Marvell. Moving Forward Faster
Doc. No. MV-S103880-00, Rev. D
May 27, 2009
Document Classification: Proprietary
Cover
88PH845
Field Programmable DSP
Switcher™
500kHz, 4.5A Peak Current-Limit, High Voltage
Synchronous Step-Down Regulator with
AnyVoltage™ Technology
Datasheet
Document Conventions
Note: Provides related information or information of special importance.
Caution: Indicates potential damage to hardware or software, or loss of data.
Warning: Indicates a risk of personal injury.
Document Status
Doc Status: 3.0 Technical Publication: 0.xx
For more information, visit our website at: www.marvell.com
Disclaimer
No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose,
without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any
kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.
Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use
Marvell products in these types of equipment or applications.
With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:
1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;
2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are
controlled for national security reasons by the EAR; and,
3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant,
not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons
by the EAR, or is subject to controls under the U.S. Munitions List ("USML").
At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any
such information.
Copyright © 1999–2009. Marvell International Ltd. All rights reserved. Marvell, Moving Forward Faster, the Marvell logo, Alaska, AnyVoltage, DSP Switcher, Fastwriter,
Feroceon, Libertas, Link Street, PHYAdvantage, Prestera, TopDog, Virtual Cable Tester, Yukon, and ZJ are registered trademarks of Marvell or its affiliates. CarrierSpan,
LinkCrypt, Powered by Marvell Green PFC, Qdeo, QuietVideo, Sheeva, TwinD, and VCT are trademarks of Marvell or its affiliates.
Patent(s) Pending—Products identified in this document may be covered by one or more Marvell patents and/or patent applications.
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 2 Document Classification: Proprietary May 27, 2009, 3.0
88PH845
Field Programmable DSP Switcher™
Datasheet
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 3
PRODUCT OVERVIEW
The Marvell® 88PH845 device is a simple, easy to use
synchronous buck switching regulator. A digital control
algorithm provides a fast transient response and
requires no external compensation components,
minimizing the external component count. The output
voltage of the Marvell regulator can be set with external
resistors (one allows a minor range of settings, while two
are used to achieve a full range of program settings),
logic programmability, or a serial interface. The input
voltage range is 4.5V to 15.7V. The output voltage range
is 0.9V to 5.5V.
The step-down regulator is internally self-compensated
and requires no external compensation. The regulator
works with low-ESR output capacitors to simplify the
design, minimize board space, and reduce the amount of
external components. The switching frequency for the
step-down regulator is 500kHz, allowing the use of low
profile surface mount inductors and low value capacitors.
Features
3.0A DC output current
4.5V to 15.7V input operating range
0.9V to 5.5V output voltage
500kHz switching frequency
Stable with low-ESR ceramic output capacitors
Up to 95% efficiency
Internal soft startup
Serial/Logic Programmability
72 output voltage selections using AnyVoltageTM
Technology
RoHS 6/6 compliant package
4mm x 3mm QFN18 package
Applications
Point-of-load power supplies
Network Access Server (NAS)
Figure 1: 12V to 1.2V/3.0A Converter
Caution: This is a very high frequency device and proper PCB layout is required. Refer to Section 6,
Applications Information, on page 49 for further information.
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 4 Document Classification: Proprietary May 27, 2009, 3.0
THIS PAGE INTENTIONALLY LEFT BLANK
Table of Contents
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 5
Table of Contents
Table of Contents .......................................................................................................................................5
List of Figures.............................................................................................................................................7
List of Tables .............................................................................................................................................. 9
1 Signal Description .......................................................................................................................11
1.1 Pin Configurations...........................................................................................................................................11
1.2 Pin Type Definitions ........................................................................................................................................12
2 Electrical Specifications ............................................................................................................. 15
2.1 Absolute Maximum Ratings ............................................................................................................................15
2.2 Recommended Operating Conditions .............................................................................................................16
2.3 Electrical Characteristics.................................................................................................................................17
2.4 Switching Step-down Regulator ......................................................................................................................18
3 Functional Description................................................................................................................ 21
3.1 Overview .........................................................................................................................................................21
3.2 Soft Startup .....................................................................................................................................................22
3.3 Output Voltage Setting ....................................................................................................................................22
3.3.1 Logic Programmability ......................................................................................................................22
3.3.2 Serial Programmability......................................................................................................................24
3.3.3 Output Voltage—AnyVoltage™ Technology.....................................................................................26
3.4 Thermal Shutdown ..........................................................................................................................................28
3.5 Under Voltage Lockout (UVLO) ......................................................................................................................28
3.6 Input Over Voltage Protection (OVP) ..............................................................................................................29
3.7 Power Good (PG)............................................................................................................................................29
3.8 Hiccup Current Limit........................................................................................................................................30
4 Functional Characteristics ......................................................................................................... 31
4.1 Startup Waveforms .........................................................................................................................................31
4.2 Switching Waveforms......................................................................................................................................32
4.3 Load Transient Waveforms .............................................................................................................................34
4.3.1 Step-Down Regulator .......................................................................................................................34
5 Typical Characteristics ...............................................................................................................37
5.1 Efficiency.........................................................................................................................................................37
5.2 Load Regulation ..............................................................................................................................................38
5.3 RDS (ON) Resistance .....................................................................................................................................39
5.4 IC Case and Inductor Temperature.................................................................................................................40
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 6 Document Classification: Proprietary May 27, 2009, 3.0
5.5 Input Voltage ...................................................................................................................................................42
5.5.1 Step-Down Regulator .......................................................................................................................43
5.6 Temperature....................................................................................................................................................45
5.6.1 Step-Down Regulator .......................................................................................................................47
6 Applications Information ............................................................................................................ 49
6.1 PC Board Layout Considerations and Guidelines...........................................................................................49
6.1.1 PC Board Layout Examples..............................................................................................................51
6.2 Bill of Materials................................................................................................................................................53
7 Mechanical Drawings ..................................................................................................................55
7.1 Mechanical Drawings ......................................................................................................................................55
7.2 Mechanical Dimensions ..................................................................................................................................56
7.3 Typical Pad Layout Dimensions......................................................................................................................57
7.3.1 Recommended Solder Pad Layout ...................................................................................................57
8 Part Order Numbering/Package Marking ..................................................................................59
8.1 Part Order Numbering Scheme.......................................................................................................................59
8.2 Part Ordering Options .....................................................................................................................................59
8.3 Package Marking ............................................................................................................................................60
A Revision History .......................................................................................................................... 61
List of Figures
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 7
List of Figures
Figure 1: 12V to 1.2V/3.0A Converter................................................................................................................3
1 Signal Description ........................................................................................................................... 11
Figure 2: 4mm x 3mm FCQFN-18 Pin Diagram (Top View) ............................................................................11
2 Electrical Specifications ................................................................................................................. 15
3 Functional Description.................................................................................................................... 21
Figure 3: Block Diagram ..................................................................................................................................21
Figure 4: Soft Startup (1.0V, 1.5V, 2.5V, 3.3V, 5.0V) ......................................................................................22
Figure 5: Serial Programmability......................................................................................................................24
Figure 6: Startup and Soft Startup Sequences ................................................................................................27
Figure 7: VSET = 2.5V and PSET = -5% .........................................................................................................27
Figure 8: UVLO and OVP Waveforms .............................................................................................................29
Figure 9: Power Good Operating Waveform....................................................................................................29
Figure 10: Hiccup Period ...................................................................................................................................30
4 Functional Characteristics.............................................................................................................. 31
Figure 11: Startup Using the EN Pin .................................................................................................................31
Figure 12: Power Off Using the EN Pin .............................................................................................................31
Figure 13: Soft Start...........................................................................................................................................31
Figure 14: Hot Plug ............................................................................................................................................31
Figure 15: PWM Mode—2x22µF ......................................................................................................................32
