Integrated, Dual RF Transceiver
with Observation Path
Data Sheet AD9371
Rev. B Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2016–2017 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Dual differential transmitters (Tx)
Dual differential receivers (Rx)
Observation receiver (ORx) with 2 inputs
Sniffer receiver (SnRx) with 3 inputs
Tunable range: 300 MHz to 6000 MHz
Tx synthesis bandwidth (BW) to 250 MHz
Rx BW: 8 MHz to 100 MHz
Supports frequency division duplex (FDD) and time division
duplex (TDD) operation
Fully integrated independent fractional-N radio frequency (RF)
synthesizers for Tx, Rx, ORx, and clock generation
JESD204B digital interface
APPLICATIONS
3G/4G micro and macro base stations (BTS)
3G/4G multicarrier picocells
FDD and TDD active antenna systems
Microwave, nonline of sight (NLOS) backhaul systems
GENERAL DESCRIPTION
The AD9371 is a highly integrated, wideband RF transceiver
offering dual channel transmitters and receivers, integrated
synthesizers, and digital signal processing functions. The IC
delivers a versatile combination of high performance and low
power consumption required by 3G/4G micro and macro BTS
equipment in both FDD and TDD applications. The AD9371
operates from 300 MHz to 6000 MHz, covering most of the
licensed and unlicensed cellular bands. The IC supports receiver
bandwidths up to 100 MHz. It also supports observation receiver
and transmit synthesis bandwidths up to 250 MHz to
accommodate digital correction algorithms.
The transceiver consists of wideband direct conversion signal
paths with state-of-the-art noise figure and linearity. Each complete
receiver and transmitter subsystem includes dc offset correction,
quadrature error correction (QEC), and programmable digital
filters, eliminating the need for these functions in the digital
baseband. Several auxiliary functions such as an auxiliary analog-
to-digital converter (ADC), auxiliary digital-to-analog converters
(DACs), and general-purpose input/outputs (GPIOs) are integrated
to provide additional monitoring and control capability.
An observation receiver channel with two inputs is included to
monitor each transmitter output and implement interference
mitigation and calibration applications. This channel also connects
to three sniffer receiver inputs that can monitor radio activity in
different bands.
FUNCTIONAL BLOCK DIAGRAM
OBSERVATION
Rx
ORX1+
ORX1–
ORX2+
ORX2–
JESD204B JESD204B JESD204BSPIDEV_CLK_IN+,
DEV_CLK_IN– CTRL I/F
RX_EXTLO+
RX_EXTLO
ADC
LPF
RX2
ADC
LPF
RX1
RX1+
RX1–
LO
GENERATOR RF
SYNTHESIZER
RX2+
RX2–
DECIMATION,
pFIR,
DC OFFSET
QEC,
TUNING,
RSSI,
OVERLOAD
MICRO-
CONTROLLER
SPI
PORT
ADC
LPF
SNIFFER
Rx
ADC
LPF
TX_EXTLO+
TX_EXTLO
DAC
LPF
TX2
DAC
LPF
TX1
TX1+
TX1
TX2+
TX2 pFIR,
QEC,
INTERPOLATION
GPIO
AUXADC
AUXDAC
CLOCK
GENERATOR
EXTERNAL
OPTION
LO
GENERATOR RF
SYNTHESIZER
RF
SYNTHESIZER
LO
GENERATOR
EXTERNAL
OPTION
SNRXA+
SNRXA–
SNRXB+
SNRXB–
SNRXC+
SNRXC–
DECIMATION,
pFIR,
AGC,
DC OF FSET ,
QEC,
TUNING,
RSSI,
OVERLOAD
AD9371
14651-001
NOTES
1. FOR JESD204B PINS, SEE FI GURE 4.
Figure 1.
The high speed JESD204B interface supports lane rates up to
6144 Mbps. Four lanes are dedicated to the transmitters and four
lanes are dedicated to the receiver and observation receiver channels.
The fully integrated phase-locked loops (PLLs) provide high
performance, low power fractional-N frequency synthesis for
the transmitter, the receiver, the observation receiver, and the
clock sections. Careful design and layout techniques provide the
isolation demanded in high performance base station applications.
All voltage controlled oscillator (VCO) and loop filter components
are integrated to minimize the external component count.
A 1.3 V supply is required to power the core of the AD9371, and
a standard 4-wire serial port controls it. Other voltage supplies
provide proper digital interface levels and optimize transmitter
and auxiliary converter performance. The AD9371 is packaged in a
12 mm × 12 mm, 196-ball chip scale ball grid array (CSP_BGA).
AD9371 Data Sheet
Rev. B | Page 2 of 57
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Current and Power Consumption Specifications ..................... 9
Timing Specifications ................................................................ 10
Absolute Maximum Ratings .......................................................... 12
Reflow Profile .............................................................................. 12
Thermal Resistance .................................................................... 12
ESD Caution ................................................................................ 12
Pin Configuration and Function Descriptions ........................... 13
Typical Performance Characteristics ........................................... 16
700 MHz Band ............................................................................ 16
2.6 GHz Band .............................................................................. 26
3.5 GHz Band .............................................................................. 36
5.5 GHz Band .............................................................................. 46
Theory of Operation ...................................................................... 54
Transmitter (Tx) ......................................................................... 54
Receiver (Rx) ............................................................................... 54
Observation Receiver (ORx) ..................................................... 54
Sniffer Receiver (SnRx) ............................................................. 54
Clock Input .................................................................................. 54
Synthesizers ................................................................................. 55
Serial Peripheral Interface (SPI) Interface .............................. 55
GPIO_x AND GPIO_3P3_x Pins ............................................ 55
Auxiliary Converters .................................................................. 55
JESD204B Data Interface .......................................................... 55
Power Supply Sequence ............................................................. 56
JTAG Boundary Scan ................................................................. 56
Outline Dimensions ....................................................................... 57
Ordering Guide .......................................................................... 57
REVISION HISTORY
3/2017—Rev. A to Rev. B
Change to
Table 1 ............................................................................. 6
Deleted Figure 230 through Figure 239; Renumbered
Sequentially ..................................................................................... 55
Changes to Sniffer Receiver (SnRx) Section ............................... 55
11/2016—Rev. 0 to Rev. A
Changes to Table 1 ............................................................................ 6
Changes to Table 2 ............................................................................ 9
Changes to L3, L4 Description Column, Table 6; M3, M4
Description Column, Table 6; and M13, M14 Description
Column, Table 6 .............................................................................. 16
Changes to Figure 46 Caption ....................................................... 23
Changes to Figure 48 Caption ....................................................... 24
Changes to Figure 56 Caption and Figure 57 Caption .............. 25
Changes to Figure 82 Caption ....................................................... 30
Changes to Figure 105 Caption .................................................... 33
Changes to Figure 107 Caption .................................................... 34
Changes to Figure 115 Caption and Figure 116 Caption .......... 35
Changes to Figure 141 Caption .................................................... 40
Changes to Figure 164 Caption .................................................... 43
Changes to Figure 166 Caption .................................................... 44
Changes to Figure 174 Caption and Figure 175 ......................... 45
Changes to Figure 194 and Figure 199 Caption ......................... 49
Changes to Figure 222 Caption .................................................... 53
Changes to Figure 224 Caption .................................................... 54
Added Figure 230 to Figure 235; Renumbered Sequentially .... 55
Added Figure 236 to Figure 239 ................................................... 56
Added External LO Inputs Section .............................................. 58
7/2016—Revision 0: Initial Version
Data Sheet AD9371
Rev. B | Page 3 of 57
SPECIFICATIONS
Electrical characteristics at ambient temperature range, VDDA_SER = 1.3 V, VDDA_DES = 1.3 V, JESD_VTT_DES = 1.3 V, VDDA_1P31 =
1.3 V, VDIG = 1.3 V, VDDA_1P8 = 1.8 V, VDD_IF = 2.5 V, and VDDA_3P3 = 3.3 V; all RF specifications based on measurements that
include printed circuit board (PCB) and matching circuit losses, unless otherwise noted.
Table 1.
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
TRANSMITTERS (Tx)
Center Frequency 300 6000 MHz
Tx Large Signal Bandwidth (BW) 100 MHz
Tx Synthesis BW2 250 MHz
Wider bandwidth for use in
digital processing algorithms
BW Flatness ±0.5 dB 250 MHz BW, compensated
by programmable finite
infinite response (FIR) filter
±0.15 dB
Any 20 MHz BW span,
compensated by
programmable FIR filter
Deviation from Linear Phase 10 Degrees 250 MHz BW
Power Control Range 0 42 dB Increased calibration time,
reduced QEC3, LOL4
performance beyond 20 dB
Power Control Resolution 0.05 dB
ACLR5 (Four Universal Mobile
Telecommunications System
(UMTS) Carriers)
−11.2 dBFS rms, 0 dB RF
attenuation
700 MHz Local Oscillator (LO) −64 dB
2600 MHz LO −64 dB
3500 MHz LO −63 dB
5500 MHz LO −61 dB
In-Band Noise −155 dBFS6/Hz
Tx to Tx Isolation
700 MHz LO 70 dB
2600 MHz LO 65 dB
3500 MHz LO 65 dB
5500 MHz LO 65 dB
Image Rejection Up to 20 dB RF attenuation,
within large signal BW,
QEC3 active
700 MHz LO 65 dB
2600 MHz LO 65 dB
3500 MHz LO 65 dB
5500 MHz LO 50 dB
Maximum Output Power 0 dBFS, 1 MHz signal input,
50 Ω load, 0 dB RF attenuation
700 MHz LO 7 dBm
2600 MHz LO 7 dBm
3500 MHz LO 6 dBm
5500 MHz LO 4 dBm
Output Third-Order Intercept Point OIP3 −5 dBFS rms, 0 dB RF
attenuation
700 MHz LO 27 dBm
2600 MHz LO 27 dBm
3500 MHz LO 25 dBm
5500 MHz LO 25 dBm
AD9371 Data Sheet
Rev. B | Page 4 of 57
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Carrier Leakage After calibration, LOL
correction active, CW7 input
signal, 3 dB RF and 3 dB digital
attenuation, 40 kHz
measurement BW
700 MHz LO −81 dBFS6
2600 MHz LO −81 dBFS6
3500 MHz LO −81 dBFS6
5500 MHz LO −75 dBFS6
Error Vector Magnitude (3GPP
Test Signals)
EVM Long-term evolution (LTE)
20 MHz downlink,
5 dB RF attenuation
700 MHz LO −45 dB
2600 MHz LO −39 dB
3500 MHz LO −38.5 dB
5500 MHz LO −37.5 dB
Output Impedance 50 Ω Differential
RECEIVERS (Rx)
Center Frequency 300 6000 MHz
Gain Range 0 30 dB
Analog Gain Step 0.5 dB
BW Ripple ±0.5 dB 100 MHz BW, compensated
by programmable FIR filter
±0.2 dB
Any 20 MHz span,
compensated by
programmable FIR filter
Rx Bandwidth 8 100 MHz Analog low-pass filter (LPF)
BW is 20 MHz minimum,
programmable FIR BW
configurable over the entire
range
Rx Alias Band Rejection 75 dB Due to digital filters
Maximum Recommended Input
Power8
−14 dBm
Input is a CW7 signal at a 0 dB
attenuation setting; this level
increases decibel for decibel
with attenuation
Noise Figure NF Maximum Rx gain, at
Rx port, matching losses
de-embedded
700 MHz LO 12 dB
2600 MHz LO 13.5 dB
3500 MHz LO 14 dB
5500 MHz LO 18 dB
Input Third-Order Intercept Point IIP3 Maximum Rx gain, third-
order intermodulation (IM3)
1 MHz offset from LO
700 MHz LO 22 dBm
2600 MHz LO 22 dBm
3500 MHz LO 20 dBm
5500 MHz LO 20 dBm
Input Second-Order Intercept
Point
IIP2 Maximum Rx gain, second-
order intermodulation (IM2)
1 MHz offset from LO
700 MHz LO 65 dBm
2600 MHz LO 65 dBm
3500 MHz LO 65 dBm
5500 MHz LO 57 dBm
Data Sheet AD9371
Rev. B | Page 5 of 57
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Image Rejection QEC3 active, within Rx BW
700 MHz LO 75 dB
2600 MHz LO 75 dB
3500 MHz LO 75 dB
5500 MHz LO 75 dB
Input Impedance 200 Ω Differential
Tx1 to Rx1 Signal Isolation and
Tx2 to Rx2 Signal Isolation
700 MHz LO 68 dB
2600 MHz LO 68 dB
3500 MHz LO 62 dB
5500 MHz LO 60 dB
Tx1 to Rx2 Signal Isolation and
Tx2 to Rx1 Signal Isolation
700 MHz LO 70 dB
2600 MHz LO 70 dB
3500 MHz LO 62 dB
5500 MHz LO 60 dB
Rx1 to Rx2 Signal Isolation
700 MHz LO 60 dB
2600 MHz LO 60 dB
3500 MHz LO 60 dB
5500 MHz LO 60 dB
Rx Band Spurs Referenced to
RF Input at Maximum Gain
−95 dBm
No more than one spur at
this level per 10 MHz of Rx
BW; excludes harmonics of
the reference clock
Rx LO Leakage at Rx Input at
Maximum Gain
Leakage decreases decibel
for decibel with attenuation
for first 12 dB
700 MHz LO −65 dBm
2600 MHz LO −65 dBm
3500 MHz LO −62 dBm
5500 MHz LO −62 dBm
OBSERVATION RECEIVER (ORx)
Center Frequency 300 6000 MHz
Gain Range 0 18 dB
Analog Gain Step 1 dB
BW Ripple ±0.5 dB 250 MHz RF BW, compensated
by programmable FIR filter
Deviation from Linear Phase 10 Degrees 250 MHz RF BW
ORx Bandwidth 250 MHz
ORx Alias Band Rejection 60 dB Due to digital filters
Maximum Recommended Input
Power8
−13 dBm
Input is a CW7 signal at 0 dB
attenuation setting; this level
increases decibel for decibel
with attenuation
Signal-to-Noise Ratio9 SNR Maximum gain at ORx port
700 MHz LO 60 dB
2600 MHz LO 60 dB
3500 MHz LO 60 dB
5500 MHz LO 59 dB 200 MHz BW, 245.76 MSPS
AD9371 Data Sheet
Rev. B | Page 6 of 57
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Input Third-Order Intercept Point IIP3 Maximum ORx gain,
IM3 1 MHz offset from LO
700 MHz LO 22 dBm
2600 MHz LO 22 dBm
3500 MHz LO 18 dBm
5500 MHz LO 18 dBm
Input Second-Order Intercept
Point
IIP2 Maximum ORx gain, IM2
1 MHz offset from LO
700 MHz LO 65 dBm
2600 MHz LO 65 dBm
3500 MHz LO 65 dBm
5500 MHz LO 60 dBm
Image Rejection After online tone calibration
700 MHz LO 65 dB
2600 MHz LO 65 dB
3500 MHz LO 65 dB
5500 MHz LO 65 dB
Input Impedance 200 Ω Differential
Tx1 to ORx1 Signal and Tx2 to
ORx2 Signal Isolation
700 MHz LO 70 dB
2600 MHz LO 70 dB
3500 MHz LO 70 dB
5500 MHz LO 70 dB
Tx1 to ORx2 Signal and Tx2 to
ORx1 Signal Isolation
700 MHz LO 70 dB
2600 MHz LO 70 dB
3500 MHz LO 70 dB
5500 MHz LO 70 dB
SNIFFER RECEIVER (SnRx)
Center Frequency 300 4000 MHz
Gain Range 0 52 dB
Analog Gain Step 1 dB
BW Ripple ±0.5 dB 20 MHz RF BW, compensated
by programmable FIR filter
Rx Bandwidth 20 MHz
Rx Alias Band Rejection 60 dB Due to digital filters
Maximum Recommended Input
Power8
−26 dBm
Input is a CW7 signal at 0 dB
attenuation setting
Noise Figure NF Maximum gain at
SnRx port, matching losses
de-embedded, gain control
limited to the first 20 steps
700 MHz LO 5 dB
2600 MHz LO 5 dB
3500 MHz LO 7 dB
Input Third-Order Intercept Point IIP3 Maximum gain, IM3 1 MHz
offset from LO, gain control
limited to the first 20 steps
700 MHz LO 1 dBm
2600 MHz LO 1 dBm
3500 MHz LO 1 dBm
Data Sheet AD9371
Rev. B | Page 7 of 57
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Input Second-Order Intercept
Point
IIP2 Maximum gain, IM2 1 MHz
offset from LO, gain control
limited to the first 20 steps
700 MHz LO 45 dBm
2600 MHz LO 45 dBm
3500 MHz LO 45 dBm
Image Rejection After online tone calibration
700 MHz LO 75 dB
2600 MHz LO 75 dB
3500 MHz LO 75 dB
Input Impedance 400 Ω Differential
Tx1 to SnRx Signal and Tx2 to
SnRx Signal Isolation
Applies to each SnRx input
700 MHz LO 60 dB
2600 MHz LO 60 dB
3500 MHz LO 60 dB
LO SYNTHESIZER
LO Frequency Step 2.3 Hz 1.5 GHz to 3 GHz, 76.8 MHz
phase frequency detector
(PFD) frequency
LO Spectral Purity −80 dBc Excludes integer boundary
spurs 1 kHz to 100 MHz
Spot Phase Noise
700 MHz LO
10 kHz −104 dBc
100 kHz −107 dBc
1 MHz −133 dBc
2600 MHz LO
10 kHz −93 dBc
100 kHz −97 dBc
1 MHz −123 dBc
3500 MHz LO
10 kHz −91 dBc
100 kHz −97 dBc
1 MHz −123 dBc
5500 MHz LO
10 kHz −98 dBc
100 kHz −100 dBc
1 MHz −110 dBc
Integrated Phase Noise Integrated from 1 kHz to
100 MHz
700 MHz LO 0.20 °rms
2600 MHz LO 0.49 °rms
3500 MHz LO 0.55 °rms
5500 MHz LO 0.75 °rms
EXTERNAL LO INPUT
Input Frequency fEXTLO 600 8000 MHz Input frequency must be 2×
the desired LO frequency
Input Signal Power 0 3 6 dBm 50 Ω matching at the source
AD9371 Data Sheet
Rev. B | Page 8 of 57
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
REFERENCE CLOCK (DEV_CLK_IN
SIGNAL)
Frequency Range 10 320 MHz
Signal Level 0.3 2.0 V p-p AC-coupled, common-mode
voltage (VCM) = 618 mV; for
best spurious performance,
use a <1 V p-p input clock
AUXILIARY CONVERTERS
ADC
ADC Resolution 12 Bits
Input Voltage
Minimum 0.25 V
Maximum 3.05 V
DAC
DAC Resolution 10 Bits Includes four offset levels
Output Voltage
Minimum 0.5 V Reference voltage (VREF) = 1 V
Maximum 3.0 V VREF = 2.5 V
Drive Capability 10 mA
DIGITAL SPECIFICATIONS (CMOS),
GPIO_x, RX1_ENABLE,
RX2_ENABLE, TX1_ENABLE, TX2
ENABLE, SYNCINBx+,
SYNCOUTB0+, GP_INTERRUPT,
SDIO, SDO, SCLK, CSB, RESET
Logic Inputs
Input Voltage
High Level VDD_IF ×
0.8
VDD_IF V
Low Level 0 VDD_IF ×
0.2
V
Input Current
High Level −10 +10 μA
Low Level −10 +10 μA
Logic Outputs
Output Voltage
High Level VDD_IF ×
0.8
V
Low Level VDD_IF ×
0.2
V
Drive Capability 3 mA
DIGITAL SPECIFICATIONS (LVDS),
SYSREF_INx, SYNCOUTB0±,
SYNCINBx PAIRS
Logic Inputs
Input Voltage Range 825 1675 mV Each differential input in the
pair
Input Differential Voltage
Threshold
−100 +100 mV
Receiver Differential Input
Impedance
100 Ω Internal termination enabled
Data Sheet AD9371
Rev. B | Page 9 of 57
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
Logic Outputs
Output Voltage
High 1375 mV
Low 1025 mV
Differential 225 mV
Offset 1200 mV
DIGITAL SPECIFICATIONS (CMOS),
GPIO_3P3_x SIGNALS
Logic Inputs
Input Voltage
High Level VDDA_3P3
× 0.8
VDDA_3P3 V
Low Level 0 VDDA_3P3
× 0.2
V
Input Current
High Level −10 +10 μA
Low Level −10 +10 μA
Logic Outputs
Output Voltage
High Level VDDA_3P3
× 0.8
V
Low Level VDDA_3P3
× 0.2
V
Drive Capability 4 mA
1 VDDA_1P3 refers to all analog 1.3 V supplies including the following: VDDA_BB, VDDA_CLKSYNTH, VDDA_TXLO, VDDA_RXRF, VDDA_RXSYNTH, VDDA_RXVCO,
VDDA_RXTX, VDDA_TXSYNTH, VDDA_TXVCO, VDDA_CALPLL, VDDA_SNRXSYNTH, VDDA_SNRXVCO, VDDA_CLK, and VDDA_RXLO.
