80%
20%
THSCOP/N
RHSCP/N
tSU tH
tPD
50%
50%
50%
50%
RHSDP/N
THSDP/N
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
4242 Agere Systems Inc.
5.2 THSSYNC Characteristics
THSSYNC is an 8 kHz composite frame sync pulse for STS-3 or STS-12. THSSYNC contains J0, J1, and V1-1 information
as shown in Figure 5-5. The time de lay from any rising ed ge of a J0 (8 kHz) to the risin g ed ge of the n ext J 0 is 125 µs. The
time delay between any two V1-1 (2 kHz) pulses is 500 µs. This is true whethe r in STS -3 or STS-12 mo de .
When MPU_MASTER_SLAVE = 1, then THSSYNC is according to Figure 5-5.
Figure 5-3. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 1)
Table 5-2. Protection Link Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Ti me ( ns) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
RPSDP/N (622 MHz)*
* Input serial data stream should have minimum eye opening of 0.4 UIp-p, and no more than 60 consecutive bits that have no transitional edge
within one minute. It must meet 100 ps maximum phase variation limit over a 200 ns interval; this translates to a frequency change of 500 ppm.
Asynchronous 0.5 0.5
RPSDP/N (155 MHz)*Asynchronous 0.5 0.5
RPSDP/N (155 MHz) RPSCP/N R 1.0 1.0 2 0
Table 5-3. High-Speed Interface Outputs Specifications
Name Reference Edge
Rising/Falling Propagat ion Delay
Min (ns) Max (ns)
THSDP/N (622.08 MHz or 155.52 MHz) THSCOP/N R 0.3 0.8
THSSYNC (MPU_MASTER_SLAVE = 1) TLSCLK –0.5 0.2
Table 5-4. Protection Link Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
TPSDP/N (622.08 MHz or 155.52 MHz) TPSCP/N R 0.3 0.8
STS-3
J
0
J
1-1
J
0
J
1-2
J
1-3
V
1-1
J
1-1
J
1-2
J
1-3
FIRST FRAME
50 ns
SECOND FRAME THIRD FRAM E FOURTH FRAME
STS-12
V
1-2
V
1-3
J
0
J
0
J
1-1
J
1-2
J
1-3
J
1-1
J
1-2
J
1-3
V
1-1
V
1-2
V
1-3
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
50 ns
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
J
0
J
0
J
0
J
0
12.5 ns
FIRST FRAME SECOND FRAME THIRD FRAME FOURTH FRAME
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 43
When MPU_MASTER_SLAVE = 0, then THSSYNC (supplied from an external source) can be according to Figure 5-4.
Figure 5-4. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 0)
When supplied externally, the 8 kHz THSSYNC may have a 50/50 duty cycle since the signal will only be sampled on the
rising edge. In this case, THSSYNC should be synchronous to THSC. Although there are no setup/hold specifications for
the THSSYNC input with respect to THSC, THSSYNC still needs to be synchronous to the input transmit high-speed clock
(THSC). The device looks for the rising edge of THSSYNC to occur regularly in each frame within a window, defined by the
setting in TMUX_SYNC_OFFSET[3:0]. A clock derived from THSC samples the incoming frame sync. If THSSYNC is not
synchronous to THSC, over time, the rising edge of THSSYNC will fall outside the window causing an STS-N/STM-N level
LOF.
However, if the system needs to synchronize VTs, generated from different Ultramappers or other external devices, then
THSSYNC needs to look like the waveform representation in Figure 5-5, i.e., THSSYNC must be composed of both the
8 kHz and the 2 kHz sync components (J0 + V1-1—V1-3); th e J 1 portion is not needed.
Figure 5-5. THSSYNC Timing Diagram for Synchronized VTs
Figure 5-6 depicts the relationship between the rising edge of the input THSSYNC (when the device is in slave mode) and
the beginning of the SONET frame output on THSD. The delay between THSSYNC and the start of the outgoing SONET
frame is contributed to internal device delays (pertaining to multiplexing functionality, FIFO, and parallel to serial conversion).
Figure 5-6. Relationship Between THSSYNC and THSD
STS-3 J0
FIRST FRAME
50 ns
STS-12
50 ns
125
µ
s
125
µ
s
J0 J0 J0
SECOND FRAME THIRD FRAME FOURTH FRAME
SECOND FRAME THIRD FRAME FOURTH FRAME
FIRST FRAME
J0 J0 J0 J0
STS-3
J
0
J
0
V
1-1
FIRST FRAME
50 ns
SECOND FRAME THIRD FRAM E FOURTH FRAME
STS-12
V
1-2
V
1-3
J
0
J
0
V
1-1
V
1-2
V
1-3
50 ns
J
0
J
0
J
0
J
0
FIRST FRAME SECOND FRAME THIRD FRAME FOURTH FRAME
THSSYNC
THSD X
Y
A1
N
622 Mbits/s mode: N = 80 ± 8 bits. 155 Mbits/s mode: N = 44 ± 8 bits. For the case where TMUX_TLBITCNT, TMUX_TLST SCNT,
TMUX_TLCOLCNT, and TMUX_TLROWCNT, all = 0 (default). Changing these register values will change the location of point X with
relation to point Y.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
4444 Agere Systems Inc.
5.3 STS-3/STM-1 Mate Interconnect Timing
Figure 5-7. STS-3/STM-1 Mate Rise/Fall Timing
Figure 5-8. STS-3/STM-1 Mate Clock and Data Timing
Table 5-5. STS-3/STM-1 Mate Interconnect Input Specifications
Name Reference Edge Rising/Falling Max Rise
Time (ns) Max Fall Time
(ns) Min Setup
(ns) Min Hold
(ns)
TLSDATAP/N[3:1] Asynchronous ————
Table 5-6. STS-3/STM-1 Mate Interconnect Output Specifications
Name Reference Edge Rising/Falling Propagation Delay
Min (ns) Max (ns)
RLSDATAP/N[3:1] Asynchronous
tF
tR
80%
20%
CLOCK
CLOCK
tSU tH
tPD
50%
50%
50%
50%
TLSDATAP/N
RLSDATAP/N
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 45
5.4 TOAC, POAC, and LOPOH Timing
The relationships between data, clock, and sync signals are specific to the TOAC and POAC operation mode selected.
This is explained in detail in the TOAC/POAC chapter of the System Design Guide.
Note: For information pertaining to the output clock duty cycle (in various TOAC/POAC modes of operation), please refer toTable 6-15 and Table 6-16.
Figure 5-9. TOAC, POAC Timing
Note: For all modes, SYNC signals are high during the clock period of the first bit of each frame.
Figure 5-10. LOPOH Timing
Table 5-7. TOAC, POAC, and LOPOH Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (n s) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
TTOACDATA TTOACCLK
(output) R10103.50
TPOACDATA TPOACCLK
(output) R10103.50
LOPOHDATAIN and LOPOHVALIDIN LOPOHCLKIN F 8 8 5 5
Table 5-8. TOAC, POAC, and LOPOH Outputs Specifications
Name Reference Edge Rising (R)
Falling (F) Propagat ion Delay
Min (ns) Max (ns)
RTOACDATA, RTOACSYNC RTOACCLK R 0 3.5
TTOACSYNC TTOACCLK R 0 3.5
RPOACDATA, RPOACSYNC RPOACCLK F 0 3.5
TPOACSYNC TPOACCLK R 0 3.5
LOPOHDATAOUT and LOPOHVALIDOUT LOPOHCLKOUT R 0 5
TPOACCLK
tPD
t
SU
t
H
TTOACCLK
TPOACDATA
TTOACDATA
RPOACDATA
RTOACDATA
RPOACCLK
RTOACCLK
t
SU
t
H
LOPOHCLKIN
LOPOHDATAIN
LOPOHDATAOUT
tPD
LOPOHCLKOUT
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
4646 Agere Systems Inc.
5.5 DS3/E3/STS-1 Timing
Figure 5-11 shows a simplified representation of the DS3/E3/STS-1 I/O.
