INFINEON Technologies 1 2002-08-16 (0.91)
HYS 72Dxx5xxGR-7F/7/8-B
Low Profile Registered DDR-I SDRAM-Modules
2.5 V Low Profile 184-pin Registered DDR-I SDRAM Modules
256MB, 512MB & 1GByte
PC1600 & PC2100
Preliminary Datasheet Revision 0.91
The HYS72Dxx5x0GR are low profile versions of the standard Registered DIMM modules with 1.2”
inch (30,40 mm) height for 1U Server Applications. The Low Profile DIMM versions are available as
32M x 72 (256MB), 64M x 72 (512MB) and 128M x 72 (1 GB).
The memory array is designed with Double Data Rate Synchronous DRAMs for ECC applications.
All control and address signals are re-driven on the DIMM using register devices and a PLL for the
clock distribution. This reduces capacitive loading to the system bus, but adds one cycle to the
SDRAM timing. A variety of decoupling capacitors are mounted on the PC board. The DIMMs
feature serial presence detect based on a serial E2PROM device using the 2-pin I2Cprotocol.The
first 128 bytes are programmed with configuration data and the second 128 bytes are available to
the customer.
184-pin Registered 8-Byte Dual-In-Line
DDR-I SDRAM Module for “1U” PC,
Workstation and Server main memory
applications
One bank 32M ×72, 64M x 72 and two bank
128M ×72 organization
JEDEC standard Double Data Rate
Synchronous DRAMs (DDR-I SDRAM) with a
single + 2.5 V (±0.2 V) power supply
Built with DDR-I SDRAMs in 66-Lead TSOPII
package
Programmable CAS Latency, Burst Length,
and Wrap Sequence (Sequential &
Interleave)
Auto Refresh (CBR) and Self Refresh
All inputs and outputs SSTL_2 compatible
Re-drive for all input signals using register
and PLL devices.
Serial Presence Detect with E2PROM
Low Profile Modules form factor:
133.35 mm x 30,40 mm (1.2”) x 4.00 mm
(6,80 mm with stacked components)
Based on Jedec standard reference card
layouts RawCard “L”, “M”, “N”
Gold plated contacts
Performance:
-7F -7 -8 Unit
Component Speed Grade DDR266F DDR266A DDR200
Module Speed Grade PC2100 PC2100 PC1600
fCK Clock Frequency (max.) @ CL = 2.5 143 143 125 MHz
fCK Clock Frequency (max.) @ CL = 2 133 133 100 MHz
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 2 2002-08-16 (0.91)
Ordering Information
Type Compliance
Code
Description SDRAM
Technology
Module
height
PC2100 (CL=2):
HYS 72D32500GR-7F-B PC2100R-20220-L one bank 256 MB Reg. DIMM 256 MBit (x8) 1.2”
HYS 72D32500GR-7-B PC2100R-20330-L one bank 256 MB Reg. DIMM 256 MBit (x8) 1.2”
HYS 72D64500GR-7F-B PC2100R-20220-M one bank 512 MB Reg. DIMM 256 Mbit (x4) 1.2”
HYS 72D64500GR-7-B PC2100R-20330-M one bank 512 MB Reg. DIMM 256 Mbit (x4) 1.2”
HYS 72D128520GR-7F-B PC2100R-20220-N two banks 1 GByte Reg.
DIMM
256 MBit (x4)
(stacked with
soldering process)
1.2”
HYS 72D128520GR-7-B PC2100R-20330-N two banks 1 GByte Reg.
DIMM
256 MBit (x4)
(stacked with
soldering process)
1.2”
HYS 72D128521GR-7F-B PC2100R-20220-N two banks 1 GByte Reg.
DIMM
256 MBit (x4)
(stacked with laser
welding process)
1.2”
HYS 72D128521GR-7-B PC2100R-20330-N two banks 1 GByte Reg.
DIMM
256 MBit (x4)
(stacked with laser
welding process)
1.2”
PC1600 (CL=2):
HYS 72D32500GR-8-B PC1600R-20220-L one bank 256 MB Reg. DIMM 256 MBit (x8) 1.2”
HYS 72D64500GR-8-B PC1600R-20220-M one bank 512 MB Reg. DIMM 256 Mbit (x4) 1.2”
HYS 72D128520GR-8-B PC1600R-20220-N two banks 1 GByte Reg.
DIMM
256 MBit (x4)
(stacked with
soldering process)
1.2”
HYS 72D128521GR-8-B PC1600R-20220-N two banks 1 GByte Reg.
DIMM
256 MBit (x4)
(stacked with laser
welding process)
1.2”
Notes:
1. All part numbers end with a place code (not shown), designating the silicon-die revision. Reference information
available on request. Example: HYS 72D32500GR-8-A, indicating Rev.A die are used for SDRAM components.
