Multisupply Supervisor/Sequencer with
ADC and Temperature Monitoring
ADM1063
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2005–2011 Analog Devices, Inc. All rights reserved.
FEATURES
Complete supervisory and sequencing solution for up to
10 supplies
10 supply fault detectors enable supervision of supplies to
<0.5% accuracy at all voltages at 25°C
<1.0% accuracy across all voltages and temperatures
5 selectable input attenuators allow supervision of supplies to
14.4 V on VH
6 V on VP1 to VP4 (VPx)
5 dual-function inputs, VX1 to VX5 (VXx)
High impedance input to supply fault detector with
thresholds between 0.573 V and 1.375 V
General-purpose logic input
10 programmable driver outputs, PDO1 to PDO10 (PDOx)
Open-collector with external pull-up
Push/pull output, driven to VDDCAP or VPx
Open collector with weak pull-up to VDDCAP or VPx
Internally charge-pumped high drive for use with external
N-FET (PDO1 to PDO6 only)
Sequencing engine (SE) implements state machine control
of PDOx outputs
State changes conditional on input events
Enables complex control of boards
Power-up and power-down sequence control
Fault event handling
Interrupt generation on warnings
Watchdog function can be integrated in SE
Program software control of sequencing through SMBus
Complete voltage margining solution for 6 voltage rails
12-bit ADC for readback of all supervised voltages
1 internal and 2 external temperature sensors
Reference input (REFIN) has 2 input options
Driven directly from 2.048 V (±0.25%) REFOUT pin
More accurate external reference for improved
ADC performance
Device powered by the highest of VPx, VH for improved
redundancy
User EEPROM: 256 bytes
Industry-standard, 2-wire bus interface (SMBus)
Guaranteed PDO low with VH, VPx = 1.2 V
Available in 40-lead, 6 mm × 6 mm LFCSP and
48-lead, 7 mm × 7 mm TQFP packages
For more information about the ADM1063 register map,
refer to the AN-698 Application Note at www.analog.com.
FUNCTIONAL BLOCK DIAGRAM
04632-001
PDO7
PDO8
PDO9
PDO10
PDOGND
VDDCA P
VDD
ARBITRATOR
GNDVCCP
VX1
VX2
VX3
VX4
VX5
VP1
VP2
VP3
VP4
VH
A
GND
PROGRAMMABLE
RESET
GENERATORS
(SFDs)
DUAL-
FUNCTION
INPUTS
(LOGIC INPUTS
OR
SFDs)
SEQUENCING
ENGINE
CONFIGURABLE
OUTPUT
DRIVERS
(LV CAPABLE
OF DRIVING
LOGIC SIGNALS)
PDO1
PDO2
PDO3
PDO4
PDO5
PDO6
SD
A
SCL
A
1
A
0
SMBus
INTERFACE
REFOUTREFIN REFGND
VREF
12-BIT
SAR ADC
MUX
EEPROM
CLOSED-LOOP
MARGINING SYSTEM
ADM1063
D2ND1N D2PD1P
TEMP
SENSOR
INTERNAL
DIODE
CONFIGURABLE
OUTPUT
DRIVERS
(HV CAPABLE OF
DRIVING GATES
OF N-FET)
Figure 1.
APPLICATIONS
Central office systems
Servers/routers
Multivoltage system line cards
DSP/FPGA supply sequencing
In-circuit testing of margined supplies
GENERAL DESCRIPTION
The ADM1063 is a configurable supervisory/sequencing device
that offers a single-chip solution for supply monitoring and
sequencing in multiple supply systems. In addition to these
functions, the ADM1063 integrates a 12-bit ADC that can be
used to accurately read back up to 12 separate voltages.
The device also provides up to 10 programmable inputs for
monitoring undervoltage faults, overvoltage faults, or out-of-
window faults on up to 10 supplies. In addition, 10 programmable
outputs can be used as logic enables. Six of these programmable
outputs can provide up to a 12 V output for driving the gate of
an N-FET that can be placed in the path of a supply.
ADM1063
Rev. C | Page 2 of 32
TABLE OF CONTENTS
Features .............................................................................................. 1
Functional Block Diagram .............................................................. 1
Applications....................................................................................... 1
General Description......................................................................... 1
Revision History ............................................................................... 2
Detailed Block Diagram .................................................................. 3
Specifications..................................................................................... 4
Pin Configurations and Function Descriptions ........................... 7
Absolute Maximum Ratings............................................................ 9
Thermal Resistance ...................................................................... 9
ESD Caution.................................................................................. 9
Typical Performance Characteristics ........................................... 10
Powering the ADM1063................................................................ 13
Inputs................................................................................................ 14
Supply Supervision..................................................................... 14
Programming the Supply Fault Detectors............................... 14
Input Comparator Hysteresis.................................................... 14
Input Glitch Filtering ................................................................. 15
Supply Supervision with VXx Inputs....................................... 15
VXx Pins as Digital Inputs ........................................................ 15
Outputs ............................................................................................ 16
Supply Sequencing Through Configurable Output Drivers. 16
Default Output Configuration.................................................. 16
Sequencing Engine ......................................................................... 17
Overview ..................................................................................... 17
Warnings...................................................................................... 17
SMBus Jump (Unconditional Jump)........................................ 17
Sequencing Engine Application Example............................... 18
Fault and Status Reporting........................................................ 19
Voltage Readback............................................................................ 20
Supply Supervision with the ADC ........................................... 20
Temperature Measurement System.............................................. 21
Remote Temperature Measurement ........................................ 21
Applications Diagram.................................................................... 23
Communicating with the ADM1063........................................... 24
Configuration Download at Power-Up................................... 24
Updating the Configuration ..................................................... 24
Updating the Sequencing Engine............................................. 25
Internal Registers........................................................................ 25
EEPROM ..................................................................................... 25
Serial Bus Interface..................................................................... 25
SMBus Protocols for RAM and EEPROM.............................. 27
Write Operations........................................................................ 27
Read Operations......................................................................... 29
Outline Dimensions ....................................................................... 30
Ordering Guide .......................................................................... 31
REVISION HISTORY
7/11—Rev. B to Rev. C
Changes to Serial Bus Timing Parameter in Table 1.................... 4
Added Endnote 4 in Table 1............................................................ 4
Changes to Figure 3.......................................................................... 7
Added Exposed Pad Notation to Outline Dimensions ............. 30
Changes to Ordering Guide .......................................................... 31
5/08—Rev. A to Rev. B
Changes to Table 1............................................................................ 4
Changes to Powering the ADM1063 Section ............................. 13
Changes to Table 5.......................................................................... 14
Changes to Default Output Configuration Section ................... 16
Changes to Sequence Detector Section ....................................... 19
Changes to Temperature Measurement System Section ........... 21
Changes to Table 10........................................................................ 22
Changes to Configuration Download at Power-Up Section..... 24
Changes to Table 11........................................................................ 25
Changes to Figure 44 and Error Correction Section ................. 29
Changes to Ordering Guide .......................................................... 31
12/06—Rev. 0 to Rev. A
Updated Format..................................................................Universal
Changes to Features ..........................................................................1
Changes to Figure 2...........................................................................3
Changes to Table 1.............................................................................4
Changes to Table 2.............................................................................7
Changes to Absolute Maximum Ratings Section..........................9
Deleted Figure 17 to Figure 19...................................................... 12
Changes to Programming the Supply Fault Detectors Section... 14
Changes to Table 6.......................................................................... 14
Changes to Outputs Section.......................................................... 16
Changes to Fault Reporting Section ............................................ 20
Deleted Supply Margining Section .............................................. 21
Changes to Table 9.......................................................................... 21
Changes to Identifying the ADM1063
on the SMBus Section .................................................................... 28
Changes to Figure 34 and Figure 35............................................. 30
4/05—Revision 0: Initial Version
ADM1063
Rev. C | Page 3 of 32
Temperature measurement is possible with the ADM1063. The
device contains one internal temperature sensor and two pairs
of differential inputs for remote thermal diodes. These are
measured by the 12-bit ADC.
The logical core of the device is a sequencing engine. This state-
machine-based construction provides up to 63 different states.
This design enables very flexible sequencing of the outputs
based on the condition of the inputs.
The device is controlled via configuration data that can be
programmed into an EEPROM. The entire configuration can
be programmed using an intuitive GUI-based software package
provided by Analog Devices, Inc.
DETAILED BLOCK DIAGRAM
04632-002
GPI SIGNAL
CONDITIONING
SFD
GPI SIGNAL
CONDITIONING
SFD
SFD
SFD
SELECTABLE
ATTENUATOR
SELECTABLE
ATTENUATOR
DEVICE
CONTROLLER
OSC
EEPROM
SDA SCL A1 A0
SMBus
INTERFACE
REFOUTREFIN
REFGND
VREF
12-BIT
SAR ADC
ADM1063
CONFIGURABLE
OUTPUT DRIVER
(HV)
PDO1
PDO2
PDOGND
PDO3
VCCPGND
PDO4
PDO5
PDO8
PDO9
CONFIGURABLE
OUTPUT DRIVER
(HV)
PDO6
CONFIGURABLE
OUTPUT DRIVER
(LV)
PDO7
CONFIGURABLE
OUTPUT DRIVER
(LV)
PDO10
SEQUENCING
ENGINE
VX2
VX3
VX4
VP2
VP3
VP4
VH
VP1
VX1
AGND
VX5
VDD
ARBITRATOR
REG 5.25V
CHARGE PUMP
D2ND1N D2PD1P
TEMP
SENSOR
INTERNAL
DIODE
VDDCAP
Figure 2.
ADM1063
Rev. C | Page 4 of 32
SPECIFICATIONS
VH = 3.0 V to 14.4 V1, VPx = 3.0 V to 6.0 V1, TA = −40°C to +85°C, unless otherwise noted.
Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
POWER SUPPLY ARBITRATION
VH, VPx 3.0 V Minimum supply required on one of VH, VPx
VPx 6.0 V Maximum VDDCAP = 5.1 V, typical
VH 14.4 V VDDCAP = 4.75 V
VDDCAP 2.7 4.75 5.4 V Regulated LDO output
CVDDCAP 10 μF Minimum recommended decoupling capacitance
POWER SUPPLY
Supply Current, IVH, IVPx 4.2 6 mA VDDCAP = 4.75 V, PDO1 to PDO10 off, ADC off
Additional Currents
All PDO FET Drivers On 1 mA VDDCAP = 4.75 V, PDO1 to PDO6 loaded with 1 μA
each, PDO7 to PDO10 off
Current Available from VDDCAP 2 mA Maximum additional load that can be drawn from all
PDO pull-ups to VDDCAP
ADC Supply Current 1 mA Running round-robin loop
EEPROM Erase Current 10 mA 1 ms duration only, VDDCAP = 3 V
SUPPLY FAULT DETECTORS
VH Pin
Input Impedance 52
Input Attenuator Error ±0.05 % Midrange and high range
Detection Ranges
High Range 6 14.4 V
Midrange 2.5 6 V
VPx Pins
Input Impedance 52
Input Attenuator Error ±0.05 % Low range and midrange
Detection Ranges
Midrange 2.5 6 V
Low Range 1.25 3 V
Ultralow Range 0.573 1.375 V No input attenuation error
VXx Pins
Input Impedance 1
Detection Range
Ultralow Range 0.573 1.375 V No input attenuation error
Absolute Accuracy ±1 % VREF error + DAC nonlinearity + comparator offset error
+ input attenuation error
Threshold Resolution 8 Bits
Digital Glitch Filter 0 μs Minimum programmable filter length
100 μs Maximum programmable filter length
ANALOG-TO-DIGITAL CONVERTER
Signal Range 0 VREFIN V The ADC can convert signals presented to the VH, VPx,
and VXx pins; VPx and VH input signals are attenuated
depending on the selected range; a signal at the pin
corresponding to the selected range is from 0.573 V to
1.375 V at the ADC input
Input Reference Voltage on REFIN Pin, VREFIN 2.048 V
Resolution 12 Bits
INL ±2.5 LSB Endpoint corrected, VREFIN = 2.048 V
Gain Error ±0.05 % VREFIN = 2.048 V
ADM1063
Rev. C | Page 5 of 32
Parameter Min Typ Max Unit Test Conditions/Comments
Conversion Time 0.44 ms One conversion on one channel
84 ms All 12 channels selected, 16× averaging enabled
Offset Error ±2 LSB VREFIN = 2.048 V
Input Noise 0.25 LSB rms Direct input (no attenuator)
TEMPERATURE SENSOR2
Local Sensor Accuracy ±3 °C VDDCAP = 4.75 V
Local Sensor Supply Voltage Coefficient −1.7 °C/V
Remote Sensor Accuracy ±3 °C VDDCAP = 4.75 V
Remote Sensor Supply Voltage Coefficient 3 °C
Remote Sensor Current Source 200 μA High level
12 μA Low level
Temperature for Code 0x800 0 °C VDDCAP = 4.75 V
Temperature for Code 0xC00 128 °C VDDCAP = 4.75 V
Temperature Resolution per Code 0.125 °C
REFERENCE OUTPUT
Reference Output Voltage 2.043 2.048 2.053 V No load
Load Regulation −0.25 mV Sourcing current, IDACxMAX = −100 μA
0.25 mV Sinking current, IDACxMAX = 100 μA
Minimum Load Capacitance 1 μF Capacitor required for decoupling, stability
PSRR 60 dB DC
PROGRAMMABLE DRIVER OUTPUTS
High Voltage (Charge Pump) Mode
(PDO1 to PDO6)
Output Impedance 500
VOH 11 12.5 14 V IOH = 0 μA
10.5 12 13.5 V IOH = 1 μA
IOUTAVG 20 μA 2 V < VOH < 7 V
Standard (Digital Output) Mode
(PDO1 to PDO10)
VOH 2.4 V VPU (pull-up to VDDCAP or VPx) = 2.7 V, IOH = 0.5 mA
4.5 V VPU to VPx = 6.0 V, IOH = 0 mA
V
PU − 0.3 V VPU ≤ 2.7 V, IOH = 0.5 mA
VOL 0 0.50 V IOL = 20 mA
IOL3 20 mA Maximum sink current per PDOx pin
ISINK3 60 mA Maximum total sink for all PDOx pins
RPULL-UP 19 20 29 Internal pull-up
ISOURCE (VPx)3 2 mA
Current load on any VPx pull-ups, that is, total source
current available through any number of PDOx pull-
up switches configured onto any one VPx pin
Three-State Output Leakage Current 10 μA VPDO = 14.4 V
Oscillator Frequency 90 100 110 kHz All on-chip time delays derived from this clock
DIGITAL INPUTS (VXx, A0, A1)
Input High Voltage, VIH 2.0 V Maximum VIN = 5.5 V
Input Low Voltage, VIL 0.8 V Maximum VIN = 5.5 V
Input High Current, IIH −1 μA VIN = 5.5 V
Input Low Current, IIL 1 μA VIN = 0 V
Input Capacitance 5 pF
Programmable Pull-Down Current,
IPULL-DOWN
20 μA
VDDCAP = 4.75 V, TA = 25°C if known logic state is
required
SERIAL BUS DIGITAL INPUTS (SDA, SCL)
Input High Voltage, VIH 2.0 V
Input Low Voltage, VIL 0.8 V
Output Low Voltage, VOL3 0.4 V IOUT = −3.0 mA
ADM1063
Rev. C | Page 6 of 32
Parameter Min Typ Max Unit Test Conditions/Comments
SERIAL BUS TIMING4
Clock Frequency, fSCLK 400 kHz
Bus Free Time, tBUF 1.3 μs
Start Setup Time, tSU;STA 0.6 μs
Stop Setup Time, tSU;STO 0.6 μs
Start Hold Time, tHD;STA 0.6 μs
SCL Low Time, tLOW 1.3 μs
SCL High Time, tHIGH 0.6 μs
SCL, SDA Rise Time, tR 300 ns
SCL, SDA Fall Time, tF 300 ns
Data Setup Time, tSU;DAT 100 ns
Data Hold Time, tHD;DAT 5 ns
Input Low Current, IIL 1 μA VIN = 0 V
SEQUENCING ENGINE TIMING
State Change Time 10 μs
1 At least one of the VH, VPx pins must be ≥3.0 V to maintain the device supply on VDDCAP.
2 All temperature sensor measurements are taken with round-robin loop enabled and at least one other voltage input being measured.
3 Specification is not production tested but is supported by characterization data at initial product release.
4 Timing specifications are guaranteed by design and supported by characterization data.
ADM1063
Rev. C | Page 7 of 32
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
04632-003
ADM1063
TOP VIEW
(Not to Scale)
GND
40
VDDCAP
39
D1P
38
D1N
37
D2P
36
D2N
35
A1
34
A0
33
VCCP
32
PDOGND
31
AGND
11
REFGND
12
REFIN
13
REFOUT
14
NC
15
NC
16
SCL
17
SDA
18
NC
19
NC
20
VX1
1
VX2
2
VX3
3
VX4
4
VX5
5
VP1
6
VP2
7
VP3
8
VP4
9
VH
10
PDO1
30
PDO2
29
PDO3
28
PDO4
27
PDO5
26
PDO6
25
PDO7
24
PDO8
23
PDO9
22
PDO10
21
PIN 1
INDICATOR
NOTES
1. THE LFCSP HAS AN EXPOSED PAD ON THE BOTTOM. THIS
PAD IS A NO CONNECT (NC). IF POSSIBLE, THIS PAD
SHOULD BE SOLDERED TO THE BOARD FOR IMPROVED
MECHANICAL STABILITY.
2. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
Figure 3. LFCSP Pin Configuration
04632-004
NC = NO CONNECT
NC
48
GND
47
VDDCAP
46
D1P
45
D1N
44
D2P
43
D2N
42
A1
41
A0
40
VCCP
39
PDOGND
38
NC
37
NC
13
AGND
14
REFGND
15
REFIN
16
REFOUT
17
NC
18
NC
19
SCL
20
SDA
21
NC
22
NC
23
NC
24
NC
1
V
X1
2
V
X2
3
V
X3
4
V
X4
5
V
X5
6
V
P1
7
V
P2
8
V
P3
9
V
P4
10
VH
11
NC
12
NC
36
PDO1
35
PDO2
34
PDO3
33
PDO4
32
PDO5
31
PDO6
30
PDO7
29
PDO8
28
PDO9
27
PDO10
26
NC
25
ADM1063
TOP VIEW
(Not to Scale)
PIN 1
INDICATOR
Figure 4. TQFP Pin Configuration
Table 2. Pin Function Descriptions
Pin No.
LFCSP1 Mnemonic
TQFP Description
15, 16,
19, 20
1, 12, 13, 18,
19, 22 to 25,
36, 37, 48
NC No Connection.
1 to 5 2 to 6 VX1 to VX5
(VXx)
High Impedance Inputs to Supply Fault Detectors. Fault thresholds can be set from 0.573 V to
1.375 V. Alternatively, these pins can be used as general-purpose digital inputs.
6 to 9 7 to 10 VP1 to VP4
(VPx)
Low Voltage Inputs to Supply Fault Detectors. Three input ranges can be set by altering the
input attenuation on a potential divider connected to these pins, the output of which connects
to a supply fault detector. These pins allow thresholds from 2.5 V to 6.0 V, from 1.25 V to 3.00 V,
and from 0.573 V to 1.375 V.
10 11 VH High Voltage Input to Supply Fault Detectors. Two input ranges can be set by altering the
input attenuation on a potential divider connected to this pin, the output of which connects
to a supply fault detector. This pin allows thresholds from 6.0 V to 14.4 V and from 2.5 V to 6.0 V.
11 14 AGND2 Ground Return for Input Attenuators.
12 15 REFGND2 Ground Return for On-Chip Reference Circuits.
13 16 REFIN Reference Input for ADC. Nominally, 2.048 V. This pin must be driven by a reference voltage.
The on-board reference can be used by connecting the REFOUT pin to the REFIN pin.
14 17 REFOUT Reference Output, 2.048 V. Typically connected to REFIN. Note that the capacitor must be
connected between this pin and REFGND. A 10 μF capacitor is recommended for this purpose.
17 20 SCL SMBus Clock Pin. Bidirectional open drain requires external resistive pull-up.
18 21 SDA SMBus Data Pin. Bidirectional open drain requires external resistive pull-up.
21 to 30 26 to 35 PDO10 to PDO1 Programmable Output Drivers.
31 38 PDOGND2 Ground Return for Output Drivers.
32 39 VCCP Central Charge Pump Voltage of 5.25 V. A reservoir capacitor must be connected between this
pin and GND. A 10 μF capacitor is recommended for this purpose.
33 40 A0 Logic Input. This pin sets the seventh bit of the SMBus interface address.
34 41 A1 Logic Input. This pin sets the sixth bit of the SMBus interface address.
35 42 D2N External Temperature Sensor 2 Cathode Connection.
36 43 D2P External Temperature Sensor 2 Anode Connection.
ADM1063
Rev. C | Page 8 of 32
Pin No.
LFCSP1 TQFP Mnemonic Description
37 44 D1N External Temperature Sensor 1 Cathode Connection.