Figure 5-11. DS3/E3 Interface Diagram in M13/E13 Block
Table 5-9. DS3/E3 Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
DS3POSDATAIN[6:1]
DS3NEGDATAIN[6:1] DS3DATAINCLK R/F 5 5 3 3
Table 5-10. STS-1 Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Time (n s) Min Set u p
(ns) Min Hold
(ns)
DS3POSDATAIN[6:1]
DS3NEGDATAIN[6:1] DS3DATAINCLK F 5 5 3 3
Table 5-11. DS3/E3/STS-1 Outputs Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
DS3POSDATAOUT[6:1]
DS3NEGDATAOUT[6:1] DS3RXCLKOUT R/F 0 3
M13/E13 BLOCK
DEMUX MUX
Q
Q
CLK
CLK D
D
DS3DATAINCLK
DS3POSDATAIN
DS3NEGDATAIN DS3DATAOUTCLK
DS3POSDATAOUT
DS3NEGDATAOUT
DS3RXCLKOUT
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc . 47
5.6 NSMI Timing
Figure 5-12. NSMI Clock and Data Timing for the STS-1 Mode
Figure 5-13. NSMI Clock and Data Diagram for SPEMPR NSMI Mode
NSMITXCLK
tPD
t
SU
t
H
NSMIRXCLK
NSMIRXDATA
NSMITXDATA
NSMI_TXDATAEN
(output)
NSMI_TXCLK
(51.84 MHz output)
SONET Frame
(for info only)
NSMI_TXDATA
(output)
NSMI_TXSYNC
(output)
NSMI_RXCLK
(51.84 MHz output)
SONET Frame
(for info only)
NSMI_RXDATA
(input)
NSMI_RXSYNC
(Output)
Position of above pulse is provisionable 0-89 bytes + 0-7 bits before J1
Note: Tx and Rx J1 are not aligned. Transmit path pointer is fixed at 522.
NSMI_RXDATAEN
(output)
125 µs
Position of above pulse is provisionable 0-89 bytes + 0-7 bits before J1
125 µs
Separation depends on pointer
Z3 Z3
89 Columns
Z4
TOH J1
TOH C2
TOH
Z4 Z4
89 Columns
J1
TOH C2
TOH G1
TOH
Notes:
Clock from SPEMPR is at 51.84 MHz rate and is not gapped. TXDATAEN is provided to mark the POH time of the SPE.
J1 can occur anywhere in the frame and its position is optionally marked by TXSYNC, which is provisioned to be N columns (bytes) plus
M bits earlier in time than J1.
During periods where the POH is present the TXDATAEN signal goes high.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
4848 Agere Systems Inc.
Figure 5-14. NSMI Clock and Data Diagram for M13 NSMI Mode (NSMI <---> M13 <---> DS3 External I/O)
Figure 5-15. NSMI Clock and Data Diagram for E13 NSMI Mode 1 (NSMI <---> E13 <---> E3 External I/O
NSMI_TXDATAEN
NSMI_TXCLK
44.736 MHz
X1 X2 M1 M3
DS3 frame
(for info on ly) X1
NSMI_TXDATA
NSMI_TXSYNC
4760 bits
Position of this pulse is provisionable 0-256 bits before M1
NSMI_RXCLK
44.736 MHz Output
X1 X2 M1 M3
DS3 Frame X1
NSMI_RXDATA
NSMI_RXSYNC
4760 bits
Position of this pulse is provisionable 0-256 bits before M1
NSMI_RXDATAEN
Notes:
Clock from M13 is at 44.736 MHz rate and is not gapped. TXDATAEN is provided to mark the DS3 frame overhead times.
M1 can occur asynchronously and its position is optionally marked by TXSYNC, which is provisioned to be 0 to 255 bits before the M1 bit. TXDATAEN
goes low during DS3 frame overhead bits.
NSMI_TXDATAEN
(output)
NSMI_TXCLK
(34.368 MHz output)
E3 frame
(for info only)
NSMI_TXDATA
(output)
NSMI_TXSYNC
(output)
NSMI_RXCLK
(34.368 MHz output)
E3 Frame
(For Info only)
NSMI_RXDATA
(input)
NSMI_RXSYNC
(output)
NSMI_RXDATAEN
(output)
1536 bits
Position of this pulse is provisionable 0-256 bits before C11
FRAME, RAI, RSVD C11 = 0 Cj3 = 0 Frame
Stuff = data
1536 bits
Position of this pulse is provisionable 0-256 bits before C11
FRAME, RAI, RSVD C11 = 0 Cj3 = 0 Frame
Stuff = data
Notes:
Clock from E13 is at 34.368 MHz rate and is not gapped. TXDATAEN is provided to mark the overhead time and control bits time of the E3 frame.
C11’s (the first C bit of the first tributary) position is optionally marked by TXSYNC, which is provisioned to be 0 to 255 bits before C11 (bit 385 of the
E3 frame).
During periods where the OH is present the TXDATAEN signal goes low. All C bits are zero and the stuff bits are used for data.
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 49
Figure 5-16. NSMI Clock and Data Diagram for E13 NSMI Mode 2 (NSMI <--> E13 <--> SPEMPR <--> STM-N)
NSMI_TXDATAEN
(output)
NSMI_TXCLK
(51.84 MHz output)
E3 frame
(for info only)
NSMI_TXDATA
(output)
NSMI_TXSYNC
(output)
NSMI_RXCLK
(51.84 MHz output)
E3 frame
(For info only)
NSMI_RXDATA
(Input)
NSMI_RXSYNC
(output)
NSMI_RXDATAEN
(output)
1536 bits
Position of this pulse is provisionable 0-256 bits before C11
FRAME, RA I, RSVD C11 = 0 Cj3 = 0 Frame
Stuff = data
1536 bits
Position of this pulse is provisionable 0-256 bits before C11
FRAME, RAI, RSVD C11 = 0 Cj3 = 0 Frame
Stuff = data
Notes:
Clock from E13 is at 51.84 MHz rate and is not gapped. TXDATAEN is the combination of an internal clock enable and data enable from SPEMPR.
TXDATAEN is used to mark the overhead time and control bits time of the E3 frame. Clock enable is used to gap the clock rate to 34.368 MHz.
C11’s (the first C bit of the first tributary) position is optionally marked by TXSYNC, which is provisioned to be 0 to 255 bits before C11 (bit 385 of the E3
frame).
During periods where the OH is present the TXDATAEN signal goes low. All C bits are zero and the stuff bits are used for data.