Figure 16: PWM Mode—4x22µF .......................................................................................................................32
Figure 17: DCM Mode .......................................................................................................................................32
Figure 18: DCM Mode—Zoom...........................................................................................................................32
Figure 19: PWM Output Ripple Voltage ............................................................................................................33
Figure 20: Fast Load Rise Time ........................................................................................................................34
Figure 21: Slow Load Rise Time........................................................................................................................34
Figure 22: Fast Load Fall Times .......................................................................................................................34
Figure 23: Slow Load Fall Time .........................................................................................................................34
Figure 24: Load Transient Response.................................................................................................................35
Figure 25: Double-Pulsed Load Response ........................................................................................................35
Figure 26: Load Transient Response.................................................................................................................35
Figure 27: Double-Pulsed Load Response ........................................................................................................35
5 Typical Characteristics ................................................................................................................... 37
Figure 28: Efficiency vs. Output Current ............................................................................................................37
Figure 29: Efficiency vs. Output Current in Log Scale .......................................................................................37
Figure 30: Output Voltage vs. Output Current ...................................................................................................38
Figure 31: Resistance vs. Input Voltage ............................................................................................................39
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 8 Document Classification: Proprietary May 27, 2009, 3.0
Figure 32: Resistance vs. Temperature.............................................................................................................39
Figure 33: Input Current vs. Output Current ......................................................................................................40
Figure 34: IC Case Temperature vs. Output Current.........................................................................................40
Figure 35: Inductor Temperature vs. Output Current.........................................................................................41
Figure 36: Supply Current vs. Input Voltage ......................................................................................................42
Figure 37: Shutdown Supply Current vs. Input Voltage .....................................................................................42
Figure 38: Enable Threshold vs. Input Voltage..................................................................................................42
Figure 39: Output Voltage vs. Input Voltage ......................................................................................................43
Figure 40: Efficiency vs. Input Voltage...............................................................................................................43
Figure 41: Load Regulation vs. Input Voltage....................................................................................................43
Figure 42: Frequency vs. Input Voltage .............................................................................................................43
Figure 43: Average Output Current Limit vs. Input Voltage ...............................................................................44
Figure 44: Supply Current vs. Temperature.......................................................................................................45
Figure 45: UVLO Threshold vs. Temperature....................................................................................................45
Figure 46: OVP Threshold vs. Temperature ......................................................................................................45
Figure 47: Enable Threshold vs. Temperature ..................................................................................................45
Figure 48: Shutdown Supply Current vs. Temperature......................................................................................46
Figure 49: Output Voltage vs. Temperature.......................................................................................................47
Figure 50: Efficiency vs. Temperature ...............................................................................................................47
Figure 51: Line Regulation vs. Temperature......................................................................................................47
Figure 52: Load Regulation vs. Temperature ....................................................................................................47
Figure 53: Frequency vs. Temperature..............................................................................................................48
Figure 54: Average Output Current Limit vs. Temperature................................................................................48
6 Applications Information ................................................................................................................ 49
Figure 55: PCB Layout Schematic.....................................................................................................................50
Figure 56: Top Silk Screen, Top Traces, Vias, and Copper (Not to scale) ........................................................51
Figure 57: Bottom Silk Screen, Top Traces, Vias, and Copper (Not to scale)...................................................52
7 Mechanical Drawings ...................................................................................................................... 55
Figure 58: 4mm x 3mm 18-Pin FCQFN Mechanical Drawing............................................................................55
Figure 59: 4mm x 3mm FCQFN-18 Land Pattern (mm).....................................................................................57
8 Part Order Numbering/Package Marking....................................................................................... 59
Figure 60: Sample Part Number ........................................................................................................................59
Figure 61: Package Marking and Pin 1 location ................................................................................................60
A Revision History ............................................................................................................................... 61
List of Tables
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 9
List of Tables
1 Signal Description ............................................................................................................................ 11
Table 1: Pin Type Definitions..........................................................................................................................12
Table 2: Pin Description..................................................................................................................................12
2 Electrical Specifications ..................................................................................................................15
Table 3: Absolute Maximum Ratings ..............................................................................................................15
Table 4: Recommended Operating Conditions...............................................................................................16
Table 5: Electrical Characteristics ..................................................................................................................17
Table 6: Switching Step-down Regulator........................................................................................................18
3 Functional Description..................................................................................................................... 21
Table 7: Output Voltage Rise Time.................................................................................................................22
Table 8: VSET and PSET Logic Programming...............................................................................................23
Table 9: Data Field Default Values .................................................................................................................25
Table 10: Data Field Default Values .................................................................................................................25
Table 11: VSET and PSET Programming for 5% Resistors .............................................................................26
Table 12: VSET and PSET Programming Steps ..............................................................................................28
4 Functional Characteristics...............................................................................................................31
5 Typical Characteristics .................................................................................................................... 37
6 Applications Information .................................................................................................................49
Table 13: 88PH845 BOM..................................................................................................................................53
7 Mechanical Drawings .......................................................................................................................55
Table 14: 4mm x 3mm 18-Pin FCQFN Dimensions..........................................................................................56
8 Part Order Numbering/Package Marking........................................................................................59
Table 15: Part Ordering Options.......................................................................................................................59
A Revision History ............................................................................................................................... 61
Table 16: Revision History................................................................................................................................61
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 10 Document Classification: Proprietary May 27, 2009, 3.0
THIS PAGE INTENTIONALLY LEFT BLANK
Signal Description
Pin Configurations
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 11
1Signal Description
1.1 Pin Configurations
Figure 2: 4mm x 3mm FCQFN-18 Pin Diagram (Top View)
18
1
2
3
4
13
16
EN
12 SGND
9
14 SFB
15 VSET
17
VCC
SVIN
VDD
VBS
78
PGNDVIN SW
PSETPG PWM
5
6
SW
VIN
11 SW
10 PGND
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 12 Document Classification: Proprietary May 27, 2009, 3.0
1.2 Pin Type Definitions
Table 1: Pin Type Definitions
Pin Type Description
I Input only
O Output only
S Supply
NC Not Connected
GND Ground
Table 2: Pin Description
Pin No. Pin Name Pin Type Pin Function
1 VCC S Internal 5V Regulator Output
The internal control circuitry is powered from this voltage. This is a no
connect pin. Do not connect an external load to this source.
2 SVIN S Internal LDO Power Supply Input
Power supply input for the internal LDO for generating VCC and VDD.
Decouple with a 4.7µF ceramic capacitor to PGND.
3 VDD S Internal 5V Regulator Output
VDD supplies the boot-strap circuitry and internal MOSFET driver.
Do not connect an external load to this source.
4 VBS S Boot-Strap Voltage Node
Supply to the topside floating driver. Place a 0.047 µF ceramic
capacitor as close as possible to the VBS and SW pins.
5, 8, 11 SW O Switching Node
Internal top power MOSFET source. Connects to the output inductor.
6, 7 VIN S Power Input Voltage
Internal top power MOSFET drain. Connect a ceramic decoupling
capacitor between each VIN and PGND and position it as close as
possible to the device.
9, 10 PGND GND Power Ground
Connect to the (-) terminal of the input capacitors.
12 SGND GND Signal Ground
Must be routed separately from the PGND and connected to the (-)
terminal of the output capacitor.
13 EN I Enable
Logic high (2.0V) enables the regulator and logic low (0.8V) disables
the regulator. SW pin is high impedance when Enable is logic low.
Signal Description
Pin Type Definitions
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 13
14 SFB I Switching Regulator Feedback
Senses the output voltage of the switching regulator.
15 VSET I Voltage Set
Used for selecting the output voltage level, when it is connected to
SGND or VCC in conjunction with PSET connected to SGND or
VCC. See Table 8, VSET and PSET Logic Programming, on
page 23 for information.
Connect to an external resistor to ground to set the output voltage
of the step-down switching regulator. See Table 11, VSET and
PSET Programming for 5% Resistors, on page 26 for resistor
values and Output Voltage Setting section. The total capacitance
across this pin and SGND should be equal to 25 pF or less. Use
resistor values with a tolerance of 5% or better.
Do not float this pin.
16 PSET I Percent Set
Used for selecting the output voltage level, when it is connected to
SGND or VCC in conjunction with VSET connected to SGND or
VCC. See Table 8, VSET and PSET Logic Programming, on
page 23 for information.
Connect to an external resistor to ground to set the output voltage
of the step-down switching regulator. See Table 11, VSET and
PSET Programming for 5% Resistors, on page 26 for resistor
values and Output Voltage Setting section. Use resistor values with
a tolerance of 5% or better.
Do not float this pin.
17 PWM I Operation Mode Control Input
Connect the PWM pin to VCC to allow forced PWM operation.
Connect the PWM pin to SGND to allow SKIP operation mode at
light load.