2. The Compliance Code is printed on the module labels and describes the speed sort fe. “PC2100R”, the latencies (f.e.
“20330” means CAS latency = 2.5, trcd latency = 3 and trp latency =3 ) and the Raw Card used for this module
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 3 2002-08-16 (0.91)
Pin Definitions and Functions
A0 - A11,A12 Address Inputs
(A12 for 256Mb & 512Mb based modules)
VDD Power (+ 2.5 V)
BA0, BA1 Bank Selects VSS Ground
DQ0 - DQ63 Data Input/Output VDDQ I/O Driver power supply
CB0 - CB7 Check Bits (x72 organization only) VDDID VDD Indentification flag
RAS Row Address Strobe VDDSPD EEPROM power supply
CAS Column Address Strobe VREF I/O reference supply
WE Read/Write Input SCL Serial bus clock
CKE0, CKE1 Clock Enable SDA Serial bus data line
DQS0 - DQS8 SDRAM low data strobes SA0 - SA2 slave address select
CK0, CK0 Differential Clock Input NC no connect
DM0 - DM8
DQS9 - DQS17
SDRAM low data mask/
high data strobes
DU don’t use
CS0 -CS1 Chip Selects RESET Reset pin (forces register
inputs low) *)
*) for detailed description of the Power Up and Power Management on DDR Registered DIMMs see the
Application Note at the end of this datasheet
Address Format
Density Organization Memory
Banks
SDRAMs # of
SDRAMs
# of row/bank/
columns bits
Refresh Period Interval
256 MB 32M x 72 1 (256Mb)
32M x 8
9 13/2/10 8k 64 ms 7.8 µs
512 MB 64M ×72 1 (256Mb)
64M ×4
18 13/2/11 8k 64 ms 7.8 µs
1 GB 128M ×72 2 (256Mb)
64M ×4
36
(stacked)
13/2/11 8k 64 ms 7.8 µs
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 4 2002-08-16 (0.91)
Pin Configuration
PIN# Symbol PIN# Symbol PIN# Symbol Symbol
1 VREF 48 A0 93 VSS 140 DM8/DQS17
2 DQ0 49 CB2 94 DQ4 141 A10
3 VSS 50 VSS 95 DQ5 142 CB6
4 DQ1 51 CB3 96 VDDQ 143 VDDQ
5 DQS0 52 BA1 97 DM0/DQS9 144 CB7
6DQ2 KEY 98 DQ6 KEY
7 VDD 53 DQ32 99 DQ7 145 VSS
8 DQ3 54 VDDQ 100 VSS 146 DQ36
9 NC 55 DQ33 101 NC 147 DQ37
10 RESET 56 DQS4 102 NC 148 VDD
11 VSS 57 DQ34 103 NC 149 DM4/DQS13
12 DQ8 58 VSS 104 VDDQ 150 DQ38
13 DQ9 59 BA0 105 DQ12 151 DQ39
14 DQS1 60 DQ35 106 DQ13 152 VSS
15 VDDQ 61 DQ40 107 DM1/DQS10 153 DQ44
16 DU 62 VDDQ 108 VDD 154 RAS
17 DU 63 WE 109 DQ14 155 DQ45
18 VSS 64 DQ41 110 DQ15 156 VDDQ
19 DQ10 65 CAS 111 CKE1 157 CS0
20 DQ11 66 VSS 112 VDDQ 158 CS1
21 CKE0 67 DQS5 113 NC 159 DM5/DQS14
22 VDDQ 68 DQ42 114 DQ20 160 VSS
23 DQ16 69 DQ43 115 NC / A12 161 DQ46
24 DQ17 70 VDD 116 VSS 162 DQ47
25 DQS2 71 NC 117 DQ21 163 NC
26 VSS 72 DQ48 118 A11 164 VDDQ
27 A9 73 DQ49 119 DM2/DQS11 165 DQ52
28 DQ18 74 VSS 120 VDD 166 DQ53
29 A7 75 DU 121 DQ22 167 NC
30 VDDQ 76 DU 122 A8 168 VDD
31 DQ19 77 VDDQ 123 DQ23 169 DM6/DQS15
32 A5 78 DQS6 124 VSS 170 DQ54
33 DQ24 79 DQ50 125 A6 171 DQ55
34 VSS 80 DQ51 126 DQ28 172 VDDQ
35 DQ25 81 VSS 127 DQ29 173 NC
36 DQS3 82 VDDID 128 VDDQ 174 DQ60
37 A4 83 DQ56 129 DM3/DQS12 175 DQ61
38 VDD 84 DQ57 130 A3 176 VSS
39 DQ26 85 VDD 131 DQ30 177 DM7/DQS16
40 DQ27 86 DQS7 132 VSS 178 DQ62
41 A2 87 DQ58 133 DQ31 179 DQ63
42 VSS 88 DQ59 134 CB4 180 VDDQ
43 A1 89 VSS 135 CB5 181 SA0
44 CB0 90 NC 136 VDDQ 182 SA1
45 CB1 91 SDA 137 CK0 183 SA2
46 VDD 92 SCL 138 CK0 184 VDDSPD
47 DQS8 139 VSS
Note: A12 is used for 256Mbit and 512Mbit based modules only
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 5 2002-08-16 (0.91)
Block Diagram: One Bank 32M x 72 DDR-I SDRAM DIMM Module (x8 components)
HYS72D32500GR on Raw Card L
PCK
PCK
DQ4
DQ5
DQ6
DQ7
DQ0
DQ1
DQ2
DQ3
DM
D0
DM0/DQS9
DQ12
DQ13
DQ14
DQ8
DQ9
DQ10
DQ11
DM
D1
DM1/DQS10
DQ20
DQ21
DQ22
DQ23
DQ16
DQ17
DQ18
DQ19
DM
D2
DM2/DQS11
DQ28
DQ29
DQ30
DQ31
DQ24
DQ25
DQ26
DQ27
DM
D3
DM3/DQS12
DQ36
DQ37
DQ38
DQ39
DQ32
DQ33
DQ34
DQ35
DM
D4
DM4/DQS13
DQ44
DQ45
DQ46
DQ47
DQ40
DQ41
DQ42
DQ43
DM
D5
DM5/DQS14
DQ52
DQ53
DQ54
DQ55
DQ48
DQ49
DQ50
DQ51
DM
D6
DQ60
DQ61
DQ62
DQ63
DQ56
DQ57
DQ58
DQ59
DM
D7
DM7/DQS16
RS0
CS CS
CS CS
CS
CS
CS
CS
DQS0
DQS
DQS4
DQS1 DQS5
DQS
DQS2
DQS
DQS3
DQS
DM6/DQS15
DQS6
DQS7
DQ15
CB4
CB5
CB6
CB7
CB0
CB1
CB2
CB3
DM
I/O 7
I/O 6
I/O 1
I/O 0
D8
I/O 5
I/O 4
I/O 3
I/O 2
CS
DQS8
DM8/DQS17
DQS
DQS
DQS
DQS
DQS
CK0, CK 0 --------- PLL*
* Wire per Clock Loading Table/Wiring Diagrams
CS0 RS0 -> CS : SDRAMs D0-D8
BA0-BA1 RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D8
A0-A12 RA0-RA12 -> A0-A12: SDRAMs D0 - D8
RAS RRAS -> RAS : SDRAMs D0 - D8
CAS RCAS -> CAS : SDRAMs D0 - D8
CKE0 RCKE0 -> CKE: SDRAMs D0 - D8
WE RWE -> WE : SDRAMs D0 - D8
R
E
G
I
S
T
E
R
RESET
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
Notes:
