RUE Selection Guide
and Product Data
This section has two parts:
• A Selection Guide that walks you through the process of
selecting the correct RUE device for a circuit.
• Product Data that outlines electrical characteristics,
physical characteristics, agency recognitions, environmental
specifications, component layouts, tape and reel specifications,
and ordering information for RUE devices.
RUE Selection Guide
Follow these seven steps to select a PolySwitch RUE device for
a circuit:
1.Define the operating parameters for the circuit.
These include:
• Maximum ambient operating temperature
• Normal operating current
• Maximum operating voltage (RUE is 30 V maximum)
• Maximum interrupt current
2.Select the RUE device that accommodates the circuit’s maximum
ambient operating temperature and normal operating current.
3.Compare the RUE device’s maximum operating voltage and maxi-
mum interrupt current with the circuit’s to be sure the circuit does not
exceed the device ratings.
4.Check the RUE device’s time-to-trip to be sure it will protect the
circuit.
5.Verify that the circuit’s ambient operating temperatures are within the
RUE device’s operating temperature range.
6.Verify that the RUE device’s dimensions fit the application’s space
considerations.
7.Independently evaluate and test the suitability and performance
of the RUE device in the application.
Raychem Circuit Protection Devices RUE Devices 141
TUV Rheinland
®
4
RUE(7) 1/15/99 11:28 AM Page 141
1. Define the circuit’s operating parameters.
Fill in the following information about the circuit:
Maximum ambient operating temperature _______________
Normal operating current _______________
Maximum operating voltage (RUE is 30 V max.) _______________
Maximum interrupt current _______________
2. Select the PolySwitch RUE device that will accommodate the
circuit’s maximum ambient operating temperature and
normal operating current.
Look across the top of the table below to find the temperature that
most closely matches the circuit’s maximum ambient operating temper-
ature.Look down that column to find the value equal to or greater than
the circuit’s normal operating current. Now look to the far left of that
row to find the part number for the RUE device that will best accommo-
date the circuit.
The thermal derating curve located on the next page is a normalized
representation of the data in the table below.
IHold vs. temperature
Part Maximum ambient operating temperatures (°C)
number –40° –20° 20° 40° 50° 60° 70° 85°
RUE090 1.31 1.17 1.04 0.90 0.75 0.69 0.61 0.55 0.47
RUE110 1.60 1.43 1.27 1.10 0.91 0.85 0.75 0.67 0.57
RUE135 1.96 1.76 1.55 1.35 1.12 1.04 0.92 0.82 0.70
RUE160 2.32 2.08 1.84 1.60 1.33 1.23 1.09 0.98 0.83
RUE185 2.68 2.41 2.13 1.85 1.54 1.42 1.26 1.13 0.96
RUE250 3.63 3.25 2.88 2.50 2.08 1.93 1.70 1.53 1.30
RUE300 4.35 3.90 3.45 3.00 2.49 2.31 2.04 1.83 1.56
RUE400 5.80 5.20 4.60 4.00 3.32 3.08 2.72 2.44 2.08
RUE500 7.25 6.50 5.75 5.00 4.15 3.85 3.40 3.05 2.60
RUE600 8.70 7.80 6.90 6.00 4.98 4.62 4.08 3.66 3.12
RUE700 10.15 9.10 8.05 7.00 5.81 5.39 4.76 4.27 3.64
RUE800 11.60 10.40 9.20 8.00 6.64 6.16 5.44 4.88 4.16
RUE900 13.05 11.70 10.35 9.00 7.47 6.93 6.12 5.49 4.68
142 RUE Devices Raychem Circuit Protection Devices
RUE
Radial Leaded
4
RUE(7) 1/15/99 11:28 AM Page 142
Raychem Circuit Protection Devices RUE Devices 143
RUE
Radial Leaded
3. Compare maximum operating voltages and maximum
interrupt currents.
Look down the first column of the table below to find the part number
you selected in Step 1.Look to the right in that row to find the device’s
maximum operating voltage (V max.) and maximum interrupt
current (I max.).
Compare both ratings with the circuit’s to be sure the circuit’s ratings
do not exceed those of the RUE device.
Maximum device voltages and currents
Part V max. I max.
number (volts) (amps)*
RUE090 30 40
RUE110 30 40
RUE135 30 40
RUE160 30 40
RUE185 30 40
RUE250 30 40
RUE300 30 40
RUE400 30 40
RUE500 30 40
RUE600 30 40
RUE700 30 40
RUE800 30 40
RUE900 30 40
*Device may withstand higher interrupt current at lower voltages.
Each application will need to be individually qualified.
Device’s ambient temperature (°C)
–40 –20 0 20 40 60 80
0
Percent of rated hold
and trip current
50
100
150
200
Thermal derating curve
4
RUE(7) 1/15/99 11:28 AM Page 143
4. Determine time-to-trip.
Time-to-trip is the amount of time it takes for a device to switch to a
high-resistance state once a fault current has been applied across the
device.