It also serves as a serial data input when it is connected to a
programming device. The input data to this pin is used to program
the output voltage (see Section 3.3.2, Serial Programmability,
on page 24). Do not share this pin with other serial interface
pins.
Do not float this pin.
18 PG O Power Good (active high)
Open-drain output that indicates the status of the output voltage. An
external 100 kΩ pull-up resistor is connected between the PG pin and
VOUT
. The output is pulled to ground when the output voltage is not
within the specified tolerance and a 25µs falling edge deglitch delay
prevents tripping of the power good comparator due to high frequency
noise.
Table 2: Pin Description (Continued)
Pin No. Pin Name Pin Type Pin Function
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 14 Document Classification: Proprietary May 27, 2009, 3.0
THIS PAGE INTENTIONALLY LEFT BLANK
Electrical Specifications
Absolute Maximum Ratings
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 15
2Electrical Specifications
2.1 Absolute Maximum Ratings
Table 3: Absolute Maximum Ratings1
Note: Stresses above those listed in Absolute Maximum Ratings may cause permanent device failure. Functionality at or
above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
1. Exceeding the absolute maximum rating may damage the device.
Parameter Range Units
VIN to PGND -0.3 to 18.0 V
VSW to PGND2
2. Capable of -1.0V to (VIN +0.3) for less than 50nS.
-0.3 to (VIN + 0.3) V
VSFB to SGND -0.3 to 6.0 V
VCC to SGND -0.3 to minimum (VIN + 0.3, 5.5) V
VDD to PGND -0.3 to minimum (VIN + 0.3, 5.5) V
VSET , VPSET to SGND -0.3 to (VCC + 0.3) V
VPWM to SGND -0.3 to (VCC + 0.3) V
VEN to SGND -0.3 to 16.0 V
VPG to SGND -0.3 to (VIN + 0.3) V
VBS to PGND3
3. During normal operation, VBS is periodically boosted to (VIN + VDD). However, do not externally force the VBS pin to
more than (VDD + 0.3V).
-0.3 to (VIN + 5.5) V
PGND to SGND -0.3 to +0.3 V
VIN to VSVIN -0.3 to +0.3 V
Operating Ambient Temperature Range4
4. Specifications over the -40°C to 85°C operating temperature ranges are assured by design, characterization, and
correlation with statistical process controls.
-40 to 85 °C
Maximum Junction Temperature 150 °C
Storage Temperature Range -65 to 150 °C
Lead Temperature (soldering, 10s) 300 °C
ESD Rating5 Human Body Model
5. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kΩ in series with 100pF.
2.0 kV
ESD Rating Machine Model 200 V
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 16 Document Classification: Proprietary May 27, 2009, 3.0
2.2 Recommended Operating Conditions
Table 4: Recommended Operating Conditions1
Symbol Parameter Min Typ Max Units
VIN Input Voltage 4.5 15.7 V
θJA Package Thermal Resistance261.5 °C/W
θJC 25.6 °C/W
TJMAX Maximum Operating Junction Temperature 125 °C
1. This device is not guaranteed to function outside the specified operating range.
2. Test on 4-layer (JESD51-7) and vias (JESD51-5) board.
Electrical Specifications
Electrical Characteristics
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 17
2.3 Electrical Characteristics
Table 5: Electrical Characteristics
The following applies unless otherwise noted: Refer to schematic shown in Figure 1. VIN = VEN = 12V, C1 = 0.10µF, C2 = C3
= 10µF, C4 = C5 = 22µF, C6 = 0.047µF, C7 = C8 = 4.7µF, L1 = 6.9µH, TA = 25 °C. Bold values indicate -40oCTA85oC.
Symbol Parameter Conditions Min Typ Max Units
VIN Input Voltage Range 4.5 12 15.7 V
IQTotal Quiescent Current No Load, VPWM = 0V 2.65 4 mA
ISVIN Shutdown Supply Current VEN = 0V 10 20 µA
VUVLO Under Voltage Lockout High Threshold, VIN increasing 4.4 4.5 V
Low Threshold, VIN decreasing 4.0 4.1
VOVP Over Voltage Lockout High Threshold, VIN increasing 16.7 17.5 V
Low Threshold, VIN decreasing 15.7 16.2
IEN EN Input Current VEN = 0V 0.1 1 µA
VEN = 12V 1.5 5
IPWM PWM Input Current VPWM = 5V 1.5 5 µA
VPWM = 0V 0.1 1
VIH EN and PWM Input Voltage
Threshold
2.0 V
VIL 0.4
TOTS Over-Temperature Thermal
Shutdown
TJ increasing (disables regulator) 150 °C
TJ decreasing (enables regulator) 100
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 18 Document Classification: Proprietary May 27, 2009, 3.0
2.4 Switching Step-down Regulator
Table 6: Switching Step-down Regulator
The following applies unless otherwise noted: Refer to schematic shown in Figure 1. VIN = VEN = 12V, C1 = 0.10µF, C2 = C3
= 10µF, C4 = C5 = 22µF, C6 = 0.047µF, C7 = C8 = 4.7µF, L1 = 6.9µH, TA = 25 °C. Bold values indicate -40oCTA85oC.
Symbol Parameter Conditions Min Typ Max Unit
s
VOUT Output Voltage RVSET = 11k, PWM mode, ILOAD
= 300mA
1.000 V
TA=25C-3+3%
Over Temperature -4 +4 %
RVSET = 18k, PWM mode, ILOAD
= 300mA
1.200 V
TA=25C -2.5 +2.5 %
Over Temperature -3 +3 %
RVSET = 30k, PWM mode, ILOAD
= 300mA
1.500 V
TA=25C -2.5 +2.5 %
Over Temperature -3 +3 %
RVSET = 51k, PWM mode, ILOAD
= 300mA
1.800 V
TA=25C -2.5 +2.5 %
Over Temperature -3 +3 %
Electrical Specifications
Switching Step-down Regulator
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 19
RVSET = 100k, PWM mode, ILOAD
= 300mA
2.500 V
VVSET = SGND, VPSET = SGND,
PWM mode, ILOAD = 300mA
TA=25C-2+2%
Over Temperature -3 +3 %
RVSET = 160k, PWM mode, ILOAD
= 300mA
3.000 V
VVSET = SGND, VPSET = VCC,
PWM mode, ILOAD = 300mA
TA=25C-2+2%
Over Temperature -3 +3 %
RVSET = 270k, PWM mode, ILOAD
= 300mA
3.300 V
VVSET = VCC, VPSET = SGND,
PWM mode, ILOAD = 300mA
TA=25C-2+2%
Over Temperature -3 +3 %
RVSET = 470k, PWM mode, ILOAD
= 300mA
5.000 V
VVSET = VCC, VPSET = VCC, PWM
mode, ILOAD = 300mA
TA=25C-2+2%
Over Temperature -3 +3 %
Table 6: Switching Step-down Regulator
The following applies unless otherwise noted: Refer to schematic shown in Figure 1. VIN = VEN = 12V, C1 = 0.10µF, C2 = C3
= 10µF, C4 = C5 = 22µF, C6 = 0.047µF, C7 = C8 = 4.7µF, L1 = 6.9µH, TA = 25 °C. Bold values indicate -40oCTA85oC.
Symbol Parameter Conditions Min Typ Max Unit
s
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 20 Document Classification: Proprietary May 27, 2009, 3.0
Percentage Set RPSET = 11k -10 %
RPSET = 18k -7.5
RPSET = 30k -5
RPSET = 51k -2.5
RPSET = 0k 0
RPSET = 100k 2.5
RPSET = 160k 5
RPSET = 270k 7.5
RPSET = 470k 10
VLNREG Output Voltage Line
Regulation
VIN = 8.0V to 14V
VOUT = 5.0V
ILOAD = IOUT(MAX) / 2
0.02 %
VLDREG Output Voltage Load
Regulation
VIN = 12V
VOUT = 5.0V
ILOAD = IOUT(MAX) / 4 to IOUT(MAX)
0.05 %
fSW Switching Frequency 500 kHz
DMAX Maximum Duty Cycle 95 %
ILIM Minimum Peak Switch Current
Limit
4.5 A
RDSON_HS High Side Switch On
Resistance
70 100 mΩ
RDSON_LS Low Side Switch On
Resistance
35 50 mΩ
VPGTH Power Good (PG) Threshold
Voltage
VOUT 1.35V VOUT
× 90%
V
VOUT 1.32V VOUT
130mV
VPGL PG Output Low Voltage ISINK = 1 mA, VEN = 12V 0.4 V
tDEGLITCH Deglitch125 µs
tDELAY PG Delay 160 µs
1. See Figure 9 for reference.
Table 6: Switching Step-down Regulator
The following applies unless otherwise noted: Refer to schematic shown in Figure 1. VIN = VEN = 12V, C1 = 0.10µF, C2 = C3
= 10µF, C4 = C5 = 22µF, C6 = 0.047µF, C7 = C8 = 4.7µF, L1 = 6.9µH, TA = 25 °C. Bold values indicate -40oCTA85oC.