1. DQ-to-I/O wiring may be changed within a byte.
2. DQ/DQS/DM/CKE/S relationships must be
maintained as shown.
3. DQ, DQS, Adress and control resistors: 22 Ohms.
4. VDDID strap connections
STRAP OUT (OPEN): VDD = VDDQ
5. SDRAM placement alternates between the back
and front of the DIMM.
VDD,
VSS
D0 - D8
D0 - D8
VDDQ
D0 - D8
D0 - D8
VREF
VDDID Strap:seeNote4
VDDSPD EEPROM
A0
Serial PD
A1 A2
SA0 SA1 SA2
SCL
SDA
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 6 2002-08-16 (0.91)
Block Diagram: One Bank 64M x 72 DDR-I SDRAM DIMM Modules (x4 comp.)
HYS72D64500GR on Raw Card M
RS0A
DQS4
DQS6
DQS2
DQ0
DQ1
DQ2
DQ3
DQ8
DQ9
DQ10
DQ11
DQ16
DQ17
DQ18
DQ19
DQ24
DQ25
DQ26
DQ27
DQ32
DQ33
DQ34
DQ35
DQ40
DQ41
DQ42
DQ43
DQ56
DQ57
DQ58
DQ59
DQS
D0
DQS
DQS
DQS
DQS
DQS
DQS
DQS0
D1
D2
D3
D4
D5
D7
DQ48
DQ49
DQ50
DQ51
DQS
D6
DQ4
DQ5
DQ6
DQ7
DQ12
DQ13
DQ14
DQ15
DQ20
DQ21
DQ22
DQ23
DQ28
DQ29
DQ30
DQ31
DQ36
DQ37
DQ38
DQ39
DQ44
DQ45
DQ46
DQ47
DQ60
DQ61
DQ62
DQ63
DQS
D9
DQS
I/O 0
I/O 1
I/O 2
I/O 3
DQS
I/O 0
I/O 1
I/O 2
I/O 3
DQS
I/O 0
I/O 1
I/O 2
I/O 3
DQS
I/O 0
I/O 1
I/O 2
I/O 3
DQS
I/O 0
I/O 1
I/O 2
I/O 3
DQS
I/O 0
I/O 1
I/O 2
I/O 3
DM0/DQS9
D10
D11
D12
D13
D14
D16
DQ52
DQ53
DQ54
DQ55
DQS
I/O 0
I/O 1
I/O 2
I/O 3
D15
CB0
CB1
CB2
CB3
DQS
D8
CB4
CB5
CB6
CB7
DQS
I/O 0
I/O 1
I/O 2
I/O 3
D17
CS CS
CS CS
CS CS
CS CS
CS CS
CS CS
CS CS
CS CS
CS CS
VSS
DQS1
DQS3
DQS8
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DQS5
DQS7
DM6/DQS15
DM5/DQS14
DM4/DQS13
DM1/DQS10
DM2/DQS11
DM3/DQS12
DM7/DQS16
DM8/DQS17
RS0B
CK0, CK 0 --------- PLL*
* Wire per Clock Loading Table/Wiring Diagrams
BA0-BA1 RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D17
A0-A11,A12 RA0-RA11,RA12 -> A0-A11,A12: SDRAMs D0 - D17
RAS RRAS -> RAS : SDRAMs D0 - D17
CS0
CAS RCAS -> CAS : SDRAMs D0 - D17
CKE0 RCKE0A -> CKE: SDRAMs D0 - D8
WE RWE -> W E : SDRAMs D0 - D17
R
E
G
I
S
T
E
R
RCKEB -> CKE: SDRAMs D9 - D17
PCK
PCK RESET
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
A0
Serial PD
A1 A2
SA0 SA1 SA2
SCL
SDA
Notes:
1. DQ-to-I/O wiring may be changed within a byte.
2. DQ/DQS/DM/CKE/S relationships must be
maintained as shown.
3. DQ, DQS, Adress and control resistors: 22 Ohms.
4. VDDID strap connections
STRAP OUT (OPEN): VDD = VDDQ
5. SDRAM placement alternates between the back
and front of the DIMM.
VDD,
VSS
V
DDQ
VREF
VDDID Strap: see Note 4
VDDSPD EEPROM
D0 - D17
D0 - D17
D0 - D17
RS 0 -> CS : SDRAMs D0-D17
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 7 2002-08-16 (0.91)
Block Diagram: Two Bank 128M x 72 and DDR-I SDRAM DIMM Modules (x4 comp.)