Identifying the RUE device’s time-to-trip is important in order to provide
the desired protection capabilities.If the device you choose trips
too fast, undesired or nuisance tripping will occur. If the device trips
too slowly, the components being protected may be damaged before
the device switches to a high-resistance state.
The chart below shows the typical time-to-trip at 20°C for each
PolySwitch RUE device. For example, the chart indicates that the typi-
cal time-to-trip for RUE110 at 8 A is 1 second.
On the chart below, find the typical time-to-trip for the RUE device you
selected. If the RUE device’s time-to-trip is too fast or too slow for the
circuit, go back to Step 2 and choose an alternate device.
Typical time-to-trip at 20°C
A= RUE090
B= RUE110
C= RUE135
D= RUE160
E= RUE185
F= RUE250
G= RUE300
H= RUE400
I= RUE500
J= RUE600
K= RUE700
L= RUE800
M= RUE900
144 RUE Devices Raychem Circuit Protection Devices
RUE
Radial Leaded
1000
1 10 100
Fault current (A)
Time-to-trip (s)
MLKJIHGFEDCBA
100
10
1
0.1
0.01
0.001
4
RUE(7) 1/15/99 11:28 AM Page 144
5. Verify ambient operating conditions.
Ensure that your application’s minimum and maximum ambient
temperatures are within the operating temperature range of –40°C
and 85°C.
Maximum device surface temperature in the tripped state is 125°C.
6. Verify the RUE device’s dimensions.
Using dimensions from the table below, compare the dimensions of the
RUE device you selected with the application’s space considerations.
Product dimensions (millimeters/
inches
)
Part A B C D E F
number max. max. typ. min. max. typ.
RUE090 7.4
(0.29)
12.2
(0.48)
5.1
(0.20)
7.6
(0.30)
3.0
(0.12)
0.8
(0.03)
RUE110 7.4
(0.29)
14.2
(0.56)
5.1
(0.20)
7.6
(0.30)
3.0
(0.12)
0.8
(0.03)
RUE135 8.9
(0.35)
13.5
(0.53)
5.1
(0.20)
7.6
(0.30)
3.0
(0.12)
0.8
(0.03)
RUE160 8.9
(0.35)
15.2
(0.60)
5.1
(0.20)
7.6
(0.30)
3.0
(0.12)
0.8
(0.03)
RUE185 10.2
(0.40)
15.7
(0.62)
5.1
(0.20)
7.6
(0.30)
3.0
(0.12)
0.8
(0.03)
RUE250 11.4
(0.45)
18.3
(0.72)
5.1
(0.20)
7.6
(0.30)
3.0
(0.12)
0.8
(0.03)
RUE300 11.4
(0.45)
17.3
(0.68)
5.1
(0.20)
7.6
(0.30)
3.0
(0.12)
1.2
(0.05)
RUE400 14.0
(0.55)
20.1
(0.79)
5.1
(0.20)
7.6
(0.30)
3.0
(0.12)
1.2
(0.05)
RUE500 14.0
(0.55)
24.9
(0.98)
10.2
(0.40)
7.6
(0.30)
3.0
(0.12)
1.2
(0.05)
RUE600 16.5
(0.65)
24.9
(0.98)
10.2
(0.40)
7.6
(0.30)
3.0
(0.12)
1.2
(0.05)
RUE700 19.1
(0.75)
26.7
(1.05)
10.2
(0.40)
7.6
(0.30)
3.0
(0.12)
1.2
(0.05)
RUE800 21.6
(0.85)
29.2
(1.15)
10.2
(0.40)
7.6
(0.30)
3.0
(0.12)
1.2
(0.05)
RUE900 24.1
(0.95)
29.7
(1.17)
10.2
(0.40)
7.6
(0.30)
3.0
(0.12)
1.2
(0.05)
Raychem Circuit Protection Devices RUE Devices 145
Lead size
RUE090–RUE250 Ø 0.51
(0.020)
24 AWG
RUE300–RUE900 Ø 0.81
(
0.032)
20 AWG
RUE090–RUE250* RUE300–RUE900**
A
B
Marking
C F
E
D
C
L
C
L
C
L
C
L
A
B
C
E
F
Marking
D
C
L
C
L
C
L
C
L
RUE
Radial Leaded
* Straight leads are available
** Kinked leads are available
4
RUE(7) 1/15/99 11:28 AM Page 145
RUE Product Data
Now that you have selected your RUE device, please review the
device’s characteristics in this section to verify that the device will
perform as required.
Electrical characteristics (20°C)
Initial Post-trip
Max. time resistance resistance
Part IHITto trip (s) PdR min. R max. R1max.