Symbol Parameter Conditions Min Typ Max Unit
s
Functional Description
Overview
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 21
3Functional Description
3.1 Overview
The 88PH845 device incorporates a control architecture that minimizes the number of external
passive components, improves efficiency, and provides fast transient response. A non-linear control
algorithm is able to detect and react to severe load changes in less than 100 ns with no external
compensation components. Other features include under and over voltage lockout, over
temperature shutdown, power good detection, skip or forced Pulse Width Modulation (PWM)
operation, and cycle-by-cycle current limiting.
The output voltage is set by using logic control, serial interface, or external resistors. External
resistors connected to the VSET and PSET pins are measured once before startup. These two
resistors provide up to 72 output voltage options from 0.9V to 5.5V. These external resistors can be
eliminated by tying the VSET and PSET pin to VCC or GND, generating 2.5V, 3.0V, 3.3V, or 5.0V.
Some applications require voltage margining, which forces the output voltage a percentage above
and below its nominal value. In this case, the serial interface can be used to change the output ±0%,
±2.5%, ±5.0%, ±7.5%, ±10% or any one of the 72 voltage options.
Figure 3 shows an overall block diagram.
Figure 3: Block Diagram
OSCILLATOR
RESISTOR
SENSING
CIRCUITRY
DSP PWM
CONTROL
ANALOG-
DIGITAL
CONVERTER
SW
SFB
PSET
VSET
L1
C4-C5
R2R3
PGND
RESISTOR
NETWORK
C8
Serial
Data
Interface
PWM
PGood
PG
Vout
V
PG
VBS
R1
C6
Vin
12V
FAULT
BAND-GAP
VOLTAGE
REFERENCE
EN
OFF
ON
SGND
THERMAL
SHUTDOWN
150°C
UNDER-
VOLTAGE
LOCKOUT
Vout
VDD
INTERNAL CIRCUITRY
POWER SUPPLY
C1–C3
VIN
VCC SVIN
10
μ
A
-
+
Current
Sense
LDO
VDD
C7
-
+
Current
Sense
DCM
PWM
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 22 Document Classification: Proprietary May 27, 2009, 3.0
3.2 Soft Startup
The 88PH845 controls the rise time of the output voltage, thereby dramatically reducing the inrush
current. The rise time is independent of output capacitance and load current (Figure 4).
3.3 Output Voltage Setting
3.3.1 Logic Programmability
The output voltage of the step-down switching regulator can be programmed for the standard output
voltages by connecting VSET and PSET pins to SGND and/or VCC (Table 8). This method
eliminates the use of external resistors to set the output voltage.
Table 7: Output Voltage Rise Time
Output Voltage(V) Rise Time (ms)
1.0 2.5
1.2 3
1.5 4.5
1.8 5
2.5 5
3.0 5
3.3 5
5.0 5
Figure 4: Soft Startup (1.0V, 1.5V, 2.5V, 3.3V, 5.0V)
VOUT
1V/DIV
1ms/DIV
Functional Description
Output Voltage Setting
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 23
Table 8: VSET and PSET Logic Programming
VVSET VPSET VOUT
SGND SGND 2.5V
SGND VCC 3.0V
VCC SGND 3.3V
VCC VCC 5.0V
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 24 Document Classification: Proprietary May 27, 2009, 3.0
3.3.2 Serial Programmability
The output voltage of the step-down switching regulator can also be programmed by using 18-bit
serial data into the PWM pin.
Warning: Do not share the PWM pin with other serial interface pins.
Figure 5: Serial Programmability
BIT2
"1"
Pulse
"0"
pulse
"0"
pulse
"0"
pulse
"0"
pulse
"0"
pulse
"1"
Pulse
"1"
Pulse
"1"
Pulse
"1"
Pulse
DATA FIELD
D7 D6 D5 D4 D3 D2 D1 D0
The period of a pulse is 1 μs ±200 ns
V
HIGH
> V
IH
V
Low
< V
IL
V
HIGH
V
LOW
For "1" pulse, the high is 0.75 μs ±150 ns and the low
period is 0.25 μs ±50 ns
For "0" pulse, the high is 0.25 μs ±50 ns and the low
period is 0.75 μs ±150 ns
V
LOW
V
HIGH
The write operation:
1) Each write sequence needs 18 pulses to complete.
2) During a non-write operation, the input needs to be at V
LOW
(<V
IL
).
3) In between two successive write operations, the PWM input needs to be at V
LOW
(<V
IL
)
for a minimum of 10 μs.
1
st
Write
sequence
2
nd
Write
sequence
Low for at least 10 μs
WRITE MODE
"1" pulse
"0" pulse
BIT7 BIT6 BIT5 BIT4 BIT3 BIT1 BIT0
Register
Address
Chip
Select
Start Stop
Functional Description
Output Voltage Setting
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 25
The first 4 bits (MSB) of the data field are used to select the output voltage where the second 4 bits
(LSB) of the data field are used to trim the output voltage (percent of output voltage). Table 9 shows
the default value for the data field.
The value for position 7 and 3 of the register will enable use of either logic or serial output voltage
programmability. Bit value of "0" for positions 7 and 3 will enable the resistor/logic programmability
and the output voltage will be set according to Section 3.3.1, Logic Programmability . A bit value of 1
enables serial programmability.
Table 10 shows the output voltage and percent set.
All combinations of the VSET (shown above) can be used with all combinations of the PSET (shown
above) to provide maximum flexibility in output voltage selection.
Table 9: Data Field Default Values
Description Voltage Set Percent Set
Register Position 7 6 5 4 3 2 1 0
Default Value 00100100
Table 10: Data Field Default Values
VSET VOUT (V) PSET Percent Set
Register Position 7 6 5 4 3 2 1 0
1 0 0 0 1.0 1 0 0 0 -10%
1 0 0 1 1.2 1 0 0 1 -7.5%
1 0 1 0 1.5 1 0 1 0 -5.0%
1 0 1 1 1.8 1 0 1 1 -2.5%
1 1 0 0 2.5 1 1 0 0 +2.5%
1 1 0 1 3.0 1 1 0 1 +5.0%
1 1 1 0 3.3 1 1 1 0 +7.5%
1 1 1 1 5.0 1 1 1 1 +10%
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 26 Document Classification: Proprietary May 27, 2009, 3.0
3.3.3 Output Voltage—AnyVoltage™ Technology
The output voltage of the step-down switching regulator is programmed by using Ta b l e 11 to select
resistor values for the VSET and PSET pins. The VSET pin sets the output voltage, and the PSET
pin trims the set voltage to a percentage value. For example, to program 2.25V output, a 100kΩ
resistor is selected for the VSET pin, and an 11kΩ resistor is selected for the PSET pin. The 100kΩ
resistor sets the output voltage to 2.5V and the 11 kΩ resistor trims the set voltage by -10%.
Using a VSET resistor value greater than 619kΩ or less than 7.68kΩ disables the step-down
switching regulator and sets the SW pin to high impedance. If the VSET resistor value is outside the
5% tolerance, the output can be either higher or lower than the set voltage.
Using resistor values greater than 619kΩ or less than 7.68kΩ for the PSET pin does not affect the
set voltage. When the PSET pin is not used, it must be connected to ground. Like the VSET resistor,
the percent value is either higher or lower if the PSET resistor's value is outside the 5% tolerance.
The VSET and PSET resistors are read once during startup before the output voltage is turned on.
After the output voltage is turned on, the output voltage can be changed to different values using the
serial programming interface. Otherwise to configure the output to a different voltage, power has to
recycle or the device must turn OFF and back ON using the enable pin.