HYS72D128520GR on Raw Card N
PC
K
PC
K
RS0
DQS4
DQS6
DQS2
DQ0
DQ1
DQ2
DQ3
DQ8
DQ9
DQ10
DQ11
DQ16
DQ17
DQ18
DQ19
DQ24
DQ25
DQ26
DQ27
DQ32
DQ33
DQ34
DQ35
DQ40
DQ41
DQ42
DQ43
DQ56
DQ57
DQ58
DQ59
DQS
D0
DQS
DQS
DQS
DQS
DQS
DQS
DQS0
D1
D2
D3
D4
D5
D7
DQ48
DQ49
DQ50
DQ51
DQS
D6
DQ4
DQ5
DQ6
DQ7
DQ12
DQ13
DQ14
DQ15
DQ20
DQ21
DQ22
DQ23
DQ28
DQ29
DQ30
DQ31
DQ36
DQ37
DQ38
DQ39
DQ44
DQ45
DQ46
DQ47
DQ60
DQ61
DQ62
DQ63
DQS
D9
DQS
DQS
DQS
DQS
DQS
DQS
DM0/DQS9
D10
D11
D12
D13
D14
D16
DQ52
DQ53
DQ54
DQ55
DQS
D15
CK0, CK 0 --------- PLL*
CS CS
CS CS
CS CS
CS CS
CS CS
CS S
CS CS
CS CS
CS1 RS1 -> CS : SDRAMs D18 -D35
BA0-BA1 RBA0-RBA1 -> BA0-BA1: SDRAM s D0-D35
A0-A12 RA0-RA12 -> A0-A12: SDRAMs D0 - D35
RAS RRAS -> RAS :SDRAMsD0-D35
CS0 RS0 -> CS : SDRAMs D0-D17
VSS
DQS1
DQS3
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DM
DQS5
DQS7
DM6/DQS15
DM5/DQS14
DM4/DQS13
DM1/DQS10
DM2/DQS11
DM3/DQS12
DM7/DQS16
* Wire per Clock Loading Table/Wiring Diagrams
RS1
CAS RCAS -> CAS :SDRAMsD0-D35
CKE0 RCKE0 -> CKE: SDRAMs D0 - D17
WE RWE -> W E : SDRAMs D0 - D35
R
E
G
I
S
T
E
R RCKE1 -> CKE: SDRAMs D18 - D35
DQS
D18
DQS
DQS
DQS
DQS
DQS
DQS
D19
D20
D21
D22
D23
D25
DQS
D24
CS
CS
CS
CS
CS
CS
CS
CS
DM
DM
DM
DM
DM
DM
DM
DM
DQS
D27
DQS
DQS
DQS
DQS
DQS
DQS
I/O 0
I/O 1
I/O 2
I/O 3
D28
D29
D30
D31
D32
D34
DQS
D33
CS
CS
CS
CS
CS
S
CS
CS
DM
DM
DM
DM
DM
DM
DM
DM
CB0
CB1
CB2
CB3
DQS
D8
CS DM
DQS8
DQS
D26
CS DM
CB4
CB5
CB6
CB7
DQS
D17
CS DM
DM8/DQS17
DQS
D35
CS DM
CKE1
RESET
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 0
I/O 1
I/O 2
I/O 3
Notes:
1. DQ-to-I/O wiring may be changed within a byte.
2. DQ/DQS/DM/CKE/S relationships must be
maintained as shown.
3. DQ, DQS, Adress and control resistors: 22 Ohms.
4. VDDID strap connections
STRAP OUT (OPEN): VDD = VDDQ
5. SDRAM placement alternates between the back
and front of the DIMM.
A0
Serial PD
A1 A2
SA0 SA1 SA2
SCL
SDA
VDD,
VSS
VDDQ
VREF
VDDID Strap: see Note 4
VDDSPD EEPROM
D0 - D35
D0 - D35
D0 - D35
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 8 2002-08-16 (0.91)
Absolute Maximum Ratings
Parameter Symbol Limit Values Unit
min. max.
Input / Output voltage relative to VSS VIN, VOUT –0.5 3.6 V
Power supply voltage on VDD/VDDQ to VSS VDD, VDDQ –0.5 3.6 V
Storage temperature range TSTG -55 +150 oC
Power dissipation (per SDRAM component) PD–1W
Data out current (short circuit) IOS –50mA
Permanent device damage may occur if “Absolute Maximum Ratings” are exceeded.
Functional operation should be restricted to recommended operation conditions.
Exposure to higher than recommended voltage for extended periods of time affect device reliability
Supply Voltage Levels
Parameter Symbol Limit Values Unit Notes
min. nom. max.
Device Supply Voltage VDD 2.3 2.5 2.7 V -
Output Supply Voltage VDDQ 2.3 2.5 2.7 V 1)
Input Reference Voltage VREF 0.49 x VDDQ 0.5 x VDDQ 0.51 x VDDQ V2)
Termination Voltage VTT VREF –0.04 VREF VREF +0.04 V 3)
EEPROM supply voltage VDDSPD 2.3 2.5 3.6 V
1 Under all conditions, VDDQ must be less than or equal to VDD
2 Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC).
VREF is also expected to track noise variations in VDDQ.
3VTT of the transmitting device must track VREF of the receiving device.
DC Operating Conditions (SSTL_2 Inputs)
(VDDQ = 2.5 V, TA=70°C, Voltage Referenced to VSS)
Parameter Symbol Limit Values Unit Notes
min. max.
DC Input Logic High VIH (DC) VREF +0.15 VDDQ +0.3 V 1)
DC Input Logic Low VIL (DC) –0.30 VREF –0.15 V
Input Leakage Current IIL –5 5 µA1)
Output Leakage Current IOL –5 5 µA2)
1) The relationship between the VDDQ of the driving device and the VREF of the receiving device is what
determines noise margins. However, in the case of VIH (max) (input overdrive), it is the VDDQ of the receiving
device that is referenced. In the case where a device is implemented such that it supports SSTL_2 inputs but
has no SSTL_2 outputs (such as a translator), and therefore no VDDQ supply voltage connection, inputs must
tolerate input overdrive to 3.0 V (High corner VDDQ + 300 mV).