Number (A) (A) at 5xIH(W) ( )( )( )
RUE090 0.90 1.80 5.9 0.6 0.070 0.12 0.22
RUE110 1.10 2.20 6.6 0.7 0.050 0.10 0.17
RUE135 1.35 2.70 7.3 0.8 0.040 0.08 0.13
RUE160 1.60 3.20 8.0 0.9 0.030 0.07 0.11
RUE185 1.85 3.70 8.7 1.0 0.030 0.06 0.09
RUE250 2.50 5.00 10.3 1.2 0.020 0.04 0.07
RUE300 3.00 6.00 10.8 2.0 0.020 0.05 0.08
RUE400 4.00 8.00 12.7 2.5 0.010 0.03 0.05
RUE500 5.00 10.00 14.5 3.0 0.010 0.03 0.05
RUE600 6.00 12.00 16.0 3.5 0.005 0.02 0.04
RUE700 7.00 14.00 17.5 3.8 0.005 0.02 0.03
RUE800 8.00 16.00 18.8 4.0 0.005 0.02 0.02
RUE900 9.00 18.00 20.0* 4.2 0.005 0.01 0.02
IH = Hold current—maximum current at which the device will not trip at 20°C.
IT = Tr ip current—minimum current at which the device will always trip at 20°C.
Pd = Typical power dissipation—typical amount of power dissipated by the device when in tripped state in 20°C still air.
R min. = Minimum device resistance at 20°C prior to tripping.
R max. = Maximum device resistance at 20°C prior to tripping.
R1 max. = Maximum device resistance at 20°C measured 1 hour post trip.
* Device tested at 40 A.
Physical characteristics
Lead material RUE090–250:Tin lead-plated copper-clad steel, 24 AWG, 0.51 mm/0.020 in
RUE300–900:Tin lead-plated copper, 20 AWG, 0.81 mm/0.032 in
Soldering characteristics Solderability per MIL-STD-202, Method 208E
Solder heat withstand per MIL-STD-202, Method 210, Condition B
Insulating material Cured, flame-retardant epoxy polymer ; meets UL 94V-O
requirements
Note: Devices are not designed to be placed through a reflow process.
146 RUE Devices Raychem Circuit Protection Devices
RUE
Radial Leaded
4
RUE(7) 1/15/99 11:28 AM Page 146
Raychem Circuit Protection Devices RUE Devices 147
RUE
Radial Leaded
Agency recognitions
UL File # E74889
CSA File # CA78165C
TU
¨V Cer tificate # R9477318
Environmental specifications
Change
Test Test method Conditions resistance
Passive aging Raychem PS300 70°C, 1000 hours ±5%
85°C, 1000 hours ±5%
Humidity aging Raychem PS300 85°C, 85% R.H., 1000 hours ±5%
Thermal shock Raychem PS300 125°C, –55°C (10 times) ±5%
Solvent resistance Raychem PS300, Method 215 MIL-STD-202, Method 215F No change
Component layouts
The dimensions in the table below provide the component layout for
each RUE device.
Component layout dimensions (millimeters/
inches
)
AB
Device nom. max.
RUE090 5.1
(0.20)
0.8
(0.03)
RUE110 5.1
(0.20)
0.8
(0.03)
RUE135 5.1
(0.20)
1.0
(0.04)
RUE160 5.1
(0.20)
1.0
(0.04)
RUE185 5.1
(0.20)
1.0
(0.04)
RUE250 5.1
(0.20)
1.2
(0.05)
RUE300 5.1
(0.20)
1.5
(0.06)
RUE400 5.1
(0.20)
1.7
(0.07)
RUE500 10.2
(0.40)
1.0
(0.04)
RUE600 10.2
(0.40)
1.0
(0.04)
RUE700 10.2
(0.40)
1.2
(0.05)
RUE800 10.2
(0.40)
1.5
(0.06)
RUE900 10.2
(0.40)
1.5
(0.06)
A
BB
4
RUE(7) 1/15/99 11:28 AM Page 147
148 RUE Devices Raychem Circuit Protection Devices
Tape and reel specifications (dimensions in millimeters)
Product availability: RUE090–RUE400
Devices taped using EIA468-B/IEC286-2 standards. See table below and Figures 1 and 2 for details.
Dimension EIA IEC Dimensions
description mark mark Dim. (mm) Tol. (mm)
Carrier tape width
W W
18 –0.5/+1.0
Hold down tape width: RUE090-RUE250
W
4
W
0
11 min.
Top distance between tape edges
W
6
W
2
3 max.
Sprocket hole position
W
5
W
1
9 –0.5/+0.75
Sprocket hole diameter*
D
0
D
0
4 –0.32/+0.2
Abscissa to plane (straight lead)
H H
18.5 ±3.0
Abscissa to plane (kinked lead)
H
0
H
0
16 ±0.5
Abscissa to top RUE090–185
H
1
H
1
32.2 max.