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
5050 Agere Systems Inc.
Figure 5-17. NSMI Clock and Data Diagram for Framer (FRM) NSMI Mode
Table 5-12. NSMI Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
NSMIRXDATA[3:1] NSMIRXCLK R 3.5 3.5 5 0
NSMIRXSYNC[3:1] NSMIRXCLK R 3.5 3.5 5 0
NSMIRXDATA[3:1]* NSMIRXCLK R 3.5 3.5 3.5 3
NSMIRXSYNC[3:1]* NSMIRXCLK R 3.5 3.5 3.5 3
* Pertinent to DS3 clear channel application, which uses NSMI I/O—this feature is available only in V3.0 devices.
Table 5-13. NSMI Outputs Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
NSMITXDATA[3:1] NSMITXCLK R 0.5 8.75
NSMITXSYNC[3:1] NSMITXCLK R 0.5 8.75
RXDATAEN[3:1] NSMIRXCLK R 0.5 8.75
TXDATAEN[3:1] NSMITXCLK R 0.5 8.75
NSMIRXSYNC[3:1] NSMIRXCLK R 0.5 8.75
Note: The 193rd bit of a DS1 frame is not transmitted on the NSMI but is used to locate the FSYNC position. As a conse-
quence of this, signaling bits are not transported in Ultramapper versions 1—2.1. Version 3 devices contain a mode
MSB LSB
START FSYNC LSB RSVDMSB
Link number[0:4]
Data Byte(Time Slot) for a DS0/E0 Link
DATA 1,1 DATA 2,1 DATA 1,2 DA TA 2,2DATA 2 ,2
DATA Link#,Byte# DATA 5 ,1DATA 5,1 DATA 5,2DATA 5,2 DATA 5,3DATA 5,3
01100000 01010000 00100000 00010000 01101000
NSMITXCLK
51.84MHz
NSMITXDATA
NSMITXSYNC
Binary Value
Links may appear in any order, bytes per link are sequentialStart goes low to signify data, high otherwise
FSYNC High signifies 1st byte of link N
}
Link Number Provisionable 1:28 or 0:27 for DS1
NSMITXCLK
NSMITXDATA
NSMITXSYNC
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 51
5.7 Shared Low-Speed Line Timing
Note: Single rail shown.
Figure 5-18. Shared Low-Speed Line Clock and Data Timing
5.8 CHI Timing
Figure 5-19. CHI Clock Timing
* VIH to VIH or VIL to VIL.
Table 5-14. Shared Low-Speed Line Timing Input Specifications
Name Reference Edge
Rising/Falling Max Rise T ime
(ns) Max Fall Time
(ns) Min Setup
(ns) Min Hold
(ns)
LINERXDATA[30:1] LINERXCLK[30:1] R/F 10* 10* 15 10*
* Alternative specification: the maximum rise and fall times may be increased to 20 ns each if the minimum hold time is increased to 12 ns. The minimum
setup time will remain at 15 ns.
Table 5-15. Shared Low-Speed Line Timing Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
LINETXDATA[30:1] LINETXCLK[30:1] R/F –10 10
Table 5-16. CHIRXGCLK and CHITXGCLK Timing Specifications
Parameter Description Min Typ Max Unit
t1Rise Time 2 7 ns
t2Width (8.192 MHz)* 48.84 73.24 ns
t2Width (1 6.384 MHz)* 24.42 36.62 ns
t3Fall Time 2 7 ns
t4Period (8.192 MHz) 122.07 ns
t4Period (16.384 MHz) 61.03 ns
LINETXCLK
tPD
t
SU
t
H
LINERXCLK
LINERXDATA
LINETXDATA
t1VDD33
VIL
VIH VIH
VIL
t3
t4
50%
t2
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
5252 Agere Systems Inc.
Note: This figure assumes TMXF846221BL-2 is programmed to sample the frame sync signal on the rising edge of the bit clock.
Figure 5-20. CHI Bus Timing
Note: For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of
the bit clock.
Figure 5-21. Typical Receive CHI Timing (Non-CMS Mode—FRM_CMS = 0)
Table 5-17. CHI Interface Timing Specificat ions
Parameter Description Min Max Unit
t5Frame Sync Setup Time to Active CHI Clock Edge 15 ns
t6Frame Sync Hold Time from Active CHI Clock Edge 4 ns
t7CHIRXDATA Setup to Active CHI Clock Edge 15 ns
t8CHIRXDATA Hold Time from Active CHI Clock Edge 4 ns
t9CHITXDATA Propagation Delay from Active CHI Clock Edge 4 30 ns
t
9
CHITXDATA
CHIRXGCLK
t
5
t
6
CHIRXDATA
CHIRXGFS
t
7
t
8
CHITXGFS
CHITXGCLK
CHIRXGFS
CHIRXGCLK
w/ 0 offset data sampled
w/ ½ bit offset data sampled
w/ bit offset = 1 data sampled
w/ bit offset = 7 data sampled
data sampled
w/ TS offset = 1,
bit offset = 0
TS0 B1
TS0 B0
TS0 B0 TS0 B1 TS0 B2 TS0 B3 TS0 B4 TS0 B5
TS0 B 0
TS0 B1 TS0 B2 TS0 B3 TS0 B4TS0 B0
TS0 B0 TS0 B1 TS0 B2 TS0 B3 TS0 B4 TS0 B5
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 53
Note: For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of
the bit clock.
Figure 5-22. Transmit CHI Timing (Non-CMS Mode—FRM_CMS = 0)
Notes:
n = 127 at 16 MHz, n = 63 at 8 MHz, and n = 31 at 4 MHz.
For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of the bit
clock.
Figure 5-23. Typical Receive CHI Timing (CMS Mode—FRM_CMS = 1, CHIRX/ TXGC LK 4 MHz)
Note: For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of
the bit clock.
Figure 5-24. Transmit CHI Timing (CMS Mode—FRM_CMS = 1, CHIRX/TXGCLK 4 MHz))
CHIRXGFS
CHIRXGCLK
w/ 0 offset
w/ ½ bit offset
w/ bit offset = 1
w/ TS offset = 255,
bit offset = 7½ TS0 B0
w/ TS offset = 1,
bit offset = 0
TS0 B2 TS0 B3 TS0 B4
TS255 B0
TS0 B3 TS 0 B4
TS255 B1 TS255 B2 TS255 B3
TS0 B0 TS0 B1
TS255 B4 TS255 B5
TS0 B0
TS0 B3 TS0 B4 TS0 B5
TS0 B5
TS0 B1 TS0 B2
TS0 B1 TS 0 B2
TS0 B0 TS0 B1 TS0 B2 TS0 B3 TS0 B4
CHIRXGFS
CHIRXGCLK
w/ 0 offset data sam pled
w/ ¼ bit offset data sampled
w/ ½ bit offset data sampled
w/ ¾ bit offset data sampled
w/ b it offset = 1 data sampled
w/ 2¾ bit offset data sampled
w/ b it offset = 7 data sampled
data sampled
data sampled
data sampled TS0 B2 TS0 B3 TS0 B 4
w/ TS offset = 127,
bit off set = 7¾ TSn B7 TS0 B0 TS0 B 1
TSn B2 TSn B3 TSn B4
w/ TS offset = 13,
bit off set = 3¼ TSn – 13 B4 TSn – 13 B5 TSn – 13 B6 T Sn – 13 B7 TSn – 12 B0 TSn – 12 B1