2) For any pin under test input of 0 V VIN VDDQ + 0.3 V. Values are shown per DDR-SDRAM component.
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 9 2002-08-16 (0.91)
Operating, Standby and Refresh Currents (-8: PC1600)
Notes
5
IDD2P mA 2, 4
IDD2F mA 2, 4
IDD2Q mA 2, 4
IDD3P mA 2, 4
IDD5 mA 1, 4
1. The module IDD values are calculated from the component IDD datasheet values as:
n * IDDx[component] for single bank modules (n: number of components per module bank)
n * IDDx[component] + n * IDD3N[component] for two bank modules (n: number of components per module bank)
2. The module IDD values are calculated from the component IDD datasheet values as:
n * IDDx[component] for single bank modules (n: number of components per module bank)
2 * n * IDDx[component] for two bank modules (n: number of components per module bank)
3. DQ I/O (IDDQ) currents are not included into calculations: module IDD values will be measured differently depending on load conditions
4. DRAM component currents only: module IDD will be measured differently depending upon register and PLL operation currents
5. Test condition for maximum values: VDD = 2.7V ,Ta = 10°C
90
4590
1620
2520
2700
3870
1890 3780
1890
1GB
x72
2bank
-8
MAX
2430
2610
252
1260
792
576
1530 3060
22,5 45
405 810
855 1710
198 396
144 288
1800
63 126
315 630
256MB
x72
1bank
-8
512MB
x72
1bank
-8
MAXMAX
IDD7
IDD6
Operating Current: four bank;four bank interleaving with BL=4;
Refer to the following page for detailed test conditions.
Self-Refresh Current:CKE<=0.2V;external clock on;tCK=tCKMIN
Auto-Refresh Current:tRC=tRFCMIN,distributedrefresh
945
1, 3, 4
mA
mA
Symbol UnitParameter/Condition
IDD4W
IDD4R
IDD3N
IDD1
2, 4
1, 4
Precharge Quiet Standby Current: /CS >= VIH MIN, all banks idle;
CKE >= VIH MIN;tCK = tCK MIN ,address and other control inputs stable at >=
VIH MIN or <=VILMAX; VIN = VREF for DQ, DQS and DM.
IDD0
Operating Current: one bank;active/read/precharge;Burst = 4;
Refer to the following page for detailed test conditions.
Operating Current: one bank;active / precharge;tRC = tRC MIN;tCK = tCK
MIN;DQ, DM, and DQS inputs changing once per clock cycle;address and
control inputs changing once every two clock cycles
Precharge Power-Down Standby Current: all banks idle;power-down mode;
CKE <=VILMAX; tCK = tCK MIN
Precharge Floating Standby Current: /CS >= VIH MIN, all banks idle;CKE >=
VIH MIN;tCK = tCK MIN ,address and other control inputs changing once per
clock cycle, VIN = VREF for DQ, DQS and DM.
810 1620
900
Active Power-Down Standby Current: one bank active;power-down mode;
CKE <=VILMAX; tCK = tCK MIN;VIN = VREF for DQ, DQS and DM.
Active Standby Current: one bank active;active / precharge;CS >= VIH MIN;
CKE >= VIH MIN;tRC = tRAS MAX; tCK = tCK MIN;DQ, DM, and DQS inputs
changing twice per clock cycle;address and control inputs changing once per
clock cycle
Operating Current: one bank active;Burst = 2;reads;continuous burst;address
and control inputs changing once per clock cycle;50% of data outputs changing
on ever
y
clock ed
g
e;CL = 2 for DDR200, and DDR266A, CL=3 for DDR333;tCK
=tCKMIN;IOUT = 0mA
Operating Current: one bank active;Burst = 2;writes;continuous burst;address
and control inputs changing once per clock cycle;50% of data outputs changing
on ever
y
clock ed
g
e;CL = 2 for DDR200, and DDR266A, CL=3 for DDR333;tCK
=tCKMIN
mA 1, 3, 4
2, 4mA
mA 1, 4
mA
mA 1, 3, 4
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 10 2002-08-16 (0.91)
Operating, Standby and Refresh Currents (-7: PC2100)
Notes
5
IDD2P mA 2, 4
IDD2F mA 2, 4
IDD2Q mA 2, 4
IDD3P mA 2, 4
IDD5 mA 1, 4
1. The module IDD values are calculated from the component IDD datasheet values as:
n * IDDx[component] for single bank modules (n: number of components per module bank)
n * IDDx[component] + n * IDD3N[component] for two bank modules (n: number of components per module bank)
2. The module IDD values are calculated from the component IDD datasheet values as:
n * IDDx[component] for single bank modules (n: number of components per module bank)
2 * n * IDDx[component] for two bank modules (n: number of components per module bank)
3. DQ I/O (IDDQ) currents are not included into calculations: module IDD values will be measured differently depending on load conditions
4. DRAM component currents only: module IDD will be measured differently depending upon register and PLL operation currents
5. Test condition for maximum values: VDD = 2.7V ,Ta = 10°C
mA 1, 4
256MB
x72
1bank
-7
512MB
x72
1bank
-7
1GB
x72
2bank
-7
324
mA
720
mA 1, 3, 42070
990
mA 1, 3, 4
2, 41980 mA
1440
450
Active Power-Down Standby Current: one bank active;power-down mode;CKE
<=VILMAX; tCK = tCK MIN;VIN = VREF for DQ, DQS and DM.