2 Synthesis bandwidth (BW) is the extended bandwidth used by digital correction algorithms to measure conditions and generate compensation.
3 Quadrature error correction (QEC) is the system for minimizing quadrature images of a desired signal.
4 Local oscillator leakage (LOL) is a measure of the amount of the LO signal that is passed from a mixer with the desired signal.
5 Adjacent channel level reduction (ACLR) is a measure of the amount of power from the desired signal leaking into an adjacent channel.
6 dBFS represents the ratio of the actual output signal to the maximum possible output level for a continuous wave output signal at the given RF attenuation setting.
7 Continuous wave (CW) is a single frequency signal.
8 Note that the input signal power limit does not correspond to 0 dBFS at the digital output because of the nature of the continuous time Σ-Δ ADCs. Unlike the hard
clipping characteristic of pipeline ADCs, these converters exhibit a soft overload behavior when the input approaches the maximum level.
9 Signal-to-noise ratio is limited by the baseband quantization noise.
CURRENT AND POWER CONSUMPTION SPECIFICATIONS
Table 2.
Parameter Min Typ Max Unit Test Conditions / Comments
SUPPLY CHARACTERISTICS
VDDA_1P3 Analog Supplies1 1.267 1.3 1.33 V
VDIG Supply 1.267 1.3 1.33 V
VDDA_1P8 Supply 1.71 1.8 1.89 V
VDD_IF Supply 1.71 1.8 2.625 V CMOS and LVDS supply, 1.8 V to 2.5 V nominal range
VDDA_3P3 Supply 3.135 3.3 3.465 V
VDDA_SER, VDDA_DES,
JESD_VTT_DES Supplies
1.14 1.3 1.365 V
POSITIVE SUPPLY CURRENT (Rx MODE) Two Rx channels enabled, Tx upconverter disabled, 100 MHz
Rx BW, 122.88 MSPS data rate
VDDA_1P3 Analog Supplies1 1055 mA
VDIG Supply 625 mA Rx QEC2 enabled, QEC2 engine active
VDD_IF Supply (CMOS and LVDS) 8 mA
VDDA_3P3 Supply 1 mA No auxiliary DACs or auxiliary ADCs enabled; if enabled, the
auxiliary ADC adds 2.7 mA, and each auxiliary ADC adds 1.5 mA
VDDA_SER, VDDA_DES,
JESD_VTT_DES Supplies
375 mA
Total Power Dissipation 2.70 W
AD9371 Data Sheet
Rev. B | Page 10 of 57
Parameter Min Typ Max Unit Test Conditions / Comments
POSITIVE SUPPLY CURRENT (Tx MODE) Two Tx channels enabled, Rx downconverter disabled, 200 MHz
Tx BW, 245.76 MSPS data rate (ORx disabled)
VDDA_1P3 Analog Supplies1 1000 mA
VDIG Supply 410 mA Tx QEC2 active
VDDA_1P8 Supply Full-scale CW3
405 mA Tx RF attenuation = 0 dB,
80 mA Tx RF attenuation = 15 dB
VDD_IF Supply 8 mA
VDDA_3P3 Supply 1 mA No auxiliary DACs or auxiliary ADCs enabled; if enabled, the
auxiliary ADC adds 2.7 mA, and each auxiliary ADC adds 1.5 mA
VDDA_SER, VDDA_DES,
JESD_VTT_DES Supplies
375 mA
Total Power Dissipation Typical supply voltages, Tx QEC2 active
3.70 W Tx RF attenuation = 0 dB
3.11 W Tx RF attenuation = 15 dB
POSITIVE SUPPLY CURRENT (FDD MODE),
2× Rx, 2× Tx, ORx ACTIVE
100 MHz Rx BW, 122.88 MSPS data rate; 200 MHz Tx BW,
245.76 MSPS data rate; 200 MHz ORx BW, 245.76 MSPS data rate
VDDA_1P3 Analog Supplies1 1700 mA
VDIG Supply 1080 mA Tx QEC2 active
VDDA_1P8 Supply Full-scale CW3
405 mA Tx RF attenuation = 0 dB
80 mA Tx RF attenuation = 15 dB
VDD_IF Supply 8 mA
VDDA_3P3 Supply 2 mA No auxiliary DACs or auxiliary ADCs enabled; if enabled, the
auxiliary ADC adds 2.7 mA, and each auxiliary ADC adds 1.5 mA
VDDA_SER, VDDA_DES,
JESD_VTT_DES Supplies
375 mA
Total Power Dissipation Typical supply voltages, Tx QEC2 active
4.86 W Tx RF attenuation = 0 dB
4.27 W Tx RF attenuation = 15 dB
MAXIMUM OPERATING JUNCTION
TEMPERATURE
110 °C
Device designed for 10-year lifetime when operating at
maximum junction temperature
1 VDDA_1P3 refers to all analog 1.3 V supplies including the following: VDDA_BB, VDDA_CLKSYNTH, VDDA_TXLO, VDDA_RXRF, VDDA_RXSYNTH, VDDA_RXVCO,
VDDA_RXTX, VDDA_TXSYNTH, VDDA_TXVCO, VDDA_CALPLL, VDDA_SNRXSYNTH, VDDA_SNRXVCO, VDDA_CLK, and VDDA_RXLO.
2 QEC is the system for minimizing quadrature images of a desired signal.
3 Continuous wave (CW) is a single frequency signal.
TIMING SPECIFICATIONS
Table 3.
Parameter Symbol Min Typ Max Unit Test Conditions/Comments
SERIAL PERIPHERAL INTERFACE (SPI) TIMING
SCLK Period tCP 20 ns
SCLK Pulse Width tMP 10 ns
CSB Setup to First SCLK Rising Edge tSC 3 ns
Last SCLK Falling Edge to CSB Hold tHC 0 ns
SDIO Data Input Setup to SCLK tS 2 ns
SDIO Data Input Hold to SCLK tH 0 ns
SCLK Falling Edge to Output Data Delay (3- or 4-Wire Mode) tCO 3 8 ns
Bus Turnaround Time After Baseband Processor (BBP) Drives
Last Address Bit
tHZM t
H t
CO ns
Bus Turnaround Time After AD9371 Drives Last Address Bit tHZS 0 tCO ns
DIGITAL TIMING
TXx_ENABLE Pulse Width 10 μs
RXx_ENABLE Pulse Width 10 μs
Data Sheet AD9371
Rev. B | Page 11 of 57
JESD204B DATA OUTPUT TIMING
Unit Interval UI 162.76 1627.6 ps
Data Rate per Channel (Nonreturn to Zero (NRZ)) 614.4 6144 Mbps
Rise Time tR 24 35 ps 20% to 80% in 100 Ω load
Fall Time tF 24 35 ps 20% to 80% in 100 Ω load
Output Common-Mode Voltage VCM 0 1.8 V AC-coupled
Termination Voltage (VTT) = 1.2 V 735 1135 mV DC-coupled
Differential Output Voltage VDIFF 360 466 770 mV
Short-Circuit Current IDSHORT −100 +100 mA
Differential Termination Impedance ZRDIFF 80 100 120 Ω
Total Jitter 17 48.8 ps Bit error rate (BER) = 10−15
Uncorrelated Bounded High Probability Jitter UBHPJ 1.2 24.4 ps
Duty-Cycle Distortion DCD 3 8.1 ps
SYSREF_IN Signal Setup Time to DEV_CLK_IN Signal tS 2.5 ns See Figure 2 and Figure 3
SYSREF_IN Signal Hold Time to DEV_CLK_IN Signal tH −1.5 ns See Figure 2 and Figure 3
JESD204B DATA INPUT TIMING
Unit Interval UI 162.76 1627.6 ps
Data Rate per Channel (NRZ) 614.4 6144 Mbps
Input Common-Mode Voltage VCM 0.05 1.85 V AC-coupled
VTT = 1.2 V 720 1200 mV DC-coupled
Differential Input Voltage VDIFF 125 750 mV
VTT Source Impedance ZTT 1.2 30 Ω
Differential Termination Impedance ZRDIFF 80 106 120 Ω
VTT
AC-Coupled 1.27 1.33 V
DC-Coupled 1.14 1.26 V
Timing Diagrams
AT DE VI CE P INS
DEV_CLK_IN
t
H
= –1.5ns
t
S
= +2.5ns
t'
H
= +0.5ns
t'
S
= +0.5ns
AT DI GITAL CO RE
t
H
t
S
t
H
t
S
t'
H
t'
S
t'
H
DEV_CLK _IN DELAY
IN REFERENCE T O SYSRE F
CLK DE L AY = 2ns
14651-002
Figure 2. SYSREF_IN Signal Setup and Hold Timing
DEV_CLK_IN
SYSREF_IN
VALID SYSREF_I N
tH
= –1.5ns
tS
= +2.5ns
tH
tS
tH
tS
tH
tS
tH
tS
INVALID SYSREF_IN
14651-003
Figure 3. SYSREF_IN Signal Setup and Hold Timing Examples Relative to DEV_CLK_IN Signal
AD9371 Data Sheet
Rev. B | Page 12 of 57
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Rating
VDDA_1P31 to VSSA −0.3 V to +1.4 V
VDDA_SER, VDDA_DES, and
JESD_VTT_DES to VSSA
−0.3 V to +1.4 V
VDIG to VSSD −0.3 V to +1.4 V
VDDA_1P8 to VSSA −0.3 V to +2.0 V
VDD_IF to VSSA −0.3 V to +3.0 V
VDDA_3P3 to VSSA −0.3 V to +3.9 V
Logic Inputs and Outputs to VSSD −0.3 V to VDD_IF + 0.3 V
JESD204B Logic Outputs to VSSA −0.3 V to VDDA_SER
JESD204B Logic Inputs to VSSA −0.3 V to VDDA_DES
Input Current to Any Pin Except
Supplies
±10 mA
Maximum Input Power into RF Ports
(Excluding Sniffer Receiver Inputs)
23 dBm (peak)
Maximum Input Power into SNRXA±,
SNRXB±, and SNRXC±
2 dBm (peak)
Maximum Junction Temperature (TJ MAX) 110°C
Operating Temperature Range −40°C to +85°C
Storage Temperature Range −65°C to +150°C
1 VDDA_1P3 refers to all analog 1.3 V supplies: VDDA_BB, VDDA_CLKSYNTH,
VDDA_TXLO, VDDA_RXSYNTH, VDDA_RXVCO, VDDA_RXTX, VDDA_RXRF,
VDDA_TXSYNTH, VDDA_TXVCO, VDDA_CALPLL, VDDA_SNRXSYNTH,
VDDA_SNRXVCO, VDDA_CLK, and VDDA_RXLO.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
REFLOW PROFILE
The AD9371 reflow profile is in accordance with the JEDEC
JESD20 criteria for Pb-free devices. The maximum reflow
temperature is 260°C.
THERMAL RESISTANCE
Thermal performance is directly linked to PCB design and
operating environment. Careful attention to PCB thermal
design is required.
Table 5. Thermal Resistance
Package
Airflow
Velocity1 (m/sec) θJA2, 3 (°C/W) θJC2, 4 (°C/W)
BC-196-12
JEDEC5 0.0 20.5 0.05
1.0 18.5 N/A6
2.5 17.2 N/A6
10-Layer PCB 0.0 14.1 0.05
1.0 12.4 N/A6
2.5 11.6 N/A6
1 Power dissipation is 3.0 W for all test cases.
2 Per JEDEC JESD51-7 for JEDEC JESD51-5 2S2P test board.
3 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
4 Per MIL-STD 883, Method 1012.1.
5 JEDEC entries refer to the JEDEC JESD51-9 (high K thermal test board).
6 N/A means not applicable.
ESD CAUTION
Data Sheet AD9371
Rev. B | Page 13 of 57
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
VSSA
VSSA VSSA VSSA VSSA
VSSA
VSSA
VSSA VSSA
VSSA VSSA
VSSA
VSSA VSSAVSSA
VSSA
VSSA VSSAVSSA
VSSA VSSA VSSA VSSA
VSSA VSSA VSSA
VSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA
VSSA VSSA VSSA VSSAVSSA
VSSAVSSA VSSA VSSA VSSA VSSA VSSA VSSA VSSA
VSSAVSSA
VSSA
VSSAVSSA
VSSA
VSSAVSSA
VSSAVSSA
VSSA
VSSA
VSSAVSSAVSSA
VSSA
VSSAVSSA
VSSAVSSA
VSSA
VSSD
VSSA
VSSD
VSSA
VSSA
ORX2+ ORX2 RX2+ RX2 RX1+ RX1– ORX1+ ORX1–
RX_EXTLO RX_EXTLO+
AUXADC_1 AUXADC_2
AUXADC_3
RBIAS
AUXADC_0TX_EXTLO– TX_EXTLO+
DEV_
CLK_IN+ DEV_
CLK_IN–
SNRXA+
SNRXA–
SNRXB+
SNRXB–
SNRXC+
SNRXC–
TX2+
TX2–
TX1–
TX1+
SYSREF_IN+ SYSREF_IN–
VDDA_RXRF
VSNRX_
VCO_LDO VDDA_
SNRXVCO VDDA_RXLO VRX_
VCO_LDO
VDDA_
RXVCO
VDDA_3P3
VDDA_1P8
VDDA_BB
VDDA_RXTX
VDDA_
CALPLL VDDA_
CLKSYNTH VDDA_
SNRXSYNTH VDDA_
TXSYNTH
VDD_IF
VDDA_
RXSYNTH
VDDA_
TXVCO VDDA_TXLO VTX_
VCO_LDO
VDIGVDIG
VCLK_
VCO_LDO
VDDA_CLK VDDA_SER
VDDA_SER
VDDA_DES
JESD_VTT_
DES SERDIN1+SERDIN1–SERDIN0+SERDIN0–
SERDIN3+SERDIN3–SERDIN2+SERDIN2–
SERDOUT0+SERDOUT0–SERDOUT1+SERDOUT1–
SERDOUT2+SERDOUT2–SERDOUT3+SERDOUT3–
SYNCINB0+SYNCINB0–
SYNCINB1+SYNCINB1–
SYNCOUTB0–SYNCOUTB0+
GPIO_17 GPIO_16
GPIO_15 GPIO_8
GPIO_9GPIO_14
GPIO_10
GPIO_11
GPIO_13
GPIO_12
GPIO_0
GPIO_1
GPIO_3
GPIO_2
GPIO_4
GPIO_7
GPIO_5
GPIO_6
SDIO
SCLK
SDO
CSB
GPIO_18 RESET GP_
INTERRUPT TEST
RX1_
ENABLE TX1_
ENABLE RX2_
ENABLE TX2_
ENABLE
GPIO_3P3_5
GPIO_3P3_0 GPIO_3P3_1
GPIO_3P3_3
GPIO_3P3_4
GPIO_3P3_2
GPIO_3P3_10
GPIO_3P3_6
GPIO_3P3_11
GPIO_3P3_9
GPIO_3P3_8GPIO_3P3_7
1 4 7 8 11 1423 56 910 1213
A
G
K
L
P
J
H
B
M
N
C
D
E
F
ANALOG
INPUT/OUTPUT DIGITAL
INPUT/OUTPUT DC POWER GROUND
A
D9371
TO P VIEW
(Not to Scale)
14651-004
Figure 4. Pin Configuration
Table 6. Pin Function Descriptions
Pin No. Type1 Mnemonic Description
A1, A4, A7, A8, A11, A14, B2 to B6,
B9 to B13, C5, C9, C10, D6 to D9,
E6, E9, E10, F3 to F10, G1 to G3, G5,
G10 to G14, H2 to H10, H13, J2, J13,
K1, K2, K13, K14, L1, L2, L13, L14,
M2, M9, N2, N7, N14, P1, P2, P3, P10
I VSSA Analog ground.
A2, A3 I ORX2+, ORX2− Differential Input for Observation Receiver 2. Do not
connect if these pins are unused.
A5, A6 I RX2+, RX2− Differential Input for Receiver 2. Do not connect if these pins
are unused.
A9, A10 I RX1+, RX1− Differential Input for Receiver 1. Do not connect if these pins
are unused.
AD9371 Data Sheet
Rev. B | Page 14 of 57
Pin No. Type1 Mnemonic Description
A12, A13 I ORX1+, ORX1− Differential Input for Observation Receiver 1. Do not
connect if these pins are unused.
B1 I VDDA_RXRF 1.3 V Supply Input.
B7, B8 I/O RX_EXTLO−, RX_EXTLO+ Differential Rx External LO Input/Output. If used for
external LO, the input frequency must be 2× the desired
carrier frequency. Do not connect if these pins are unused.
B14 I VDDA_3P3 Supply Voltage for GPIO_3P3_x.
C1, C2, C13, D1, D5, D12 to D14,
E1, E14, F1, F14
I/O GPIO_3P3_0 to GPIO_3P3_11
General-Purpose Inputs and Outputs Referenced to 3.3 V
Supply. See Figure 4 to match the ball location to the
GPIO_3P3_x signal name. Some GPIO_3P3_x pins can also
function as auxiliary DAC outputs.
C3 O VSNRX_VCO_LDO Sniffer VCO LDO 1.1 V Output. Bypass this pin with a 1 μF
capacitor.
C4 I VDDA_SNRXVCO
1.3 V Supply Input for Sniffer VCO Low Dropout (LDO)
Regulator.
C6 I VDDA_RXLO
1.3 V Supply for the Rx Synthesizer LO Generator. This pin
is sensitive to aggressors.
C7 I VDDA_RXVCO 1.3 V Supply Input for Receiver VCO LDO Regulator.
C8 O VRX_VCO_LDO
Receiver VCO LDO 1.1 V Output. Bypass this pin with a 1 μF
capacitor.
C11 I AUXADC_1 Auxiliary ADC 1 Input Pin.
C12 I AUXADC_2 Auxiliary ADC 2 Input Pin.
C14 N/A RBIAS
Bias Resistor Connection. This pin generates an internal
current based on an external 1% resistor. Connect a
14.3 kΩ resistor between this pin and ground (VSSA).
D2, E2 I SNRXC−, SNRXC+ Differential Input for Sniffer Receiver Input C. If these pins are
unused, connect to VSSA with a short or with a 1 kΩ resistor.
D3, E3 I SNRXB−, SNRXB+ Differential Input for Sniffer Receiver Input B. If these pins are
unused, connect to VSSA with a short or with a 1 kΩ resistor.
D4, E4 I SNRXA−, SNRXA+ Differential Input for Sniffer Receiver Input A. If these pins are
unused, connect to VSSA with a short or with a 1 kΩ resistor.
D10 I VDDA_1P8 1.8 V Tx Supply.
D11 I AUXADC_3 Auxiliary ADC 3 Input Pin.
E5 I VDDA_BB 1.3 V Supply Input for ADCs, DACs, and Auxiliary ADCs.
E7, E8 I DEV_CLK_IN+, DEV_CLK_IN− Device Clock Differential Input.
E11, E12 I/O TX_EXTLO, TX_EXTLO+ Differential Tx External LO Input/Output. If these pins are
used for the external LO, the input frequency must be 2×
the desired carrier frequency. Do not connect if these pins
are unused.
E13 I AUXADC_0 Auxiliary ADC 0 Input Pin.
F2 I VDDA_RXTX
1.3 V Supply Input for Tx/Rx Baseband Circuits,
Transimpedance Amplifier (TIA), Tx Transconductance (Gm),
Baseband Filters, and Auxiliary DACs.
F11 I VDDA_TXVCO 1.3 V Supply Input for Transmitter VCO LDO Regulator.
F12 I VDDA_TXLO
1.3 V Supply for the Tx Synthesizer LO Generator. This pin is
sensitive to aggressors.
F13 O VTX_VCO_LDO
Transmitter VCO LDO 1.1 V Output. Bypass this pin with a
1 μF capacitor.
G4 I VDDA_CALPLL
1.3 V Supply Input for Calibration PLL Circuits. Use a
separate trace on the PCB back to a common supply point.
G6 I VDDA_CLKSYNTH
1.3 V Clock Synthesizer Supply Input. This pin is sensitive
to aggressors.
G7 I VDDA_SNRXSYNTH
1.3 V Sniffer Rx Synthesizer Supply Input. This pin is
sensitive to aggressors.