38 45 D1P External Temperature Sensor 1 Anode Connection.
39 46 VDDCAP Device Supply Voltage. Linearly regulated from the highest of the VPx, VH pins to a typical of
4.75 V. Note that the capacitor must be connected between this pin and GND. A 10 μF
capacitor is recommended for this purpose.
40 47 GND2 Supply Ground.
1 Note that the LFCSP has an exposed pad on the bottom. This pad is a no connect (NC). If possible, this pad should be soldered to the board for improved mechanical stability.
2 In a typical application, all ground pins are connected together.
ADM1063
Rev. C | Page 9 of 32
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
Voltage on VH Pin 16 V
Voltage on VPx Pins 7 V
Voltage on VXx Pins −0.3 V to +6.5 V
Voltage on A0, A1 Pins −0.3 V to +7 V
Voltage on REFIN, REFOUT Pins 5 V
Voltage on VDDCAP, VCCP Pins 6.5 V
Voltage on PDOx Pins 16 V
Voltage on SDA, SCL Pins 7 V
Voltage on GND, AGND, PDOGND, REFGND Pins −0.3 V to +0.3 V
Voltage on DxN, DxP Pins −0.3 V to +5 V
Input Current at Any Pin ±5 mA
Package Input Current ±20 mA
Maximum Junction Temperature (TJ max) 150°C
Storage Temperature Range −6C to +150°C
Lead Temperature,
Soldering Vapor Phase, 60 sec
215°C
ESD Rating, All Pins 2000 V
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 4. Thermal Resistance
Package Type θJA Unit
40-Lead LFCSP 25 °C/W
48-Lead TQFP 50 °C/W
ESD CAUTION
ADM1063
Rev. C | Page 10 of 32
TYPICAL PERFORMANCE CHARACTERISTICS
6
0
1
2
3
4
5
0654321
04632-050
V
VP1
(V)
V
VDDCAP
(V)
Figure 5. VVDDCAP vs. VVP1
6
0
1
2
3
4
5
011412108642
04632-051
V
VH
(V)
V
VDDCAP
(V)
6
Figure 6. VVDDCAP vs. VVH
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
0123456
04632-052
V
VP1
(V)
I
VP1
(mA)
Figure 7. IVP1 vs. VVP1 (VP1 as Supply)
180
160
140
120
100
80
60
40
20
0
0123456
04632-053
V
VP1
(V)
I
VP1
(
μ
A)
Figure 8. IVP1 vs. VVP1 (VP1 Not as Supply)
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
011412108642
04632-054
V
VH
(V)
I
VH
(mA)
6
Figure 9. IVH vs. VVH (VH as Supply)
350
300
250
200
150
100
50
0
0654321
04632-055
V
VH
(V)
I
VH
(μA)
Figure 10. IVH vs. VVH (VH Not as Supply)
ADM1063
Rev. C | Page 11 of 32
14
12
10
8
6
4
2
0
0 15.012.510.07.55.02.5
04632-056
I
LOAD
(μA)
CHARGE-PUMPED V
PDO1
(V)
Figure 11. Charge-Pumped VPDO1 (FET Drive Mode) vs. ILOAD
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
0654321
04632-057
I
LOAD
(mA)
V
PDO1
(V)
VP1 = 5V
VP1 = 3V
Figure 12. VPDO1 (Strong Pull-Up to VPx) vs. ILOAD
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
0605040302010
04632-058
ILOAD (µA)
VPDO1 (V)
VP1 = 5V
VP1 = 3V
Figure 13. VPDO1 (Weak Pull-Up to VPx) vs. ILOAD
1.0
–1.0
–0.8
–0.6
–0.4
–0.2
0
0.2
0.4
0.6
0.8
40001000 2000 30000
04632-066
CODE
DNL (LSB)
Figure 14. DNL for ADC
1.0
–1.0
–0.8
–0.6
–0.4
–0.2
0
0.2
0.4
0.6
0.8
0 4000300020001000
04632-063
CODE
INL (LSB)
Figure 15. INL for ADC
12000
10000
8000
6000
4000
2000
0
204920482047
04632-064
CODE
HITS PER CODE
81
9894
25
Figure 16. ADC Noise, Midcode Input, 10,000 Reads
ADM1063
Rev. C | Page 12 of 32
2.058
2.038
2.043
2.048
2.053
–40 –20 0 20 40 60 10080
04632-061
TEMPERATURE (°C)
REFOUT (V)
VP1 = 3.0V
VP1 = 4.75V
Figure 17. REFOUT vs. Temperature
ADM1063
Rev. C | Page 13 of 32
POWERING THE ADM1063
The ADM1063 is powered from the highest voltage input on
either the positive-only supply inputs (VPx) or the high voltage
supply input (VH). This technique offers improved redundancy
because the device is not dependent on any particular voltage
rail to keep it operational. The same pins are used for supply
fault detection (see the Supply Supervision section). A VDD arbi-
trator on the device chooses which supply to use. The arbitrator
can be considered an OR’ing of five low dropout regulators (LDOs)
together. A supply comparator chooses the highest input to provide
the on-chip supply. There is minimal switching loss with this
architecture (~0.2 V), resulting in the ability to power the
ADM1063 from a supply as low as 3.0 V. Note that the supply
on the VXx pins cannot be used to power the device.
An external capacitor to GND is required to decouple the on-chip
supply from noise. This capacitor should be connected to the
VDDCAP pin, as shown in Figure 18. The capacitor has another
use during brownouts (momentary loss of power). Under these
conditions, when the input supply (VPx or VH) dips transiently
below VDD, the synchronous rectifier switch immediately turns
off so that it does not pull VDD down. The VDD capacitor can
then act as a reservoir to keep the device active until the next
highest supply takes over the powering of the device. A 10 μF
capacitor is recommended for this reservoir/decoupling function.
The VH input pin can accommodate supplies up to 14.4 V, which
allows the ADM1063 to be powered using a 12 V backplane supply.
In cases where this 12 V supply is hot swapped, it is recommended
that the ADM1063 not be connected directly to the supply. Suitable
precautions, such as the use of a hot swap controller, should be
taken to protect the device from transients that could cause
damage during hot swap events.
When two or more supplies are within 100 mV of each other,
the supply that first takes control of VDD keeps control. For
example, if VP1 is connected to a 3.3 V supply, VDD powers up
to approximately 3.1 V through VP1. If VP2 is then connected
to another 3.3 V supply, VP1 still powers the device, unless VP2
goes 100 mV higher than VP1.
SUPPLY
COMPARATOR
IN
EN
OUT
4.75V
LDO
IN
EN
OUT
4.75V
LDO
IN
EN
OUT
4.75V
LDO
IN
EN
OUT
4.75V
LDO
IN
EN
OUT
4.75V
LDO
VH
VP4
VP3
VP2
VP1
VDDCAP
INTERNAL
DEVICE
SUPPLY
0
4632-022
Figure 18. VDD Arbitrator Operation
ADM1063
Rev. C | Page 14 of 32
INPUTS
SUPPLY SUPERVISION
The ADM1063 has 10 programmable inputs. Five of these are
dedicated supply fault detectors (SFDs). These dedicated inputs
are called VH and VPx (VP1 to VP4) by default. The other five
inputs are labeled VXx (VX1 to VX5) and have dual functionality.
They can be used either as SFDs, with functionality similar to VH
and VPx, or as CMOS-/TTL-compatible logic inputs to the device.
Therefore, the ADM1063 can have up to 10 analog inputs,
a minimum of five analog inputs and five digital inputs, or
a combination thereof. If an input is used as an analog input,
it cannot be used as a digital input. Therefore, a configuration
requiring 10 analog inputs has no available digital inputs. Table 6
shows the details of each input.
PROGRAMMING THE SUPPLY FAULT DETECTORS
The ADM1063 can have up to 10 SFDs on its 10 input channels.
These highly programmable reset generators enable the supervision
of up to 10 supply voltages. The supplies can be as low as 0.573 V
and as high as 14.4 V. The inputs can be configured to detect
an undervoltage fault (the input voltage drops below a prepro-
grammed value), an overvoltage fault (the input voltage rises
above a preprogrammed value), or an out-of-window fault (the
input voltage is outside a preprogrammed range). The thresholds
can be programmed to an 8-bit resolution in registers provided
in the ADM1063. This translates to a voltage resolution that is
dependent on the range selected.
The resolution is given by
Step Size = Threshold Range/255
Therefore, if the high range is selected on VH, the step size can
be calculated as follows:
(14.4 V − 6.0 V)/255 = 32.9 mV
Tabl e 5 lists the upper and lower limits of each available range,
the bottom of each range (VB), and the range itself (VR).
Table 5. Voltage Range Limits
Voltage Range (V) VB (V) VR (V)
0.573 to 1.375 0.573 0.802
1.25 to 3.00 1.25 1.75
2.5 to 6.0 2.5 3.5
6.0 to 14.4 6.0 8.4
The threshold value required is given by
VT = (VR × N)/255 + VB
where:
VT is the desired threshold voltage (undervoltage or overvoltage).
VR is the voltage range.
N is the decimal value of the 8-bit code.
VB is the bottom of the range.
Reversing the equation, the code for a desired threshold is given by
N = 255 × (VTVB)/VR
For example, if the user wants to set a 5 V overvoltage threshold
on VP1, the code to be programmed in the PS1OVTH register
(as discussed in the AN-698 Application Note at www.analog.com)
is given by
N = 255 × (5 − 2.5)/3.5
Therefore, N = 182 (1011 0110 or 0xB6).
INPUT COMPARATOR HYSTERESIS
The UV and OV comparators shown in Figure 19 are always
monitoring VPx. To avoid chatter (multiple transitions when
the input is very close to the set threshold level), these compara
tors have digitally programmable hysteresis. The hysteresis can
be programmed up to the values shown in Table 6.
04632-023
+
+
UV
COMPARATOR
VREF
FAULT TYPE
SELECT
OV
COMPARATOR
FAULT
OUTPUT
GLITCH
FILTER
VPx
MID
LOW
RANGE
SELECT
ULTRA
LOW
Figure 19. Supply Fault Detector Block
The hysteresis is added after a supply voltage goes out of
tolerance. Therefore, the user can program the amount above
the undervoltage threshold to which the input must rise before
an undervoltage fault is deasserted. Similarly, the user can program
the amount below the overvoltage threshold to which an input
must fall before an overvoltage fault is deasserted.