Active Standby Current: one bank active;active / precharge;CS >= VIH MIN;CKE
>= VIH MIN;tRC = tRAS MAX; tCK = tCK MIN;DQ, DM, and DQS inputs changing
twice per clock cycle;address and control inputs changing once per clock cycle
Operating Current: one bank active;Burst = 2;reads;continuous burst;address
and control inputs changing once per clock cycle;50% of data outputs changing on
ever
y
clock ed
g
e;CL = 2 for DDR200, and DDR266A, CL=3 for DDR333;tCK = tCK
MIN;IOUT = 0mA
Operating Current: one bank active;Burst = 2;writes;continuous burst;address
and control inputs changing once per clock cycle;50% of data outputs changing on
ever
y
clock ed
g
e;CL = 2 for DDR200, and DDR266A, CL=3 for DDR333;tCK = tCK
MIN
1800
Precharge Quiet Standby Current: /CS >= VIH MIN, all banks idle;
CKE >= VIH MIN;tCK = tCK MIN ,address and other control inputs stable at >= VIH
MIN or <=VILMAX; VIN = VREF for DQ, DQS and DM.
IDD0
Operating Current: one bank;active/read/precharge;Burst = 4;
Refer to the following page for detailed test conditions.
Operating Current: one bank;active / precharge;tRC = tRC MIN;tCK = tCK MIN;
DQ, DM, and DQS inputs chan
g
in
g
once per clock c
y
cle;address and control inputs
changing once every two clock cycles
Precharge Power-Down Standby Current: all banks idle;power-down mode;CKE
<=VILMAX; tCK = tCK MIN
Precharge Floating Standby Current: /CS >= VIH MIN, all banks idle;CKE >= VIH
MIN;tCK = tCK MIN ,address and other control inputs changing once per clock
cycle, VIN = VREF for DQ, DQS and DM.
3240
3060
2, 4
648
900
288
2970
2790 1, 4
Symbol UnitParameter/Condition
IDD4W
IDD4R
IDD3N
IDD1
225
144
1980
1, 3, 450404050
45 90 mA
mA
3240
2250
495
1035
1125
IDD7
IDD6
Operating Current: four bank;four bank interleaving with BL=4;
Refer to the following page for detailed test conditions. 2025
23Self-Refresh Current:CKE<=0.2V;external clock on;tCK = tCK MIN
Auto-Refresh Current: tRC = tRFC MIN, distributed refresh 4230
MAXMAXMAX
1620
900
990
72
360
162
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 11 2002-08-16 (0.91)
Operating, Standby and Refresh Currents (-7F: PC2100)
Notes
5
IDD2P mA 2, 4
IDD2F mA 2, 4
IDD2Q mA 2, 4
IDD3P mA 2, 4
IDD5 mA 1, 4
162
1. The module IDD values are calculated from the component IDD datasheet values as:
n * IDDx[component] for single bank modules (n: number of components per module bank)
n * IDDx[component] + n * IDD3N[component] for two bank modules (n: number of components per module bank)
2. The module IDD values are calculated from the component IDD datasheet values as:
n * IDDx[component] for single bank modules (n: number of components per module bank)
2 * n * IDDx[component] for two bank modules (n: number of components per module bank)
3. DQ I/O (IDDQ) currents are not included into calculations: module IDD values will be measured differently
depending on load conditions
4. DRAM component currents only: module IDD will be measured differently depending upon register and PLL operation currents
5. Test condition for maximum values: VDD = 2.7V ,Ta = 10°C
Auto-Refresh Current: tRC = tRFC MIN, distributed refresh 4230
MAXMAXMAX
1620
990
1080
72
360
IDD7
IDD6
Operating Current: four bank;four bank interleaving with BL=4;
Refer to the following page for detailed test conditions. 2025
23Self-Refresh Current:CKE<=0.2V;external clock on;tCK = tCK MIN
3240
2250
495
1035
1125
1, 3, 450404050
45 90 mA
mA
Symbol UnitParameter/Condition
IDD4W
IDD4R
IDD3N
IDD1
225
144
2160
3240
3060
2, 4
648
900
288
3150
2970 1, 41980
Precharge Quiet Standby Current: /CS >= VIH MIN, all banks idle;
CKE >= VIH MIN;tCK = tCK MIN ,address and other control inputs stable at >=
VIH MIN or <=VILMAX; VIN = VREF for DQ, DQS and DM.
IDD0
Operating Current: one bank;active/read/precharge;Burst = 4;
Refer to the following page for detailed test conditions.
Operating Current: one bank;active / precharge;tRC=tRCMIN;tCK = tCK
MIN;DQ, DM, and DQS inputs changing once per clock cycle;address and
control inputs changing once every two clock cycles
Precharge Power-Down Standby Current: all banks idle;power-down mode;
CKE <=VILMAX; tCK = tCK MIN
Precharge Floating Standby Current: /CS >= VIH MIN, all banks idle;CKE >=
VIH MIN;tCK = tCK MIN ,address and other control inputs changing once per
clock cycle, VIN = VREF for DQ, DQS and DM.
Active Power-Down Standby Current: one bank active;power-down mode;
CKE <=VILMAX; tCK = tCK MIN;VIN = VREF for DQ, DQS and DM.