G8 I VDDA_TXSYNTH
1.3 V Tx Synthesizer Supply Input. This pin is sensitive to
aggressors.
G9 I VDDA_RXSYNTH
1.3 V Rx Synthesizer Supply Input. This pin is sensitive to
aggressors.
Data Sheet AD9371
Rev. B | Page 15 of 57
Pin No. Type1 Mnemonic Description
H1, J1 O TX2−, TX2+ Differential Output for Transmitter 2.
H11, H12, J3, J7, J8, J11, J12, K5 to K8,
K11, K12, L5, L6, L11, L12, M10, M11
I/O GPIO_0 to GPIO_18 General-Purpose Inputs and Outputs Referenced to
VDD_IF. See Figure 4 to match the ball location to the
GPIO_x signal name.
H14, J14 O TX1+, TX1− Differential Output for Transmitter 1.
J4 I
RESET Active Low Chip Reset.
J5 O GP_INTERRUPT General-Purpose Interrupt Signal.
J6 I TEST
Test Pin Used for JTAG Boundary Scan. Ground this pin if
unused.
J9 I/O SDIO
Serial Data Input in 4-Wire Mode or Input/Output in 3-Wire
Mode.
J10 O SDO Serial Data Output.
K3, K4 I SYSREF_IN+, SYSREF_IN− LVDS SYSREF Clock Inputs for the JESD204B Interface.
K9 I SCLK Serial Data Bus Clock.
K10 I CSB Serial Data Bus Chip Select. Active low.
L3, L4 I SYNCINB1−, SYNCINB1+ LVDS Sync Signal Associated with ORx/Sniffer Channel
Data on the JESD204B Interface. Alternatively, these pins
can be set to a CMOS input using SYNCINB1+ as the input
and connecting SYNCINB1− with a 1 kΩ resistor to GND.
L7, L10 I VSSD Digital Ground.
L8, L9 I VDIG 1.3 V Digital Core Supply. Use a separate trace on the PCB
back to a common supply point.
M1 O VCLK_VCO_LDO
Clock VCO LDO 1.1 V Output. Bypass this pin with a 1 μF
capacitor.
M3, M4 I SYNCINB0−, SYNCINB0+ LVDS Sync Signal Associated with Rx Channel Data on the
JESD204B Interface. Alternatively, these pins can be set to
a CMOS input using SYNCINB0+ as the input and
connecting SYNCINB0− with a 1 kΩ resistor to GND.
M5 I RX1_ENABLE Enables Rx Channel 1 Signal Path.
M6 I TX1_ENABLE Enables Tx Channel 1 Signal Path.
M7 I RX2_ENABLE Enables Rx Channel 2 Signal Path.
M8 I TX2_ENABLE Enables Tx Channel 2 Signal Path.
M12 I VDD_IF CMOS/LVDS Interface Supply.
M13, M14 O SYNCOUTB0+, SYNCOUTB0− LVDS Sync Signal Associated with Transmitter Channel
Data on the JESD Interface. Alternatively, these pins can be
set to a CMOS output using SYNCOUTB0+ as the output
while leaving SYNCOUTB0− floating.
N1 I VDDA_CLK 1.3 V Clock Supply Input.
N3, N4 O SERDOUT3−, SERDOUT3+ RF Current Mode Logic (CML) Differential Output 3. This
JESD204B lane can be used by the receiver data or by the
sniffer/observation receiver data.
N5, N6 O SERDOUT2−, SERDOUT2+ RF CML Differential Output 2. This JESD204B lane can be
used by the receiver data or by the sniffer/observation
receiver data.
N8, P8 I VDDA_SER JESD204B 1.3 V Serializer Supply Input.
N9 I VDDA_DES JESD204B 1.3 V Deserializer Supply Input.
N10, N11 I SERDIN2−, SERDIN2+ RF CML Differential Input 2.
N12, N13 I SERDIN3−, SERDIN3+ RF CML Differential Input 3.
P4, P5 O SERDOUT1−, SERDOUT1+ RF CML Differential Output 1. This JESD204B lane can be
used by receiver data or by sniffer/observation receiver data.
P6, P7 O SERDOUT0−, SERDOUT0+ RF CML Differential Output 0. This JESD204B lane can be
used by receiver data or by sniffer/observation receiver data.
P9 I JESD_VTT_DES JESD204B Deserializer Termination Supply Input.
P11, P12 I SERDIN0−, SERDIN0+ RF CML Differential Input 0.
P13, P14 I SERDIN1−, SERDIN1+ RF CML Differential Input 1.
1 I is input, O is output, I/O is input/output, and N/A is not applicable.
AD9371 Data Sheet
Rev. B | Page 16 of 57
TYPICAL PERFORMANCE CHARACTERISTICS
700 MHz BAND
Temperature settings refer to the die temperature. The die temperature is 40°C for single trace plots.
30
–110
–100
–90
–80
–70
–60
–50
–40
300 400 500 600 700 800 900 1000
RECEI VE R L O LEAKAGE (dBm)
RECEIVER L O FRE QUENCY ( M Hz )
+110°C
+40°C
–40°C
14651-305
Figure 5. Receiver Local Oscillator (LO) Leakage vs. Receiver LO Frequency,
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
45
0
5
10
15
20
25
30
35
40
03691215
RECEI VER NOISE FIG URE ( dB)
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-306
Figure 6. Receiver Noise Figure vs. Receiver Attenuation, 700 MHz LO,
20 MHz Bandwidth, 30.72 MSPS Sample Rate, 20 MHz Integration Bandwidth
(Includes 1 dB Matching Circuit Loss)
30
0
5
10
15
20
25
300 400 500 600 700 800 900 1000
RECEIVER NOISE FIGURE (dB)
RECEIVER LO FREQUENCY ( MHz)
+110°C
+40°C
–40°C
14651-307
Figure 7. Receiver Noise Figure vs. Receiver LO Frequency, 0 dB Receiver
Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate, 20 MHz
Integration Bandwidth (Includes 1 dB Matching Circuit Loss)
100
0
10
20
30
40
50
60
70
80
90
03691215
RECEIVER IIP2 (dBm)
f
1
OFFSE T FRE QUENCY (MHz)
+110°C
+40°C
–40°C
14651-308
Figure 8. Receiver IIP2 vs. f1 Offset Frequency, 900 MHz LO, 0 dB Attenuation,
20 MHz RF Bandwidth, f2 = f1 + 1 MHz, 30.72 MSPS Sample Rate
100
0
10
20
30
40
50
60
70
80
90
4681012
RECEI VE R I I P 2 ( d Bm)
INT ERM ODULATIO N F RE Q UE NCY ( MHz )
f
2
f
1
, + 1 10°C
f
2
f
1
, +40°C
f
2
f
1
, –40 °C
f
2
+
f
1
, +110°C
f
2
+
f
1
, +40°C
f
2
+
f
1
, –40°C
14651-309
Figure 9. Receiver IIP2 vs. Intermodulation Frequency, 900 MHz LO,
0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
40
0
5
10
15
20
25
30
35
03691215
RECEIVER IIP3 (dBm)
f
1
OFFSE T FRE QUENCY (MHz)
+110°C
+40°C
–40°C
14651-310
Figure 10. Receiver IIP3 vs. F1 Offset Frequency, 900 MHz LO,
0 dB Attenuation, 20 MHz RF Bandwidth, f2 = 2f1 + 1 MHz,
30.72 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 17 of 57
40
0
5
10
15
20
25
30
35
4681012
RECEI VE R I I P 3 ( d Bm)
INT ERM ODULATIO N F RE Q UE NCY ( MHz )
f
2
– 2
f
1
, +110°C
f
2
– 2
f
1
, +40°C
f
2
– 2
f
1
, –40°C
f
2
+ 2
f
1
, + 110 °C
f
2
+ 2
f
1
, + 40°C
f
2
+ 2
f
1
, –40°C
14651-311
Figure 11. Receiver IIP3 vs. Intermodulation Frequency, 900 MHz LO,
0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
0
–110
–100
–90
–80
–70
–60
–50
–40
–20
–30
–10
0 5 10 15 20 25 30
RECEI VE R I M AG E (dBc)
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-312
Figure 12. Receiver Image vs. Receiver Attenuation, 800 MHz LO, Continuous
Wave (CW) Signal 3 MHz Offset, 20 MHz RF Bandwidth, Background
Tracking Calibration (BTC) Active, 30.72 MSPS Sample Rate
25
–15
–10
–5
0
5
15
10
20
0 5 10 15 20 25 30
RECEI V ER GAIN (dB)
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-313
Figure 13. Receiver Gain vs. Receiver Attenuation, 800 MHz LO, CW Signal
3 MHz Offset, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
40
–110
–100
–90
–80
–70
–60
–50
0 5 10 15 20 25 30
RECEIVER DC OFFSET (dBFS)
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-314
Figure 14. Receiver DC Offset vs. Receiver Attenuation, 800 MHz LO,
20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
40
–110
–100
–90
–80
–70
–60
–50
0 5 10 15 20 25 30
RECE IVE R HD2 ( dBc)
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-315
Figure 15. Receiver HD2 vs. Receiver Attenuation, 800 MHz LO, CW Signal
3 MHz Offset, −20 dBm at 0 dB Attenuation, Input Power Increasing Decibel for
Decibel with Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
40
–110
–100
–90
–80
–70
–60
–50
0 5 10 15 20 25 30
RECE IVE R HD3 ( dBc)
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-316
Figure 16. Receiver HD3 vs. Receiver Attenuation, 800 MHz LO, CW Signal
3 MHz Offset, −20 dBm at 0 dB Attenuation, Input Power Increasing Decibel for
Decibel with Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 18 of 57
0
–60
–50
–40
–30
–20
–10
–60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0
RECEI VE R E VM (dB)
RECEIV ER I NP UT POWER (dBm)
+110°C
+40°C
–40°C
14651-317
Figure 17. Receiver Error Vector Magnitude (EVM) vs. Receiver Input Power,
900 MHz LO, 20 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC,
BTC Active, 30.72 MSPS Sample Rate
20
–120
–100
–80
–110
–90
–70
–60
–50
–40
–30
300 400 500 600 700 800 900 1000
Rx2 TO Rx1 CRO S STALK (d B)
RECEIVER L O FRE Q UE NCY ( M Hz)
14651-318
Figure 18. Rx2 to Rx1 Crosstalk vs. Receiver LO Frequency,
100 MHz RF Bandwidth, CW Tone 3 MHz Offset from LO
30
0
5
10
15
20
25
–50 –45 –40 –35 –30 –25 –20
RECEI V E R NOISE FI GURE (dB)
CLO SE -IN INTERFERER SIG NAL POWER (dBm)
+110°C
+40°C
–40°C
14651-319
Figure 19. Receiver Noise Figure vs. Close-In Interferer Signal Power,
703 MHz LO, 709 MHz CW Interferer, NF Integrated over 7 MHz to 10 MHz,
20 MHz RF Bandwidth
30
0
5
10
15
20
25
–35 –30 –25 –20 –10 0–15 –5 5 10
RECEI V E R NOISE FI GURE (dB)
OUT-OF-BAND I NTERF E RE R SIG NAL PO WER (dBm)
+110°C
+40°C
–40°C
14651-320
Figure 20. Receiver Noise Figure vs. Out-of-Band Interferer Signal Power,
703 MHz LO, 901 MHz CW Interferer, NF Integrated Over 7 MHz to 10 MHz,
20 MHz RF Bandwidth
0
–100
–90
–80
–70
–60
–50
–40
–20
–30
–10
0 5 10 15 30
TRANSM ITT ER IMAGE (d Bc)
RF ATTENUATION (dB)
+110°C
+40°C
–40°C
14651-321
Figure 21. Transmitter Image vs. RF Attenuation, 20 MHz RF Bandwidth,
900 MHz LO, Transmitter Quadrature Error Correction (QEC) Tracking Run with
Two 20 MHz LTE Downlink Carriers, Then Image Measured with CW 10 MHz
Offset from LO, 3 dB Digital Backoff, 122.88 MSPS Sample Rate
0
–100
–90
–80
–70
–60
–50
–40
–20
–30
–10
–10 –5 0 5 10
TRANSM ITT ER IMAGE (d Bc)
DESIRED OFFSET FREQ UE NCY (MHz)
+110°C
+40°C
–40°C
14651-322
Figure 22. Transmitter Image vs. Desired Offset Frequency,
20 MHz RF Bandwidth, 900 MHz LO, 0 dB RF Attenuation, Transmitter
QEC Tracking Run with Two 20 MHz LTE Downlink Carriers, Then Image
Measured with CW Signal, 3 dB Digital Backoff, 122.88 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 19 of 57
10
–10
–8
–6
–4
–2
0
2
6
4
8
300 400 600 800500 700 900 1000
Tx OUTPUT (dBm)
FRE Q UE NC Y ( M Hz)
+110°C
+40°C
–40°C
14651-323
Figure 23. Tx Output Power, Transmitter QEC, and External LO Leakage
Tracking Active, 10 MHz CW Offset Signal, 1 MHz Resolution Bandwidth,
122.88 MSPS Sample Rate
60
–100
–95
–90
–85
–80
–75
–70
–65
0 5 10 15 20
TRANSM I T TER LO LEAKAG E (dBFS)
RF ATTENUATION (dB)
+110°C
+40°C
–40°C
14651-324
Figure 24. Transmitter LO Leakage vs. RF Attenuation, 900 MHz LO, Transmitter
QEC and External LO Leakage Tracking Active, CW Signal 5 MHz Offset from LO,
6 dB Digital Backoff, 1 MHz Measurement Bandwidth (If Input Power to ORx
Channel Is Not Held Constant, Performance Degrades As Shown in This Plot)
60
–100
–95
–90
–85
–80
–75
–70
–65
–10 –5 0 5 10
TRANSM I T TER LO LEAKAG E (dBFS)
OFFS ET FREQUENCY (MHz)
900MHz , +11 C
900MHz , +40 ° C
900MHz , –40°C
600MHz , +11 C
600MHz , +40 ° C
600MHz , –40°C
300MHz , +11 C
300MHz , +40 ° C
300MHz , –40°C
14651-325
Figure 25. Transmitter LO Leakage vs. Offset Frequency,
Transmitter QEC and External LO Leakage Tracking Active,
5 dB Digital Backoff, 1 MHz Measurement Bandwidth
20
–120
–100
–80
–110
–90
–70
–60
–50
–40
–30
300 400 500 600 700 800 900 1000
Tx1 T O Rx1 CRO S STALK ( d B)
RECEIVER L O FRE Q UE NCY ( M Hz)
14651-326
Figure 26. Tx1 to Rx1 Crosstalk vs. Receiver LO Frequency,
20 MHz Receiver RF Bandwidth, 20 MHz Transmitter RF Bandwidth,
CW Signal 3 MHz Offset from LO
20
–120
–100
–80
–110
–90
–70
–60
–50
–40
–30
300 400 500 600 700 800 900 1000
Tx2 T O Rx2 CRO S STALK ( d B)
RECEIVER L O FRE Q UE NCY ( M Hz)
14651-327
Figure 27. Tx2 to Rx2 Crosstalk vs. Receiver LO Frequency, 20 MHz Receiver RF
Bandwidth, 20 MHz Transmitter RF Bandwidth, CW Signal 3 MHz Offset from LO
20
–120
–100
–80
–110
–90
–70
–60
–50
–40
–30
300 400 500 600 700 800 900 1000
Tx2 TO Tx1 CROSS TALK (dB)
TRANSM ITTER LO FRE QUENCY ( M Hz)
14651-328
Figure 28. Tx2 to Tx1 Crosstalk vs. Transmitter LO Frequency,
20 MHz RF Bandwidth, CW Signal 3 MHz Offset from LO
AD9371 Data Sheet
Rev. B | Page 20 of 57
80
–180
–160
–140
–170
–150
–130
–120
–110
–100
–90
0 5 10 15 20
TRANSM I TTER NOISE (dBm/Hz)
RF ATTENUATION (dB)
+110°C
+40°C
–40°C
14651-329
Figure 29. Transmitter Noise vs. RF Attenuation, 800 MHz LO,
20 MHz Offset Frequency
40
–80
–75
0 4 8 12 16 20
Tx ADJACENT CHANNEL LEAKAG E RAT I O (dBc)
RF AT T E NUAT I ON (dB)
+110°C LOW ER
+40°C LOWE R
–40° C LOWER
+110°C UPPE R
+40°C UPPER
–40°C UPPER
–70
–65
–60
–55
–50
–45
14651-330
Figure 30. Tx Adjacent Channel Leakage Ratio vs. RF Attenuation, 900 MHz LO,
20 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal, Transmitter
QEC and LO Leakage Tracking Active
40
–80
–75
0 4 8 12 16 20
Tx ALTERNATE CHANNEL LEAKAGE RATI O (dBc)
RF AT T E NUAT I ON (dB)
+110°C LOW ER
+40°C LOWE R
–40° C LOWER
+110°C UPPE R
+40°C UPPER
–40°C UPPER
–70
–65
–60
–55
–50
–45
14651-331
Figure 31. Tx Alternate Channel Leakage Ratio vs. RF Attenuation,
900 MHz LO, 20 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,
2 dB Digital Backoff, Transmitter QEC and LO Leakage Tracking Active
60
–150
–130
–140
100 1k 10k 100k 1M 10M
LO P HASE NO I S E (dBc)
OFFSET FREQUENCY (Hz)
–120
–110
–100
–90
–80
–70
14651-332
Figure 32. LO Phase Noise vs. Offset Frequency, 3 dB Digital Backoff,
710 MHz LO
1.0
0
0.2
0.4
0.1
0.3
0.5
0.6
0.7
0.8
0.9
300 400 500 600 700 800 900 1000
Tx INTEGRATED PHASE NOISE (Degrees)
TRANSM ITTER LO FRE QUENCY ( M Hz)
+110°C
+40°C
–40°C
14651-333
Figure 33. Tx Integrated Phase Noise vs. Transmitter LO Frequency,
20 MHz RF Bandwidth, CW 20 MHz Offset from LO, 3 dB Digital Backoff
35
0
5
10
15
20
25
30
0 6 12 18410162 8 14 20
TRANSM I TTER O IP3 (d Bm)
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-334
Figure 34. Transmitter OIP3 vs. RF Attenuation, 800 MHz LO,
20 MHz RF Bandwidth, f1 = 10 MHz, f2 = 11 MHz, 3 dB Digital Backoff,
122.88 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 21 of 57
0
–100
–80
–60
–90
–70
–50
–40
–30
–20
–10
700 725 750 775 800 825 850 875 900
Tx OUTPUT (dBm)
FREQUENCY (MHz)
14651-335
Figure 35. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff,
20 MHz RF Bandwidth, Transmitter QEC, and Internal LO Leakage Active,
LTE 10 MHz Signal, 800 MHz LO, 1 MHz Resolution Bandwidth,
122.88 MSPS Sample Rate, Test Equipment Noise Floor De-Embedded
0
–100
–80
–60
–90
–70
–50
–40
–30
–20
–10
300 400 500 600 700 800 900 11001000 1200 1300
Tx OUTPUT (dBm)
FRE Q UE NC Y ( M Hz)
14651-336
Figure 36. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff,
20 MHz RF Bandwidth, Transmitter QEC, and Internal LO Leakage Active,
LTE 10 MHz Signal, 800 MHz LO, 1 MHz Resolution Bandwidth,
122.88 MSPS Sample Rate, Test Equipment Noise Floor De-Embedded
20
–50
–45
–40
–35
–30
–25
048121620
TRANSMITTER EVM (dB)
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-337
Figure 37. Transmitter EVM vs. RF Attenuation, 900 MHz LO,
Transmitter LO Leakage and Transmitter QEC Tracking Active, 20 MHz RF
Bandwidth, LTE 20 MHz Downlink Signal, 122.88 MSPS Sample Rate
0
–100
–80
–60
–90
–70
–50
–40
–30
–20
–10
0 5 10 15 20 25 30
TRANSM ITT E R HD2 (d Bc)
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-338
Figure 38. Transmitter HD2 vs. RF Attenuation, 800 MHz LO,
810 MHz CW Desired Signal, 20 MHz RF Bandwidth,
122.88 MSPS Sample Rate
0
–80
–60
–70
–50
–40
–30
–20
–10
0 5 10 15 20
TRANSM ITT E R HD3 (d Bc)
RF AT T E NUAT I O N ( d B)
+110°C
+40°C
–40°C
14651-339
Figure 39. Transmitter HD3 vs. RF Attenuation, 800 MHz LO,
810 MHz CW Desired Signal, 20 MHz RF Bandwidth,
122.88 MSPS Sample Rate
10
–20
–15
–10
–5
0
5
0 5 10 15 20
TRANSM I TTER O UTPUT P O WER (d Bm)
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-340
Figure 40. Transmitter Output Power vs. RF Attenuation, 800 MHz LO,
810 MHz CW Desired Signal, 20 MHz RF Bandwidth,
122.88 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 22 of 57
0.10
–0.10
–0.06
–0.02
–0.08
–0.04
0
0.02
0.04
0.06
0.08
0 5 10 15 20 25 30
Tx ATTENUATIO N STEP ERROR (dB)
RF AT T E NUAT I O N ( d B)
+110°C
+40°C
–40°C
14651-341
Figure 41. Tx Attenuation Step Error vs. RF Attenuation, 800 MHz LO,
810 MHz CW Desired Signal, 20 MHz RF Bandwidth,
122.88 MSPS Sample Rate
0.5
–0.5
–0.3
–0.1
–0.4
–0.2
0
0.1
0.2
0.3
0.4
–50 –40 –20 0 20–30 –10 10 30 40 50
DEVI AT I ON FRO M F L ATNESS ( d B)
FREQ UE NCY O F F S E T F RO M L O (M Hz )
14651-342
Figure 42. Transmitter Frequency Response Deviation from Flatness vs.