Table 6. Input Functions, Thresholds, and Ranges
Input Function Voltage Range (V) Maximum Hysteresis Voltage Resolution (mV) Glitch Filter (μs)
VH High Voltage Analog Input 2.5 to 6.0 425 mV 13.7 0 to 100
6.0 to 14.4 1.02 V 32.9 0 to 100
VPx Positive Analog Input 0.573 to 1.375 97.5 mV 3.14 0 to 100
1.25 to 3.00 212 mV 6.8 0 to 100
2.5 to 6.0 425 mV 13.7 0 to 100
VXx High-Z Analog Input 0.573 to 1.375 97.5 mV 3.14 0 to 100
Digital Input 0 to 5.0 N/A N/A 0 to 100
ADM1063
Rev. C | Page 15 of 32
The hysteresis value is given by
VHYST = VR × NTHRESH/255
where:
VHYST is the desired hysteresis voltage.
NTHRESH is the decimal value of the 5-bit hysteresis code.
Note that NTHRESH has a maximum value of 31. The maximum
hysteresis for the ranges is listed in Table 6.
INPUT GLITCH FILTERING
The final stage of the SFDs is a glitch filter. This block provides
time-domain filtering on the output of the SFD comparators,
which allows the user to remove any spurious transitions, such
as supply bounce at turn-on. The glitch filter function is in addition
to the digitally programmable hysteresis of the SFD comparators.
The glitch filter timeout is programmable up to 100 μs.
For example, when the glitch filter timeout is 100 μs, any pulse
appearing on the input of the glitch filter block that is less than
100 μs in duration is prevented from appearing on the output of
the glitch filter block. Any input pulse that is longer than 100 μs
appears on the output of the glitch filter block. The output is
delayed with respect to the input by 100 μs. The filtering
process is shown in Figure 20.
04632-024
t
0
t
GF
t
0
t
GF
t
0
t
GF
t
0
t
GF
INPUT
INPUT PULSE SHORTER
THAN GLITCH FILTER TIMEOUT
INPUT PULSE LONGE
R
THAN GLITCH FILTER TIMEOUT
OUTPUT
PROGRAMMED
TIMEOUT
PROGRAMMED
TIMEOUT
INPUT
OUTPUT
Figure 20. Input Glitch Filter Function
SUPPLY SUPERVISION WITH VXx INPUTS
The VXx inputs have two functions. They can be used as either
supply fault detectors or digital logic inputs. When selected as
analog (SFD) inputs, the VXx pins have functionality that is very
similar to the VH and VPx pins. The primary difference is that
the VXx pins have only one input range: 0.573 V to 1.375 V.
Therefore, these inputs can directly supervise only the very low
supplies. However, the input impedance of the VXx pins is high,
allowing an external resistor divide network to be connected to the
pin. Thus, potentially any supply can be divided down into the
input range of the VXx pin and supervised, enabling the ADM1063
to monitor other supplies, such as +24 V, +48 V, and −5 V.
An additional supply supervision function is available when the
VXx pins are selected as digital inputs. In this case, the analog
function is available as a second detector on each of the dedi-
cated analog inputs, VPx and VH. The analog function of VX1
is mapped to VP1, VX2 is mapped to VP2, and so on; VX5 is
mapped to VH. In this case, these SFDs can be viewed as secondary
or warning SFDs.
The secondary SFDs are fixed to the same input range as the
primary SFDs. They are used to indicate warning levels rather
than failure levels. This allows faults and warnings to be gener-
ated on a single supply using only one pin. For example, if VP1
is set to output a fault when a 3.3 V supply drops to 3.0 V, VX1
can be set to output a warning at 3.1 V. Warning outputs are
available for readback from the status registers. They are also
ORed together and fed into the SE, allowing warnings to generate
interrupts on the PDOs. Therefore, in this example, if the
supply drops to 3.1 V, a warning is generated and remedial
action can be taken before the supply drops out of tolerance.
VXx PINS AS DIGITAL INPUTS
As discussed in the Supply Supervision with VXX Inputs section,
the VXx input pins on the ADM1063 have dual functionality.
The second function is as a digital logic input to the device.
Therefore, the ADM1063 can be configured for up to five digital
inputs. These inputs are TTL-/CMOS-compatible. Standard logic
signals can be applied to the pins: RESET from reset generators,
PWRGD signals, fault flags, manual resets, and so on. These
signals are available as inputs to the SE and, therefore, can be used
to control the status of the PDOs. The inputs can be configured
to detect either a change in level or an edge.
When configured for level detection, the output of the digital
block is a buffered version of the input. When configured for
edge detection, a pulse of programmable width is output from
the digital block once the logic transition is detected. The width
is programmable from 0 μs to 100 μs.
The digital blocks feature the same glitch filter function that is
available on the SFDs. This enables the user to ignore spurious
transitions on the inputs. For example, the filter can be used to
debounce a manual reset switch.
When configured as digital inputs, each VXx pin has a weak
(10 μA) pull-down current source available for placing the input
into a known condition, even if left floating. The current source,
if selected, weakly pulls the input to GND.
04632-027
DETECTOR
VXx
(DIGITAL INPUT)
GLITCH
FILTER
VREF = 1.4V
TO
SEQUENCING
ENGINE
+
Figure 21. VXx Digital Input Function
ADM1063
Rev. C | Page 16 of 32
OUTPUTS
SUPPLY SEQUENCING THROUGH
CONFIGURABLE OUTPUT DRIVERS
Supply sequencing is achieved with the ADM1063 using the
programmable driver outputs (PDOs) on the device as control
signals for supplies. The output drivers can be used as logic
enables or as FET drivers.
The sequence in which the PDOs are asserted (and, therefore,
the supplies are turned on) is controlled by the sequencing engine
(SE). The SE determines what action is taken with the PDOs,
based on the condition of the ADM1063 inputs. Therefore, the
PDOs can be set up to assert when the SFDs are in tolerance, the
correct input signals are received on the VXx digital pins, no
warnings are received from any of the inputs of the device, and
at other times. The PDOs can be used for a variety of functions.
The primary function is to provide enable signals for LDOs or
dc-to-dc converters that generate supplies locally on a board.
The PDOs can also be used to provide a PWRGD signal, when all
the SFDs are in tolerance, or a RESET output if one of the SFDs
goes out of specification (this can be used as a status signal for a
DSP, FPGA, or other microcontroller).
The PDOs can be programmed to pull up to a number of different
options. The outputs can be programmed as follows:
Open drain (allowing the user to connect an external
pull-up resistor).
Open drain with weak pull-up to VDD.
Open drain with strong pull-up to VDD.
Open drain with weak pull-up to VPx.
Open drain with strong pull-up to VPx.
Strong pull-down to GND.
Internally charge-pumped high drive (12 V, PDO1 to
PDO6 only).
The last option (available only on PDO1 to PDO6) allows the
user to directly drive a voltage high enough to fully enhance an
external N-FET, which is used to isolate, for example, a card-
side voltage from a backplane supply (a PDO can sustain greater
than 10.5 V into a 1 μA load). The pull-down switches can also
be used to drive status LEDs directly.
The data driving each of the PDOs can come from one of three
sources. The source can be enabled in the PDOxCFG configuration
register (see the AN-698 Application Note at www.analog.com for
details).
The data sources are as follows:
Output from the SE.
Directly from the SMBus. A PDO can be configured so that
the SMBus has direct control over it. This enables software
control of the PDOs. Therefore, a microcontroller can be
used to initiate a software power-up/power-down sequence.
On-chip clock. A 100 kHz clock is generated on the device.
This clock can be made available on any of the PDOs. It
can be used, for example, to clock an external device such
as an LED.
DEFAULT OUTPUT CONFIGURATION
All of the internal registers in an unprogrammed ADM1063 device
from the factory are set to 0. Because of this, the PDOx pins are
pulled to GND by a weak (20 kΩ) on-chip pull-down resistor.
As the input supply to the ADM1063 ramps up on VPx or VH,
all PDOx pins behave as follows:
Input supply = 0 V to 1.2 V. The PDOs are high impedance.
Input supply = 1.2 V to 2.7 V. The PDOs are pulled to GND
by a weak (20 kΩ) on-chip pull-down resistor.
Supply > 2.7 V. Factory programmed devices continue to
pull all PDOs to GND by a weak (20 kΩ) on-chip pull-down
resistor. Programmed devices download current EEPROM
configuration data, and the programmed setup is latched. The
PDO then goes to the state demanded by the configuration.
This provides a known condition for the PDOs during
power-up.
The internal pull-down can be overdriven with an external pull-
up of suitable value tied from the PDOx pin to the required pull-up
voltage. The 20 kΩ resistor must be accounted for in calculating
a suitable value. For example, if PDOx must be pulled up to 3.3 V,
and 5 V is available as an external supply, the pull-up resistor
value is given by
3.3 V = 5 V × 20 kΩ/(RUP + 20 kΩ)
Therefore,
RUP = (100 kΩ − 66 kΩ)/3.3 V = 10 kΩ
04632-028
PDO
SE DATA
CFG4 CFG5 CFG6
SMBus DATA
CLK DATA
10
20k
10
20k
VP1
SEL
VP4
10
20k
V
DD
V
FET (PDO1 TO PDO6 ONLY
)
20k
Figure 22. Programmable Driver Output
ADM1063
Rev. C | Page 17 of 32
SEQUENCING ENGINE
OVERVIEW
The ADM1063 sequencing engine (SE) provides the user with
powerful and flexible control of sequencing. The SE implements
a state machine control of the PDO outputs, with state changes
conditional on input events. SE programs can enable complex
control of boards such as power-up and power-down sequence
control, fault event handling, interrupt generation on warnings,
and so on. A watchdog function that verifies the continued
operation of a processor clock can be integrated into the SE
program. The SE can also be controlled via the SMBus, giving
software or firmware control of the board sequencing.
The SE state machine comprises 63 state cells. Each state has the
following attributes:
Monitors signals indicating the status of the 10 input pins,
VP1 to VP4, VH, and VX1 to VX5.
Can be entered from any other state.
Three exit routes move the state machine onto a next state:
sequence detection, fault monitoring, and timeout.
Delay timers for the sequence and timeout blocks can be
programmed independently and changed with each state
change. The range of timeouts is from 0 ms to 400 ms.
Output condition of the 10 PDO pins is defined and fixed
within a state.
Transition from one state to the next is made in less than
20 μs, which is the time needed to download a state
definition from EEPROM to the SE.
04632-029
SEQUENCE
TIMEOUT
MONITOR
FAULT STATE
Figure 23. State Cell
The ADM1063 offers up to 63 state definitions. The signals
monitored to indicate the status of the input pins are the
outputs of the SFDs.
WARNINGS
The SE also monitors warnings. These warnings can be
generated when the ADC readings violate their limit register
value or when the secondary voltage monitors on VPx and VH
are triggered. The warnings are ORed together and are available
as a single warning input to each of the three blocks that enable
exiting a state.