Active Standby Current: one bank active;active / precharge;CS >= VIH MIN;
CKE >= VIH MIN;tRC = tRAS MAX; tCK = tCK MIN;DQ, DM, and DQS inputs
changing twice per clock cycle;address and control inputs changing once per
clock cycle
Operating Current: one bank active;Burst = 2;reads;continuous burst;
address and control inputs changing once per clock cycle;50% of data outputs
changing on every clock edge;CL = 2 for DDR200, and DDR266A, CL=3 for
DDR333;tCK = tCK MIN;IOUT = 0mA
Operating Current: one bank active;Burst = 2;writes;continuous burst;
address and control inputs changing once per clock cycle;50% of data outputs
changing on every clock edge;CL = 2 for DDR200, and DDR266A, CL=3 for
DDR333;tCK = tCK MIN
1, 3, 42070
990
mA 1, 3, 4
2, 41980 mA
1440
450
mA 1, 4
256MB
x72
1bank
-7F
512MB
x72
1bank
-7F
1GB
x72
2bank
-7F
324
mA
720
mA
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 12 2002-08-16 (0.91)
Electrical Characteristics & AC Timing for DDR-I components
(for reference only)
(0 °CTA70 °C; VDDQ =2.5V± 0.2V;VDD =2.5V± 0.2V)
Symbol Parameter
DDR266F
-7F
DDR266A
-7
DDR200
-8 Unit Notes
Min Max Min Max Min Max
tAC DQ output access time from CK/CK 0.75 +0.75 0.75 +0.75 0.8 +0.8 ns 1-4
tDQSCK DQS output access time from CK/CK 0.75 +0.75 0.75 +0.75 0.8 +0.8 ns 1-4
tCH CK high-level width 0.45 0.55 0.45 0.55 0.45 0.55 tCK 1-4
tCL CK low-level width 0.45 0.55 0.45 0.55 0.45 0.55 tCK 1-4
tHP Clock Half Period min (tCL, tCH) min (tCL, tCH) min (tCL, tCH) ns 1-4
tCK Clock cycle time CL = 2.5 7 12 7 12 8 12 ns 1-4
tCK CL = 2.0 7.5 12 7.5 12 10 12 ns 1-4
tDH DQ and DM input hold time 0.5 0.5 0.6 ns 1-4
tDS DQ and DM input setup time 0.5 0.5 0.6 ns 1-4
tIPW Control and Addr. input pulse width (each input) 2.2 2.2 2.5 ns 1, 10
tDIPW DQ and DM input pulse width (each input) 1.75 1.75 2 ns 1-4,11
tHZData-out high-impedence time from CK/CK 0.75 +0.75 0.75 +0.75 0.8 +0.8 ns 1-4, 5
tLZData-out low-impedence time from CK/CK 0.75 +0.75 0.75 +0.75 0.8 +0.8 ns 1-4, 5
tDQSS Write command to 1st DQS latching transition 0.75 1.25 0.75 1.25 0.75 1.25 tCK 1-4
tDQSQ
DQS-DQ skew
(for DQS & associated DQ signals) +0.5 +0.5 +0.6 ns 1-4
tQHS Data hold skew factor + 0.75 + 0.75 + 1.0 ns 1-4
tQH Data Output hold time from DQS tHP-tQHS tHP-tQHS tHP-tQHS ns 1-4
tDQSL,H DQS input low (high) pulse width (write cycle) 0.35 0.35 0.35 tCK 1-4
tDSS DQS falling edge to CK setup time (write cycle) 0.2 0.2 0.2 tCK 1-4
tDSH DQS falling edge hold time from CK (write cycle) 0.2 0.2 0.2 tCK 1-4
tMRD Mode register set command cycle time 14 14 16 ns 1-4
tWPRES Write preamble setup time 0 0 0 ns 1-4, 7
tWPST Write postamble 0.40 0.60 0.40 0.60 0.40 0.60 tCK 1-4, 6
tWPRE Write preamble 0.25 0.25 0.25 tCK 1-4
tIS
Address and control input setup
time
fast slew rate 0.9 0.9 1.1 ns
2-4,
10,11
slow slew rate 1.0 1.0 1.1 ns
tIH Address and control input hold time fast slew rate 0.9 0.9 1.1 ns
slow slew rate 1.0 1.0 1.1 ns
tRPRE Read preamble 0.9 1.1 0.9 1.1 0.9 1.1 tCK 1-4
tRPST Read postamble 0.40 0.60 0.40 0.60 0.40 0.60 tCK 1-4
tRAS Active to Precharge command 45 120,000 45 120,000 50 120,000 ns 1-4
tRC Active to Active/Auto-refresh command period 60 65 70 ns 1-4
tRFC
Auto-refresh to Active/Auto-refresh
command period 75 75 80 ns 1-4
tRCD Active to Read or Write delay 15 20 20 ns 1-4
tRP Precharge command period 15 20 20 ns 1-4
tRRD Active bank A to Active bank B command 15 15 15 ns 1-4
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 13 2002-08-16 (0.91)
tWR Write recovery time 15 15 15 ns 1-4
tDAL
Auto precharge write recovery
+ precharge time
(twr/tck) + (trp/
tck) (twr/tck) + (trp/tck) tCK 1-4,9
tWTR Internal write to read command delay 1 1 1 tCK 1-4
tXSNR Exit self-refresh to non-read command 75 75 80 ns 1-4
tXSRD Exit self-refresh to read command 200 200 200 tCK 1-4
tREFI Average Periodic Refresh Interval 256Mb based 7.8 7.8 7.8 1-4, 8
µs
1. Input slew rate >=1V/ns for DDR266 and = 1V/ns for DDR200.
2. The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level
for signals other than CK/CK,isV
REF. CK/CK slew rate are >= 1.0 V/ns.
3. Inputs are not recognized as valid until VREF stabilizes.
4. The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (Note 3) is VTT.
5. tHZand tLZtransitions occur in the same access time windows as valid data transitions. These parameters are not referred to a
specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ).
6. The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
7. The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge. A valid
transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in
progress on the bus, DQS will be transitioning from Hi-Zto logic LOW. If a previous write was in progress, DQS could be HIGH,
LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS.
8. A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device.
9. For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock cycle
time.