w/ TS offset = 1,
bit offset = 0 TSn – 1 B7 TSn B0 TSn B1
TSn B4 TSn B5
TSn B4 TSn B5
TSn B0 TSn B1 TSn B2 TSn B3
TSn B6 TSn B7
TS0 B2 TS0 B3
TS0 B2 TS0 B3
TS0 B0 TS0 B1
TSn B6 TSn B7 TS0 B0 TS0 B1
TSn B6 TSn B7 TS0 B0 TS0 B1
TS0 B3 TS0 B4
TSn B7 TS0 B0 TS0 B1 TS0 B2 TS0 B 3
TSn B7 TS0 B0 TS0 B1 TS0 B2
TSn B7 TS0 B0 TS0 B1 TS0 B2 TS0 B3 TS0 B4
CHIRXGFS
CHIRXGCLK
w/ 0 offset
w/ ¼ bi t o ffse t
w/ ½ bi t o ffse t
w/ bit offset = 1
TSn B6 TSn B7 TS0 B0 TS0 B1 TS0 B2 TS0 B3
TS0 B2 TS0 B3
TSn B6 TSn B7 TS0 B0 TS0 B1 TS0 B2
TSn B6 TSn B7 TS0 B0 TS0 B1
TSn B5 TSn B6 TSn B7 TS0 B0
w/ TS offset = 1,
bit offset = 0
TSn B7 TS0 B0 TS0 B1
w/ TS offset = 127,
bit offset = 7¾
TSn – 1 B6 TSn – 1 B7 TSn B0 TSn B1
TS0 B2 TS0 B3
TS0 B1 TS0 B2
TSn B2 TSn B3
TS0 B3
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
5454 Agere Systems Inc.
5.9 Parallel System Bus (PSB) Timing
Figure 5-25. PSB Clock and Da ta Timing
Table 5-18. PSB Inputs Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Ti me ( ns) Min Setup
(ns) Min Hold
(ns)
CHIRXDATA[16:1] (PSB mode) CHIRXGCLK R/F 10 10 10 0
CHIRXGFS (PSB mode) CHIRXGCLK R/F 10 10 10 0
CHITXGFS (PSB mode) CHITXGCLK R/F 10 10 10 0
Table 5-19. PSB Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
CHITXDATA[16:1] (PSB mode) CHITXGCLK R/F 4 22
CHITXGCLK
tPD
t
SU
t
H
CHIRXGCLK
CHIRXDATA
CHITXDATA
CHIRXGFS
10 ns 0 ns
CHITXGFS
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 55
6 Reference Clocks
Table 6-1. High-Speed Interface Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
RHSCP/N 6.43 155.52 MHz 20 0.4 0.4 Nom 45%—55%
THSCP/N 6.43 155.52 MHz 20 0.01 UIp-p or 64 psp-p or
0.001 UIrms
(12 kHz—1.3 MHz)
0.4 0.4 Nom 45%—55%
THSCP/N 1.6 622.08 MHz 20 0.04 UIp-p or 64 psp-p
(12 kHz—5 MHz) 0.4
(nom) 0.6
(max) 45%—55%
Table 6-2. Protection Link Input Clock Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
RPSCP/N 6.43 155.52 MHz 20 0.4 0.4 Nom 45%—55%
Table 6-3. DS3/E3/STS-1 Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
DS3DATAOUTCLK[6:1] (DS3) 22.353 44.736 MHz 20 0.05 UIp-p or
1.12 nsp-p
(10 kHz—400 kHz)
55Max40%—60%
DS3DATAINCLK[6:1](DS3) 22.353 44.736 MHz 20 3.5 2.5 Max 45%—55%
DS3DATAOUTCLK[6:1](E3) 29.090 34.368 MHz 20 0.03 UIp-p or
0.87 nsp-p
(100 kHz—800 kHz)
55Max40%—60%
DS3DATAINCLK[6:1]](E3) 29.090 34.368 MHz 20 3.5 2.5 Max 45%—55%
DS3DATAOUTCLK[6:1](STS-1) 19.290 51.84 MHz 20 0.01 UIp-p or
0.19 nsp-p or
0.001 UIrms
(12 kHz—400 kHz)
55Max40%—60%
DS3DATAINCLK[6:1](STS-1) 19.290 51.84 MHz 20 3.5 2.5 Max 45%—55%
Table 6-4. DS1/E1 DJA Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
E1XCLK 15.25 65.536 MHz 50 0.1 UIp-p or 1.5 n sp-p
(20 kHz—100 kHz) 3.5 3.5 Max 40%—60%
DS1XCLK 20.20 49.408 MHz 32 0.1 UIp-p or 2.0 nsp-p
(10 kHz—40 kHz) 3.5 3.5 Max 40%—60%
E1XCLK 30.52 32.768 MHz 50 0.1 UIp-p or 3.0 n sp-p
(20 kHz—100 kHz) 3.5 3.5 Max 40%—60%
DS1XCLK 40.40 24.704 MHz 32 0.1 UIp-p or 4.0 nsp-p
(10 kHz—40 kHz) 3.5 3.5 Max 40%—60%
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
5656 Agere Systems Inc.
Table 6-5. M13/E13 Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
DS2AISCLK 158.42 6.312 MHz 30 5 5 Max 45%—55%
E2AISCLK 118.37 8.448 MHz 30 5 5 Max 45%—55%
Table 6-6. DS3/E3 DJA Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
DS3XCLK 22.35 44.736 MHz 20 0.01 UIp-p or 0.22 nsp-p
(10 Hz—400 kHz) 3.5 3.5 Max 45%—55%
E3XCLK 29.09 34.368 MHz 20 0.01 UIp-p or 0.29 nsp-p
(100 Hz—800 kHz) 3.5 3.5 Max 45%—55%
Table 6-7. LOPOH Input Clock Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
LOPOHCLKIN 51.44 19.44 MHz 8 8 Max 45%—55%
Table 6-8. Microprocessor Interface Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
MPCLK (min) 62.5 16 MHz 4 4 Min 45%—55%
MPCLK (max)*15.0 66.67 MHz 4 4 Max 45%—55%
* The following applies to the synchronous microprocessor mode (MPMODE pin = 1): If DTN is used, then the maximum frequency for MPCLK is
determined by the processor’s setup specification for DTN. MPU maximum bus operating frequency = 1/(MPU DTN setup time + tDTNVPD). Fo r
example, an 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
Table 6-9. Framer PLL Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
CLKIN_PLL 19.2 51.84 MHz 20 GR-499 and G.823 40%—60%
CHIRXGTCLK (DS1 mode) 647 .66 1.544 MHz 32 GR-499 10 10 Max 40%—60%
CHIRXGTCLK (E1 mode) 488.28 2.048 MHz 50 G.823 10 10 Max 40%—60%
Table 6-10. CHI Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
CHIRXGCLK (CHI mode) 488.28 2.048 MHz 50 10 10 Max 40%—60%
CHIRXGCLK (CHI mode) 244.14 4.096 MHz 50 10 10 Max 40%—60%
CHIRXGCLK (CHI mode) 122.07 8.192 MHz 50 10 10 Max 40%—60%
CHIRXGCLK (CHI mode) 61.035 16.384 MHz 50 10 10 Max 40%—60%
CHITXGCLK (CHI mode) 488.28 2.048 MHz 50 10 10 Max 40%—60%
CHITXGCLK (CHI mode) 244.14 4.096 MHz 50 10 10 Max 40%—60%
CHITXGCLK (CHI mode) 122.07 8.192 MHz 50 10 10 Max 40%—60%
CHITXGCLK (CHI mode) 61.035 16.384 MHz 50 10 10 Max 40%—60%
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 57
Table 6-11. PSB Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
CHIRXGCLK (PSB mode) 51.44 19.44 MHz 20 10 10 Max 40%—60%
CHITXGCLK (PSB mode) 51.44 19.44 MHz 20 10 10 Max 40%—60%
Table 6-12. High-Speed Interface Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
THSCOP/N 6.43 155.52 MHz 20 0.1 UIp-p 45%—55%
THSCOP/N 1.6 622 MHz 20 0.1 UIp-p 45%—55%
Table 6-13. Protection Link Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
TPSCP/N 6.43 155.52 MHz 20 45%—55%
TPSCP/N 1.6 622.08 MHz 20 45%—55%
Table 6-14. Line Timing Interface Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
RLSCLK 51.44 19.44 MHz 2 0 1.5 1.5 Nom 45%—55%
TLSCLK 51.44 19.44 MHz 2 0 1.5 1.5 Nom 45%—55%
Table 6-15. TOAC Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
RTOACCLK (STS1LT; full access) 578 1.728 MHz 1.5 1.5 Nom 40%—60%
RTOACCLK (TMUX; STS-12 D1-3 mode) 5.2 (µs) 192 kHz 1.5 1.5 Nom 27%—47%*
* Positive duty cycle.