SMBus JUMP (UNCONDITIONAL JUMP)
The SE can be forced to advance to the next state uncondition-
ally. This enables the user to force the SE to advance. Examples
of the use of this feature include moving to a margining state or
debugging a sequence. The SMBus jump or go-to command can
be seen as another input to sequence and timeout blocks to
provide an exit from each state.
Table 7. Sample Sequence State Entries
State Sequence Timeout Monitor
IDLE1 If VX1 is low , go to State IDLE2.
IDLE2 If VP1 is okay, go to State EN3V3.
EN3V3 If VP2 is okay, go to State EN2V5. If VP2 is not okay after 10 ms,
go to State DIS3V3.
If VP1 is not okay, go to State IDLE1.
DIS3V3 If VX1 is high, go to State IDLE1.
EN2V5 If VP3 is okay, go to State PWRGD. If VP3 is not okay after 20 ms,
go to State DIS2V5.
If VP1 or VP2 is not okay, go to State FSEL2.
DIS2V5 If VX1 is high, go to State IDLE1.
FSEL1 If VP3 is not okay, go to State DIS2V5. If VP1 or VP2 is not okay, go to State FSEL2.
FSEL2 If VP2 is not okay, go to State DIS3V3. If VP1 is not okay, go to State IDLE1.
PWRGD If VX1 is high, go to State DIS2V5. If VP1, VP2, or VP3 is not okay, go to State FSEL1.
ADM1063
Rev. C | Page 18 of 32
SEQUENCING ENGINE APPLICATION EXAMPLE
The application in this section demonstrates the operation of
the SE. Figure 25 shows how the simple building block of a single
SE state can be used to build a power-up sequence for a three-
supply system. Table 8 lists the PDO outputs for each state in
the same SE implementation. In this system, a good 5 V supply
on VP1 and the VX1 pin held low are the triggers required to start
a power-up sequence. The sequence next turns on the 3.3 V supply,
then the 2.5 V supply (assuming successful turn-on of the 3.3 V
supply). When all three supplies have turned on correctly, the
PWRGD state is entered, where the SE remains until a fault occurs
on one of the three supplies, or until it is instructed to go through
a power-down sequence by VX1 going high.
Faults are dealt with throughout the power-up sequence on
a case-by-case basis. The following three sections (the Sequence
Detector section, the Monitoring Fault Detector section, and
the Timeout Detector section) describe the individual blocks
and use the sample application shown in Figure 25 to
demonstrate the actions of the state machine.
Sequence Detector
The sequence detector block is used to detect when a step in
a sequence has been completed. It looks for one of the SE inputs
to change state and is most often used as the gate for successful
progress through a power-up or power-down sequence. A timer
block that is included in this detector can insert delays into a
power-up or power-down sequence, if required. Timer delays
can be set from 10 μs to 400 ms. Figure 24 is a block diagram of
the sequence detector.
04632-032
SUPPLY FAULT
DETECTION
LOGIC INPUT CHANGE
OR FAULT DETECTION
WARNINGS
FORCE FLOW
(UNCONDITIONAL JUMP)
VP1
VX5
INVERT
SEQUENCE
DETECTOR
SELECT
TIMER
Figure 24. Sequence Detector Block Diagram
If a timer delay is specified, the input to the sequence detector
must remain in the defined state for the duration of the timer
delay. If the input changes state during the delay, the timer is reset.
The sequence detector can also help to identify monitoring faults.
In the sample application shown in Figure 25, the FSEL1 and
FSEL2 states first identify which of the VP1,VP2, or VP3 pins
has faulted, and then they take appropriate action.
04632-030
IDLE1
IDLE2
EN3V3
DIS3V3
DIS2V5PWRGD
FSEL1
FSEL2
SEQUENCE
STATES
MONITOR FAULT
STATES
TIMEOUT
STATES
VX1 = 0
VP1 = 1
VP1 = 0
(VP1 + VP2) = 0
(VP1 + VP2 + VP3) = 0
(VP1 +
VP2) = 0
VP2 = 1
VP3 = 1
VP2 = 0
VX1 = 1
VP3 = 0
VP2 = 0
VP1 = 0
VX1 = 1
VX1 = 1
10ms
20ms
EN2V5
Figure 25. Sample Application Flow Diagram
Table 8. PDO Outputs for Each State
PDO Outputs IDLE1 IDLE2 EN3V3 EN2V5 DIS3V3 DIS2V5 PWRGD FSEL1 FSEL2
PDO1 = 3V3ON 0 0 1 1 0 1 1 1 1
PDO2 = 2V5ON 0 0 0 1 1 0 1 1 1
PDO3 = FAULT 0 0 0 0 1 1 0 1 1
ADM1063
Rev. C | Page 19 of 32
Monitoring Fault Detector
The monitoring fault detector block is used to detect a failure
on an input. The logical function implementing this is a wide
OR gate that can detect when an input deviates from its expected
condition. The clearest demonstration of the use of this block
is in the PWRGD state, where the monitor block indicates that
a failure on one or more of the VP1, VP2, or VP3 inputs has
occurred.
No programmable delay is available in this block because the
triggering of a fault condition is likely to be caused by a supply
falling out of tolerance. In this situation, the device needs to
react as quickly as possible. Some latency occurs when moving
out of this state because it takes a finite amount of time (~20 μs)
for the state configuration to download from EEPROM into the
SE. Figure 26 is a block diagram of the monitoring fault detector.
04632-033
SUPPLY FAULT
DETECTION
LOGIC INPUT CHANGE
OR FAULT DETECTION
V
P1
V
X5
MONITORING FAULT
DETECTOR
MASK
SENSE
1-BIT FAULT
DETECTOR
FAULT
WARNINGS
MASK
1-BIT FAULT
DETECTOR
FAULT
MASK
SENSE
1-BIT FAULT
DETECTOR
FAULT
Figure 26. Monitoring Fault Detector Block Diagram
Timeout Detector
The timeout detector allows the user to trap a failure to ensure
proper progress through a power-up or power-down sequence.
In the sample application shown in Figure 25, the timeout next-
state transition is from the EN3V3 and EN2V5 states. For the
EN3V3 state, the signal 3V3ON is asserted on the PDO1 output
pin upon entry to this state to turn on a 3.3 V supply. This supply
rail is connected to the VP2 pin, and the sequence detector looks
for the VP2 pin to go above its undervoltage threshold, which is
set in the supply fault detector (SFD) attached to that pin.
The power-up sequence progresses when this change is detected.
If, however, the supply fails (perhaps due to a short circuit over-
loading this supply), the timeout block traps the problem. In this
example, if the 3.3 V supply fails within 10 ms, the SE moves to
the DIS3V3 state and turns off this supply by bringing PDO1
low. It also indicates that a fault has occurred by taking PDO3
high. Timeout delays of 100 μs to 400 ms can be programmed.
FAULT AND STATUS REPORTING
The ADM1063 has a fault latch for recording faults. Two registers,
FSTAT1 and FSTAT2, are set aside for this purpose. A single bit
is assigned to each input of the device, and a fault on that input sets
the relevant bit. The contents of the fault register can be read
out over the SMBus to determine which input(s) faulted. The
fault register can be enabled/disabled in each state. To latch data
from one state, ensure that the fault latch is disabled in the
following state. This ensures that only real faults are captured
and not, for example, undervoltage conditions that may be
present during a power-up or power-down sequence.
The ADM1063 also has a number of status registers. These
include more detailed information, such as whether an under-
voltage or overvoltage fault is present on a particular input. The
status registers also include information on ADC limit faults.
Note that the data in the status registers is not latched in any
way and, therefore, is subject to change at any time.
See the AN-698 Application Note at www.analog.com for full
details about the ADM1063 registers.
ADM1063
Rev. C | Page 20 of 32
VOLTAGE READBACK
The ADM1063 has an on-board, 12-bit, accurate ADC for
voltage readback over the SMBus. The ADC has a 13-channel
analog mux on the front end. The 13 channels consist of the
10 SFD inputs (VH, VPx, and VXx), plus three channels for
temperature readback (see the Temperature Measurement System
section). Any or all of these inputs can be selected to be read,
in turn, by the ADC. The circuit controlling this operation is
called the round-robin circuit. This circuit can be selected to
run through its loop of conversions once or continuously.
Averaging is also provided for each channel. In this case, the
round-robin circuit runs through its loop of conversions 16 times
before returning a result for each channel. At the end of this
cycle, the results are written to the output registers.
The ADC samples single-sided inputs with respect to the AGND
pin. A 0 V input gives out Code 0, and an input equal to the
voltage on REFIN gives out full code (4095 decimal).
The inputs to the ADC come directly from the VXx pins and
from the back of the input attenuators on the VPx and VH pins,
as shown in Figure 27 and Figure 28.
04632-025
VXx
2.048V VREF
NO ATTENUATION
12-BIT
ADC
DIGITIZED
VOLTAGE
READING
Figure 27. ADC Reading on VXx Pins
04632-026
2.048V VREF
TTENU
TION NETWORK
(DEPENDS ON RANGE SELECTED)
12-BIT
ADC
DIGITIZED
VOLTAGE
READING
VPx/VH
Figure 28. ADC Reading on VPx/VH Pins
The voltage at the input pin can be derived from the
following equation:
V = 4095
CodeADC × Attenuation Factor × VREFIN
where VREFIN = 2.048 V when the internal reference is used (that is,
the REFIN pin is connected to the REFOUT pin).
The ADC input voltage ranges for the SFD input ranges are listed
in Table 9.
Table 9. ADC Input Voltage Ranges
SFD Input
Range (V) Attenuation Factor
ADC Input Voltage
Range (V)
0.573 to 1.375 1 0 to 2.048
1.25 to 3.00 2.181 0 to 4.46
2.5 to 6.0 4.363 0 to 6.01
6.0 to 14.4 10.472 0 to 14.41
1 The upper limit is the absolute maximum allowed voltage on the VPx and
VH pins.
The typical way to supply the reference to the ADC on the
REFIN pin is to connect the REFOUT pin to the REFIN pin.
REFOUT provides a 2.048 V reference. As such, the supervising
range covers less than half the normal ADC range. It is possible,
however, to provide the ADC with a more accurate external
reference for improved readback accuracy.
Supplies can also be connected to the input pins purely for ADC
readback, even though these pins may go above the expected
supervisory range limits (but not above the absolute maximum
ratings on these pins). For example, a 1.5 V supply connected to
the VX1 pin can be correctly read out as an ADC code of approxi-
mately 3/4 full scale, but it always sits above any supervisory limits
that can be set on that pin. The maximum setting for the REFIN
pin is 2.048 V.