Figure 6 shows the startup waveforms of the 88PH845. Once the input voltage (VIN) is above the
Under Voltage Lockout (UVLO) Upper Threshold (UTH), the VSET and PSET pins become active.
Current is first sourced out of the PSET pin and then the VSET pin, in exponentially increasing steps.
After each step there is a blanking time before the VSET voltage is compared to an internal 1.2V
reference. If the VSET voltage is below internal reference voltage, then the current source proceeds
to the next set. Once the VSET voltage is above the internal reference voltage the sequence stops
and the output voltage (VOUT) is allowed to turn-on.
Figure 7 shows the VSET and PSET waveform for VSET = 2.5V and PSET = -5% output. The
88PH845 keeps track of the number of many steps required to determine the appropriate output
voltage. Table 12 provides the number of steps necessary for each output voltage option. Using a
VSET resistor of 100kΩ requires the current source to step five times, and a PSET resistor of 30kΩ
requires seven steps.
Table 11: VSET and PSET Programming for 5% Resistors
PSET
-10% -7.50% -5.00% -2.50% 2.50% 5.00% 7.50% 10%
11k 18k 30k 51k GND 100k 160k 270k 470k
VSET
11k 0.900 0.925 0.950 0.975 1.00 1.025 1.050 1.075 1.100
18k 1.080 1.110 1.140 1.170 1.20 1.230 1.260 1.290 1.320
30k 1.350 1.388 1.425 1.463 1.50 1.538 1.575 1.613 1.650
51k 1.620 1.665 1.710 1.755 1.80 1.845 1.890 1.935 1.980
100k 2.250 2.313 2.375 2.438 2.50 2.563 2.625 2.688 2.750
160k 2.700 2.775 2.850 2.925 3.00 3.075 3.150 3.225 3.300
270k 2.970 3.053 3.135 3.218 3.30 3.383 3.465 3.548 3.630
470k 4.500 4.625 4.750 4.875 5.00 5.125 5.250 5.375 5.500
Functional Description
Output Voltage Setting
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 27
Figure 6: Startup and Soft Startup Sequences
VIN
VOUT
VVSET
VPSET
5V/DIV
2V/DIV
2V/DIV
2V/DIV
5ms/DIV
Figure 7: VSET = 2.5V and PSET = -5%
VVSET
VPSET
500 mV/DIV
500 mV/DIV
200µs/DIV
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 28 Document Classification: Proprietary May 27, 2009, 3.0
The 88PH845 provide an innovative technique to set the output voltage. During startup they read the
value of external resistors, which are located outside the regulator's feedback loop. By placing the
output voltage programming resistor outside the regulator's feedback loop, its tolerance does not
affect the accuracy of the output voltage. In conventional designs, adjustable regulators use 1%
resistors to set the output voltage. However, these resistors are located inside the feedback loop,
introducing as much as 2% of initial accuracy error to the output voltage, resulting in an overall initial
accuracy of 3%. Whereas, the 88PH845 initial accuracy is 2% for any output voltages.
The VSET and PSET pins are sensitive to excessive leakage currents and stray capacitance. The
output voltage can potentially be programmed to the lower output voltage if there is contamination,
which introduces excessive leakage current on the VSET and PSET pin, especially for a RVSET and
RPSET of 470 kΩ. The parasitic resistance on these nodes must be greater than 3 MΩ, and the stray
capacitance must be less than 25pF. Otherwise, a 5.0V output can potentially end up at 3.3V.
3.4 Thermal Shutdown
When the junction temperature of the 88PH845 exceeds OTS high threshold, the thermal shutdown
circuitry disables the step-down regulator. The step-down switching regulator is enabled when the
junction temperature is decreased to OTS low threshold.
3.5 Under Voltage Lockout (UVLO)
The Under Voltage Lockout (UVLO) feature insures that both internal MOSFETs have adequate
voltage levels to operate properly. When the input voltage drops below UVLO low threshold, both
MOSFETs remain off until the input rises above UVLO high threshold. See section 2.3 for the UVLO
low and high threshold voltages.
Table 12: VSET and PSET Programming Steps
Step VOUT (V) RVSET (kΩ)Step PSET (%) RPSET (kΩ)
1Table 8 0V or VCC 1 Tab l e 8 0V or VCC
2 5.0 470 2 +10 470
3 3.3 270 3 +7.5 270
4 3.0 160 4 +5.0 160
5 2.5 100 5 +2.5 100
61.8516-2.551
71.5307-5.030
81.2188-7.518
9 1.0 11 9 -10 11
Functional Description
Input Over Voltage Protection (OVP)
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 29
3.6 Input Over Voltage Protection (OVP)
The Over Voltage Protection (OVP) feature uses a comparator to guard against transient
overshoots, as well as other serious conditions, that may damage the device. When the input
voltage is above OVP high threshold both internal N-channel MOSFETs are turned off until the input
voltage drops below OVP low threshold. See section 2.3 for the OVP low and high threshold
voltages.
3.7 Power Good (PG)
The Power Good (PG) pin is an active-high, open-drain output. The output is held low when the
output voltage of the step-down regulator is below the threshold. When the output voltage is above
the threshold for more than tDELAY (160µs typical), the power good signal goes high. Setting the
output voltage greater than 1.32V, the threshold voltage is 0.9% * VOUT (typical). Setting the output
voltage less than 1.32V, the threshold voltage is VOUT - 130mV (typical). A built-in tDEGLITCH (25µs
typical) delay is incorporated to prevent nuisance tripping.
Figure 8: UVLO and OVP Waveforms
V
OVP_HTH
V
UVLO_HTH
V
UVLO_LTH
V
OVP_LTH
BUCK Output Disable
BUCK Output Enable
VIN
Figure 9: Power Good Operating Waveform
0V
t
DELAY
t
DEGLITCH
< t
DEGLITCH
R
PG _PULLUP
× I
PG
V
PGL
V
PG
V
PG_TH
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 30 Document Classification: Proprietary May 27, 2009, 3.0
3.8 Hiccup Current Limit
The “Hiccup” short-circuit protection is an unique feature among switching regulators. Hiccup mode
offers extra protection against over-current situations since it limits the average current to the load,
reducing power dissipation and case temperature of the device. When the current-sense circuit sees
an over-current condition together with a low output voltage condition (Vout < 0.4V typical), the
88PH845 device shuts off for about 12ms and then tries to startup again (see Figure 10). If the
over-load condition is removed, the device will startup normally; otherwise, the device will see
another over-current event and shut off again, repeating the cycle.
Figure 10: Hiccup Period
VSW
IOUT
5.0V/DIV
5.0A/DIV
10 ms/DIV
Functional Characteristics
S tar tup Waveform s
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 31
4Functional Characteristics
Note: Unless otherwise specified, all scope pictures were taken using test circuit shown in Figure 1
in this datasheet. TA = 25°C
4.1 Startup Waveforms
When the input voltage rises above the UVLO’s upper threshold, there is a delay (6ms typical)
before the step-down regulator’s output voltage powers on.
VEN
VOUT
Figure 11: Startup Using the EN Pin
5V/DIV
2V/DIV
VEN
VOUT
Figure 12: Power Off Using the EN Pin
5V/DIV
2V/DIV
2ms/DIV 2ms/DIV
VIN = 12V ILOAD = 10mA VIN = 12V ILOAD = 10mA
VOUT = 5V VOUT = 5V
VIN
VOUT
VPG
Figure 13: Soft Start
5V/DIV
5V/DIV
5V/DIV
VIN
VOUT
VPG
Figure 14: Hot Plug
5V/DIV
5V/DIV
5V/DIV
10ms/DIV 10ms/DIV
VIN = 12V ILOAD = No load VIN = 12V ILOAD = No load
VOUT = 5V VOUT = 5V
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 32 Document Classification: Proprietary May 27, 2009, 3.0
4.2 Switching Waveforms
Note: For repeatability of measuring output ripple (VOUT(P-P)) for the BUCK regulator, the standard
test procedure limits the scope bandwidth to 20MHz and uses a coax cable with very short leads
terminated into 50Ω. The coax leads must be routed away from the switching node as much as
possible.