Frequency Offset from LO, 800 MHz LO, 20 MHz RF Bandwidth,
6 dB Digital Backoff, 122.88 MSPS Sample Rate
40
–100
–90
–80
–70
–60
–50
300 400 500 600 700 800 900 1000
OBSE RVATI ON RECEI V ER LO LEAKAGE (dBm)
OBS ER VATIO N RE CE IVER L O FRE Q UE NCY ( M Hz )
+110°C
+40°C
–40°C
14651-343
Figure 43. Observation Receiver LO Leakage vs. Observation Receiver LO
Frequency, 0 dB Receiver Attenuation, 100 MHz RF Bandwidth,
122.88 MSPS Sample Rate
30
0
5
10
15
20
25
300 400 500 600 700 800 900 1000
OBSE RVATIO N RECE I V ER NO ISE F I GURE (dB)
OBS ER VATIO N RE CE IVER L O FRE Q UE NCY ( M Hz )
+110°C
+40°C
–40°C
14651-344
Figure 44. Observation Receiver Noise Figure vs. Observation Receiver LO
Frequency, 0 dB Receiver Attenuation, 100 MHz RF Bandwidth,
122.88 MSPS Sample Rate, 100 MHz Integration Bandwidth
80
0
10
20
30
40
50
60
70
030609010020 50 8010 40 70 110
OBSERVAT ION RECEIVER IIP2 (dBm)
f
1
OFFSET FREQUENCY (MHz)
+110°C
+40°C
–40°C
14651-345
Figure 45. Observation Receiver IIP2 vs. f1 Offset Frequency, 900 MHz LO,
0 dB Attenuation, 100 MHz RF Bandwidth, f2 = f1 + 1 MHz,
122.88 MSPS Sample Rate
80
0
10
20
30
40
50
60
70
02035505515 30 4510 25 40 60
OBSE RV ATION RECEIV ER IIP2 (dBm)
INT ERM O DULAT I O N F REQUENCY ( MHz )
+110°C
+40°C
–40°C
14651-346
Figure 46. Observation Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),
900 MHz LO, 0 dB Attenuation, 100 MHz RF Bandwidth,
122.88 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 23 of 57
40
0
5
10
15
20
25
30
35
0 30609010020 50 8010 40 70 110
OBSERVAT ION RECEIVER IIP3 (dBm)
f
1
OFF SET F REQ UENCY (MHz)
+110°C
+40°C
–40°C
14651-347
Figure 47. Observation Receiver IIP3 vs. f1 Offset Frequency, 900 MHz LO,
0 dB Attenuation, 100 MHz RF Bandwidth, f2 = 2f1 + 1 MHz,
122.88 MSPS Sample Rate
5 2035505515 30 4510 25 40 60
INT ERM O DULAT I O N F REQUENCY ( MHz )
+110°C
+40°C
–40°C
40
0
5
10
15
20
25
30
35
OBSERVATION RECEIVER I IP3 (d Bm)
14651-348
Figure 48. Observation Receiver IIP3 vs. Intermodulation Frequency (2f2 − f1),
900 MHz LO, 0 dB Attenuation, 100 MHz RF Bandwidth,
122.88 MSPS Sample Rate
0
–120
–100
–80
–40
–60
–20
0 3 6 9 121518
OBSE RVATIO N RECE I VE R I M AG E (dBc)
OBSERVATION RE CE IVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-349
Figure 49. Observation Receiver Image vs. Observation Receiver Attenuation,
800 MHz LO, CW Signal 16 MHz Offset, 100 MHz RF Bandwidth, BTC Active,
122.88 MSPS Sample Rate
25
–15
–10
–5
10
0
20
5
15
0 3 6 9 121518
OBSE RV AT I ON RECEI V ER G AI N ( d B)
OBSERVATION RE CE IVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-350
Figure 50. Observation Receiver Gain vs. Observation Receiver Attenuation,
800 MHz LO, CW Signal 16 MHz Offset, 100 MHz RF Bandwidth,
122.88 MSPS Sample Rate
40
–120
–110
–100
–90
–80
–70
–60
–50
0 3 6 9 121518
OBSE RVATI ON RECEIVER DC O FFSET (dBFS)
OBSERVATION RE CE IVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-351
Figure 51. Observation Receiver DC Offset vs. Observation Receiver
Attenuation, 800 MHz LO, 100 MHz RF Bandwidth,
122.88 MSPS Sample Rate
0
–120
–100
–80
–60
–40
–20
0369121518
OBSE RV AT ION RECE I V E R HD2 (d Bc)
OBSERVATION RE CE IVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-352
Figure 52. Observation Receiver HD2 vs. Observation Receiver Attenuation,
800 MHz LO, CW Signal 16 MHz Offset, −20 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
100 MHz RF Bandwidth, 122.88 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 24 of 57
0
–100
–90
–80
–70
–60
–50
–40
–20
–30
–10
0369121518
OBSE RV AT ION RECE I V ER HD3 (dBc)
OBSERVATION RE CE IVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-353
Figure 53. Observation Receiver HD3 vs. Observation Receiver Attenuation,
800 MHz LO, CW Signal 16 MHz Offset, −20 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
100 MHz RF Bandwidth, 122.88 MSPS Sample Rate
50
–130
–120
–110
–100
–90
–70
–80
–60
300 400 500 600 700
SNIF FER RECEI V E R L O L E AKAGE (d Bm)
SNIFFER RECEIVER LO FREQUENCY (MHz)
+110°C
+40°C
–40°C
14651-354
Figure 54. Sniffer Receiver LO Leakage vs. Sniffer Receiver LO Frequency,
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
300 400 500 600 700
30
0
5
10
20
15
25
SNIF FER RECEI V E R NO I S E F I GURE (d B)
SNIFFER RECEIVER LO FREQUENCY (MHz)
+110°C
+40°C
–40°C
14651-355
Figure 55. Sniffer Receiver Noise Figure vs. Sniffer Receiver LO Frequency,
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate,
20 MHz Integration Bandwidth
90
0
10
20
50
30
70
60
40
80
3691215
SNIF FER RECEI V E R I I P 2 ( d Bm)
INT ERM O DULAT I O N F REQUENCY ( MHz )
+110°C
+40°C
–40°C
14651-356
Figure 56. Sniffer Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),
600 MHz LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
20
15
10
5
0
–5
–10 3151296
SNIF FER RECEI V E R I I P 3 ( d Bm)
INT ERM O DULAT I O N F REQUENCY ( MHz )
+110°C
+40°C
–40°C
14651-357
Figure 57. Sniffer Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1), 600 MHz
LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
0 5 10 15 20
SNIF FER RECEIVER I M AG E ( d Bc)
SNIFFE R RE CEIVE R ATTE NUATION (d B)
+110°C
+40°C
–40°C
0
–100
–80
–60
–90
–70
–50
–40
–30
–20
–10
14651-358
Figure 58. Sniffer Receiver Image vs. Sniffer Receiver Attenuation,
600 MHz LO, CW Signal 3 MHz Offset, 20 MHz RF Bandwidth,
30.72 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 25 of 57
0 5 10 15 20
SNIF FER RECEIVER DC OFFS ET (dBFS)
SNIFFE R RE CEIVE R ATTE NUATION (d B)
+110°C
+40°C
–40°C
40
–110
–100
–80
–60
–90
–70
–50
14651-359
Figure 59. Sniffer Receiver DC Offset vs. Sniffer Receiver Attenuation,
600 MHz LO, CS Signal 3 MHz Offset, −35 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
0 5 10 15 20
SNIFFER RE CE IVER HD2 (dBc)
SNIFFE R RE CEIVE R ATTE NUATION (d B)
+110°C
+40°C
–40°C
0
–100
–80
–60
–90
–70
–50
–40
–30
–20
–10
14651-360
Figure 60. Sniffer Receiver HD2 vs. Sniffer Receiver Attenuation, 600 MHz LO,
CW Signal 3 MHz Offset, −35 dBm at 0 dB Attenuation, Input Power Increasing
Decibel for Decibel with Attenuation, 20 MHz RF Bandwidth,
30.72 MSPS Sample Rate
0 5 10 15 20
SNIFFER RE CE IVER HD3 (dBc)
SNIFFE R RE CEIVE R ATTE NUATION (d B)
+110°C
+40°C
–40°C
0
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
14651-361
Figure 61. Sniffer Receiver HD3 vs. Sniffer Receiver Attenuation, 600 MHz LO,
CW Signal 3 MHz Offset, −35 dBm at 0 dB Attenuation, Input Power
Increasing Decibel for Decibel with Attenuation, 20 MHz RF Bandwidth,
30.72 MSPS Sample Rate
0
–60
–50
–40
–30
–20
–10
–70 –55 –50–65 –60 –45 –40 –35 –30 –25
SNIFFE R RECEIVE R EVM (dB)
SNIFF E R RECEI VE R INPUT POW ER (dBm)
+110°C
+40°C
–40°C
14651-362
Figure 62. Sniffer Receiver EVM vs. Sniffer Receiver Input Power, 600 MHz LO,
20 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC, BTC Active,
30.72 MSPS Sample Rate
40
–40
–30
–20
–10
0
20
10
30
012164 8 20 24 28 32 36 40 4844 52
SNIFFE R RECEIVER GAI N (dB)
SNIFFE R RE CEIVE R ATTE NUATION (d B)
+110°C
+40°C
–40°C
14651-363
Figure 63. Sniffer Receiver Gain vs. Sniffer Receiver Attenuation,
600 MHz LO, CW Signal 3 MHz Offset, 20 MHz RF Bandwidth,
30.72 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 26 of 57
2.6 GHz BAND
30
–40
–50
–60
–70
–80
–90
–100
–110
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
RECEIVE R L O LEAKAGE (dBm)
RECEIVER LO FREQ UE NC Y ( M H z)
+110°C
+40°C
–40°C
14651-005
Figure 64. Receiver Local Oscillator (LO) Leakage vs. Receiver LO Frequency,
0 dB Receiver Attenuation, 40 MHz RF Bandwidth,
122.88 MSPS Sample Rate
45
0
10
5
15
20
25
30
35
40
RECEI V ER NOISE F I GURE (d B)
03691215
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-006
Figure 65. Receiver Noise Figure vs. Receiver Attenuation, 2600 MHz LO,
40 MHz Bandwidth, 122.88 MSPS Sample Rate, 20 MHz Integration
Bandwidth (Includes 1.4 dB Matching Circuit Loss)
30
0
5
10
15
20
25
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
RECEIVE R N OISE F IGURE (dB)
RECEIVER LO F REQUENCY (MHz)
+110°C
+40°C
–40°C
14651-007
Figure 66. Receiver Noise Figure vs. Receiver LO Frequency,
0 dB Receiver Attenuation, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate,
20 MHz Integration Bandwidth (Includes 1.4 dB Matching Circuit Loss)
100
0
30
20
10
40
50
60
70
80
90
RECEIVER IIP2 (dBm)
0 5 10 15 20 25 30
f
1
OFFS ET FREQUENCY (MHz)
+110°C
+40°C
–40°C
14651-008
Figure 67. Receiver IIP2 vs. f1 Offset Frequency, 2600 MHz LO,
0 dB Attenuation, 40 MHz RF Bandwidth, f2 = f1 + 1 MHz,
122.88 MSPS Sample Rate
100
0
30
20
10
40
50
60
70
80
90
RECEI VE R I I P 2 ( d Bm)
f
2
f
1
, +110°C
f
2
f
1
, +40°C
f
2
f
1
, –40°C
f
2
+
f
1
, +110°C
f
2
+
f
1
, +40°C
f
2
+
f
1
, –40°C
5 1015202530
INT ERM O DULAT I O N F REQUENCY ( MHz )
14651-009
Figure 68. Receiver IIP2 vs. Intermodulation Frequency, 2600 MHz LO,
0 dB Attenuation, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate
40
0
15
10
5
20
25
30
35
RECEIVER IIP3 (dBm)
0 5 10 15 20 25 30
f
1
OFFS ET FREQUENCY (MHz)
+110°C
+40°C
–40°C
14651-010
Figure 69. Receiver IIP3 vs. f1 Offset Frequency, 2600 MHz LO,
0 dB Attenuation, 40 MHz RF Bandwidth, f2 = 2 f1 + 2 MHz,
122.88 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 27 of 57
40
0
15
10
5
20
25
30
35
RECEI VE R I I P 3 ( d Bm)
5 1015202530
INT ERM O DULAT I O N F REQUENCY ( MHz )
f
2
– 2
f
1
, + 110 °C
f
2
– 2
f
1
, + 40°C
f
2
– 2
f
1
, –40°C
f
2
+ 2
f
1
, + 110°C
f
2
+ 2
f
1
, + 40°C
f
2
+ 2
f
1
, –40°C
14651-011
Figure 70. Receiver IIP3 vs. Intermodulation Frequency, 2600 MHz LO,
0 dB Attenuation, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate
40
–100
–90
–80
–70
–60
–50
RECEI V ER I M AGE (d Bc)
0 5 10 15 20 25 30
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-012
Figure 71. Receiver Image vs. Receiver Attenuation, 2600 MHz LO,
Continuous Wave (CW) Signal 5 MHz Offset, 40 MHz RF Bandwidth,
Background Tracking Calibration (BTC) Active, 122.88 MSPS Sample Rate
25
–15
–10
0
10
20
–5
5
15
RECEIVER GAIN (dB)
0 5 10 15 20 25 30
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-013
Figure 72. Receiver Gain vs. Receiver Attenuation, 2600 MHz LO, CW Signal
5 MHz Offset, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate
40
–120
–80
–60
–90
–100
–110
–70
–50
RECEIVER DC OFFSET (dBFS)
0 5 10 15 20 25 30
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-014
Figure 73. Receiver DC Offset vs. Receiver Attenuation, 2550 MHz LO,
40 MHz RF Bandwidth, 122.88 MSPS Sample Rate
40
–110
–100
–80
–60
–90
–70
–50
RECEI VE R HD2 (d Bc)
0 5 10 15 20 25 30
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-015
Figure 74. Receiver HD2 vs. Receiver Attenuation, 2600 MHz LO, CW Signal 5 MHz
Offset, −20 dBm at 0 dB Attenuation, Input Power Increasing Decibel for
Decibel with Attenuation, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate
40
–110
–100
–80
–60
–90
–70
–50
RECEI VE R HD3 (d Bc)
0 5 10 15 20 25 30
RECEIVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-016
Figure 75. Receiver HD3 vs. Receiver Attenuation, 2600 MHz LO, CW Signal 5 MHz
Offset, −20 dBm at 0 dB Attenuation, Input Power Increasing Decibel for
Decibel with Attenuation, 40 MHz RF Bandwidth, 122.88 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 28 of 57
0
–45
–35
–20
–10
–25
–40
–30
–15
–5
RECEI VE R E VM (dB)
–60 –50 –40 –30 –20 –10 0–55 –45 –35 –25 –15 –5
RECEIVER INPUT POWER (dBm)
+110°C
+40°C
–40°C
14651-017
Figure 76. Receiver Error Vector Magnitude (EVM) vs. Receiver Input Power,
2600 MHz LO, 40 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC,
BTC Active, 122.88 MSPS Sample Rate
0
–20
–10
–30
–100
–90
–80
–70
–60
–50
–40
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
Rx2 TO Rx1 CRO S S T A L K ( dB)
RECEIVE R LO FREQ UE NC Y ( M Hz )
14651-018
Figure 77. Rx2 to Rx1 Crosstalk vs. Receiver LO Frequency, 40 MHz
RF Bandwidth, CW Tone 3 MHz Offset from LO
30
0
5
10
15
20
25
RECEIVER NOISE FIGURE (dB)
–50 –45 –40 –35 –30 –25 –20
CLO SE -I N INTERFERER SI GNAL POWER (dBm)
+110°C
+40°C
–40°C
14651-019
Figure 78. Receiver Noise Figure vs. Close-In Interferer Signal Power,
2614 MHz LO, 2625 MHz CW Interferer, Noise Figure Integrated over
7 MHz to 10 MHz, 40 MHz RF Bandwidth
30
0
5
10
15
20
25
RECEI VER NOISE FIG URE (dB)
–40 –35 –30 –25 –20 –15 –10 –5 0
OUT-O F - BAND INTERFERER S I GNAL P O WER (dBm)
+110°C
+40°C
–40°C
14651-020
Figure 79. Receiver Noise Figure vs. Out-of-Band Interferer Signal Power,
2614 MHz LO, 2435 MHz CW Interferer, Noise Figure Integrated over
7 MHz to 10 MHz
0
–20
–10
–30
–100
–90
–80
–70
–60
–50
–40
TRANSM ITT ER IMAGE (d Bc)
01510520
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-021
Figure 80. Transmitter Image vs. RF Attenuation, 40 MHz RF Bandwidth,
2600 MHz LO, Transmitter Quadrature Error Correction (QEC) Tracking Run
with Two 20 MHz LTE Downlink Carriers, Then Image Measured with CW
10 MHz Offset from LO, 3 dB Digital Backoff, 245.76 MSPS Sample Rate
0
–20
–10
–30
–100
–90
–80
–70
–60
–50
–40
TRANSM ITT ER IMAGE (d Bc)
–20 100–10 205–5–15 15
DESIRED OFFS E T FRE QUENCY (MHz)
+110°C
+40°C
–40°C
14651-022
Figure 81. Transmitter Image vs. Desired Offset Frequency, 40 MHz RF
Bandwidth, 2300 MHz LO, 0 dB RF Attenuation, Transmitter QEC Tracking
Run with Two 20 MHz LTE Downlink Carriers, Then Image Measured with
CW Signal, 3 dB Digital Backoff, 245.76 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 29 of 57
10
6
8
4
–10
–8
–6
–4
–2
0
2
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
Tx OUTPUT (dBm)
FREQUENCY (MHz)
+110°C
+40°C
–40°C
14651-023
Figure 82. Tx Output Power, Transmitter QEC, and External LO Leakage Active,
5 MHz CW Offset Signal, 1 MHz Resolution Bandwidth,
245.76 MSPS Sample Rate
60
–100
–95
–85
–80
–70
–90
–75
–65
TRANSM I T TER LO LEAKAG E (dBFS)
0 5 10 15 20
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-024
Figure 83. Transmitter LO Leakage vs. RF Attenuation, 2300 MHz LO,
External Transmitter QEC and LO Leakage Tracking Active, CW Signal 10 MHz
Offset from LO, 6 dB Digital Backoff, 1 MHz Measurement Bandwidth
(If Input Power to the ORx Channel Is Not Held Constant,
Device Performance Degrades as Shown in This Figure)
60
–100
–95
–85
–80
–70
–90
–75
–65
TRANSM I T TER LO LEAKAG E (dBFS)
1.8GHz, +110°C
1.8GHz, +40°C
1.8GHz, –40° C
2.3GHz, +110°C
2.3GHz, +40°C
2.3GHz, –40° C
2.8GHz, +110°C
2.8GHz, +40°C
2.8GHz, –40° C
–30 –10 10–20 0 20 30
OFFS ET FREQUENCY (MHz)
14651-025
Figure 84. Transmitter LO Leakage vs. Offset Frequency, External Transmitter
QEC and LO Leakage Tracking Active, 6 dB Digital Backoff,
1 MHz Measurement Bandwidth
0
–20
–10
–30
–100
–90
–80
–70
–60
–50
–40
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
Tx1 TO Rx 1 CRO S S TAL K (dB)