SUPPLY SUPERVISION WITH THE ADC
In addition to the readback capability, another level of supervi-
sion is provided by the on-chip, 12-bit ADC. The ADM1063 has
limit registers with which the user can program a maximum or
minimum allowable threshold. Exceeding the threshold generates
a warning that can either be read back from the status registers
or input into the SE to determine what sequencing action the
ADM1063 should take. Only one register is provided for each input
channel. Therefore, either an undervoltage threshold or overvoltage
threshold (but not both) can be set for a given channel. The round-
robin circuit can be enabled via an SMBus write, or it can be
programmed to turn on in any state in the SE program. For
example, it can be set to start after a power-up sequence is
complete, and all supplies are known to be within expected
tolerance limits.
Note that a latency is built into this supervision, dictated by
the conversion time of the ADC. With all 12 channels selected,
the total time for the round-robin operation (averaging off) is
approximately 6 ms (500 μs per channel selected). Supervision
using the ADC, therefore, does not provide the same real-time
response as the SFDs.
ADM1063
Rev. C | Page 21 of 32
TEMPERATURE MEASUREMENT SYSTEM
The ADM1063 contains an on-chip, band gap temperature
sensor, whose output is digitized by the on-chip, 12-bit ADC.
Theoretically, the temperature sensor and the ADC can measure
temperatures from −128°C to +128°C with a resolution of 0.125°C.
Because this exceeds the operating temperature range of the device,
local temperature measurements outside this range are not possible.
Temperature measurements from −128°C to +128°C are possible
using a remote sensor. The output code is in offset binary format,
with −128°C given by Code 0x400, 0°C given by Code 0x800,
and +128°C given by Code 0xC00.
As with the other analog inputs to the ADC, a limit register is
provided for each of the temperature input channels. Therefore,
a temperature limit can be set such that if it is exceeded, a warning
is generated and available as an input to the sequencing engine.
This enables users to control their sequence or monitor functions
based on an overtemperature or undertemperature event.
REMOTE TEMPERATURE MEASUREMENT
The ADM1063 can measure the temperature of two remote
diode sensors or diode-connected transistors connected to the
DxN and DxP pins.
The forward voltage of a diode or diode-connected transistor
operated at a constant current exhibits a negative temperature
coefficient of about −2 mV/°C. Unfortunately, the absolute value
of VBE varies from device to device, and individual calibration
is required to null it, making the technique unsuitable for mass
production. The technique used in the ADM1063 is to measure
the change in VBE when the device is operated at two different
currents.
The change in VBE is given by
ΔVBE = kT/q × ln(N)
where:
k is Boltzmanns constant.
q is the charge on the carrier.
T is the absolute temperature in Kelvin.
N is the ratio of the two currents.
Figure 31 shows the input signal conditioning used to measure the
output of a remote temperature sensor. This figure shows the
external sensor as a substrate transistor provided for temperature
monitoring on some microprocessors, but it could equally be
a discrete transistor such as a 2N3904 or 2N3906.
If a discrete transistor is used, the collector is not grounded and
should be linked to the base. If a PNP transistor is used, the base
is connected to the DxN input and the emitter is connected to the
DxP input. If an NPN transistor is used, the emitter is connected
to the DxN input and the base is connected to the DxP input.
Figure 29 and Figure 30 show how to connect the ADM1063
to an NPN or PNP transistor for temperature measurement.
To prevent ground noise from interfering with the measurement,
the more negative terminal of the sensor is not referenced to
ground but is biased above ground by an internal diode at the
DxN input.
04632-070
2N3904
NPN
ADM1063
DxP
DxN
Figure 29. Measuring Temperature Using an NPN Transistor
04632-071
2N3906
PNP
ADM1063
DxP
DxN
Figure 30. Measuring Temperature Using a PNP Transistor
04632-069
CPU
BIAS
DIODE
V
DD
TO ADC
VOUT+
VOUT
REMOTE
SENSING
TRANSISTOR
I I IBIAS
LOW-PASS FILTER
fC = 65kHz
THERM DA
THERM DC
DxP
DxN
Figure 31. Signal Conditioning for Remote Diode Temperature Sensors
ADM1063
Rev. C | Page 22 of 32
To measure ΔVBE, the sensor is switched between operating
currents of I and N × I. The resulting waveform is passed through
a 65 kHz low-pass filter to remove noise and through a chopper-
stabilized amplifier that amplifies and rectifies the waveform
to produce a dc voltage proportional to ΔVBE. This voltage is
measured by the ADC to produce a temperature output in 12-bit
offset binary. To further reduce the effects of noise, digital
filtering is performed by averaging the results of 16 measurement
cycles. A remote temperature measurement takes nominally
600 ms. The results of remote temperature measurements are
stored in 12-bit, offset binary format, as shown in Table 10. This
format provides temperature readings with a resolution of 0.125°C.
Table 10. Temperature Data Format
Temperature Digital Output (Hex) Digital Output (Binary)
−128°C 0x400 010000000000
−125°C 0x418 010000011000
−100°C 0x4E0 010011100000
−75°C 0x5A8 010110101000
−50°C 0x670 011001110000
−25°C 0x738 011100111000
−10°C 0x7B0 011110110000
0°C 0x800 100000000000
+10.25°C 0x852 100001010010
+25.5°C 0x8CC 100011001100
+50.75°C 0x996 100110010110
+75°C 0xA58 101001011000
+100°C 0XB20 101100100000
+125°C 0xBE8 101111101000
+128°C 0xC00 110000000000
ADM1063
Rev. C | Page 23 of 32
APPLICATIONS DIAGRAM
04632-068
3.3V OUT
3.3V OUT
VH
PDO8
PDO9
PDO10
SYSTEM RESET
PDO7
SIGNAL VALID
PDO6 PWRGD
PDO2
D1P
D1N
D2P
D2N
PDO1
PDO5
PDO4
PDO3
EN OUT
DC-TO-DC1
IN
3.3V OU
T
3V OUT
5V OUT
12V OUT
EN OUT
DC-TO-DC2
IN
2.5V OU
T
EN OUT
DC-TO-DC3
IN
EN OUT
LDO
IN
1.8V OU
T
0.9V OU
T
1.2V OU
T
5V OUT
12V IN
5V IN
3V IN
VP1
3V OUT VP2
3.3V OUT VP3
2.5V OUT VP4
1.8V OUT VX1
1.2V OUT VX2
0.9V OUT VX3
POWRON
VX4
RESET
VX5
10µF
REFIN
10µF
VCCP
10µF
VDDCAP GND
EN OUT
DC-TO-DC4
IN
ADM1063
REFOUT
MICRO-
PROCESSOR
MICRO-
PROCESSOR
TEMPERATURE
DIODE
3.3V OUT
2.5V OUT
TEMPERATURE
DIODE
3.3V OUT
2.5V OUT
Figure 32. Applications Diagram
ADM1063
Rev. C | Page 24 of 32
COMMUNICATING WITH THE ADM1063
CONFIGURATION DOWNLOAD AT POWER-UP
The configuration of the ADM1063 (undervoltage/overvoltage
thresholds, glitch filter timeouts, PDO configurations, and so
on) is dictated by the contents of the RAM. The RAM comprises
digital latches that are local to each of the functions on the device.
The latches are double-buffered and have two identical latches,
Latch A and Latch B. Therefore, when an update to a function
occurs, the contents of Latch A are updated first, and then the
contents of Latch B are updated with identical data. The advantages
of this architecture are explained in detail in the Updating the
Configuration section.
The latches are volatile memory and lose their contents at
power-down. Therefore, the configuration in the RAM must
be restored at power-up by downloading the contents of the
EEPROM (nonvolatile memory) to the local latches. This
download occurs in steps, as follows:
1. With no power applied to the device, the PDOs are all
high impedance.
2. When 1.2 V appears on any of the inputs connected to the
VDD arbitrator (VH or VPx), the PDOs are all weakly
pulled to GND with a 20 kΩ resistor.
3. When the supply rises above the undervoltage lockout of
the device (UVLO is 2.5 V), the EEPROM starts to
download to the RAM.
4. The EEPROM downloads its contents to all Latch As.
5. When the contents of the EEPROM are completely down-
loaded to the Latch As, the device controller signals all
Latch As to download to all Latch Bs simultaneously,
completing the configuration download.
6. At 0.5 ms after the configuration download completes, the
first state definition is downloaded from EEPROM into
the SE.
Note that any attempt to communicate with the device prior to
the completion of the download causes the ADM1063 to issue
a no acknowledge (NACK).
UPDATING THE CONFIGURATION
After power-up, with all the configuration settings loaded from
the EEPROM into the RAM registers, the user may need to alter
the configuration of functions on the ADM1063, such as changing
the undervoltage or overvoltage limit of an SFD, changing the
fault output of an SFD, or adjusting the rise time delay of one of
the PDOs.
The ADM1063 provides several options that allow the user to
update the configuration over the SMBus interface. The following
three options are controlled in the UPDCFG register.
Option 1
Update the configuration in real time. The user writes to the RAM
across the SMBus, and the configuration is updated immediately.
Option 2
Update the Latch As without updating the Latch Bs. With this
method, the configuration of the ADM1063 remains unchanged
and continues to operate in the original setup until the instruction
is given to update the Latch Bs.
Option 3
Change the EEPROM register contents without changing the RAM
contents, and then download the revised EEPROM contents to
the RAM registers. With this method, the configuration of the
ADM1063 remains unchanged and continues to operate in the
original setup until the instruction is given to update the RAM.
The instruction to download from the EEPROM in Option 3
is also a useful way to restore the original EEPROM contents,
if revisions to the configuration are unsatisfactory. For example,
if the user needs to alter an overvoltage threshold, the RAM
register can be updated as described in Option 1. However,
if the user is not satisfied with the change and wants to revert
to the original programmed value, the device controller can
issue a command to download the EEPROM contents to the
RAM again, as described in Option 3, restoring the ADM1063
to its original configuration.
The topology of the ADM1063 makes this type of operation
possible. The local, volatile registers (RAM) are all double-
buffered latches. Setting Bit 0 of the UPDCFG register to 1 leaves
the double-buffered latches open at all times. If Bit 0 is set to 0
when a RAM write occurs across the SMBus, only the first side
of the double-buffered latch is written to. The user must then
write a 1 to Bit 1 of the UPDCFG register. This generates a pulse
to update all the second latches at once. EEPROM writes occur
in a similar way.
The final bit in this register can enable or disable EEPROM
page erasure. If this bit is set high, the contents of an EEPROM
page can all be set to 1. If this bit is set low, the contents of
a page cannot be erased, even if the command code for page
erasure is programmed across the SMBus. The bit map for the
UPDCFG register is shown in the AN-698 Application Note at
www.analog.com. A flow diagram for download at power-up
and subsequent configuration updates is shown in Figure 33.