VSW
IIND
VOUT
VIN
Figure 15: PWM Mode—2x22µF
10V/DIV
2A/DIV
50 mV/DIV
50 mV/DIV
VSW
IIND
VOUT
VIN
Figure 16: PWM Mode—4x22µF
10V/DIV
2A/DIV
50 mV/DIV
50 mV/DIV
1µs/DIV 1µs/DIV
CIN = 2x22µF VIN(P-P) = 65.0mV CIN = 4x22µF VIN(P-P) = 33.4mV
VIN = 12V IIND(P-P) = 1.11A VIN = 12V IIND(P-P) = 1.13A
VOUT = 5V IIND(PK) = 3.57A VOUT = 5V IIND(PK) = 3.59A
IOUT = 3A Frequency = 507kHz IOUT = 3A Frequency = 510kHz
VOUT(P-P) = 30mV (Note) VOUT(P-P) = 28mV (Note)
VSW
VOUT
IIND
Figure 17: DCM Mode
10V/DIV
50 mV/DIV
1A/DIV
VSW
VOUT
IIND
Figure 18: DCM Mode—Zoom
10V/DIV
50 mV/DIV
1A/DIV
2µs/DIV 1µs/DIV
VIN = 12V VOUT(P-P) = 55mV (Note) VIN = 12V IOUT = 24mA
VOUT = 5V IIND(PK) = 0.76A VOUT = 5V Ringing Frequency = 3.5MHz
IOUT = 24mA Frequency = 263kHz
Functional Characteristics
Switching Waveforms
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 33
VOUT
Figure 19: PWM Output Ripple Voltage
20mV/DIV
100ms/DIV
VIN = 12V IOUT = 3A
VOUT = 5V VOUT(P-P) = 40mV (Note)
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 34 Document Classification: Proprietary May 27, 2009, 3.0
4.3 Load Transient Waveforms
4.3.1 Step-Down Regulator
VSW
VOUT
ILOAD
IIND
Figure 20: Fast Load Rise Time
10V/DIV
200mV/DIV
2A/DIV
VSW
VOUT
ILOAD
IIND
Figure 21: Slow Load Rise Time
10V/DIV
200mV/DIV
2A/DIV
5µs/DIV 5µs/DIV
VIN = 12V COUT = 2x22µF VIN = 12V COUT = 2x22µF
VOUT = 5V tRISE = 27A/µs VOUT = 5V tRISE = 4A/µs
IOUT = 1A to 3A IOUT = 1A to 3A
VSW
VOUT
ILOAD
IIND
Figure 22: Fast Load Fall Times
10V/DIV
200mV/DIV
2A/DIV
VSW
VOUT
ILOAD
IIND
Figure 23: Slow Load Fall Time
10V/DIV
200mV/DIV
2A/DIV
5µs/DIV 5µs/DIV
VIN = 12V COUT = 2x22µF VIN = 12V COUT = 2x22µF
VOUT= 5V tFALL = 185A/µs VOUT = 5V tFALL = 4.2A/µs
IOUT = 3A to 1A IOUT = 3A to 1A
Functional Characteristics
Load Transient Waveforms
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 35
VOUT
ILOAD
Figure 24: Load Transient Response
200mV/DIV
2A/DIV
VOUT
ILOAD
Figure 25: Double-Pulsed Load
Response
200mV/DIV
2A/DIV
20µs/DIV 20µs/DIV
VIN = 12V ILOAD = 1A to 3A VIN = 12V ILOAD = 1A to 3A
VOUT = 5V tRISE = 30A/µs VOUT = 5V tRISE = 30A/µs
COUT = 2x22µF tFALL = 200A/µs COUT = 2x22µF tFALL = 200A/µs
VOUT
ILOAD
Figure 26: Load Transient Response
200mV/DIV
2A/DIV
VOUT
ILOAD
Figure 27: Double-Pulsed Load
Response
200mV/DIV
2A/DIV
20µs/DIV 20µs/DIV
VIN = 12V ILOAD = 1A to 3A VIN = 12V ILOAD = 1A to 3A
VOUT = 5V tRISE = 60A/µs VOUT = 5V tRISE = 60A/µs
COUT = 4x22µF tFALL = 150A/µs COUT = 4x22 µF tFALL = 150A/µs
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 36 Document Classification: Proprietary May 27, 2009, 3.0
THIS PAGE INTENTIONALLY LEFT BLANK
Typical Characteristics
Efficiency
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 37
5Typical Characteristics
Unless otherwise noted, the following typical scope photographs were taken using test circuit shown
in Figure 1 at TA = 25C.
5.1 Efficiency
Figure 28: Efficiency vs. Output Current
Figure 29: Efficiency vs. Output Current in Log Scale
Efficiency vs. Output Current (DCM Mode)
Vin = 12V
60
70
80
90
100
0123
Output Current (A)
Efficiency (%)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Efficiency vs. Output Current (PWM Mode)
Vin = 12V
60
70
80
90
100
0123
Output Current (A)
Efficiency (%)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Efficiency vs. Output Current (DCM Mode)
Vin = 12V
40
60
80
100
0.01 0.1 1 10
Output Current (A)
Efficie ncy (%)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 38 Document Classification: Proprietary May 27, 2009, 3.0
5.2 Load Regulation
Figure 30: Output Voltage vs. Output Current
Output Voltage vs. Output Current (PWM Mode)
Vout = 1V
0.97
0.98
0.99
1.00
1.01
1.02
1.03
0123
Output Current (A)
Output Voltage (V)
Output Voltage vs. Output Current (PWM Mode)
Vout = 2.5V
2.43
2.45
2.48
2.50
2.53
2.55
2.58
0123
Output Current (A)
Output Voltage (V)
12V
Vin:
12V
Vin:
Typical Characteristics
RDS (ON) Resistance
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 39
5.3 RDS (ON) Resistance
Figure 31: Resistance vs. Input Voltage
Figure 32: Resistance vs. Temperature
TOP Switch
Resistance vs. Input Voltage
0.050
0.060
0.070
0.080
0.090
9 1011121314
Input Voltage (V)
Resistance ()
TA = 25ºC
BOTTOM Switch
Resistance vs. Input Voltage
0.010
0.020
0.030
0.040
0.050
9 1011121314
Input Voltage (V)
Resistance ()
TA = 25ºC
TOP Switch
Resistance vs. Temperature
0.040
0.050
0.060
0.070
0.080
0.090
0.100
-40-200 20406080
Temperature (ºC)
Resistance ()
Vin = 8V
Vin = 14V
BOTTOM Switch
Resistance vs. Temperature
0.000
0.010
0.020
0.030
0.040
0.050
-40 -20 0 20 40 60 80
Temperature (ºC)
Resistance ()
Vin = 8V
Vin = 14V
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 40 Document Classification: Proprietary May 27, 2009, 3.0
5.4 IC Case and Inductor Temperature
The following data was taken using a 1.4 square inch PCB 1 oz. copper and L = 6.9µH. Actual
results depend upon the size of the PCB proximity to other heat emitting components.
Figure 33: Input Current vs. Output Current
Figure 34: IC Case Temperature vs. Output Current
Input Current vs . Output Current
Vin = 9V, TA = 25C
0.0
0.5
1.0
1.5
2.0
00.511.522.53
Output Current (A)
Input Current (A)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Input Current vs . Output Current
Vin = 12V, TA = 25C
0.0
0.5
1.0
1.5
00.511.522.53
Output Current (A)
Input Current (A)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
IC Case Temperature vs . Output Current
Vin = 9V, TA = 25C
20
30
40
50
60
70
80
0 0.5 1 1.5 2 2 .5 3
Output Current (A)
Temperature (°C)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
IC Case Temperature vs . Output Current
Vin = 12V, TA = 25C
20
30
40
50
60
70
80
0 0.5 1 1.5 2 2.5 3
Output Current (A)
Temperature (°C )
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Typical Characteristics
IC Case and Inductor Temperature
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 41
Figure 35: Inductor Temperature vs. Output Current
Inductor Temperature vs . Output Current
Vin = 9V, TA = 25C
20
30
40
50
60
00.511.522.53
Output Current (A)
Temperature (°C)
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
Inductor Temperature vs . Output Current
Vin = 12V, TA = 25C
20
30
40
50
60
0 0.5 1 1.5 2 2.5 3
Output Current (A)
Temperature (°C )
5.0V
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 42 Document Classification: Proprietary May 27, 2009, 3.0
5.5 Input Voltage
Figure 36: Supply Current vs. Input
Voltage
Figure 37: Shutdown Supply Current vs.