RECEIVER LO F REQUENCY (MHz)
14651-026
Figure 85. Tx1 to Rx1 Crosstalk vs. Receiver LO Frequency,
40 MHz Receiver RF Bandwidth, 40 MHz Transmitter RF Bandwidth,
CW Signal 3 MHz Offset from LO
0
–20
–10
–30
–100
–90
–80
–70
–60
–50
–40
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
Tx2 TO Rx 2 CR OSSTALK (dB)
RECEIVER LO F REQUENCY (MHz)
14651-027
Figure 86. Tx2 to Rx2 Crosstalk vs. Receiver LO Frequency,
40 MHz Receiver RF Bandwidth, 40 MHz Transmitter RF Bandwidth,
CW Signal 3 MHz Offset from LO
0
–20
–10
–30
–100
–90
–80
–70
–60
–50
–40
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
Tx2 TO Tx1 CROSSTALK (dB)
TRANSMITTER LO FREQUENCY (MHz)
14651-028
Figure 87. Tx2 to Tx1 Crosstalk vs. Transmitter LO Frequency,
40 MHz RF Bandwidth, CW Signal 3 MHz Offset from LO
AD9371 Data Sheet
Rev. B | Page 30 of 57
80
–180
–160
–130
–120
–100
–140
–170
–150
–110
–90
TRANSM I TTER NOISE (dBm/Hz)
0 5 10 15 20
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-029
Figure 88. Transmitter Noise vs. RF Attenuation, 2600 MHz LO,
10 MHz Offset Frequency
40
–80
–65
–70
–75
–60
–55
–50
–45
Tx ADJACENT CHANNEL LEAKAG E RAT I O (dB)
0 4 8 12 16 20
RF AT T E NUAT I O N ( d B)
+110°C UPPER
+40°C UPPER
–40° C UP PER
+110°C LOWE R
+40°C LO WER
–40° C LOWER
14651-030
Figure 89. Tx Adjacent Channel Leakage Ratio vs. RF Attenuation,
2600 MHz LO, 40 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,
Transmitter QEC and LO Leakage Tracking Active
40
–80
–65
–70
–75
–60
–55
–50
–45
Tx ALTERNATE CHANNEL LEAKAGE RATI O (d B)
0 4 8 12 16 20
RF AT T E NUAT I O N ( d B)
+110°C UPPER
+40° C UP PER
–40°C UP PE R
+110°C LOWER
+40°C LO WER
–40°C LO W E R
14651-031
Figure 90. Tx Alternate Channel Leakage Ratio vs. RF Attenuation,
2600 MHz LO, 40 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,
2 dB Digital Backoff, Transmitter QEC and LO Leakage Tracking Active
LO PHASE NOI S E ( dBc)
OF FSET FRE QUENCY (Hz )
–150
–140
–130
–120
–110
–100
–90
–80
–70
60
100 1k 10k 100k 1M 10M
14651-032
Figure 91. LO Phase Noise vs. Offset Frequency,
3 dB Digital Backoff, 2600 MHz
1.0
0
0.2
0.3
0.1
0.4
0.5
0.6
0.7
0.8
0.9
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
Tx INTEGRATED PHASE NOISE (Degrees)
TRANSMITTER LO FREQUENCY (MHz)
+110°C
+40°C
–40°C
14651-033
Figure 92. Tx Integrated Phase Noise vs. Transmitter LO Frequency,
40 MHz RF Bandwidth, Continuous Wave 20 MHz Offset from LO,
3 dB Digital Backoff
35
0
5
10
15
20
25
30
TRANSM I TTER O IP3 (d Bm)
0481216202 6 10 14 18
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-034
Figure 93. Transmitter OIP3 vs. RF Attenuation, 2600 MHz LO,
40 MHz RF Bandwidth, f1 = 20 MHz, f2 = 21 MHz, 3 dB Digital Backoff,
245.76 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 31 of 57
0
–100
–90
–80
–70
–50
–30
–10
–60
–40
–20
Tx OUTPUT (dBm)
2500 2550 2600 2650 27002525 2575 2625 2675
FRE QUENCY ( M Hz )
14651-035
Figure 94. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff, 40 MHz
RF Bandwidth, Transmitter QEC and Internal LO Leakage Active, LTE 10 MHz
Signal, 2600 MHz LO, 1 MHz Resolution Bandwidth, 245.76 MSPS Sample Rate
0
–100
–90
–80
–70
–50
–30
–10
–60
–40
–20
Tx OUTPUT (dBm)
2100
2300
2500
2800
3100
2200
2400
2600
3000
2750
2900
FREQUENCY ( MHz)
14651-036
Figure 95. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff,
40 MHz RF Bandwidth, Transmitter QEC and Internal LO Leakage Active,
LTE 10 MHz Signal, 2600 MHz LO, 1 MHz Resolution Bandwidth,
245.76 MSPS Sample Rate
20
–50
–45
–40
–35
–30
–25
TRANSMITTER EVM (dB)
048121620
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-037
Figure 96. Transmitter EVM vs. RF Attenuation, 2550 MHz LO, Transmitter LO
Leakage and Transmitter QEC Tracking Active, 200 MHz RF Bandwidth,
LTE 20 MHz Downlink Signal, 245.76 MSPS Sample Rate
0
–20
–10
–30
–100
–90
–80
–70
–60
–50
–40
TRANSM ITT E R HD2 (d Bc)
05 201510
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-038
Figure 97. Transmitter HD2 vs. RF Attenuation, 2600 MHz LO,
2605 MHz CW Desired Signal, 40 MHz RF Bandwidth,
245.76 MSPS Sample Rate
0
–20
–10
–30
–80
–70
–60
–50
–40
TRANSM ITT E R HD3 (d Bc)
02010515
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-039
Figure 98. Transmitter HD3 vs. RF Attenuation, 2600 MHz LO,
2605 MHz CW Desired Signal, 40 MHz RF Bandwidth,
245.76 MSPS Sample Rate
10
0
5
–5
–20
–15
–10
TRANSM I TTER O UTPUT P O WER (d Bm)
02010515
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-040
Figure 99. Transmitter Output Power vs. RF Attenuation, 2600 MHz LO,
2605MHz CW Desired Signal, 40 MHz RF Bandwidth,
245.76 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 32 of 57
0.10
0.04
0.08
0
–0.10
–0.08
–0.04
0.02
0.06
–0.02
–0.06
Tx AT T E NUAT I ON STE P E RRO R ( d B)
02016841218146210
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-041
Figure 100. Tx Attenuation Step Error vs. RF Attenuation, 2600 MHz LO,
2610 MHz CW Desired Signal, 40 MHz RF Bandwidth,
245.76 MSPS Sample Rate
0.5
–0.5
–0.4
–0.3
–0.2
0
0.2
0.4
–0.1
0.1
0.3
DEVI AT I ON FRO M F L ATNESS ( d B)
–100 –60 –20 40 100–80 –40 0 8020 60
FREQUENCY OF F SET FROM LO (MHz)
14651-042
Figure 101. Transmitter Frequency Response Deviation from Flatness vs.
Frequency Offset from LO, 2600 MHz LO, 100 MHz RF Bandwidth,
6 dB Digital Backoff, 245.76 MSPS Sample Rate
40
–80
–75
–65
–60
–70
–50
–45
–55
OBS ERVAT IO N R ECEI V ER LO LEAKAGE (d Bm)
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
OBSE RVATION RECEIV E R LO F RE QUENCY (M Hz)
+110°C
+40°C
–40°C
14651-043
Figure 102. Observation Receiver LO Leakage vs. Observation Receiver
LO Frequency, 0 dB Receiver Attenuation, 200 MHz RF Bandwidth,
245.76 MSPS Sample Rate
30
0
5
10
20
25
15
OBSERVATION RECEIVER NOI SE FIGURE (dB)
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
OBSE RVATION RECEIV E R LO F RE QUENCY (M Hz)
+110°C
+40°C
–40°C
14651-044
Figure 103. Observation Receiver Noise Figure vs. Observation Receiver
LO Frequency, 0 dB Receiver Attenuation, 200 MHz RF Bandwidth,
245.76 MSPS Sample Rate, 100 MHz Integration Bandwidth
80
0
10
20
30
40
60
50
70
OBSERVAT ION RECEIVER IIP2 (dBm)
0 20406080 11010 30 50 70 90 100
f
1
OFFSET FREQUENCY (MHz)
+110°C
+40°C
–40°C
14651-045
Figure 104. Observation Receiver IIP2 vs. f1 Offset Frequency, 2600 MHz LO,
0 dB Attenuation, 200 MHz RF Bandwidth, f2 = f1 + 1 MHz,
245.76 MSPS Sample Rate
80
0
10
20
30
40
60
50
70
OBSERVATION RECEIVER I IP2 (d Bm)
5 25 45 65 85 11515 35 55 75 95 105
INTE RMODULATI O N F REQUENCY (MHz)
+110°C
+40°C
–40°C
14651-046
Figure 105. Observation Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),
2600 MHz LO, 0 dB Attenuation, 200 MHz RF Bandwidth,
245.76 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 33 of 57
40
0
5
10
15
20
30
25
35
OBSERVAT ION RECEIVER IIP3 (dBm)
0 20406080 11010 30 50 70 90 100
f
1
OFFSET FREQUENCY (MHz)
+110°C
+40°C
–40°C
14651-047
Figure 106. Observation Receiver IIP3 vs. f1 Offset Frequency,
2600 MHz LO, 0 dB Attenuation, 200 MHz RF Bandwidth,
f2 = 2f1 + 1 MHz, 245.76 MSPS Sample Rate
40
0
5
10
15
20
30
25
35
OBSERVATION RECEIVER I IP3 (d Bm)
5 25 45 65 85 11515 35 55 75 95 105
INTE RMODULATI O N F REQUENCY (MHz)
+110°C
+40°C
–40°C
14651-048
Figure 107. Observation Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1),
2600 MHz LO, 0 dB Attenuation, 200 MHz RF Bandwidth,
245.76 MSPS Sample Rate
0
–120
–100
–80
–60
–40
–20
OBSE RV ATION RECEIVER I MAGE (dBc)
0612183915
OBSERVATION RE CE IVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-049
Figure 108. Observation Receiver Image vs. Observation Receiver Attenuation,
2600 MHz LO, CW Signal 25 MHz Offset, 200 MHz RF Bandwidth, BTC Active,
245.76 MSPS Sample Rate
25
–15
–10
–5
0
5
15
10
20
OBSE RV AT I ON RECEI V ER G AI N ( d B)
0612183915
OBSERVATION RE CE IVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-050
Figure 109. Observation Receiver Gain vs. Observation Receiver Attenuation,
2600 MHz LO, CW Signal 25 MHz Offset,
200 MHz RF Bandwidth, 245.76 MSPS Sample Rate
40
–100
–90
–80
–70
–60
–50
OBSE RV AT I ON RECEI V ER DC O F FSET ( d BFS)
0612183915
OBSERVATION RE CE IVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-051
Figure 110. Observation Receiver DC Offset vs. Observation Receiver
Attenuation, 2600 MHz LO, 200 MHz RF Bandwidth, 245.76 MSPS Sample Rate
0
–120
–100
–80
–60
–40
–20
OBSE RV AT ION RECE I V E R HD2 (d Bc)
0612183915
OBSERVATION RE CE IVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-052
Figure 111. Observation Receiver HD2 vs. Observation Receiver Attenuation,
2600 MHz LO, CW Signal 25 MHz Offset, −20 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
200 MHz RF Bandwidth, 245.76 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 34 of 57
0
–120
–100
–80
–60
–40
–20
OBSE RV AT ION RECE I V ER HD3 (dBc)
0612183915
OBSERVATION RE CE IVER ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-053
Figure 112. Observation Receiver HD3 vs. Observation Receiver Attenuation,
2600 MHz LO, CW Signal 25 MHz Offset, −20 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
200 MHz RF Bandwidth, 245.76 MSPS Sample Rate
40
–120
–110
–100
–90
–80
–60
–70
–50
SNIFFER RECEIVE R LO LEAKAGE (dBm)
2300 2500 2700 28002400 2600
SNI FFE R RECEI V E R LO FREQUENCY ( M H z)
+110°C
+40°C
–40°C
14651-054
Figure 113. Sniffer Receiver LO Leakage vs. Sniffer Receiver LO Frequency,
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
30
0
5
10
20
15
25
SNIF FER RECEI V E R NOISE F I GURE (dB)
2300 2500 2700 28002400 2600
SNI FFE R RECEI V E R LO FREQUENCY ( M H z)
+110°C
+40°C
–40°C
14651-055
Figure 114. Sniffer Receiver Noise Figure vs. Sniffer Receiver LO Frequency,
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate,
20 MHz Integration Bandwidth
90
0
10
20
60
40
80
50
30
70
SNIFFER RECEIVER IIP2 (dBm)
39126
INT ERM O DULAT I O N F REQUENCY ( MHz )
+110°C
+40°C
–40°C
14651-056
Figure 115. Sniffer Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),
2600 MHz LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
20
–10
5
–5
15
0
10
SNIFFER RECEIVER IIP3 (dBm)
081246 102INT ERM O DULAT I O N F REQUENCY ( MHz )
+110°C
+40°C
–40°C
14651-057
Figure 116. Sniffer Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1), 2600 MHz
LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
0
–100
–90
–70
–40
–80
–50
–20
–60
–30
–10
SNIF FER RECEIVER I MAGE (d Bc)
02010 155
SNI FFE R RE CE IVER ATTE NUATIO N ( dB)
+110°C
+40°C
–40°C
14651-058
Figure 117. Sniffer Receiver Image vs. Sniffer Receiver Attenuation, 2600 MHz
LO, CW Signal 1 MHz Offset, 20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 35 of 57
40
–110
–100
–80
–90
–70
–50
–60
SNIFFER RECEIVER DC OFF S ET (d BF S)
02015510
SNI FFE R RE CE IVER ATTE NUATIO N ( dB)
+110°C
+40°C
–40°C
14651-059
Figure 118. Sniffer Receiver DC Offset vs. Sniffer Receiver Attenuation,
2600 MHz LO, CW Signal 1 MHz Offset, −35 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
0
–100
–90
–70
–80
–60
–20
–40
–50
–10
–30
SNIFFE R RECEIVE R HD2 (dBc)
02015510
SNI FFE R RE CE IVER ATTE NUATIO N ( dB)
+110°C
+40°C
–40°C
14651-060
Figure 119. Sniffer Receiver HD2 vs. Sniffer Receiver Attenuation,
2600 MHz LO, CW Signal 1 MHz Offset, −35 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
20 MHz RF Bandwidth, 30.72 MSPS Sample Rate
0
–120
–100
–40
–80
–20
–60
SNIFFE R RECEIVE R HD3 (dBc)
02010 155
SNI FFE R RE CE IVER ATTE NUATIO N ( dB)
+110°C
+40°C
–40°C
14651-061
Figure 120. Sniffer Receiver HD3 vs. Sniffer Receiver Attenuation, 2600 MHz LO,
CW Signal 1 MHz Offset, −35 dBm at 0 dB Attenuation, Input Power
Increasing Decibel for Decibel with Attenuation, 20 MHz RF Bandwidth,
30.72 MSPS Sample Rate
0
–50
–45
–40
–15
–35
–5
–25
–20
–10
–30
SNIFFE R RECEIVE R EVM (dB)
–70 –25–40–55 –45 –30–60 –50 –35–65 SNIFF E R RECEI VE R INPUT POW ER (dBm)
+110°C
+40°C
–40°C
14651-062
Figure 121. Sniffer Receiver EVM vs. Sniffer Receiver Input Power,
2600 MHz LO, 20 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC,
BTC Active, 30.72 MSPS Sample Rate
40
–40
–30
0
–10
20
–20
10
30
SNIFFER RECEIVER GAIN (dB)
05236 4820 32 4412 28 40424168SNI FFE R RE CE IVER ATTE NUATIO N ( dB)
+110°C
+40°C
–40°C
14651-063
Figure 122. Sniffer Receiver Gain vs. Sniffer Receiver Attenuation,
2600 MHz LO, CW Signal 1 MHz Offset, 20 MHz RF Bandwidth,
30.72 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 36 of 57
3.5 GHz BAND
RECEIVE R LO LEAKAGE (d Bm)
RECEIVER LO F R E QUENCY ( MHz)
–80
–75
–70
–65
–60
–55
–50
–45
–40
–35
30
3300 3400 3500 3600 3700 3800
+110°C
+40°C
–40°C
14651-064
Figure 123. Receiver Local Oscillator (LO) Leakage vs. Receiver LO Frequency,
0 dB Receiver Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate
RECEIVER NOISE FIG URE (dB)
RECEIVER ATTENUATION (d B)
0
5
10
15
20
25
30
35
40
45 +110°C
+40°C
–40°C
14651-065
Figure 124. Receiver Noise Figure vs. Receiver Attenuation, 3500 MHz LO,
100 MHz Bandwidth, 153.6 MSPS Sample Rate, 50 MHz Integration Bandwidth
(Includes 1 dB Matching Circuit Loss)
RECEIVER N OIS E FI GURE ( dB)
RECEIVER LO F RE QUENCY ( MHz)
0
5
10
15
20
25
30
3300 3400 3500 3600 3700 3800
+110°C
+40°C
–40°C
14651-066
Figure 125. Receiver Noise Figure vs. Receiver LO Frequency,
0 dB Receiver Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate,
50 MHz Integration Bandwidth (Includes 1 dB Matching Circuit Loss)
RECEIVER IIP2 (dBm)
f
1
OFFSE T FRE QUENCY (MHz)
0
10
20
30
40
50
60
70
80
90
51015202530354045505560
+110°C
+40°C
–40°C
14651-067
Figure 126. Receiver IIP2 vs. f1 Offset Frequency, 3500 MHz LO,
0 dB Attenuation, 100 MHz RF Bandwidth, f2 = f1 + 1 MHz,
153.6 MSPS Sample Rate
RECEI VE R I IP2 (dBm)
INTERMODULATION FREQUENCY (MHz)
0
10
20
30
40
50
60
70
80
90
100
51015202530354045505560
f
2
f
1
, +110°C
f
2
f
1
, +40°C
f
2
f
1
, –40°C
f
2
+
f
1
, +110°C
f
2
+
f
1
, +40° C
f
2
+
f
1
, –40°C
14651-068
Figure 127. Receiver IIP2 vs. Intermodulation Frequency, 3500 MHz LO,
0 dB Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate
RECEI V E R IIP 3 ( dBm)
f
1
OFFSE T FRE QUENCY (MHz)
51015202530354045505560
0
5
10
15
20
25
30
35
40 +110°C
+40°C
–40°C
14651-069
Figure 128. Receiver IIP3 vs. f1 Offset Frequency, 3500 MHz LO,
0 dB Attenuation, 100 MHz RF Bandwidth, f2 = 2 f1 + 1 MHz,
153.6 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 37 of 57
RECEIVER IIP3 (dBm)
INTERMODULATION FREQUENCY (MHz)
51015202530354045505560
0
5
10
15
20
25
30
35
40
f
2
f
1
, + 110 °C
f
2
f
1
, + 40°C
f
2
f
1
, –40°C
f
2
+
f
1
, + 1 10°C
f
2
+
f
1
, +40°C
f
2
+
f
1
, –4 C
14651-070
Figure 129. Receiver IIP3 vs. Intermodulation Frequency, 3500 MHz LO,
0 dB Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate
RECEIVE R IM AG E (dBc)
RECEIVER ATTENUATION (dB)