RT OACCLK (TMUX; STS-12 D4-12 mode) 1.73 (µs) 576 kHz 1.5 1.5 Nom 43%—63%*
RTOACCLK (TMUX; STS-12 full access) 48.22 20.736 MHz 1.5 1.5 Nom 23%—43%*
RTOACCLK (TMUX; STS-3 D1-3 mode) 5.2 (µs) 192 kHz 1.5 1.5 Nom 48%—68%*
RTOACCLK (TMUX; STS-3 D4-12 mode) 1.73 (µs) 576 kHz 1.5 1.5 Nom 42%—62%*
RTOACCLK (TMUX; STS-3 full access) 192.9 5.184 MHz 1.5 1.5 Nom 23%—43%*
TTOACCLK (STS1LT; full access) 578 1.728 MHz 1.5 1.5 Nom 40%—60%
TTOACCLK (TMUX; STS-12 D1-3 mode) 5.2 (µs) 192 kHz 1.5 1.5 Nom 27%—47%*
TTOACCLK (TMUX; STS-12 D4-12 mode) 1.73 (µs) 576 kHz 1.5 1.5 Nom 43%—63%*
TTOACCLK (TMUX; STS-12 full access) 48.22 20.736 MHz 1.5 1.5 Nom 23%—43%*
TTOACCLK (TMUX-STS-3 D1-3 mode) 5.2 (µs) 192 kHz 1.5 1.5 Nom 48%—68%*
TTOACCLK (TMUX-STS-3 D4-12 mode) 1.73 (µs) 576 kHz 1.5 1.5 Nom 42%—62%*
TTOACCLK (TMUX-STS-3 full acce ss) 192.9 5.184 MHz 1.5 1.5 Nom 23%—43%*
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
5858 Agere Systems Inc.
Table 6-16. POAC Output Clocks Specifications
Clock Name Pe riod Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
RPOACCLK (TMUX) 1.73 (µs) 576 kHz 1.5 1.5 Nom 40%—60%
RPOACCLK (STS1LT) 1.73 (µs) 576 kHz 1.5 1.5 Nom 40%—60%
RPOACCLK (SPEMPR) 1.73 (µs) 576 kHz 1.5 1.5 Nom 40%—60%
TPOACCLK (TMUX) 1.73 (µs) 576 kHz 1.5 1.5 Nom 40%—60%
TPOACCLK (STS1LT) 1.73 (µs) 576 kHz 1.5 1.5 Nom 40%—60%
TPOACCLK (SPEMPR ) 1.73 (µs) 576 kHz 1.5 1.5 Nom 40%—60%
Table 6-17. DS3/E3/STS-1 Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
DS3RXCLKOUT [6:1](DS3) 22.353 44.736 MHz 20 GR-253 1.5 1.5 Nom 45%—55%
DS3RXCLKOUT [6:1](E3) 29.09 34.368 MHz 20 G.783 1.5 1.5 Nom 45%—55%
DS3RXCLKOUT [6:1] (STS-1) 19.29 51.84 MHz 20 GR-253 1.5 1.5 Nom 45%—55%
Table 6-18. LOPOH Output Clock Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
LOPOHCLKOUT 51.44 19.44 MHz 20 1.5 1.5 Nom 45%—55%
Table 6-19. NSMI Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
RXDATAEN 19.29 51.84 MHz 20 1.5 1.5 Nom 45%—55%
NSMITXCLK 19.29 51.84 MHz 20 1.5 1.5 Nom 45%—55%
Table 6-20. Framer PLL Output Clo cks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
CG_PLLCLKOUT 647.66 1.544 MHz 32 GR-499 45%—55%
CG_PLLCLKOUT 488.28 2.048 MHz 50 G.823 45%—55%
Table 6-21. Shared Low-Speed Receive Line Input/Output Clocks Specifications
Clock Name Period (ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
LINERXCLK (framer; DS1) 647.66 1.544 MHz 32 10 10 Max 45%—55%
LINERXCLK (framer; E1) 488.28 2.048 MHz 50 10 10 Max 45%—55%
LINERXCLK (M12) 647.66 1.544 MHz 32 10 10 Max 45%—55%
LINERXCLK (E12) 488.28 2.048 MHz 50 10 10 Max 45%—55%
LINERXCLK (VTMPR; DS1) 647.66 1.544 MHz 32 10 10 Max 45%—55%
LINERXCLK (VTMPR; E1) 488.28 2.048 MHz 50 10 10 Max 45%—55%
LINERXCLK (VTMPR; VC11) 600.96 1.664 MHz 20 10 10 Max 45%—55%
LINERXCLK (VTMPR; VC12) 44 6.42 2.24 MHz 20 10 10 Max 45%—55%
LINERXCLK (M23) 158.42 6.312 MHz 30 10 10 Max 45%—55%
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 59
LINERXCLK (E23) 118.37 8.448 MHz 30 10 10 Max 45%—55%
LINERXCLK (DJA; DS1) 647.66 1.544 MHz 32 10 10 Max 45%—55%
LINERXCLK (DJA; E1) 488.28 2.048 MHz 50 10 10 Max 45%—55%
LINERXCLK (TPG; DS1) 647.66 1.544 MHz 32 10 10 Max 45%—55%
LINERXCLK (TPG; E1) 488.28 2.048 MHz 50 10 10 Max 45%—55%
Table 6-22. Shared Low-Speed Transmit Line Input/Output Clocks Specifications
Clock Name Period (ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
LINETXCLK (framer; DS1) 647.66 1.544 MHz 32 1.5 1.5 Nom 45%—55%
LINETXCLK (framer; E1) 488.28 2.048 MHz 50 1.5 1.5 Nom 45%—55%
LINETXCLK (M12) 647.66 1.544 MHz 32 10 10 Max 45%—55%
LINETXCLK (E12) 488.28 2.048 MHz 50 10 10 Max 45%—55%
LINETXCLK (VTMPR; DS1) 647.66 1.544 MHz 32 1.5 1.5 Nom 45%—55%
LINETXCLK (VTMPR; E1) 488.28 2.048 MH z 50 1.5 1.5 Nom 45%—55%
LINETXCLK (VTMPR; VC11) 600.96 1.664 MHz 20 1.5 1.5 Nom 45%—55%
LINETXCLK (VTMPR; VC12) 446.42 2.24 MHz 20 1.5 1.5 Nom 45%—55%
LINETXCLK (M23) 158.42 6.312 MHz 30 10 10 Max 45%—55%
LINETXCLK (E23) 118.37 8.448 MHz 30 10 10 Max 45%—55%
LINETXCLK (DJA; DS1) 647.66 1.544 MHz 32 1.5 1.5 Nom 45%—55%
LINETXCLK (DJA; E1) 488.28 2.048 MHz 50 1.5 1.5 Nom 45%—55%
LINETXCLK (TPG; DS1) 647.66 1.544 MHz 32 1.5 1.5 Nom 45%—55%
LINETXCLK (TPG; E1) 488.28 2.048 MHz 50 1.5 1.5 Nom 45%—55%
Table 6-23. NSMI Input/Output Clocks Specifications
Clock Name Period (ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
NSMIRXCLK (framer) 19.29 51.84 MHz 20 3.5 3.5 Max 45%—55%
NSMIRXCLK (STS1LT) 19.29 51.84 MHz 20 3.5 3.5 Max 45%—55%
NSMIRXCLK (M13) 22.35 44.736 MHz 20 1.5 1.5 Nom 45%—55%
NSMIRXCLK (E13) 29.09 34.368 MHz 20 1.5 1.5 Nom 45%—55%
NSMIRXCLK (SPEMPR) 19.29 51.84 MHz 20 3.5 3.5 Max 45%—55%
Table 6-21. Shared Low-Speed Receive Line Input/Output Clocks Specifications (continued)