Input Voltage
IOUT = No Load; VPFM = 0V IOUT = No Load; VEN = 0V
Figure 38: Enable Threshold vs. Input Voltage
IOUT = 10mA
Supply Current vs. Input Voltage
PFM Mode
2.5
2.6
2.7
2.8
2.9
9.0 10.0 11.0 12.0 13.0 14.0
Input Voltage (V)
Current (mA)
Supply Current vs. Input Voltage
PFM Mode
2.5
2.6
2.7
2.8
2.9
9.0 10.0 11.0 12.0 13.0 14.0
Input Voltage (V)
Current (mA)
EN Threshold vs. Input Voltage
1.45
1.50
1.55
1.60
1.65
9 1011121314
Input Voltage (V)
Threshold (V)
UTH-Enable
LTH-Disable
Typical Characteristics
Input Voltage
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 43
5.5.1 Step-Down Regulator
Figure 39: Output Voltage vs. Input Voltage Figure 40: Efficiency vs. Input Voltage
IOUT = 750mA VOUT = 5V; IOUT = 1.5A
Figure 41: Load Regulation vs. Input
Voltage
Figure 42: Frequency vs. Input Voltage
VOUT = 5V; IOUT = 750mA - 3A VOUT = 5V; IOUT = 1.5A
Output Voltage vs. Input Voltage
4.90
4.95
5.00
5.05
5.10
9.0 10.0 11.0 12.0 13.0 14.0
Input Voltage (V)
Voltage (V)
Efficiency vs. Input Voltage
90%
93%
95%
98%
100%
9.0 10.0 11.0 12.0 13.0 14.0
Input Voltage (V)
Efficiency
Load Regulation vs. Input Voltage
-0.20%
-0.10%
0.00%
0.10%
0.20%
91011121314
Input Voltage (V)
Regulation
Frequency vs. Input Voltage
450
475
500
525
550
9 1011121314
Input Voltage (V)
Frequency (kHz)
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 44 Document Classification: Proprietary May 27, 2009, 3.0
Figure 43: Average Output Current Limit vs. Input Voltage
VIN = 12V
A
verage Output Current Limit vs. Input
Voltage
3.0
3.5
4.0
4.5
5.0
9 1011121314
Input Voltage (V)
Current (A)
Typical Characteristics
Temperature
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 45
5.6 Temperature
Figure 44: Supply Current vs. Temperature Figure 45: UVLO Threshold vs.
Temperature
IOUT = No Load; VPFM = 0V IOUT = 10mA
Figure 46: OVP Threshold vs. Temperature Figure 47: Enable Threshold vs.
Temperature
IOUT = 10mA IOUT = 10mA
Supply Current vs. Temperature
PFM Mode
1
2
3
4
-40-20 0 20406080
Temperature (°C)
Current (mA)
UVLO Thresholds vs. Temperature
4
4.2
4.4
4.6
4.8
5
-40 -20 0 20 40 60 80
Temperature (°C)
Voltage (V)
UTH
LTH
OVP Thresholds vs. Temperature
15
16
17
18
19
-40 -20 0 20 40 60 80
Temperature (°C)
Voltage (V)
HTH
LTH
Enable Threshold vs. Temperature
1.2
1.4
1.6
1.8
-40-200 20406080
Temperature (°C)
Threshold (V)
UTH - Enable
LTH - Disable
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 46 Document Classification: Proprietary May 27, 2009, 3.0
Figure 48: Shutdown Supply Current vs.
Temperature
IOUT = No Load; VEN = 0V
Shutdown Supply Current vs.Temperature
0
5
10
15
20
-40-20 0 20406080
Temperature (°C)
Current (uA)
Typical Characteristics
Temperature
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 47
5.6.1 Step-Down Regulator
Figure 49: Output Voltage vs. Temperature Figure 50: Efficiency vs. Temperature
VIN = 12V; IOUT = 750mA VIN = 12V; VOUT = 5V; IOUT = 1.5A
Figure 51: Line Regulation vs.
Temperature
Figure 52: Load Regulation vs.
Temperature
VIN = 8V to 14V; VOUT = 5V; IOUT = 1.5A VIN = 12V; VOUT = 5V; IOUT = 750mA - 3A
Output Voltage vs. Temperature
4.90
4.95
5.00
5.05
5.10
-40-20 0 20406080
Temperature (°C)
Voltage (V)
Buck Efficiency vs. Temperature
90%
93%
95%
98%
100%
-40-200 20406080
Temperature (°C)
Efficienc
y
Buck Line Regulation vs. Temperature
-0.20%
-0.10%
0.00%
0.10%
0.20%
-40 -20 0 20 40 60 80
Temperature (°C)
Regulation
Buck Load Regulation vs. Temperature
-0.20%
-0.10%
0.00%
0.10%
0.20%
-40-200 20406080
Temperature (°C)
Regulation
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 48 Document Classification: Proprietary May 27, 2009, 3.0
Figure 53: Frequency vs. Temperature Figure 54: Average Output Current Limit
vs. Temperature
VIN = 12V; VOUT = 5V; IOUT = 1.5A VIN = 12V
Frequency vs. Temperature
450
475
500
525
550
-40-200 20406080
Temperature (°C)
Frequency (kHz)
Average Output Current Limit vs. Temperature
3.0
3.5
4.0
4.5
5.0
-40-200 20406080
TemperatureC)
Current (A)
Applications Information
PC Board Layout Considerations and Guid el ines
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 49
6Applications Information
6.1 PC Board Layout Considerations and Guidelines
1. Copy the layout in Figure 56 and Figure 57 as much as possible, and use the recommended
BOM in Section 6.2, Bill of Materials, on page 53. Contact the factory if substitutions are made.
2. Do not layout the inductor first. The input capacitor placement is the most critical for proper
operation. The AC current circulating through the input capacitor (C1) is a square wave with rise
and fall times of 8 ns and slew rates as high as 300 A/µs. At these fast slew rates, stray PCB
inductance can generate a voltage spike as high as 3V per inch of PCB trace, VIND = L * di/dt.
Therefore, the input capacitor (C1) must be placed as close to the VIN and PGND pins with as
short and wide trace as possible. Also, the VIN and PGND traces must be placed on the top
layer. This will isolate the fast AC currents from interfering with the analog ground plane.
3. The 88PH845 have two internal grounds, analog (SGND) and power (PGND). The analog
ground ties to all the noise sensitive signals while the power ground ties to the higher current
power paths. Noise on an analog ground can cause problems with the IC's internal control and
bias signals. For this reason, separate analog and power ground traces are recommended. The
signal ground is connected to the power ground at one point, which is PGND at pin 10.
4. Connect the (-) terminal of the output capacitor as close to the (-) terminal of the input capacitor.
A back-to-back placing of bypass capacitors is recommended for best results. See Figure 56.
5. Keep the switching node (SW) away from the feedback pins and all sensitive signal nodes,
minimizing capacitive coupling effects. If the SFB trace must cross the SW node, cross it at a
right angle.
6. Try not to route analog or digital lines in close proximity to the power supply, especially the SW
node. If this cannot be avoided, shield these lines with a power plane placed between the SW
node and the signal lines.
7. Do not replace the Ceramic input or output capacitors with Tantalum capacitors!
8. Place any type of capacitor in parallel with the input capacitor as long as the Ceramic input
capacitor is placed next to the device. If Tantalum input capacitor is used, it must be rated for
switching regulator applications and the operating voltage needs to be derated by 50%.
9. Place any type of capacitor in parallel with the output capacitor.
10. Replace the Ceramic output capacitors with low-ESR capacitors like the POSCAP from SANYO
as long as the capacitor value is the same or greater. Note that the Ceramic capacitors provide
the lowest noise and smallest foot print solution.
11. Use planes for the input and output power to maintain good voltage filtering and to keep power
losses low.
12. If there is not enough space for a power plane for the input supply, then the input supply trace
must be at least 3/8 inch wide.
13. If there is not enough space for a power plane for the output supplies, then place the output as
close to the load as possible with a trace of at least 3/8 inch wide.
14. Review the recommended solder pad layout and notes (see Section 7.3.1, Recommended
Solder Pad Layout, on page 57).