ADM1063
Rev. C | Page 25 of 32
04632-035
POWER-UP
(V
CC
> 2.5V)
EEPROM
E
E
P
R
O
M
L
D
D
A
T
A
R
A
M
L
D
U
P
D
SMBus
DEVICE
CONTROLLER
LATCH A LATCH B FUNCTION
(OV THRESHOLD
ON VP1)
Figure 33. Configuration Update Flow Diagram
UPDATING THE SEQUENCING ENGINE
Sequencing engine (SE) functions are not updated in the same
way as regular configuration latches. The SE has its own dedicated
512-byte nonvolatile, electrically erasable, programmable, read-
only memory (EEPROM) for storing state definitions, providing
63 individual states, each with a 64-bit word (one state is reserved).
At power-up, the first state is loaded from the SE EEPROM into
the engine itself. When the conditions of this state are met, the
next state is loaded from the EEPROM into the engine, and so
on. The loading of each new state takes approximately 10 μs.
To alter a state, the required changes must be made directly to
the EEPROM. RAM for each state does not exist. The relevant
alterations must be made to the 64-bit word, which is then
uploaded directly to the EEPROM.
INTERNAL REGISTERS
The ADM1063 contains a large number of data registers. The
principal registers are the address pointer register and the
configuration registers.
Address Pointer Register
The address pointer register contains the address that selects
one of the other internal registers. When writing to the
ADM1063, the first byte of data is always a register address that
is written to the address pointer register.
Configuration Registers
The configuration registers provide control and configuration
for various operating parameters of the ADM1063.
EEPROM
The ADM1063 has two 512-byte cells of nonvolatile EEPROM
from Register Address 0xF800 to Register Address 0xFBFF. The
EEPROM is used for permanent storage of data that is not lost
when the ADM1063 is powered down. One EEPROM cell contains
the configuration data of the device; the other contains the state
definitions for the SE. Although referred to as read-only memory,
the EEPROM can be written to, as well as read from, using the
serial bus in exactly the same way as the other registers.
The major differences between the EEPROM and other
registers are as follows:
An EEPROM location must be blank before it can be
written to. If it contains data, the data must first be erased.
Writing to the EEPROM is slower than writing to the RAM.
Writing to the EEPROM should be restricted because it has a
limited write/cycle life of typically 10,000 write operations,
due to the usual EEPROM wear-out mechanisms.
The first EEPROM is split into 16 (0 to 15) pages of 32 bytes each.
Page 0 to Page 6, starting at Address 0xF800, hold the configuration
data for the applications on the ADM1063 (such as the SFDs and
PDOs). These EEPROM addresses are the same as the RAM
register addresses, prefixed by F8. Page 7 is reserved. Page 8 to
Page 15 are for customer use.
Data can be downloaded from the EEPROM to the RAM in one
of the following ways:
At power-up, when Page 0 to Page 6 are downloaded.
By setting Bit 0 of the UDOWNLD register (0xD8), which
performs a user download of Page 0 to Page 6.
SERIAL BUS INTERFACE
The ADM1063 is controlled via the serial system management
bus (SMBus) and is connected to this bus as a slave device,
under the control of a master device. It takes approximately
1 ms after power-up for the ADM1063 to download from its
EEPROM. Therefore, access to the ADM1063 is restricted until
the download is complete.
Identifying the ADM1063 on the SMBus
The ADM1063 has a 7-bit serial bus slave address (see Tabl e 11).
The device is powered up with a default serial bus address.
The five MSBs of the address are set to 00111, and the two LSBs
are determined by the logical states of Pin A1 and Pin A0.
This allows the connection of four ADM1063s to one SMBus.
Table 11. Serial Bus Slave Address
A1 Pin A0 Pin Hex Address 7-Bit Address
Low Low 0x38 0011100x1
Low High 0x3Ah 0011101x1
High Low 0x3Ch 0011110x1
High High 0x3Eh 0011111x1
1 x = Read/Write bit. The address is shown only as the first 7 MSBs.
ADM1063
Rev. C | Page 26 of 32
The device also has several identification registers (read-only)
that can be read across the SMBus. Table 12 lists these registers
with their values and functions.
Table 12. Identification Register Values and Functions
Name Address Value Function
MANID 0xF4 0x41 Manufacturer ID for Analog Devices
REVID 0xF5 0x02 Silicon revision
MARK1 0xF6 0x00 Software brand
MARK2 0xF7 0x00 Software brand
General SMBus Timing
Figure 34, Figure 35, and Figure 36 are timing diagrams for
general read and write operations using the SMBus. The SMBus
specification defines specific conditions for different types of
read and write operations, which are discussed in the Wr ite
Operations and Read Operations sections.
The general SMBus protocol operates as follows:
Step 1
The master initiates data transfer by establishing a start condition,
defined as a high-to-low transition on the serial data-line SDA
while the serial clock-line SCL remains high. This indicates that
a data stream follows. All slave peripherals connected to the serial
bus respond to the start condition and shift in the next eight bits,
consisting of a 7-bit slave address (MSB first) plus an R/W bit.
This bit determines the direction of the data transfer, that is,
whether data is written to or read from the slave device (0 = write,
1 = read).
The peripheral whose address corresponds to the transmitted
address responds by pulling the data line low during the low
period before the ninth clock pulse, known as the acknowledge
bit, and by holding it low during the high period of this clock pulse.
All other devices on the bus remain idle while the selected device
waits for data to be read from or written to it. If the R/W bit is a 0,
the master writes to the slave device. If the R/W bit is a 1, the
master reads from the slave device.
Step 2
Data is sent over the serial bus in sequences of nine clock pulses:
eight bits of data followed by an acknowledge bit from the slave
device. Data transitions on the data line must occur during the low
period of the clock signal and remain stable during the high period
because a low-to-high transition when the clock is high could be
interpreted as a stop signal. If the operation is a write operation,
the first data byte after the slave address is a command byte. This
command byte tells the slave device what to expect next. It may be
an instruction telling the slave device to expect a block write, or
it may be a register address that tells the slave where subsequent
data is to be written. Because data can flow in only one direction,
as defined by the R/W bit, sending a command to a slave device
during a read operation is not possible. Before a read operation,
it may be necessary to perform a write operation to tell the slave
what sort of read operation to expect and/or the address from
which data is to be read.
Step 3
When all data bytes have been read or written, stop conditions
are established. In write mode, the master pulls the data line high
during the 10th clock pulse to assert a stop condition. In read
mode, the master device releases the SDA line during the low
period before the ninth clock pulse, but the slave device does
not pull it low. This is known as a no acknowledge. The master
then takes the data line low during the low period before the
10th clock pulse and then high during the 10th clock pulse to
assert a stop condition.
04632-036
19 91
1919
START BY
MASTER
ACK. BY
SLAVE
ACK. BY
SLAVE
ACK. BY
SLAVE
ACK. BY
SLAVE
FRAME 2
COMMAND CODE
FRAME 1
SLAVE ADDRESS
FRAME N
DATA BYTE
FRAME 3
DATA BYTE
SCL
SDA R/W
STOP
BY
MASTER
SCL
(CONTINUED)
SDA
(CONTINUED)
D7A0A11100 1 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
Figure 34. General SMBus Write Timing Diagram
ADM1063
Rev. C | Page 27 of 32
9
04632-037
19 91
191
START BY
MASTER
ACK. BY
SLAVE
ACK. BY
MASTER
ACK. BY
MASTER NO ACK.
FRAME 2
DATA BYTE
FRAME 1
SLAVE ADDRESS
FRAME N
DATA BYTE
FRAME 3
DATA BYTE
SCL
SDA R/W
STOP
BY
MASTER
SCL
(CONTINUED)
SDA
(CONTINUED)
D7A0A11100 1 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
Figure 35. General SMBus Read Timing Diagram
04632-038
SCL
SDA
PS S P
tSU;STO
tHD;STA
tSU;STA
tSU;DAT
tHD;DAT
tHD;STA tHIGH
tBUF
tLOW
tRtF
Figure 36. Serial Bus Timing Diagram
SMBus PROTOCOLS FOR RAM AND EEPROM
The ADM1063 contains volatile registers (RAM) and nonvola-
tile registers (EEPROM). User RAM occupies Address 0x00 to
Address 0xDF; the EEPROM occupies Address 0xF800 to
Address 0xFBFF.
Data can be written to and read from both the RAM and the
EEPROM as single data bytes. Data can be written only to
unprogrammed EEPROM locations. To write new data to a
programmed location, the location contents must first be erased.
EEPROM erasure cannot be done at the byte level. The EEPROM
is arranged as 32 pages of 32 bytes each, and an entire page
must be erased.
Page erasure is enabled by setting Bit 2 in the UPDCFG register
(Address 0x90) to 1. If this bit is not set, page erasure cannot
occur, even if the command byte (0xFE) is programmed across
the SMBus.
WRITE OPERATIONS
The SMBus specification defines several protocols for different
types of read and write operations. The following abbreviations
are used in Figure 37 to Figure 45:
S = Start
P = Stop
R = Read
W = Write
A = Acknowledge
A = No acknowledge
The ADM1063 uses the following SMBus write protocols.
Send Byte
In a send byte operation, the master device sends a single
command byte to a slave device, as follows:
1. The master device asserts a start condition on SDA.
2. The master sends the 7-bit slave address followed by the
write bit (low).
3. The addressed slave device asserts an acknowledge (ACK)
on SDA.
4. The master sends a command code.
5. The slave asserts an ACK on SDA.
6. The master asserts a stop condition on SDA, and the
transaction ends.
In the ADM1063, the send byte protocol is used for two purposes:
To write a register address to the RAM for a subsequent single
byte read from the same address, or for a block read or a
block write starting at that address, as shown in Figure 37.
04632-039
2413
SLAVE
ADDRESS
RAM
ADDRESS
(0x00 TO 0xDF)
SWA A
56
P
Figure 37. Setting a RAM Address for Subsequent Read
To erase a page of EEPROM memory. EEPROM memory
can be written to only if it is unprogrammed. Before writing
to one or more EEPROM memory locations that are already
programmed, the page(s) containing those locations must
first be erased. EEPROM memory is erased by writing a
command byte.
ADM1063
Rev. C | Page 28 of 32
56
P
The master sends a command code telling the slave device to erase
the page. The ADM1063 command code for a page erasure is 0xFE
(1111 1110). Note that for a page erasure to take place, the page
address must be given in the previous write word transaction (see
the Write Byte/Word section). In addition, Bit 2 in the UPDCFG
register (Address 0x90) must be set to 1.