Clock Name Period (ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
6060 Agere Systems Inc.
7 Microprocessor Interface Timing
Note: To allow proper operation of the microprocessor interface upon device/board bring up, the recommended powerup
sequence (listed in Section 3.6 Recommend ed Poweru p Se qu ence, on page 37) should be followed. Specifically, to
avoid potential bus contention issues, the IC3STATEN pin should be held low during boot up.
7.1 Synchronous Write Mode
The synchronous microprocessor interface mode is selected when MPMODE (pin F6) = 1. In this mode, MPCLK used for
the Ultramapper is the same as the microprocessor clock. Interface timing for the synchronous mode write cycle is given in
Figure 7-1 and in Table 7-1, and for the read cycle in Figure 7-2 and in Table 7-2.
Notes:
MPCLK Input clock to Ultramapper MPU block.
ADDR [20:0] The address will be available throughout the entire cycle.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low. ADSN must be one MPCLK clock period wide.
RWN (Input) The read (H) write (L) signal is always high except during a write cycle.
DATA[15:0] Data will be available during cycle T1.
DTN (Output) Data transfer acknowledge is active-low for one clock and then driven high before entering a high-impedance state. (This is done with an
I/O pad using the input as feedback to qualify the 3-state term.) DTN will become 3-stated when CSN is high. Typically, DTN is active for
four or five MPCLK cycles after ADSN is low.
Figure 7-1. Microprocessor Interface Synchronous W r ite Cycle—MPMODE Pin = 1
MPCLK
ADDR[20:0]
CSN
ADSN
RWN
DATA[15:0]
DTN
(INPUT)
t
WS
t
WS
t
DTNVPD
t
ADDRVS
t
CSNVS
t
WS
T
0
T
1
T
2
T
3
T
n – 2
T
n – 1
T
n
t
AIPD
t
APD
t
APD
t
APD
t
APD
t
DTNIPD
HIGH ZHIGH Z t
ADSNVDTF
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 61
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. MPU maximum bus operating
frequency = 1/(MPU DTN setup time + tDTNVPD). For example, an 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. This interval is typically in the 100 ns
to 200 ns range, but can be several hundred ns. It should never exceed 35 MPCLK cycles. Certain registers in the VTMPR block have a very long
acknowledge cycle (in the order of 32 MPCLK cycles). The reason for this is that those registers can also be accessed by the VTMPR lower-order path
overhead interface as part of SONET overhead termination functions. Therefore the user must insert long enough delay or use the DTN signal to read/
write these registers correctly. Additionally, if the high-speed CDR is used, during initialization, enough time must be provided to allow the CDR to stabi-
lize. If the CDR has not stabilized, it may take much longer than 35 MPCLK cycles for accesses to certain VTMPR registers (DTN return times on the
order of several µs). It is recommended that the user wait at least 10 ms after the CDR has been reset before attempting to access any VTMPR regis-
ters. CDR provisioning is accomplished via the UMPR_CLCR register. In addition to the above, the VT_RDY bit must be set before attempting any
VTMPR register accesses.
Table 7-1. Microprocessor Interface Synchronous Writ e Cycle Specifications
Symbol Parameter Setup
(Min) Hold
(Min) Delay
(Min) Delay
(Max) Unit
MPCLK MPCLK 16 MHz Min—66* MHz Max Frequency MHz
tWS ADSN, RWN, DATA (write) Valid to MPCLK 6.7 ns
tAPD MPCLK to ADDR, RWN, DA T A, CSN (write) Invalid 0 ns
tCSNVS CSN Valid to MPCLK 6 ns
tADDRVS ADDR Valid to MPCLK 3.5 ns
tAIPD MPCLK to ADSN Invalid 0 ns
tDTNVPD MPCLK to DTN Valid 2.5 12 ns
tDTNIPD MPCLK to DTN Invalid 2. 5 12 ns
TADSNVDTF ADSN Valid to DTN Falling ns
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
6262 Agere Systems Inc.
7.2 Synchronous Read Mode
Notes:
MPCLK Input clock to Ultramapper MPU block.
ADDR [20:0] The address will be available throughout the entire cycle, and must be stable before ADSN turns high.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low. ADSN must be one MPCLK clock period wide.
RWN (Input) The read (H) write (L) signal is always high during the read cycle.
DTN (Output) Data transfer acknowledge on the host bus interface is initiated on T6. This signal is active for one clock, and then driven high before
entering a high-impedance state. (This is done with an I/O pad using the input as feedback to qualify the 3-state term.) DTN will become 3-
stated when CSN is high. Typically, DTN is active four or five MPCLK cycles after ADSN is low.
DATA [15:0] Read data is stable in Tn – 1. The data is guaranteed to be stable no later than the time at which DTN becomes active.
Figure 7-2. Microprocessor Interface Synchronous Read Cycle—MPMODE Pin = 1
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. MPU maximum bus operating
frequency = 1/(MPU DTN setup time + tDNVPD). For example, an 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. This interval is typically in the 100 ns
to 200 ns range, but can be several hundred ns. It should never exceed 35 MPCLK cycles. Certain registers in the VTMPR block have a very long
acknowledge cycle (in the order of 32 MPCLK cycles). The reason for this is that those registers can also be accessed by the VTMPR lower-order path
overhead interface as part of SONET overhead termination functions. Therefore the user must insert long enough delay or use the DTN signal to read/
write these registers correctly. Additionally, if the high-speed CDR is used, during initialization, enough time must be provided to allow the CDR to stabi-
lize. If the CDR has not stabilized, it may take much longer than 35 MPCLK cycles for accesses to certain VTMPR registers (DTN return times on the
order of several µs). It is recommended that the user wait at least 10 ms after the CDR has been reset before attempting to access any VTMPR regis-
ters. CDR provisioning is accomplished via the UMPR_CLCR register. In addition to the above, the VT_RDY bit must be set before attempting any
VTMPR register accesses.