15. The type of solder paste recommended for QFN packages is "No clean", due to the difficulty of
cleaning flux residues from beneath the QFN package.
Warning: To avoid noise and abnormal operating behavior, follow these layout recommendations.
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 50 Document Classification: Proprietary May 27, 2009, 3.0
Figure 55: PCB Layout Schematic
I Cin
LP1
I Cout
LP2
LP2
LP1
C7
4.7 uF /25 V
VIN
SW
C4
22 uF/6. 3V
VCC
C5
22 uF/6. 3V
R1
100 K
PWM
SW
SW
VSET
VOUT
VOUT
VDD EN
PG
VOUT
VBS
R2
0 Ohm
R3
53.6 K
C2
10uF/25V
C6
0 .047 uF/25 V
C3
10uF/25V
VBS
4
PGND 10
SW
8
VDD
3
PGND
9
EN 13
SW
5
SVIN
2
VCC
1
VIN
6
VIN
7
SW 11
SGND 12
SFB 14
VSET 15
PSET 16
PWM 17
PG 18
U1
88PH845
C1
0.1 uF /25 V
PSE T
6.9uH
L1
VIN
C8
4. 7uF/25 V
Caution: Do not float Pin 13 and Pin 17.
Applications Information
PC Board Layout Considerations and Guid el ines
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 51
6.1.1 PC Board Layout Examples
Actual board size = 900 mil x 830 mil
Total copper layers = 2
Figure 56: Top Silk Screen, Top Traces, Vias, and Copper (Not to scale)
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 52 Document Classification: Proprietary May 27, 2009, 3.0
Figure 57: Bottom Silk Screen, Top Traces, Vias, and Copper (Not to scale)
Applications Information
Bill of Materials
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 53
6.2 Bill of Materials
Table 13: 88PH845 BOM
Item Qty Ref Manufacturer Part
Number Manufacturer Description
1 1 U1 88PH845 Marvell 12V Step-Down Regulator
2 1 C1 TMK105BJ104KV-F Taiyo Yuden CAP CER .10µF 25V X5R 0402
3 1 C7 C2012X5R1E475K TDK Corporation CAP CER 4.7µF 25V X5R 0805
4 1 C8 C2012X5R1E475K TDK Corporation CAP CER 4.7µF 25V X5R 0805
5
2
C2
GRM32DR61E106KA12L Murata CAP CER 10µF 25V 10% X5R 1210
6C3
7
2
C4
GRM21BR60J226ME39L Murata CAP CER 22µF 6.3V X5R 0805 20%
8C5
9 1 C6 06033C473KAT2A AVX Corporation CAP CER .047µF 10% 25V X7R 0603
10 1 L1 FDV0840-6R9M TOKO FDV0840 Series, 6.9µH, 4.5A, 41mΩ (max),
H=4mm, L=9.4mm, W=8.7mm
11 1 R1 ERJ-3GEYJ104V Panasonic—ECG RES 100KΩ 1/10W 5% 0603 SMD
12 1 R2 RC0603JR-070RL Yageo America RES 0.0Ω 1/10W 5% 0603 SMD
13 1 R3 ERJ-3EKF5362V Panasonic—ECG RES 53.6KΩ 1/10W 1% 0603 SMD
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 54 Document Classification: Proprietary May 27, 2009, 3.0
THIS PAGE INTENTIONALLY LEFT BLANK
Mechanical Drawings
Mechanical Drawings
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 28, 2009, 3.0 Document Classification: Proprietary Page 55
7Mechanical Drawings
7.1 Mechanical Drawings
Figure 58: 4mm x 3mm 18-Pin FCQFN Mechanical Drawing
INDEX AREA
(D / 2 x E/2 )
NX
Termina l Tip
4
(D/2xE/2)
INDEX AREA
3
2x
BOTTOM VIEW
17XL
PLANE
SEATING
18Xb
e
SIDE VIEW
2x
TOP VIEW
''A''
DETAIL 'A'
1
6
7
15
18
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 56 Document Classification: Proprietary May 28, 2009, 3.0
7.2 Mechanical Dimensions
Table 14: 4mm x 3mm 18-Pin FCQFN Dimensions
Symbol Dimension in mm Dimension in inch
MIN NOM MAX MIN NOM MAX
A 0.90 1.00 0.035 0.039
A1 0.00 0.02 0.05 0.000 0.001 0.002
A3 0.20 REF 0.008 REF
b 0.20 0.25 0.30 0.008 0.010 0.012
D 2.90 3.00 3.10 0.114 0.118 0.122
E 3.90 4.00 4.10 0.153 0.157 0.161
e 0.50 BSC 0.020 BSC
L 0.40 0.50 0.60 0.012 0.016 0.020
aaa 0.15 0.006
bbb 0.10 0.004
ccc 0.10 0.004
Notes:
Dimensioning and tolerancing conform to ASME Y14.5M-1994
Drawing not to scale
Dimensions are in Millimeters
Terminal #1 identifier and terminal numbering convension
Pin 1 (0.6mm) is longer than the other pins (0.5mm)
Mechanical Drawings
Typical Pad Layout Dimensions
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 28, 2009, 3.0 Document Classification: Proprietary Page 57
7.3 Typical Pad Layout Dimensions
7.3.1 Recommended Solder Pad Layout
Figure 59: 4mm x 3mm FCQFN-18 Land Pattern (mm)
3.00
0.50
Package
Outline
4.30
QFN Lead with
Non-Solder Mask Defined Terminal
SM
0.051 mm
2.0 mils
0.25 mm
Pad
0.25 mm
0.148 mm
SM Pad Pad
0.75
0.65
1
3.30
0.25
4x3 FCQFN-18
Land Pattern (mm)
Notes:
Top view
The “1” indicates Pin 1 location
Drawing not to scale
Oversize solder mask by 4 mils over pad size (2 mil annular ring)
0.148mm solder mask between pads
Tolerance ±0.05mm
Pin 1 (0.6mm) is longer than the other pins (0.5mm)
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 58 Document Classification: Proprietary May 28, 2009, 3.0
THIS PAGE INTENTIONALLY LEFT BLANK
Part Order Numbering/Package Marking
Part Order Numbering Scheme
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 59
8Part Order Numbering/Package Marking
8.1 Part Order Numbering Scheme
Figure 60 shows the part order numbering scheme. Refer to a Marvell Field Application Engineer
(FAE) or sales representative for further information when ordering parts.
r
8.2 Part Ordering Options
The standard ordering part numbers for the respective solutions are as follows:
Figure 60: Sample Part Number
–B1–NFB1C000–xxxx
Part number
Package code
Environmental code
1 = RoHS 6/6 compliant
2 = Green compliant
Temperature code
C = Commercial
I = Industrial
Custom code (optional)
88PH845
Custom code
Custom code
Custom code
Table 15: Part Ordering Options
Package Type Part Order (booking) Number
18-pin QFN 4mm x 3mm 88PH845-B1-NFB1C000
18-pin QFN 4mm x 3mm 88PH845-B1-NFB1C000-T (Tape and Reel)
88PH845
Datasheet
Doc. No. MV-S103880-00 Rev. D Copyright © 2009 Marvell
Page 60 Document Classification: Proprietary May 27, 2009, 3.0
8.3 Package Marking
Figure 61 shows a sample package marking and pin 1 location.
Figure 61: Package Marking and Pin 1 location
00B1P
YWW$$
Marvell logo and partial part number
Date code and lot traceability code
Y = year
WW = work week
$$ = Lot traceability code
Power code, revision, assembly house code
00 = power code
B1 = custom code
P = assembly house code
Note: The above example is not drawn to scale. Location of markings are approximate.
Pin 1 location
Copyright © 2009 Marvell Doc. No. MV-S103880-00 Rev. D
May 27, 2009, 3.0 Document Classification: Proprietary Page 61
ARevision History
Table 16: Revision History
Document Type Document Revision
Rev. D
1. Update schematic (Fig 1) and in the Application Section.
2. Update BOM.
3. Update layout recommendations.
4. Edit Soft Startup section 3.2.
Marvell. Moving Forward Faster
Marvell Semiconductor, Inc.
5488 Marvell Lane
Santa Clara, CA 95054, USA
Tel: 1.408.222.2500
Fax: 1.408.752.9028
www.marvell.com
Back Cover