–110
–100
–90
–80
–70
–60
–50
40 +110°C
+40°C
–40°C
14651-071
Figure 130. Receiver Image vs. Receiver Attenuation, 3500 MHz LO,
Continuous Wave (CW) Signal 17 MHz Offset, 100 MHz RF Bandwidth,
Background Tracking Calibration (BTC) Active, 153.6 MSPS Sample Rate
RECEIV ER GAI N (d B)
RECEIVER ATTENUATION (dB)
–15
–10
–5
0
5
10
15
20
25 +110°C
+40°C
–40°C
14651-072
Figure 131. Receiver Gain vs. Receiver Attenuation, 3500 MHz LO, CW Signal
17 MHz Offset, 100 MHz RF Bandwidth, De-Embedded to Receiver Port,
153.6 MSPS Sample Rate
RECEIV ER DC OFFSET (d BF S)
RECEIVER ATTENUATION (dB)
0 5 10 15 20 25 30
–120
–110
–100
–90
–80
–70
–60
–50
40 +110°C
+40°C
–40°C
14651-073
Figure 132. Receiver DC Offset vs. Receiver Attenuation, 3500 MHz LO,
100 MHz RF Bandwidth, 153.6 MSPS Sample Rate
RECE IVE R HD2 ( dBc)
RECEIVER ATTENUATION (dB)
–110
–100
–90
–80
–70
–60
–50
40 +110°C
+40°C
–40°C
14651-074
Figure 133. Receiver HD2 vs. Receiver Attenuation, 3500 MHz LO, CW Signal
17 MHz Offset, −14 dBm at 0 dB Attenuation, Input Power Increasing Decibel for
Decibel with Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate
RECE IVE R HD3 ( dBc)
RECEIVER ATTENUATION (dB)
–110
–100
–90
–80
–70
–60
–50
40 +110°C
+40°C
–40°C
14651-075
Figure 134. Receiver HD3 vs. Receiver Attenuation, 3500 MHz LO, CW Signal
17 MHz Offset, −14 dBm at 0 dB Attenuation, Input Power Increasing Decibel
for Decibel with Attenuation, 100 MHz RF Bandwidth, 153.6 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 38 of 57
RECEIVER EVM (dB)
RECEI VE R I NPUT POWER (d Bm)
–45
–40
–35
–30
–25
–20
–15
–10
–5
0
–60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0
+110°C
+40°C
–40°C
14651-076
Figure 135. Receiver Error Vector Magnitude (EVM) vs. Receiver Input Power,
3600 MHz LO, 100 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC,
BTC Active, 153.6 MSPS Sample Rate
Rx2 TO Rx1 CROSSTAL K ( dB)
RECEIVER LO F RE QUENCY ( MHz)
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
3300 3400 3500 3600 3700 3800
14651-077
Figure 136. Rx2 to Rx1 Crosstalk vs. Receiver LO Frequency,
100 MHz RF Bandwidth, CW Tone 3 MHz Offset from LO
RECEIVE R NOI SE F I G URE (d B)
CLOSE-I N I NTERFERER SI G NAL PO W ER (dBm)
10
12
14
16
18
20
22
24
26
28
30
–50 –45 –40 –35 –30 –25 –20
14651-078
+110°C
+40°C
–40°C
Figure 137. Receiver Noise Figure vs. Close-In Interferer Signal Power,
3614 MHz LO, 3625 MHz CW Interferer, Noise Figure Integrated over
7 MHz to 10 MHz, 100 MHz RF Bandwidth
RECEIVE R NOI S E F I G URE (d B)
OUT -OF -BAND INTERFERER SIGNAL POWER (d Bm)
0
5
10
15
20
25
30
–30 –25 –20 –15 –10 –5 0
14651-079
+110°C
+40°C
–40°C
Figure 138. Receiver Noise Figure vs. Out of Band Interferer Signal Power,
3614 MHz LO, 3665 MHz CW Interferer, Noise Figure Integrated over
7 MHz to 10 MHz
TR ANS M I TT E R I M A G E ( d B c)
RFATTENUATION (dB)
+110°C
+40°C
–40°C
14651-080
Figure 139. Transmitter Image vs. RF Attenuation, 100 MHz RF Bandwidth,
3550 MHz LO, Transmitter Quadrature Error Correction (QEC) Tracking Run
with Two 20 MHz, LTE Downlink Carriers, Then Image Measured with CW
10 MHz Offset from LO, 6 dB Digital Backoff, 307.2 MSPS Sample Rate
TR ANS M I TT E R I M A G E ( d B c)
DESIRED OFFSET FREQUENCY (MHz )
–50 –40 –30 –20 –10 0 10 20 30 40 50
+110°C
+40°C
–40°C
14651-081
Figure 140. Transmitter Image vs. Desired Offset Frequency, 100 MHz RF
Bandwidth, 3550 MHz LO, 0 dB RF Attenuation, Transmitter QEC Tracking
Run with Two 20 MHz LTE Downlink Carriers, Then Image Measured with
CW Signal, 6 dB Digital Backoff, 307.2 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 39 of 57
Tx OUTPUT (dBm)
FRE Q UE NCY ( MHz)
–10
–8
–6
–4
–2
0
2
4
6
8
10
3300 3400 3500 3600 3700 3800
+110°C
+40°C
–40°C
14651-082
Figure 141. Tx Output Power, Transmitter QEC and
External LO Leakage Active, 5 MHz CW Offset Signal,
1 MHz Resolution Bandwidth, 307.2 MSPS Sample Rate
0 5 10 15 20
TRANSMITTER LO LEAKAGE (dBFS)
RF AT T E NUAT I ON (dB)
–95
–90
–85
–80
–75
–70
–65
60
–100
+110°C
+40°C
–40°C
14651-083
Figure 142. Transmitter LO Leakage vs. RF Attenuation, 3550 MHz LO,
Transmitter QEC and External LO Leakage Tracking Active, CW Signal 10 MHz
Offset from LO, 6 dB Digital Backoff, 1 MHz Measurement Bandwidth
(If Input Power to ORx Channel Is Not Held Constant,
Performance Degrades as Shown in This Plot)
TR ANS M I TT E R L O LE AK AGE (dBF S )
OFFS ET FREQUENCY (MHz)
3.3GHz, +110° C
3.3GHz, +40° C
3.3GHz, –40°C
3.55GHz, +110° C
3.55GHz, +40° C
3.55 G Hz , –40°C
3.8GHz, +110° C
3.8GHz, +40° C
3.8GHz, –40°C
–30 –20 –10 0 10 20 30
14651-084
Figure 143. Transmitter LO Leakage vs. Offset Frequency,
Transmitter QEC and External LO Leakage Tracking Active,
6 dB Digital Backoff, 1 MHz Measurement Bandwidth
Tx1 TO Rx1 CROSST
A
LK (dB)
RECEIVER LO F RE QUENCY ( MHz)
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
3300 3400 3500 3600 3700 3800
14651-085
Figure 144. Tx1 to Rx1 Crosstalk vs. Receiver LO Frequency,
100 MHz Receiver RF Bandwidth, 100 MHz Transmitter RF Bandwidth,
CW Signal 3 MHz Offset from LO
0
–100
3300 3400 3500 3600 3700 3800
Tx2 TO Rx2 CROSSTALK (dB)
RECEIVER LO FREQUENCY ( MHz)
–90
–80
–70
–60
–50
–40
–30
–20
–10
14651-086
Figure 145. Tx2 to Rx2 Crosstalk vs. Receiver LO Frequency,
100 MHz Receiver RF Bandwidth, 100 MHz Transmitter RF Bandwidth,
CW Signal 3 MHz Offset from LO
0
–100
3300 3800
Tx2 TO Tx1 CROS S TALK ( dB)
TRANS M ITTER L O F RE QUENCY ( M Hz )
3400 3500 3600 3700
–90
–80
–70
–60
–50
–40
–30
–20
–10
14651-087
Figure 146. Tx2 to Tx1 Crosstalk vs. Transmitter LO Frequency,
100 MHz RF Bandwidth, CW Signal 3 MHz Offset from LO
AD9371 Data Sheet
Rev. B | Page 40 of 57
80
–180
TRANSM I TTER NOISE (dBm/Hz)
–170
–160
–150
–140
–130
–120
–110
–100
–90
02051015
RF ATTENUATION (d B)
+110°C
+40°C
–40°C
14651-088
Figure 147. Transmitter Noise vs. RF Attenuation, 3500 MHz LO,
100 MHz Offset Frequency, Zeros Input Data
020
51015
40
–80
Tx ADJACENT CHANNEL LEAKAGE RATI O (dB)
RF ATTENUATION (d B)
–75
–70
–65
–60
–55
–50
–45
+110°C UPPER
+40°C UP PE R
–40°C UPPER
+110°C LOWER
+40°C LOW E R
–40°C LO WER
14651-089
Figure 148. Tx Adjacent Channel Leakage Ratio vs. RF Attenuation,
3500 MHz LO, 100 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,
2 dB Digital Backoff, Transmitter QEC and LO Leakage Tracking Active
40
–80 020
Tx AL T E RNAT E CHANNEL L E AKAG E RAT I O (dB)
RF ATTENUATION (d B)
–75
–70
–65
–60
–55
–50
–45
51015
+110°C UPPER
+40° C UP P E R
–40°C UP PE R
+110°C LOWER
+40°C LO WER
–40°C LO W E R
14651-090
Figure 149. Tx Alternate Channel Leakage Ratio vs. RF Attenuation,
3500 MHz LO, 100 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,
2 dB Digital Backoff, Transmitter QEC and LO Leakage Tracking Active
60
–150
100 10M
LO PHASE NOISE (dBc)
OFF SET FREQUENCY (Hz)
–140
–130
–120
–110
–100
–90
–80
–70
1k 10k 100k 1M
14651-091
Figure 150. LO Phase Noise vs. Offset Frequency, 3 dB Digital Backoff,
3500 MHz LO
1.0
0
3300 3800
Tx INTEGRATED PHASE NO ISE ( Degrees)
TRANS M ITTER L O F RE QUENCY ( M Hz )
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
3400 3500 3600 3700
+110°C
+40°C
–40°C
14651-092
Figure 151. Tx Integrated Phase Noise vs. Transmitter LO Frequency,
100 MHz RF Bandwidth, CW 20 MHz Offset from LO, 3 dB Digital Backoff
35
0020
TRANSM I TTER O IP3 (d Bm)
RF ATTENUATION (d B)
5
10
15
20
25
30
2 4 6 8 10 12 14 16 18
+110°C
+40°C
–40°C
14651-093
Figure 152. Transmitter OIP3 vs. RF Attenuation, 3500 MHz LO,
100 MHz RF Bandwidth, f1 = 20 MHz, f2 = 21 MHz, 3 dB Digital Backoff,
307.2 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 41 of 57
3400 3600
FRE Q UE NCY ( M Hz )
0
–100
Tx OUTPUT (dBm)
–90
–80
–70
–60
–50
–40
–30
–20
–10
3425 3450 3475 3500 3525 3550 3575
14651-094
Figure 153. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff,
100 MHz RF Bandwidth, Transmitter QEC and Internal LO Leakage Active,
LTE 10 MHz Signal, 3500 MHz LO, 1 MHz Resolution Bandwidth,
307.2 MSPS Sample Rate
0
–100
3000 4000
Tx OUTPUT (dBm)
FRE Q UE NCY ( M Hz )
–90
–80
–70
–60
–50
–40
–30
–20
–10
3100 3200 3300 3400 3500 3600 3700 3800 3900
14651-095
Figure 154. Tx Output Power Spectrum, 2 dB Digital and 3 dB RF Backoff,
100 MHz RF Bandwidth, Transmitter QEC and Internal LO Leakage Active,
LTE 10 MHz Signal, 3500 MHz LO, 1 MHz Resolution Bandwidth,
307.2 MSPS Sample Rate (Noise Floor Includes Test Equipment Response)
20
–50 020
TRANSMITTER EVM (dB)
RF ATTENUATION (d B)
–45
–40
–35
–30
–25
51015
+110°C
+40°C
–40°C
14651-096
Figure 155. Transmitter EVM vs. RF Attenuation, 3500 MHz LO,
Transmitter LO Leakage, and Transmitter QEC Tracking Active,
100 MHz RF Bandwidth, LTE 20 MHz Downlink Signal, 307.2 MSPS Sample Rate
0
–100 020
TRANSM I TTE R HD2 (d Bc)
RF ATTENUATION (d B)
–90
–80
–70
–60
–50
–40
–30
–20
–10
51015
+110°C
+40°C
–40°C
14651-097
Figure 156. Transmitter HD2 vs. RF Attenuation, 3500 MHz LO,
3505 MHz CW Desired Signal, 100 MHz RF Bandwidth,
307.2 MSPS Sample Rate
0
–80 020
TRANSM I TTE R HD3 (d Bc)
RF ATTENUATION (d B)
–70
–60
–50
–40
–30
–20
–10
51015
+110°C
+40°C
–40°C
14651-098
Figure 157. Transmitter HD3 vs. RF Attenuation, 3500 MHz LO,
3505 MHz CW Desired Signal, 100 MHz RF Bandwidth,
307.2 MSPS Sample Rate
10
–25 020
TRANSM ITTER OUTPUT POW ER (dBm)
RF ATTENUATION (d B)
–20
–15
–10
–5
0
5
51015
+110°C
+40°C
–40°C
14651-099
Figure 158. Transmitter Output Power vs. RF Attenuation, 3500 MHz LO,
3505 MHz CW Desired Signal, 100 MHz RF Bandwidth,
2 dB Digital Backoff, 307.2 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 42 of 57
0.10
–0.10 020
Tx AT T E NUAT I ON STE P E RRO R ( d B)
RF ATTENUATION (d B)
–0.08
–0.06
–0.04
–0.02
0
0.02
0.04
0.06
0.08
2 4 6 8 10 12 14 16 18
+110°C
+40°C
–40°C
14651-100
Figure 159. Tx Attenuation Step Error vs. RF Attenuation, 3500 MHz LO,
3510 MHz CW Desired Signal, 100 MHz RF Bandwidth,
De-Embedded to Transmitter Port, 307.2 MSPS Sample Rate
1.0
–1.0
–100 100
DEVI AT I ON FRO M F L ATNESS ( d B)
FREQUENCY OFFSET FROM LO (MHz)
–0.8
–0.6
–0.4
–0.2
0
0.2
0.4
0.6
0.8
–80 –60 –40 –20 0 20 40 60 80
14651-101
Figure 160. Transmitter Frequency Response Deviation from Flatness vs.
Frequency Offset from LO, 3500 MHz LO, 100 MHz RF Bandwidth,
6 dB Digital Backoff, 307.2 MSPS Sample Rate
40
–80
3300 3800
OBSE RVATION RECEIVER L O LE AKAG E (dBm)
OBS E RV ATION RECE IVER LO F R E QUENCY ( MHz)
–75
–70
–65
–60
–55
–50
–45
3400 3500 3600 3700
+110°C
+40°C
–40°C
14651-102
Figure 161. Observation Receiver LO Leakage vs. Observation Receiver
LO Frequency, 0 dB Receiver Attenuation, 240 MHz RF Bandwidth,
307.2 MSPS Sample Rate
30
0
3300 3800
OBSE RV AT I ON RECEI V ER NO I S E F I GURE (d B)
OBS E RV ATION RECE IVER LO F R E QUENCY ( MHz)
5
10
15
20
25
3400 3500 3600 3700
+110°C
+40°C
–40°C
14651-103
Figure 162. Observation Receiver Noise Figure vs. Observation Receiver LO
Frequency, 0 dB Receiver Attenuation, 240 MHz RF Bandwidth,
307.2 MSPS Sample Rate, 120 MHz Integration Bandwidth
80
00 110
OBSE RVATION RECEI VER II P 2 (dBm)
f
1
OF F S ET FREQUENCY (MHz)
10
20
30
40
50
60
70
10 20 30 40 50 60 70 80 90 100
+110°C
+40°C
–40°C
14651-104
Figure 163. Observation Receiver IIP2 vs. f1 Offset Frequency, 3600 MHz LO,
0 dB Attenuation, 240 MHz RF Bandwidth, f2 = f1 + 1 MHz,
307.2 MSPS Sample Rate
80
05 115
OBSE RVATI ON RECEIVER I IP2 (dBm)
INTERM ODULATI O N F REQ UENCY ( MHz)
15 25 35 45 55 65 75 85 95 105
10
20
30
40
50
60
70
+110°C
+40°C
–40°C
14651-105
Figure 164. Observation Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),
3500 MHz LO, 0 dB Attenuation, 240 MHz RF Bandwidth,
307.2 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 43 of 57
40
00110
OBSE RV ATIO N RE CE IVER I IP3 (dBm)
f
1
OFFS E T FRE QUENCY (MHz )
5
10
15
20
25
30
35
10 20 30 40 50 60 70 80 90 100
+110°C
+40°C
–40°C
14651-106
Figure 165. Observation Receiver IIP3 vs. f1 Offset Frequency, 3600 MHz LO,
0 dB Attenuation, 240 MHz RF Bandwidth, f2 = 2f1 + 1 MHz,
307.2 MSPS Sample Rate
40
05115
OBSE RVATI ON RECEIVER I IP3 (dBm)
INTERMODUL ATIO N FREQ U E NCY ( M Hz )
5
10
15
20
25
30
35
15 25 35 45 55 65 75 85 95 105
+110°C
+40°C
–40°C
14651-107
Figure 166. Observation Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1),
3500 MHz LO, 0 dB Attenuation, 240 MHz RF Bandwidth,
307.2 MSPS Sample Rate
0
–100 018
OBSE RVATI ON RECEIVER I M AGE (dBc)
OBSERVATION RE CE IVER ATTE NUATION (d B)
–90
–80
–70
–60
–50
–40
–30
–20
–10
3691215
+110°C
+40°C
–40°C
14651-108
Figure 167. Observation Receiver Image vs. Observation Receiver Attenuation,
3500 MHz LO, CW Signal 25 MHz Offset, 240 MHz RF Bandwidth, BTC Active,
307.2 MSPS Sample Rate
25
–15 018
OBSE RVATIO N RECE I V E R G AI N ( d B)
OBSERVATION RE CE IVER ATTE NUATION (d B)
–10
–5
0
5
10
15
20
3691215
+110°C
+40°C
–40°C
14651-109
Figure 168. Observation Receiver Gain vs. Observation Receiver Attenuation,
3500 MHz LO, CW Signal 25 MHz Offset, 240 MHz RF Bandwidth,
De-Embedded to Receiver Port, 307.2 MSPS Sample Rate
40
–110 018
OBSE RVATIO N RECE I V E R DC OFFS ET (d BF S)
OBSERVATION RE CE IVER ATTE NUATIO N ( dB)
–100
–90
–80
–70
–60
–50
3691215
+110°C
+40°C
–40°C
14651-110
Figure 169. Observation Receiver DC Offset vs. Observation Receiver
Attenuation, 3500 MHz LO, 240 MHz RF Bandwidth, 307.2 MSPS Sample Rate
0
–120 018
OBSE RV AT ION RECE I V E R HD2 (d Bc)
OBSERVATION RE CE IVER ATTE NUATION (d B)
–100
–80
–60
–40
–20
3691215
+110°C
+40°C
–40°C
14651-111
Figure 170. Observation Receiver HD2 vs. Observation Receiver Attenuation,
3500 MHz LO, CW Signal 25 MHz Offset, −20 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
240 MHz RF Bandwidth, 307.2 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 44 of 57
0
–100 018
OBSE RV AT ION RECE I V ER HD3 (dBc)
OBSERVATION RE CE IVER ATTE NUATION (d B)
–90
–80
–70
–60
–50
–40
–30
–20
–10
3691215
+110°C
+40°C
–40°C
14651-112
Figure 171. Observation Receiver HD3 vs. Observation Receiver Attenuation,
3500 MHz LO, CW Signal 25 MHz Offset, −20 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
240 MHz RF Bandwidth, 307.2 MSPS Sample Rate
40
–120
SNIFFER RECEIVE R LO LEAKAGE (dBm)
SNI FFE R RECEI V E R LO FREQUENCY ( M H z)
–110
–100
–90
–80
–70
–60
–50
3300 38003400 3500 3600 3700
+110°C
+40°C
–40°C
14651-113
Figure 172. Sniffer Receiver LO Leakage vs. Sniffer Receiver LO Frequency,
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 38.4 MSPS Sample Rate
20
0
3300 3800
SNIF FER RECEI V E R NOISE F I GURE (dB)
SNI FFE R RECEI V E R LO FREQUENCY ( M H z)
3400 3500 3600 3700
2
4
6
8
10
12
14
16
18 +110°C
+40°C
–40°C
14651-114
Figure 173. Sniffer Receiver Noise Figure vs. Sniffer Receiver LO Frequency,
0 dB Receiver Attenuation, 20 MHz RF Bandwidth, 38.4 MSPS Sample Rate,