Table 7-2. Microprocessor Interface Synchronous Read Cycle Specifications
Symbol Parameter Setup
(Min) Hold (Min) Delay
(Min) Delay
(Max) Unit
MPCLK MPCLK 16 MHz Min—66* MHz Max Frequency MHz
tAVS ADDR Valid to MPCLK 3.5 ns
tAPD MPCLK to ADDR Invalid 0 ns
tCSNSU CSN Active to MPCLK 6 ns
tADSNSU ADSN Valid to MPCLK 6 ns
tSNIPD MPCLK to ADSN Inactive 0 ns
tDNVPD MPCLK to DTN Valid 2.5 12 ns
tDNIPD MPCLK to DTN Invalid 2.5 12 ns
tDAIPD MPCLK to DATA 3-State 3.5 15 ns
tADSNVDTF ADSN Valid to DTN Falling ns
MPCLK
ADDR[20:0]
CSN
ADSN
RWN
t
ADSNSU
t
SNIPD
t
CSNSU
t
AVS
T
0
T
1
T
2
T
n – 4
T
n – 3
T
n – 2
T
n – 1
T
n
DTN
DATA[15:0]
(OUTPUT)
t
DAIPD
t
DNVPD
t
DNIPD
t
ADSNVDTF
HIGH ZHIGH Z
t
APD
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 63
7.3 Asynchronous Write Mode
The asynchronous microproce ssor interface mode is selected when MPMODE (pin F6) = 0. Interface timing for the asyn-
chronous mode write cycle is given in Figure 7-3 and in Table 7-3, and for the read cycle in Figure 7-4 and in Table 7-4.
Although this is an asynchronous interface, an MPCLK is still required. This clock can be different (asynchronous) from the
MPU clock. Internal to the chip, RWN, ADSN, and DSN will be sampled by MPCLK.
Notes:
ADDR [20:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available throughout the entire cycle. ADDR
must be held constant while ADSN and DSN are valid (low).
CSN (Input) Chip select is an active-low signal. CSN must be held low (active) until ADSN and DSN are deasserted.
ADSN (Input) Address strobe is active-low. ADSN must be stable for the entire period. ADSN and CSN may be connected and driven from the same
source.
DSN (Input) Data strobe is active-low.
DATA [15:0] Write data is asynchronously passed from the host bus to the internal bus. Data will be available throughout the entire cycle. DATA must
be held constant while DSN is valid (low).
RWN (Input) The read/write signal should be high for a read cycle and low for a write cycle. It should always be held high, except during a write cycle.
RWN must be held low (write) until DSN is deasserted (high).
DTN (Output) Data transfer acknowledge (active-low). DTN is driven out of 3-state to inactive-high on the assertion of CSN. When the internal transac-
tion is complete, DTN goes active-low . DTN is then driven high again when either ADSN or DSN is deasserted. DTN will become 3-stated
when CSN is high. DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. This
interval is typically in the 100 ns to 200 ns range, but can be several hundred ns. In lab measurements, it has never exceeded 1000 ns.
Figure 7-3. Microprocessor Interface Asynchronous Write Cycle—MPMODE Pin = 0
ADDR[20:0]
CSN
ADSN
DSN
RWN
DATA[15:0]
DTN
(INPUT)
tAVADSF
tDVDSF
tCSFDTR tDSFDTF
tADSRDTR tCSRDT3
tDSRDI
tDSRRWR
tDSNRAI
tADSRAI
tAICSR
tRWFDSF
tAVDSF
HIGH Z HIGH Z
tCSFDSF
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
6464 Agere Systems Inc.
Table 7-3. Microprocessor Interface Asynchronous Write Cycle Specifications
Symbol Parameter Setup
(Min) Hold
(Min) Delay
(Min) Delay
(Max) Unit
MPCLKMPCLK 16 MHz Min66 MHz Max Frequency————MHz
tCSFDSF CSN Fall Setup and Hold to DSN Fall 0 ns
tAICSR CSN Rise to ADDR Invalid 0 ns
tAVADSF ADDR Valid Setup and Hold to ADSN Fall 1.0 ns
tADSRAI ADSN Rise to ADDR Invalid 1.42 ns
tAVDSF ADDR Valid Setup and Hold to DSN Fall 0 ns
tDSNRAI DSN Rise to ADDR Invalid 0 ns
tRWFDSF RWN Fall Setup and Hold to DSN Fall 0 ns
tDSRRWR DSN Rise to R WN Rise 0 ns
tDVDSF DATA Valid Setup and Hold to DSN Fall 0 ns
tDSRDI DSN Rise to DATA Invalid 0 ns
tCSFDTR CSN Fall to DTN Rise 5.2 16.0 ns
tDSFDTF DSN Fall to DTN Fall 0 * ns
tADSRDTR ADSN or DSN Rise to DTN Rise 2.9 13.3 ns
tCSRDT3 CSN Rise to DTN 3-State 2.9 13 ns
* Certain registers in the VTMPR block have a very long acknowledge cycle (in the order of 32 MPCLK cycles). The reason for this is that those registers
can also be accessed by the VTMPR lower order path overhead interface as part of SONET overhead termination functions. Therefore, the user must
insert a long enough delay or use the DTN signal to read/write these registers correctly. Additionally, if the high-speed CDR is used, during initializa-
tion, enough time must be provided to allow the CDR to stabilize. If the CDR has not stabilized, it may take much longer than 35 MPCLK cycles for
accesses to certain VTMPR registers (DTN return times on the order of several µs). It is recommended that the user wait at least 10 ms after the CDR
has been reset before attempting to access any VTMPR registers. CDR provisioning is accomplished via the UMPR_CLCR register. In addition to the
above, the VT_RDY bit must be set before attempting any VTMPR register accesses.
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 65
7.4 Asynchronous Read Mode
Notes:
ADDR [20:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available throughout the entire cycle.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low.
DSN (Input) Data strobe is active-low.
RWN (Input) The read (H) write (L) signal is always high during a read cycle.
DTN (Output) Data transfer acknowledge (active-low). DTN is driven out of 3-state to inactive-high on the assertion of CSN. When the internal transac-
tion is complete, DTN goes active-low . DTN is then driven high again when either ADSN or DSN is deasserted. DTN will become 3-stated
when CSN is high.
DATA [15:0] 16-bit data bus.
Figure 7-4. Microproce ssor Interface Asynchronous Read Cycle—MPMODE Pin = 0
ADDR[20:0]
CSN
ADSN
DSN
DTN
DATA[15:0]
t
ADSRD3
t
CSRDT3
t
ADSRDTR
t
CSFDSF
RWN
t
AVADSF
t
AVDSF
t
AICSR
t
ADSRAI
t
DSNRAI
t
DTVDV
t
DSFDTF
t
CSFDTR
HIGH Z
HIGH Z
HIGH Z
HIGH Z
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
6666 Agere Systems Inc.
Table 7-4. Microprocessor Interface Asynchronous Read Cycle Specifications
Symbol Parameter Setup
(Min) Hold
(Min) Delay
(Min) Delay
(Max) Unit
MPCLK MPCLK 16 MHz Min—66 MHz Max Frequency MHz
tCSFDSF CSN Fall Setup and Hold to DSN Fall 0 *
* CSN must be held low (active) until ADSN and DSN are deasserted.