04632-040
2413
SLAVE
ADDRESS
COMMAND
BYTE
(0xFE)
SWA A
Figure 38. EEPROM Page Erasure
As soon as the ADM1063 receives the command byte, page
erasure begins. The master device can send a stop command as
soon as it sends the command byte. Page erasure takes
approximately 20 ms. If the ADM1063 is accessed before erasure
is complete, it responds with a no acknowledge (NACK).
Write Byte/Word
In a write byte/word operation, the master device sends a
command byte and one or two data bytes to the slave device,
as follows:
1. The master device asserts a start condition on SDA.
2. The master sends the 7-bit slave address followed by the
write bit (low).
3. The addressed slave device asserts an ACK on SDA.
4. The master sends a command code.
5. The slave asserts an ACK on SDA.
6. The master sends a data byte.
7. The slave asserts an ACK on SDA.
8. The master sends a data byte or asserts a stop condition.
9. The slave asserts an ACK on SDA.
10. The master asserts a stop condition on SDA to end
the transaction.
In the ADM1063, the write byte/word protocol is used for
three purposes:
To write a single byte of data to the RAM. In this case, the
command byte is RAM Address 0x00 to RAM Address 0xDF,
and the only data byte is the actual data, as shown in Figure 39.
04632-041
SLAVE
ADDRESS
RAM
ADDRESS
(0x00 TO 0xDF)
S W A DATAAPA
2413 576 8
Figure 39. Single Byte Write to the RAM
To set up a 2-byte EEPROM address for a subsequent
read, write, block read, block write, or page erase. In this
case, the command byte is the high byte of EEPROM
Address 0xF8 to EEPROM Address 0xFB. The only data
byte is the low byte of the EEPROM address, as shown in
Figure 40.
04632-042
SLAVE
ADDRESS
EEPROM
ADDRESS
HIGH BYTE
(0xF8 TO 0xFB)
SWA
EEPROM
ADDRESS
LOW BYTE
(0x00 TO 0xFF)
APA
2413 5 76 8
Figure 40. Setting an EEPROM Address
Because a page consists of 32 bytes, only the three MSBs of
the address low byte are important for page erasure. The
lower five bits of the EEPROM address low byte specify the
addresses within a page and are ignored during an erase
operation.
To write a single byte of data to the EEPROM. In this case,
the command byte is the high byte of EEPROM Address 0xF8
to EEPROM Address 0xFB. The first data byte is the low
byte of the EEPROM address, and the second data byte is
the actual data, as shown in Figure 41.
04632-043
SLAVE
ADDRESS
EEPROM
ADDRESS
HIGH BYTE
(0xF8 TO 0xFB)
SWA
EEPROM
ADDRESS
LOW BYTE
(0x00 TO 0xFF)
APA
2413 5 7
A
9
DATA
86 10
Figure 41. Single Byte Write to the EEPROM
Block Write
In a block write operation, the master device writes a block of
data to a slave device. The start address for a block write must
have been set previously. In the ADM1063, a send byte opera-
tion sets a RAM address, and a write byte/word operation sets
an EEPROM address, as follows:
1. The master device asserts a start condition on SDA.
2. The master sends the 7-bit slave address followed by
the write bit (low).
3. The addressed slave device asserts an ACK on SDA.
4. The master sends a command code that tells the slave
device to expect a block write. The ADM1063 command
code for a block write is 0xFC (1111 1100).
5. The slave asserts an ACK on SDA.
6. The master sends a data byte that tells the slave device how
many data bytes are being sent. The SMBus specification
allows a maximum of 32 data bytes in a block write.
7. The slave asserts an ACK on SDA.
8. The master sends N data bytes.
9. The slave asserts an ACK on SDA after each data byte.
10. The master asserts a stop condition on SDA to end
the transaction.
04632-044
SLAVE
ADDRESS
SWA
2
COMMAND 0xFC
(BLOCK WRITE)
413
A
5
BYTE
COUNT
6
A
7
A
910
A PA
DATA
1
8
DATA
N
DATA
2
Figure 42. Block Write to the EEPROM or RAM
Unlike some EEPROM devices that limit block writes to within
a page boundary, there is no limitation on the start address
when performing a block write to EEPROM, except when
There must be at least N locations from the start address to
the highest EEPROM address (0xFBFF) to avoid writing to
invalid addresses.
ADM1063
Rev. C | Page 29 of 32
6
8. The slave asserts an ACK on SDA.
An address crosses a page boundary. In this case, both
pages must be erased before programming. 9. The ADM1063 sends a byte-count data byte that tells the
master how many data bytes to expect. The ADM1063
always returns 32 data bytes (0x20), which is the maximum
allowed by the SMBus Version 1.1 specification.
Note that the ADM1063 features a clock extend function for
writes to EEPROM. Programming an EEPROM byte takes
approximately 250 μs, which limits the SMBus clock for
repeated or block write operations. The ADM1063 pulls SCL
low and extends the clock pulse when it cannot accept any
more data.
10. The master asserts an ACK on SDA.
11. The master receives 32 data bytes.
12. The master asserts an ACK on SDA after each data byte.
13. The master asserts a stop condition on SDA to end
the transaction.
READ OPERATIONS
04632-046
SLAVE
ADDRESS
SWA
2
COMMAND 0xFD
(BLOCK READ)
413
A
5
S
6
SLAVE
ADDRESS
7
BYTE
COUNT
91011
ARA
8
DATA
1
DATA
32
12
A
13
P
A
The ADM1063 uses the following SMBus read protocols.
Receive Byte
In a receive byte operation, the master device receives a single
byte from a slave device, as follows:
1. The master device asserts a start condition on SDA. Figure 44. Block Read from the EEPROM or RAM
2. The master sends the 7-bit slave address followed by the
read bit (high). Error Correction
3. The addressed slave device asserts an ACK on SDA. The ADM1063 provides the option of issuing a packet error
correction (PEC) byte after a write to the RAM, a write to the
EEPROM, a block write to the RAM/EEPROM, or a block read
from the RAM/ EEPROM. This option enables the user to verify
that the data received by or sent from the ADM1063 is correct.
The PEC byte is an optional byte sent after the last data byte has
been written to or read from the ADM1063. The protocol is the
same as for a block read for Step 1 to Step 12 and then proceeds
as follows:
4. The master receives a data byte.
5. The master asserts a NACK on SDA.
6. The master asserts a stop condition on SDA, and the
transaction ends.
In the ADM1063, the receive byte protocol is used to read a
single byte of data from a RAM or EEPROM location whose
address has previously been set by a send byte or write
byte/word operation, as shown in Figure 43.
13. The ADM1063 issues a PEC byte to the master. The master
checks the PEC byte and issues another block read if the
PEC byte is incorrect.
04632-045
23145
SLAVE
ADDRESS
S R DATA PA A
14. A NACK is generated after the PEC byte to signal the end
of the read.
Figure 43. Single Byte Read from the EEPROM or RAM
Block Read 15. The master asserts a stop condition on SDA to end
the transaction.
In a block read operation, the master device reads a block of
data from a slave device. The start address for a block read must
have been set previously. In the ADM1063, this is done by a
send byte operation to set a RAM address or a write byte/word
operation to set an EEPROM address. The block read operation
itself consists of a send byte operation that sends a block read
command to the slave, immediately followed by a repeated start
and a read operation that reads out multiple data bytes, as follows:
Note that the PEC byte is calculated using CRC-8. The frame
check sequence (FCS) conforms to CRC-8 by the polynomial
C(x) = x8 + x2 + x1 + 1
See the SMBus Version 1.1 specification for details.
An example of a block read with the optional PEC byte is shown
in Figure 45.
1. The master device asserts a start condition on SDA.
04632-047
SLAVE
ADDRESS
SWA
2
COMMAND 0xFD
(BLOCK READ)
413
A
5
S
6
SLAVE
ADDRESS
7
BYTE
COUNT
910 1211
ARA
8
DATA
1
DATA
32 A
13
PEC
14
A
15
P
A
2. The master sends the 7-bit slave address followed by the
write bit (low).
3. The addressed slave device asserts an ACK on SDA.
4. The master sends a command code that tells the slave
device to expect a block read. The ADM1063 command
code for a block read is 0xFD (1111 1101).
5. The slave asserts an ACK on SDA. Figure 45. Block Read from the EEPROM or RAM with PEC
6. The master asserts a repeat start condition on SDA.
7. The master sends the 7-bit slave address followed by the
read bit (high).
ADM1063
Rev. C | Page 30 of 32
OUTLINE DIMENSIONS
1
40
10
11
31
30
21
20
4.25
4.10 SQ
3.95
TOP
VIEW
6.00
BSC SQ
PIN 1
INDICATOR 5.75
BSC SQ
12° MAX
0.30
0.23
0.18
0.20 REF
SEATING
PLANE
1.00
0.85
0.80
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.80 MAX
0.65 TYP
4.50
REF
0.50
0.40
0.30
0.50
BSC
PIN 1
INDICATOR
0.60 MAX
0.60 MAX
0.25 MIN
EXPOSED
PAD
(BOT TOM VIEW)
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2
072108-A
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
Figure 46. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
6 mm × 6 mm Body, Very Thin Quad
(CP-40-1)
Dimensions shown in millimeters
COMPLIANT TO JEDEC STANDARDS MS-026ABC
0.50
BSC
LEAD PITCH
0.27
0.22
0.17
9.00
BSC SQ
7.00
BSC SQ
1.20
MAX
TOP VIEW
(PINS DOWN)
1
12
13
25
24
36
37
48
0.75
0.60
0.45
PIN 1
VIEW A
1.05
1.00
0.95
0.20
0.09
0.08 MAX
COPLANARITY
SEATING
PLANE
0° MIN
3.5°
0.15
0.05
VIEW A
ROTATED 90° CCW
Figure 47. 48-Lead Thin Plastic Quad Flat Package [TQFP]
(SU-48)
Dimensions shown in millimeters
ADM1063
Rev. C | Page 31 of 32
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
ADM1063ACPZ −40°C to +85°C 40-Lead LFCSP_VQ CP-40-1
ADM1063ACPZ-REEL7 −40°C to +85°C 40-Lead LFCSP_VQ CP-40-1
ADM1063ASUZ −40°C to +85°C 48-Lead TQFP SU-48
ADM1063ASUZ-REEL7 −40°C to +85°C 48-Lead TQFP SU-48
EVAL-ADM1063TQEBZ Evaluation Kit (TQFP Version)
1 Z = RoHS Compliant Part.
ADM1063
Rev. C | Page 32 of 32
NOTES
©2005–2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D04632-0-7/11(C)