10 MHz Integration Bandwidth
90
0218
SNIFFER RECEIVER IIP2 (dBm)
INTERMODULATIO N FREQ UE NCY (MHz)
10
20
30
40
50
60
70
80
61014
+110°C
+40°C
–40°C
14651-115
Figure 174. Sniffer Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),
3500 MHz LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 38.4 MSPS Sample Rate
20
–10 012
SNIFFER RECEIVER IIP3 (dBm)
INT E RMODULATI ON FRE QUENCY (MHz)
–5
0
5
10
15
246810
+110°C
+40°C
–40°C
14651-116
Figure 175. Sniffer Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1),
3500 MHz LO, 0 dB Attenuation, 20 MHz RF Bandwidth, 38.4 MSPS Sample Rate
0
–100 050
SNIF FER RECEIVER I M AG E (dBc)
SNI FFE R RE CEIVE R ATTE NUATION (d B)
–90
–80
–70
–60
–50
–40
–30
–20
–10
5 1015202530354045
+110°C
+40°C
–40°C
14651-117
Figure 176. Sniffer Receiver Image vs. Sniffer Receiver Attenuation,
3500 MHz LO, CW Signal 5 MHz Offset, 20 MHz RF Bandwidth,
38.4 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 45 of 57
40
–110 020
SNIFFER RECEIVER DC OF FSET (dBFS)
SNIFFE R RECEIV E R ATTE NUATION (d B)
–100
–90
–80
–70
–60
–50
51015
+110°C
+40°C
–40°C
14651-118
Figure 177. Sniffer Receiver DC Offset vs. Sniffer Receiver Attenuation,
3500 MHz LO, CW Signal 5 MHz Offset, −35 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
20 MHz RF Bandwidth, 38.4 MSPS Sample Rate
0
–100 020
SNIFFER RE CEIVER HD2 (d Bc)
SNI FFE R RE CEIVE R ATTE NUATION (d B)
–90
–80
–70
–60
–50
–40
–30
–20
–10
51015
+110°C
+40°C
–40°C
14651-119
Figure 178. Sniffer Receiver HD2 vs. Sniffer Receiver Attenuation,
3500 MHz LO, CW Signal 5 MHz Offset, −35 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
20 MHz RF Bandwidth, 38.4 MSPS Sample Rate
0
–100
–90
–80
–70
–60
–50
–40
–30
–20
020
SNIFFER RE CEIVER HD3 (d Bc)
SNI FFE R RE CEIVE R ATTE NUATION (d B)
–10
51015
+110°C
+40°C
–40°C
14651-120
Figure 179. Sniffer Receiver HD3 vs. Sniffer Receiver Attenuation,
3500 MHz LO, CW Signal 5 MHz Offset, −35 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
20 MHz RF Bandwidth, 38.4 MSPS Sample Rate
0
–45
–70 –30
SNIFFER RECEIVE R EVM ( dB)
SNI FFE R RE CEIV E R INPUT P OWE R (dBm)
–40
–35
–30
–25
–20
–15
–10
–5
–65 –60 –55 –50 –45 –40 –35
+110°C
+40°C
–40°C
14651-121
Figure 180. Sniffer Receiver EVM vs. Sniffer Receiver Input Power,
3600 MHz LO, 20 MHz RF Bandwidth, LTE 20 MHz Uplink Centered at DC,
BTC Active, 38.4 MSPS Sample Rate
35
–35 055
SNIFFER RECEIVER GAIN (dB)
SNI FFE R RE CEIVE R ATTE NUATION (d B)
–25
–15
–5
5
15
25
5 101520253035404550
+110°C
+40°C
–40°C
14651-122
Figure 181. Sniffer Receiver Gain vs. Sniffer Receiver Attenuation,
3600 MHz LO, CW Signal 5 MHz Offset, 20 MHz RF Bandwidth,
De-Embedded to Receiver Port, 38.4 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 46 of 57
5.5 GHz BAND
30
–100
5300 5900
RECEI VER LO LEAKAGE (dBm)
RECEIVER L O FRE Q UE NCY ( M Hz )
–90
–80
–70
–60
–50
–40
5400 5500 5600 5700 5800
+110°C
+40°C
–40°C
14651-223
Figure 182. Receiver Local Oscillator (LO) Leakage vs. Receiver LO Frequency,
0 dB Receiver Attenuation, 100 MHz RF Bandwidth, 122.88 MSPS Sample Rate
45
0015
RECEI V ER NOISE F I GURE (d B)
RECEIVER ATTENUATION (d B)
5
10
15
20
25
35
30
40
36912
+110°C
+40°C
–40°C
14651-224
Figure 183. Receiver Noise Figure vs. Receiver Attenuation, 5600 MHz LO,
100 MHz Bandwidth, 122.88 MSPS Sample Rate, 50 MHz Integration
Bandwidth (Includes 1.2 dB Matching Circuit Loss)
30
0
5300 5900
RECEI V ER NOISE F IGURE ( d B)
RECEIVER L O FRE Q UE NCY ( M Hz )
5
10
15
20
25
5400 5500 5600 5700 5800
+110°C
+40°C
–40°C
14651-225
Figure 184. Receiver Noise Figure vs. Receiver LO Frequency, 0 dB Receiver
Attenuation, 100 MHz RF Bandwidth, 122.88 MSPS Sample Rate, 50 MHz
Integration Bandwidth (Includes 1.2 dB Matching Circuit Loss)
100
90
80
70
60
50
40
30
20
10
0060
RECEIVER IIP2 (dBm)
f
1
OFFSE T FRE QUENCY ( M Hz )
20 4010 30 50
+110°C
+40°C
–40°C
14651-185
Figure 185. Receiver IIP2 vs. f1 Offset Frequency, 5600 MHz LO,
0 dB Attenuation, 100 MHz RF Bandwidth, f2 = f1 + 1 MHz,
122.88 MSPS Sample Rate
100
015 45
RECEIVER I IP2 (dBm)
INT E RMODULATI ON FRE QUENCY (MHz)
10
30
50
70
90
20
40
60
80
20 25 30 35 40
f
2
+
f
1
, + 110 °C
f
2
+
f
1
, + 40°C
f
2
+
f
1
, –40°C
f
2
f
1
, +110°C
f
2
f
1
, +40°C
f
2
f
1
, –40°C
14651-226
Figure 186. Receiver IIP2 vs. Intermodulation Frequency, 5600 MHz LO,
0 dB Attenuation, 100 MHz RF Bandwidth, 122.88 MSPS Sample Rate
40
35
30
25
20
15
10
5
0060
RECEIVER I I P3 (d Bm)
f1
OFFSE T FRE QUENCY ( MHz)
20 4010 30 50
+110°C
+40°C
–40°C
14651-187
Figure 187. Receiver IIP3 vs. f1 Offset Frequency, 5600 MHz LO, 0 dB Attenuation,
100 MHz RF Bandwidth, f2 = 2 f1 + 2 MHz, 122.88 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 47 of 57
40
010 15 35
RECEIVER I IP3 (dBm)
INT E RMODULATI ON FRE QUENCY (MHz)
10
20
5
15
25
30
35
20 25 30
+110°C
+40°C
–40°C
14651-227
Figure 188. Receiver IIP3 vs. Intermodulation Frequency, 5600 MHz LO,
0 dB Attenuation, 100 MHz RF Bandwidth, 122.88 MSPS Sample Rate
40
–100 030
RECEI V ER IMAGE ( d Bc)
RECEIVER ATTENUATION (d B)
–80
–90
–70
–60
–50
5152510 20
+110°C
+40°C
–40°C
14651-228
Figure 189. Receiver Image vs. Receiver Attenuation, 5600 MHz LO,
Continuous Wave (CW) Signal 10 MHz Offset, 100 MHz RF Bandwidth,
Background Tracking Calibration (BTC) Active, 122.88 MSPS Sample Rate
20
–20 030
RECEIVER GAIN (dB)
RECEIVER ATTENUATION (d B)
–10
–15
–5
5
15
0
10
5152510 20
+110°C
+40°C
–40°C
14651-229
Figure 190. Receiver Gain vs. Receiver Attenuation, 5600 MHz LO,
CW Signal 10 MHz Offset, 100 MHz RF Bandwidth, 122.88 MSPS Sample Rate
40
–110 030
RECEIVER DC OFF S ET (d BF S)
RECEIVER ATTENUATION (d B)
–90
–100
–80
–60
–70
–50
5152510 20
+110°C
+40°C
–40°C
14651-230
Figure 191. Receiver DC Offset vs. Receiver Attenuation, 5850 MHz LO,
100 MHz RF Bandwidth, 122.88 MSPS Sample Rate
40
–110 030
RECEI VE R HD2 (d Bc)
RECEIVER ATTENUATION (d B)
–90
–100
–80
–60
–70
–50
5152510 20
+110°C
+40°C
–40°C
14651-231
Figure 192. Receiver HD2 vs. Receiver Attenuation, 5600 MHz LO,
CW Signal 10 MHz Offset, −20 dBm at 0 dB Attenuation,
Input Power Increasing Decibel for Decibel with Attenuation,
100 MHz RF Bandwidth, 122.88 MSPS Sample Rate
40
–110 030
RECEI VE R HD3 (d Bc)
RECEIVER ATTENUATION (d B)
–90
–100
–80
–60
–70
–50
5152510 20
+110°C
+40°C
–40°C
14651-232
Figure 193. Receiver HD3 vs. Receiver Attenuation, 5600 MHz LO,
CW Signal 10 MHz Offset, −20 dBm at 0 dB Attenuation, Input Power
Increasing Decibel for Decibel with Attenuation,100 MHz RF Bandwidth,
122.88 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 48 of 57
0
–45
–55 0
RECEIVER EVM (dB)
RECEIVER I NP UT POWER (dBm)
–35
–40
–30
–15
–25
–5
–20
–10
–45 –25 –5–35 –15–50 –30 –10–40 –20
+110°C
+40°C
–40°C
14651-233
Figure 194. Receiver Error Vector Magnitude (EVM) vs. Receiver Input Power,
5600 MHz LO, 100 MHz RF Bandwidth LTE, 20 MHz Uplink Centered at DC,
BTC Active, 122.88 MSPS Sample Rate
0
–100
5300 5900
Rx2 TO Rx1 CRO SS T AL K ( dB)
RECEIVER L O FRE Q UE NCY ( M Hz )
–70
–80
–90
–60
–30
–50
–10
–40
–20
5500 57005400 58005600
14651-234
Figure 195. Rx2 to Rx1 Crosstalk vs. Receiver LO Frequency,
100 MHz RF Bandwidth, CW Tone 3 MHz Offset from LO
30
0
–40 0
RECEI VE R NO ISE F IGURE ( d B)
OUT - OF- BAND INTERFERER S I GNAL P O WER (d B m)
15
5
25
10
20
–25 –5–35 –15–30 –10–20
+110°C
+40°C
–40°C
14651-235
Figure 196. Receiver Noise Figure vs. Out-of-Band Interferer Signal Power,
5400 MHz LO, 5600 MHz CW Interferer, NF Integrated over 7 MHz to 10 MHz
0
–100 020
TRANSM ITT ER IMAGE (d Bc)
RF ATTENUATION (d B)
–70
–80
–90
–60
–30
–50
–10
–40
–20
10515
+110°C
+40°C
–40°C
14651-236
Figure 197. Transmitter Image vs. RF Attenuation, 75 MHz RF Bandwidth,
5600 MHz LO, 0 dB RF Attenuation, Transmitter Quadrature Error Correction
(QEC) Tracking Run with Two 20 MHz LTE Downlink Carriers, Then Image
Measured with CW 10 MHz Offset from LO, 3 dB Digital Backoff,
245.76 MSPS Sample Rate
0
–100
–40 40
TRANSM ITT ER IMAGE (d Bc)
DESIRED OFFSET FREQUENCY (MHz)
–70
–80
–90
–60
–30
–50
–10
–40
–20
0–20 20 30–10–30 10
+110°C
+40°C
–40°C
14651-237
Figure 198. Transmitter Image vs. Desired Offset Frequency, 75 MHz RF
Bandwidth, 5600 MHz LO, 0 dB RF Attenuation, Transmitter QEC Tracking
Run with Two 20 MHz LTE Downlink Carriers, Then Image Measured with
CW Signal, 3 dB Digital Backoff, 245.76 MSPS Sample Rate
10
–10
5300 5900
Tx OUTPUT (dBm)
RECEIVER L O FRE Q UE NCY ( M Hz )
–8
–4
0
4
8
–6
–2
2
6
5400 5500 5600 5700 5800
+110°C
+40°C
–40°C
14651-238
Figure 199. Tx Output Power, Transmitter QEC, and External LO Leakage
Active, 5 MHz CW Offset Signal, 1 MHz Resolution Bandwidth,
245.76 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 49 of 57
40
–100 020
TRANSM I T TER LO LEAKAG E (dBFS)
RF ATTENUATION (d B)
–90
–70
–80
–60
–50
51015
+110°C
+40°C
–40°C
14651-239
Figure 200. Transmitter LO Leakage vs. RF Attenuation, 5600 MHz LO,
External Transmitter QEC, and LO Leakage Tracking Active, CW Signal
10 MHz Offset from LO, 6 dB Digital Backoff, 1 MHz Measurement Bandwidth
60
–100
–40 40
TRANSM I TTER LO L E AKAG E ( d BFS)
OFFSE T FREQUENCY ( MHz)
–90
–75
–80
–95
–85
–70
–65
–20 0 20 30–30 –10 10
5.9GHz, +110° C
5.9GHz, +40° C
5.9GHz, –40°C
5.6GHz, +110° C
5.6GHz, +40° C
5.6GHz, –40°C
5.3GHz, +110° C
5.3GHz, +40° C
5.3GHz, –40° C
14651-240
Figure 201. Transmitter LO Leakage vs. Offset Frequency,
External Transmitter QEC and LO Leakage Tracking Active,
6 dB Digital Backoff, 1 MHz Measurement Bandwidth
0
–100
5300 5900
Tx1 TO Rx1 CROSSTALK (dB)
RECEIVER L O FRE Q UE NCY ( M Hz )
–90
–70
–50
–30
–10
–80
–60
–40
–20
5400 5500 5600 5700 5800
14651-241
Figure 202. Tx1 to Rx1 Crosstalk vs. Receiver LO Frequency, 100 MHz Receiver RF
Bandwidth, 75 MHz Transmitter RF Bandwidth, CW Signal 3 MHz Offset from LO
0
–100
5300 5900
Tx2 TO Rx2 CROSSTALK (dB)
RECEIVER L O FRE Q UE NCY ( M Hz )
–90
–70
–50
–30
–10
–80
–60
–40
–20
5400 5500 5600 5700 5800
14651-242
Figure 203. Tx2 to Rx2 Crosstalk vs. Receiver LO Frequency,
100 MHz Receiver RF Bandwidth, 75 MHz Transmitter RF Bandwidth,
CW Signal 3 MHz Offset from LO
–110
–100
5300 5900
Tx2 T O Tx1 CROS S T ALK (dB)
TRANSMITTE R LO FREQUENCY ( MHz)
–90
–70
–50
–30
10
–80
–60
–40
–20
5400 5500 5600 5700 5800
14651-243
Figure 204. Tx2 to Tx1 Crosstalk vs. Transmitter LO Frequency,
75 MHz RF Bandwidth, CW Signal 3 MHz Offset from LO
80
–180 020
TRANSM I TTER NOISE (dBm/Hz)
RF ATTENUATION (d B)
–170
–140
–160
–120
–100
–130
–150
–110
–90
51015
+110°C
+40°C
–40°C
14651-244
Figure 205. Transmitter Noise vs. RF Attenuation, 5600 MHz LO,
1 MHz Offset Frequency
AD9371 Data Sheet
Rev. B | Page 50 of 57
40
–80 020
Tx ADJACENT CHANNEL LEAKAGE RAT IO (dB)
RF ATTENUATION (d B)
–70
–60
–50
–65
–75
–55
–45
51015
+110° C L OW ER
+40°C LOWE R
–40° C LOWER
+110° C UPP E R
+40°C UPPER
–40°C UPPER
14651-245
Figure 206. Tx Adjacent Channel Leakage Ratio vs. RF Attenuation,
5600 MHz LO, 75 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,
Transmitter QEC and LO Leakage Tracking Active
40
–80 020
Tx ALT ERNAT E CHANNEL L E AKAGE RATI O (dB)
RF ATTENUATION (d B)
–70
–60
–50
–65
–75
–55
–45
51015
+110°C LOWER
+40°C LO WER
–40° C LOWER
+110°C UPPER
+40° C UPPER
–40° C UP P ER
14651-246
Figure 207. Tx Alternate Channel Leakage Ratio vs. RF Attenuation,
5600 MHz LO, 75 MHz RF Bandwidth, Four-Carrier W-CDMA Desired Signal,
2 dB Digital Backoff, Transmitter QEC and LO Leakage Tracking Active
60
–150
100 10M
LO PHAS E NO ISE (d Bc)
OFFSET FREQUENCY (Hz)
–120
–100
–80
–110
–140
–130
–90
–70
1k 100k10k 1M
14651-247
Figure 208. LO Phase Noise vs. Offset Frequency, 3 dB Digital Backoff,
5850 MHz LO
1.0
0
5300 5900
Tx I NTEGRATED PHASE NO I S E (Degrees)
TRANSMITTE R LO FREQUENCY ( MHz)
0.1
0.3
0.5
0.7
0.9
0.2
0.4
0.6
0.8
5400 5500 5600 5700 5800
+110°C
+40°C
–40°C
14651-248
Figure 209. Tx Integrated Phase Noise vs. Transmitter LO Frequency,
75 MHz RF Bandwidth, CW 10 MHz Offset from LO, 3 dB Digital Backoff
30
0020
TRANSM I TTER O IP3 (d Bm)
RF ATTENUATION (d B)
10
20
5
15
25
51015
+110°C
+40°C
–40°C
14651-249
Figure 210. Transmitter OIP3 vs. RF Attenuation, 5600 MHz LO,
75 MHz RF Bandwidth, f1 = 20 MHz, f2 = 21 MHz, 3 dB Digital Backoff,
245.76 MSPS Sample Rate
0
–100
5750 5950
Tx OUTPUT (dBm)
FRE Q UE NCY ( M Hz )
–90
–70
–50
–30
–10
–80
–60
–40
–20
5775 5800 5825 5850 59005875 5925
14651-250
Figure 211. Tx Output Power Spectrum, 3 dB Digital and 1 dB RF Backoff,
40 MHz RF Bandwidth, Transmitter QEC, and Internal LO Leakage Active,
LTE 10 MHz Signal, 5850 MHz LO, 1 MHz Resolution Bandwidth,
122.88 MSPS Sample Rate, Test Equipment Noise Floor De-Embedded
Data Sheet AD9371
Rev. B | Page 51 of 57
0
–100
5350 6350
Tx OUTPUT (dBm)
FRE Q UE NCY ( M Hz )
–90
–70
–50
–30
–10
–80
–60
–40
–20
5450 5550 5650 5750 59505850 61506050 6250
14651-251
Figure 212. Tx Output Power Spectrum, 3 dB Digital and 1 dB RF Backoff,
40 MHz RF Bandwidth, Transmitter QEC, and Internal LO Leakage Active,
LTE 10 MHz Signal, 5850 MHz LO, 1 MHz Resolution Bandwidth,
122.88 MSPS Sample Rate, Test Equipment Noise Floor De-Embedded
20
–50 020
TRANSMITTER EVM (dB)
RF ATTENUATION (d B)
–45
–35
–40
–30
–25
51015
+110°C
+40°C
–40°C
14651-252
Figure 213. Transmitter EVM vs. RF Attenuation, 5600 MHz LO, Transmitter
LO Leakage, and Transmitter QEC Tracking Active, 75 MHz RF Bandwidth,
LTE 20 MHz Downlink Signal, 245.76 MSPS Sample Rate
0
–100 020
TRANSM I TTE R HD2 (d Bc)
RF ATTENUATION (d B)
–70
–80
–90
–60
–30
–50
–10
–40
–20
10515
+110°C
+40°C
–40°C
14651-253
Figure 214. Transmitter HD2 vs. RF Attenuation, 5850 MHz LO, 5855 MHz
CW Desired Signal, 75 MHz RF Bandwidth, 245.76 MSPS Sample Rate
0
–80 020
TRANSM I TTE R HD3 (d Bc)
RF ATTENUATION (d B)
–70
–60
–30
–50
–10
–40
–20
10515
+110°C
+40°C
–40°C
14651-254
Figure 215. Transmitter HD3 vs. RF Attenuation, 5850 MHz LO,
5855 MHz CW Desired Signal, 75 MHz RF Bandwidth,
245.76 MSPS Sample Rate
10
–20 02520
TRANSM ITTER OUTPUT POW ER (dBm)
RF ATTENUATION (d B)
–5
–15
5
–10
0
10515
+110°C
+40°C
–40°C
14651-255
Figure 216. Transmitter Output Power vs. RF Attenuation, 5850 MHz LO,
5855 MHz CW Desired Signal, 75 MHz RF Bandwidth,
245.76 MSPS Sample Rate
0.10
–0.10 020
Tx AT T E NUAT I O N STEP ERROR (dB)
RF ATTENUATION (d B)
–0.02
–0.04
–0.08
0.08
–0.06
0.02
0.06
0.04
0
10515
+110°C
+40°C
–40°C
14651-256
Figure 217. Tx Attenuation Step Error vs. RF Attenuation, 5850 MHz LO,
5855 MHz CW Desired Signal, 75 MHz RF Bandwidth, 245.76 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 52 of 57
0.5
–0.5
–100 100
DEVI AT I ON FRO M F L ATNESS ( d B)
FREQUENCY OFFSET FROM LO (MHz)
–0.1
–0.2
–0.4
0.4
–0.3
0.1
0.3
0.2
0
20–40 800–60 60–20–80 40
14651-257
Figure 218. Transmitter Frequency Response Deviation from Flatness vs.