——ns
tAICSR CSN Rise to ADDR Invalid 0 ns
tAVADSF ADDR Valid Setup and Hold to ADSN Fall 1.0
ADDR must be held constant while ADSN and DSN are valid (low).
——ns
tADSRAI ADSN Rise to ADDR Invalid 1.42 ns
tAVDSF ADDR Valid Setup and Hold to DSN Fall 0 ——ns
tDSNRAI DSN Rise to ADDR Invalid 0 ns
tCSFDTR CSN Fall to DTN Rise 5.2 16.0 ns
tDSFDTF DSN Fall to DTN Fall 0
DTN fall is variable, depending on the block selected for access and in some cases, the state of the SONET frame. This interval is typically in the
100 ns to 200 ns range, but can be several hundred ns. It should never exceed 35 MPCLK cycles. Certain registers in the VTMPR block have a very
long acknowledge cycle (in the order of 32 MPCLK cycles). The reason for this is that those registers can also be accessed by the VTMPR lower-order
path overhead interface as part of SONET overhead termination functions. Therefore the user must insert long enough delay or use the DTN signal to
read/write these registers correctly. Additionally, if the high-speed CDR is used, during initialization, enough time must be provided to allow the CDR to
stabilize. If the CDR has not stabilized, it may take much longer than 35 MPCLK cycles for accesses to certain VTMPR registers (DTN return times on
the order of several µs). It is recommended that the user wait at least 10 ms after the CDR has been reset before attempting to access any VTMPR reg-
isters. CDR provisioning is accomplished via the UMPR_CLCR register. In addition to the above, the VT_RDY bit must be set before attempting any
VTMPR register accesses.
ns
tADSRDTR ADSN or DSN Rise to DTN Rise 2.9 13.3 ns
tCSRDT3 CSN Rise to DTN 3-State 2.9 13.0 ns
tDTVDV DTN Valid to DATA Valid 0 ns
tADSRD3 ADSN Rise to DATA 3-State 2.9 14 + MPCLK§
§ DATA[15:0] is enabled by a retimed version of the ADSN.
ns
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 67
8 Other Timing
This interface may be used as either synchronous or asynchronous mode.
9 Hardware Design File References
(IBIS, Spice, BSDL, etc.) Available up on request.
Table 8-1. General-Purpose Inputs Specifications
Name Reference Edge
Rising/Falling Rise Time
(ns) Fall Time
(ns) Setup
(ns) Hold
(ns)
RSTN Async
PMRST Async
TDI and TMS TCLK R 5 5 19.5 6.4
Table 8-2. Miscellaneous Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
RHSFSYNCN Asynchronous
Table 8-3. General-Purpose Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
TDO TCLK F 12.5 45
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
6868 Agere Systems Inc.
10 700-Pin PBGAM1T Diagrams
Figure 10-1. 700-Pin PBGAM1T Physical Dimension
*
* 2 oz option
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 69
Figure 10-2. Bottom View of 700-Pin PBGAM1T Balls Location
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
7070 Agere Systems Inc.
11 Ordering Information
Table 11-1. Ordering Information
Device Package Comcode
TMXF846221BL-21 700-pin PBGAM1T 700054129
TMXF846221BL-3 700-pin PBGAM1T 700052305
L-TMXF846221BL-3* 700-pin PBGAM1T 700077978
* Pb-free/RoHS
Hardware Design Guide, Revision 10 TMXF84622 Ultramapper
April 5, 2005 622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0
Agere Systems Inc. 71
12 Glossary
AIS Alarm indication signal
AMI Alternate mark inversion
APS Automatic prot ec tion switch
ASM Associated signaling mode
BER Bit error rate
BLSR Bidirectional line switched ring
BOM Bit-oriented message
BPV Bipolar violation
B8ZS Bipolar 8 zero subs titution
CCI Common channel signaling
CDR Clock and data recovery
CHI Concentrated highway interfa ce
CMI Coded mark inversion
CRC Cyclic redundancy check
CRV Coding rule violation
DACS Digital access cross connects
DJA Digital jitter attenuation
ESF Extended superframe
EXZ Excessive zeros
FCS Frame check sequence
FDL Facility data link
FEAC Far-end alarm and control
FEBE Far-end block error
HDB3 High-density bipolar of order three
HDLC High-level data link control
LIU Line interface unit
LOC Loss of clock
LOF Loss of frame
LOS Loss of signal
LOPOH Low-order path overhead
MCDR Mate clock and data recovery
MRXC Multirate cross connect
NSMI Network serial multiplexed interface
OOF Out of frame
PBGA Plastic ball grid array
POAC Path overhead access channel
PRBS Pseudorandom bit sequence
PRM Performance report message
QRSS Quasirandom signal source
RAI Remote alarm indicator
RDI Remote defect indication
REI Remote error indication
SDH Synchronous digital hierarch y
SEF Severely errored frame
TCM Tandem connection monitoring
TOAC Transp ort overhead access channels
UDT Unstructured data transport
Copyright © 2005 Ager e Systems Inc.
All Rights Reserved
April 5, 2005
DS02-086BBAC-10 (Replaces DS02-086BBAC-9)
Hardware De-
sign Guide, Revi-
Serial Interface for the MACROs
Serializer/Deserializer (SERDES) Serial
TMXF84622 Ultramapper Hardware Design Guide, Revision 10
622/155 Mbits/s SONET/SDH x DS3/E3/DS2/DS1/E1/DS0 April 5, 2005
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Agere is a registered tradem ark of Agere Systems Inc. Agere Systems, the Agere logo, and Ultramapper are trademarks of Agere Systems Inc.
For additional information, contact your Agere Systems Account Manager or the fol l owing:
INTERNET: http://www.agere.com
E-MAIL: docmaster@agere.com
N. AMERICA: Agere Systems Inc., Lehigh Valley Central Campus, Room 10A-301C, 1110 American Parkway NE, Allentown, PA 18109-9138
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA: CHINA: (86) 21-54614688 (Shanghai), ( 86) 755 25881122 (Shenzhen)
JAPAN: (81) 3-5421-1600 (Tok y o ), KOREA : (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6741-9855, TAIWAN: (886) 2-2725-5858 (Taipei)
EUROPE: Tel. (44) 1344 296 400
13 Change History
13.1 Changes to this Document Since Revision 9
On page 31, deleted STS1LT from the description.
On page 39, added two rows to Table 4-3.
Starting on page 55, updated the duty cycle in all tables in Section 6.
Other change s th at were made to this document are listed in Table 13-1.
13.2 Navigating Through an Adobe Acrobat ® Document
If the reader displays this document in Acrobat Reader, clicking on any blue entry in the text will bring the reader to that
reference point.
IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
Adobe Acrobat and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.
Table 13-1. Document Change s
Change Change Change Change Change Change Change Change
page 37 page 43 page 50 page 60 page 62 page 68 page 69 page 70