Abscissa to top RUE250–400* 35.4 max.
Overall width w/lead protrusion RUE090–RUE250
C
1
43.2 max.
Overall width w/lead protrusion RUE250 43.9 max.
Overall width w/o lead protrusion RUE090–RUE185
C
2
42.5 max.
Overall width w/o lead protrusion RUE300–RUE400* 44.2 max.
Lead protrusion
L
1
l
1
1.0 max.
Protrusion of cut out
L L
11 max.
Protrusion beyond hold-down tape
l
2
l
2
Not specified
Sprocket hole pitch: RUE090–RUE250
P
0
P
0
12.7 ±0.3
Sprocket hole pitch on RUE300–RUE400
P
0
P
0
25.4 ±0.5
Device pitch: RUE090–RUE250 12.7
Device pitch: RUE300–RUE400 25.4
Pitch tolerance 20 consec. ±1
Tape thickness
t t
0.9 max.
Tape thickness with splice RUE090-RUE250
t
1
1.5 max.
Tape thickness with splice RUE300-RUE400*
t
1
2.0 max.
Splice sprocket hole alignment 0 ±0.3
Body lateral deviation
h
h
0 ±1.0
Body tape plane deviation
p
p
0 ±1.3
Ordinate to adjacent component lead*
P
1
P
1
3.81 ±1.0
Lead spacing: RUE090–RUE400*
F F
5.08 ±0.8
Reel width RUE090–RUE300
w
2
w
56 max.
Reel width RUE400*
w
2
w
63.5 max.
Reel diameter
ad
370 max.
Space between flanges less device*
w
1
4.75 3.25/+8.25
Arbor hole diameter
c f
26 ±12.0
Core diameter*
n h
91 max.
Box 56/372/372 max.
Consecutive missing places None
Empty places per reel 0.1% max.
*Differs from EIA specification
RUE
Radial Leaded
4
RUE(7) 1/15/99 11:28 AM Page 148
Raychem Circuit Protection Devices RUE Devices 149
Figure 1: EIA Referenced Taped Component Dimensions
Figure 2: Reel Dimensions
RUE
Radial Leaded
4
RUE(7) 1/15/99 11:28 AM Page 149
150 RUE Devices Raychem Circuit Protection Devices
Product Bag Tape and reel AMMO Standard
description quantity quantity pack package
RUE090 500 10000
RUE090-2 3000 15000
RUE090-AP 2000 10000
RUE110 500 10000
RUE110-2 3000 15000
RUE110-AP 2000 10000
RUE135 500 10000
RUE135-2 3000 15000
RUE135-AP 2000 10000
RUE160 500 10000
RUE160-2 3000 15000
RUE160-AP 2000 10000
RUE185 500 10000
RUE185-2 3000 15000
RUE185-AP 2000 10000
RUE250 500 10000
RUE250-2 3000 15000
RUE250-AP 2000 10000
RUE300 500 10000
RUE300-2 1500 7500
RUE300-AP 1000 5000
RUE400 500 10000
RUE400-2 1500 7500
RUE400-AP 1000 5000
RUE500 500 * * 10000
RUE600 500 * * 10000
RUE700 500 * * 10000
RUE800 500 * * 10000
RUE900 500 * * 10000
*Consult Factor y
Part numbering system
RUE suffix
Blank = Packaged in bags
-2 = Tape and reel
-AP = AMMO pack
-1 = 25.4-mm (1.0-inch) minimum lead length
K = Kinked leads
S = Straight leads
U = Uncoated par t (contact factory for specifications)
Current rating
RUE
Radial Leaded
Ordering information
4
RUE(7) 1/15/99 11:28 AM Page 150
Part marking system
- 30
Voltage rating
Raychem symbol
UPar t ID
Product family (RUE)
Lot number/Date code (may be on the back)
Raychem Circuit Protection Devices RUE Devices 151
V 30
U135
NJ2K
V
Example
V
V
RUE
Radial Leaded
Part Part
description ID
RUE090 090
RUE110 110
RUE135 135
RUE160 160
RUE185 185
RUE250 250
RUE300 300
RUE400 400
RUE500 500
RUE600 600
RUE700 700
RUE800 800
RUE900 900
• Operation beyond maximum ratings or improper use may result in
device damage and
possible electrical arcing and flame.
These devices are intended for protection against occasional over-
current or over temperature fault conditions, and should not be used
when repeated fault conditions are anticipated.
• Operation in circuits with inductive spikes can generate voltages
above the rated voltage of the devices and should be evaluated for
suitability of use.
WARNING:
4
RUE(7) 1/15/99 11:28 AM Page 151