Frequency Offset from LO, 5850 MHz LO, 200 MHz Synthesis Bandwidth,
6 dB Digital Backoff, 245.76 MSPS Sample Rate
40
–80
5300 5900
OBSE RVATI ON RECEI V ER LO LEAKAGE (dBm)
OBS ER VATION RECEIVER LO F RE QUENCY ( M Hz )
–75
–65
–55
–45
–70
–60
–50
5400 5500 5600 5700 5800
+110°C
+40°C
–40°C
14651-258
Figure 219. Observation Receiver LO Leakage vs. Observation Receiver
LO Frequency, 0 dB Receiver Attenuation, 200 MHz RF Bandwidth,
245.76 MSPS Sample Rate
30
0
5300 5900
OBSE RVATI ON RECEIVER NOISE FIGURE (d B)
OBS ER VATION RECEIVER LO F RE QUENCY ( M Hz )
5
15
25
10
20
5400 5500 5600 5700 5800
+110°C
+40°C
–40°C
14651-259
Figure 220. Observation Receiver Noise Figure vs. Observation Receiver
LO Frequency, 0 dB Receiver Attenuation, 200 MHz RF Bandwidth,
245.76 MSPS Sample Rate, 100 MHz Integration Bandwidth
80
0010 110
OBSE RV ATIO N RE CE IVER I IP2 (dBm)
f
1
OFFS E T FRE QUENCY ( MHz)
10
30
70
20
50
60
40
20 40 60 8030 50 70 90 100
+110°C
+40°C
–40°C
14651-221
Figure 221. Observation Receiver IIP2 vs. f1 Offset Frequency, 5600 MHz LO,
0 dB Attenuation, 200 MHz RF Bandwidth, f2 = f1 + 1 MHz,
245.76 MSPS Sample Rate
80
010 110
OBSE RVATI ON RECEIVER I IP2 (dBm)
INTERMODUL ATIO N FREQ U E NCY ( M Hz )
10
30
70
20
50
60
40
20 40 60 8030 50 70 90 100
+110°C
+40°C
–40°C
14651-260
Figure 222. Observation Receiver IIP2 vs. Intermodulation Frequency (f2 − f1),
5600 MHz LO, 0 dB Attenuation, 200 MHz RF Bandwidth,
245.76 MSPS Sample Rate
14651-222
40
35
30
25
20
15
10
5
00110100908070605040302010
OBSE RV ATIO N RE CE IVER I IP3 (dBm)
f
1
OFFSET FREQUENCY (MHz)
+110°C
+40°C
–40°C
Figure 223. Observation Receiver IIP3 vs. f1 Offset Frequency, 5600 MHz LO,
0 dB Attenuation, 200 MHz RF Bandwidth, f2 = 2 f1 + 1 MHz,
245.76 MSPS Sample Rate
Data Sheet AD9371
Rev. B | Page 53 of 57
40
05115
OBSE RVATI ON RECEIVER I IP3 (dBm)
INTERMODUL ATIO N FREQ U E NCY ( M Hz )
5
15
35
10
25
30
20
15 35 55 7525 45 65 85 95 105
+110°C
+40°C
–40°C
14651-261
Figure 224. Observation Receiver IIP3 vs. Intermodulation Frequency (f2 − 2f1),
5600 MHz LO, 0 dB Attenuation, 200 MHz RF Bandwidth,
245.76 MSPS Sample Rate
0
–100 018
OBSE RVATI ON RECEIVER I M AGE (dBc)
OBSERVATION RE CE IVER ATTE NUATION (d B)
–70
–80
–90
–60
–30
–50
–10
–40
–20
6312915
+110°C
+40°C
–40°C
14651-262
Figure 225. Observation Receiver Image vs. Observation Receiver
Attenuation, 5600 MHz LO, CW Signal 30 MHz Offset,
200 MHz RF Bandwidth, BTC Active, 245.76 MSPS Sample Rate
25
–15 018
OBSE RVATI ON RECEIVER G AIN (d Bc)
OBSERVATION RE CE IVER ATTE NUATION (d B)
–10
–5
10
0
20
5
15
6312915
+110°C
+40°C
–40°C
14651-263
Figure 226. Observation Receiver Gain vs. Observation Receiver Attenuation,
5600 MHz LO, CW Signal 30 MHz Offset,
200 MHz RF Bandwidth, 245.76 MSPS Sample Rate
40
–50
–60
–70
–80
–90
–10
–110 0181512963
OBSE RVATIO N RECE I V E R DC OFFS ET (d BF S)
OBSERVATION RE CE IVER ATTE NUATIO N ( dB)
+110°C
+40°C
–40°C
14651-264
Figure 227. Observation Receiver DC Offset vs. Observation Receiver
Attenuation, 5850 MHz LO, CW Signal 30 MHz Offset, −15 dBm Input,
200 MHz RF Bandwidth, 245.76 MSPS Sample Rate
0
–100 018
OBSE RV AT ION RECE I V E R HD2 (d Bc)
OBSERVATION RE CE IVER ATTE NUATION (d B)
–90
–80
–70
–50
–30
–10
–60
–40
–20
6312915
+110°C
+40°C
–40°C
14651-265
Figure 228. Observation Receiver HD2 vs. Observation Receiver Attenuation,
5600 MHz LO, CW Signal 30 MHz Offset, −15 dBm Input, Input Power
Increasing Decibel for Decibel with Attenuation, 200 MHz RF Bandwidth,
245.76 MSPS Sample Rate
0
–120
–100
018
OBSE RV AT ION RECE I V E R HD3 (d Bc)
OBSERVATION RE CE IVER ATTE NUATION (d B)
–80
–60
–40
–20
6312915
+110°C
+40°C
–40°C
14651-266
Figure 229. Observation Receiver HD3 vs. Observation Receiver Attenuation,
5600 MHz LO, CW Signal 30 MHz Offset, −15 dBm Input, Input Power
Increasing Decibel for Decibel with Attenuation, 200 MHz RF Bandwidth,
245.76 MSPS Sample Rate
AD9371 Data Sheet
Rev. B | Page 54 of 57
THEORY OF OPERATION
The AD9371 is a highly integrated RF transceiver that can be
configured for a wide range of applications. The device integrates
all the RF, mixed-signal, and digital blocks necessary to provide
transmit and receive functions in a single device. Programmability
allows the two receiver channels and two transmitter channels
to be used in TDD and FDD systems for 3G and 4G cellular
standards.
The observation receiver channel has two inputs for use in
monitoring the transmitter outputs. This channel has a wide
channel bandwidth that receives the entire transmit band and
feeds it back to the digital section for error correction purposes.
In addition, three sniffer receiver inputs can monitor different
radio frequency bands (one at a time). These channels share the
baseband ADC and digital processing with the two ORx inputs.
The AD9371 contains four high speed serial interface links for
the transmit chain and four high speed serial interface links
shared by the Rx, ORx, and SnRx channels (JESD204B,
Subclass 1 compliant), providing a low pin count and reliable
data interface to a field-programmable gate array (FPGA) or
other custom integrated baseband solutions.
The AD9371 also provides self calibration for dc offset, LO
leakage, and quadrature error correction using an integrated
microcontroller core to maintain a high performance level
under varying temperatures and input signal conditions. Firmware
is supplied with the device to schedule all calibrations with no
user interaction. The device includes test modes that allows
system designers to debug designs during prototyping and
optimize radio configurations.
TRANSMITTER (Tx)
The AD9371 employs a direct conversion transmitter
architecture consisting of two identical and independently
controlled channels that provide all the digital processing,
mixed signal, and RF blocks necessary to implement a direct
conversion system. Both channels share a common frequency
synthesizer.
The digital data from the JESD204B lanes pass through a fully
programmable 96-tap FIR filter with optional interpolation.
The FIR output is sent to a series of conversion filters that
provide additional filtering and data rate interpolation prior to
reaching the DAC. Each DAC has an adjustable sample rate and
is linear up to full scale.
When converted to baseband analog signals, the in-phase (I) and
quadrature (Q) signals are filtered to remove sampling artifacts,
and then the signals are fed to the upconversion mixers. At the
mixer stage, the I and Q signals are recombined and modulated
onto the carrier frequency for transmission to the output stage.
Each transmit chain provides a wide attenuation adjustment
range with fine granularity to help designers optimize SNR.
RECEIVER (Rx)
The AD9371 contains dual receiver channels. Each Rx channel
is a direct conversion system that contains a programmable
attenuator stage, followed by matched I and Q mixers that
downconvert received signals to baseband for digitization.
To achieve gain control, a programmed gain index map is
implemented. This gain map distributes attenuation among the
various Rx blocks for optimal performance at each power level.
In addition, support is available for both automatic and manual
gain control modes.
The receiver includes Σ-Δ ADCs and adjustable sample rates
that produce data streams from the received signals. The signals
can be conditioned further by a series of decimation filters and
a fully programmable 72-tap FIR filter with additional decimation
settings. The sample rate of each digital filter block is adjustable
by changing the decimation factors to produce the desired
output data rate.
OBSERVATION RECEIVER (ORx)
The ORx operates in a similar manner to the main receivers.
Each input is differential and uses a dedicated mixer. The ORx
inputs share a baseband ADC and baseband section; therefore,
only one can be active at any time. The mixed-signal and digital
section is identical in design and operation to the main receiver
channels. This channel can monitor the Tx channels and
implement error correction functions. It can also be used as a
general-purpose receiver.
SNIFFER RECEIVER (SnRx)
The sniffer receiver provides three differential inputs that can
monitor different frequency bands. Each input has a low noise
amplifier (LNA) that is multiplexed to feed a single mixer. The
output of this mixer stage is multiplexed with the ORx receiver
mixers to feed the same baseband section. The SnRx bandwidth
is limited to 20 MHz. This receiver can also be used as a general-
purpose receiver if the bandwidth and RF performance are
acceptable for a given application. The sniffer channel has
limited operation from 400 MHz to 4000 MHz. Performance
cannot be guaranteed for LO settings above 4000 MHz.
These receiver inputs also provide an LNA bypass mode that
removes the gain of the LNA when large signals are present.
Note that no requirements for the LNA bypass mode are included
in Table 1; performance specifications are only relative to the
scenario in which the LNA is enabled.
CLOCK INPUT
The AD9371 requires a differential clock connected to the
DEV_CLK_IN+/DEV_CLK_IN− pins. The frequency of the
clock input must be between 10 MHz and 320 MHz, and it must
have very low phase noise because this signal generates the RF
local oscillator and internal sampling clocks.
Data Sheet AD9371
Rev. B | Page 55 of 57
SYNTHESIZERS
RF PLL
The AD9371 contains three fractional-N PLLs to generate the
RF LOs used by the transmitter, receiver, and observation
receiver. The PLL incorporates an internal VCO and loop filter
that require no external components. The internal VCO LDO
regulators eliminate the need for additional external power
supplies for the PLLs. These regulators only require an external
bypass capacitor for each supply.
Clock PLL
The AD9371 contains a PLL synthesizer that generates all of the
baseband related clock signals and SERDES clocks. This PLL is
programmed based on the data rate and sample rate requirements
of the system.
External LO Inputs
The AD9371 provides two external LO inputs to allow an
external synthesizer to be used with the device. These inputs
must be 2× the desired LO frequency. Note that operation for
the external LO option is limited to a maximum of 4000 MHz.
One input pair is dedicated to the receiver LO generation circuit
and the other input provides the input to the transmitter and
observation receiver LO generation blocks. Note that the
observation receiver can obtain the LO from either the Tx LO
generator block or its own dedicated PLL. When the sniffer
channel is enabled, the LO for this block can only come from
the dedicated internal observation channel PLL.
SERIAL PERIPHERAL INTERFACE (SPI) INTERFACE
The AD9371 uses a SPI to communicate with the baseband
processor (BBP). This interface can be configured as a 4-wire
interface with dedicated receive and transmit ports, or it can be
configured as a 3-wire interface with a bidirectional data
communications port. This bus allows the BBP to set all device
control parameters using a simple address data serial bus protocol.
Write commands follow a 24-bit format. The first bit sets the
bus direction of the bus transfer. The next 15 bits set the address
where data is written. The final eight bits are the data being
transferred to the specific register address.
Read commands follow a similar format with the exception that
the first 16 bits are transferred on the SDIO pin, and the final
eight bits are read from the AD9371, either on the SDO pin in
4-wire mode or on the SDIO pin in 3-wire mode.
GPIO_x AND GPIO_3P3_x PINS
The AD9371 general-purpose input/output signals referenced
to the VDD_IF supply can be configured for numerous functions.
Some of these pins, when configured as outputs, are used by the
BBP as real-time signals to provide a number of internal settings
and measurements. This configuration allows the BBP to monitor
receiver performance in different situations. A pointer register
selects what information is output to these pins. Signals used for
manual gain mode, calibration flags, state machine states, and
various receiver parameters are among the outputs that can be
monitored on these pins. In addition, certain pins can be
configured as inputs and used in various functions such as
setting the receiver gain in real time.
The GPIO_3P3_x pins referenced to the VDDA_3P3 supply are
also included in the device and can provide control signals to
the external components such as VGAs or attenuators in the RF
section that typically use a higher reference voltage.
AUXILIARY CONVERTERS
Auxiliary ADC Inputs (AUXADC_x)
The AD9371 contains an auxiliary ADC that is multiplexed to four
input pins (AUXADC_0 through AUXADC_3). This block can
monitor system voltages without adding additional components.
The auxiliary ADC is 12 bits with an input voltage range of 0.05 V
to VDDA_3P3 − 0.25 V. When enabled, the auxiliary ADC is
free running. Software reads of the output value provide the last
value latched at the ADC output.
Auxiliary DACs (AUXDAC_x)
The AD9371 contains 10 identical auxiliary DACs (AUXDAC_0
to AUXDAC_9) that can supply bias voltages, analog control
voltages, or other system functionality. The inputs of these auxiliary
DACs (AUXDAC_0 to AUXDAC_9) are multiplexed with the
GPIO_3P3_x pins according to Table 7. The auxiliary DACs are
10 bits and have an output voltage range of approximately 0.5 V
to VDDA_3P3 − 0.3 V and have a current drive of 10 mA.
Table 7. AUXDAC Input Pin Assignments
GPIO_3P3 Pin AUXDAC Output
GPIO_3P3_9 AUXDAC_0
GPIO_3P3_7 AUXDAC_1
GPIO_3P3_6 AUXDAC_2
GPIO_3P3_10 AUXDAC_3
GPIO_3P3_0 AUXDAC_4
GPIO_3P3_1 AUXDAC_5
GPIO_3P3_3 AUXDAC_6
GPIO_3P3_4 AUXDAC_7
GPIO_3P3_5 AUXDAC_8
GPIO_3P3_8 AUXDAC_9
JESD204B DATA INTERFACE
The digital data interface for the AD9371 uses JEDEC Standard
JESD204B Subclass 1. The serial interface operates at speeds of
up to 6144 Mbps. The benefits of the JESD204B interface include a
reduction in required board area for data interface routing and
smaller package options due to the need for fewer pins. Digital
filtering is included in all receiver and transmitter paths to provide
proper signal conditioning and sampling rates to meet the
JESD204B data requirements. Examples of the digital filtering
configurations for the Tx and Rx paths are shown in Figure 230
and Figure 231, respectively.
AD9371 Data Sheet
Rev. B | Page 56 of 57
Table 8. Example Rx/Tx Interface Rates (Two Rx/Two Tx Channels, Maximum JESD Lane Rates)
Tx/Tx Synthesis/
Rx Bandwidth (MHz)
Tx Input
Rate (MSPS)
Rx Output
Rate (MSPS)
JESD204B Lane Rate
(Mbps), Two Tx/Two Rx
JESD204B (No.
of Lanes) Tx/Rx Reference Clock Options (MHz)
100/250/100 307.2 153.6 6144 4/2 122.88, 153.6, 245.76, 307.2
75/200/100 245.76 122.88 4915.2 4/2 122.88, 245.76
20/100/40 122.88 61.44 2457.6 4/2 122.88, 245.76
20/100/20 122.88 30.72 2457.6 4/1 122.88, 245.76
I/Q DAC TRANSMITTER
HALF-BAND
FILTER 2 TRAN S MITTE R FI R
(INTERPOLATION
1, 2, 4)
QUADRATURE
ERROR
CORRECTION
DIGITAL
GAIN JESD204B
TRANSMITTER
HALF-BAND
FILTER 1
14651-125
Figure 230. Example Tx Data Path Filter Implementation
ADC JESD204B
RECEIVER
HALF-BAND
FILTER 3
RFIR
(DECIMATION
1, 2, 4)
QEC
CORRECTION
FILTER
DC
CORRECTION
DIGITAL
GAIN
DEC5
RECEIVER
HALF-BAND
FILTER 2
RECEIVER
HALF-BAND
FILTER 1
14651-126
Figure 231. Data Rx Data Path Filter Implementation
POWER SUPPLY SEQUENCE
The AD9371 requires a specific power-up sequence to avoid
undesired power-up currents. The optimal power-on sequence
starts the process by powering up the VDIG and the VDDA_1P3
(analog) supplies simultaneously. If they cannot power up
simultaneously, the VDIG supply must power up first. The
VDDA_3P3, VDDA_1P8, and JESD_VTT_DES supplies
must then power up after the VDIG and VDDA_1P3 supplies.
Note that the VDD_IF supply can power up at any time. It is
also recommended to toggle the RESET signal after power has
stabilized prior to configuration. Follow the reverse order of
the power-up sequence to power-down.
Note that VDDA_1P3 refers to all analog 1.3 V supplies
including the following: VDDA_BB, VDDA_CLKSYNTH,
VDDA_TXLO, VDDA_RXRF, VDDA_RXSYNTH,
VDDA_RXVCO, VDDA_RXTX, VDDA_TXSYNTH,
VDDA_TXVCO, VDDA_CALPLL, VDDA_SNRXSYNTH,
VDDA_SNRXVCO, VDDA_CLK, and VDDA_RXLO.
JTAG BOUNDARY SCAN
The AD9371 provides support for a JTAG boundary scan.
There are five dual-function pins associated with the JTAG
interface. These pins, listed in Table 9, are used to access the
on-chip test access port. To enable the JTAG functionality,
set the GPIO_0 through GPIO_3 pins according to Table 10
depending on how the desired JESD204B sync pin (that is,
SYNCINB0+, SYNCINB0−, SYNCINB1+, SYNCINB1−,
SYNCBOUTB0+, or SYNCBOUTB0−) is configured in the
software (LVDS or CMOS mode). Pull the TEST pin high to
enable the JTAG mode.
Table 9. Dual-Function Boundary Scan Test Pins
Mnemonic JTAG Mnemonic Description
GPIO_4 TRST Test access port reset
GPIO_5 TDO Test data output
GPIO_6 TDI Test data input
GPIO_7 TMS Test access port mode select
GPIO_18 TCK Test clock
Table 10. JTAG Modes
Test Pin Level GPIO_0 to GPIO_3 Description
0 XXXX1 Normal operation
1 1001 JTAG mode with LVDS
JESD204B sync signals
1 1011 JTAG mode with CMOS
JESD204B sync signals
1 X means don’t care.
Data Sheet AD9371
Rev. B | Page 57 of 57
OUTLINE DIMENSIONS
COM P LIANT TO JEDEC STANDARDS MO- 275- GGAB- 1.
03-02-2015-A
0.80
0.80 REF
0.44 REF
A
B
C
D
E
F
G
91011121314 8 7 564231
BOT TOM VIEW
10.40 SQ
H
J
K
L
M
N
P
DETAIL A
TOP VIEW
DETAIL A
COPLANARITY
0.12
0.50
0.45
0.40
BALL DI AM E T E R
SEATING
PLANE
12.10
12.00 S Q
11.90 A1 BALL
PAD CO RNER
1.27
1.18
1.09
7.755 RE F
8.165 RE F
0.91
0.84
0.77 0.39
0.34
0.29
PKG-004569
A1 BALL
CORNER
PIN A1
INDICATOR
Figure 232. 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-196-12)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
AD9371BBCZ −40°C to +85°C 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-196-12
AD9371BBCZ-REEL −40°C to +85°C 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-196-12
ADRV9371-N/PCBZ Evaluation Board, 2600 MHz Matching Circuits
ADRV9371-W/PCBZ Evaluation Board, 300 MHz to 6000 MHz Matching Circuits
1 Z = RoHS Compliant Part.
©2016–2017 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D14651-0-3/17(B)