10. These parameters guarantee device timing, but they are not necessarily tested on each device
11. Fast slew rate >= 1.0 V/ns , slow slew rate >= 0.5 V/ns and <1V/ns for command/address and CK & CK slew rate >1.0 V/ns, mea-
sured between VOH(ac) and VOL(ac)
Electrical Characteristics & AC Timing for DDR-I components
(for reference only)
(0 °CTA70 °C; VDDQ =2.5V± 0.2V;VDD =2.5V± 0.2V)
Symbol Parameter
DDR266F
-7F
DDR266A
-7
DDR200
-8 Unit Notes
Min Max Min Max Min Max
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 14 2002-08-16 (0.91)
SPD Codes
256MB
x72
1bank
-7F
256MB
x72
1bank
-7
256MB
x72
1bank
-8
512MB
x72
1bank
-7F
512MB
x72
1bank
-7
512MB
x72
1bank
-8
1GB
x72
2bank
-7F
1GB
x72
2bank
-7
1GB
x72
2bank
-8
HEXHEXHEXHEXHEXHEXHEXHEXHEX
0 NumberofSPDBytes 128 808080808080808080
1 Total Bytes in Serial PD 256 08 08 08 08 08 08 08 08 08
2 Memory Type DDR-SDRAM 07 07 07 07 07 07 07 07 07
3 Number of Row Addresses 13 0D 0D 0D 0D 0D 0D 0D 0D 0D
4 Number of Column Addresses 10 / 11 0A 0A 0A 0B 0B 0B 0B 0B 0B
5 NumberofDIMMBanks 1/2 010101010101020202
6 Module Data Width x72 48 48 48 48 48 48 48 48 48
7 Module Data Width (cont’d) 0 00 00 00 00 00 00 00 00 00
8 Module Interface Levels SSTL_2.5 04 04 04 04 04 04 04 04 04
9 SDRAM Cycle Time at CL = 2.5 7ns / 8ns 70 70 80 70 70 80 70 70 80
10 Access Time from Clock at CL = 2.5 0.75ns / 0.8ns 75 75 80 75 75 80 75 75 80
11 DIMMConfig ECC 020202020202020202
12 Refresh Rate/Type Self-Refresh, 7.8ms 82 82 82 82 82 82 82 82 82
13 SDRAMWidth,Primary x8/x4 080808040404040404
14 Error Checking SDRAM Data Width na 08 08 08 04 04 04 04 04 04
15 Minimum Clock Delay for Back-to-Back
Random Column Address tccd=1CLK 010101010101010101
16 Burst Length Supported 2, 4 & 8 0E 0E 0E 0E 0E 0E 0E 0E 0E
17 Number of SDRAM Banks 4 04 04 04 04 04 04 04 04 04
18 Supported CAS Latencies CAS latency = 2 & 2.5 0C 0C 0C 0C 0C 0C 0C 0C 0C
19 CS Latencies CS latency = 0 01 01 01 01 01 01 01 01 01
20 WELatencies Writelatency=1 020202020202020202
21 SDRAM DIMM Module Attributes registered 26 26 26 26 26 26 26 26 26
22 SDRAM Device Attributes: General Concurrent Auto
Prechar
g
eC0 C0 C0 C0 C0 C0 C0 C0 C0
23 Min. Clock Cycle Time at CAS Latency = 2 7.5ns / 10ns 75 75 A0 75 75 A0 75 75 A0
24 Access Time from Clock for CL = 2 0.75ns / 0.8ns 75 75 80 75 75 80 75 75 80
25 Minimum Clock Cycle Time at CL = 1.5 not supported 00 00 00 00 00 00 00 00 00
26 Access Time from Clock at CL = 1.5 not supported 00 00 00 00 00 00 00 00 00
27 Minimum Row Precharge Time 20ns 3C 50 50 3C 50 50 3C 50 50
28 Minimum Row Act. to Row Act. Delay tRRD 15ns 3C 3C 3C 3C 3C 3C 3C 3C 3C
29 Minimum RAS to CAS Delay tRCD 20ns 3C 50 50 3C 50 50 3C 50 50
30 Minimum RAS Pulse Width tRAS 45ns / 50ns 2D 2D 32 2D 2D 32 2D 2D 32
31 Module Bank Density (per bank) 256MByte / 512MByte 40 40 40 80 80 80 80 80 80
32 Addr. and Command Setup Time 0.9ns / 1.1ns 90 90 B0 90 90 B0 90 90 B0
33 Addr. and Command Hold Time 0.9ns / 1.1ns 90 90 B0 90 90 B0 90 90 B0
34 Data Input Setup Time 0.5ns / 0.6ns 50 50 60 50 50 60 50 50 60
35 Data Input Hold Time 0.5ns / 0.6ns 50 50 60 50 50 60 50 50 60
36-40 Superset Information 00 00 00 00 00 00 00 00 00
41 Minimum Core Cycle Time tRC 65ns / 70ns 3C 41 46 3C 41 46 3C 41 46
42 Min. Auto Refresh Cmd Cycle Time tRFC 75ns / 80ns 4B 4B 50 4B 4B 50 4B 4B 50
43 Maximum Clock Cycle Time tck 12ns 30 30 30 30 30 30 30 30 30
44 Max. DQS-DQ Skew tDQSQ 0.5ns / 0.6ns 32 32 3C 32 32 3C 32 32 3C
45 X-Factor tQHS 0.75ns / 1.0ns 75 75 A0 75 75 A0 75 75 A0
46-61 Superset Information 00 00 00 00 00 00 00 00 00
62 SPD Revision Revision 0.0 00 00 00 00 00 00 00 00 00
63 Checksum for Bytes 0 - 62 9D CA BF D6 03 F8 D7 04 F9
64 Manufacturers JEDEC ID Code C1 C1 C1 C1 C1 C1 C1 C1 C1
65-71 Manufacturer INFI-
NEON
INFI-
NEON
INFI-
NEON
INFI-
NEON
INFI-
NEON
INFI-
NEON
INFI-
NEON
INFI-
NEON
INFI-
NEON
72 Module Assembly Location
73-90 Module Part Number
91-92 Module Revision Code
93-94 Module Manufacturing Date
95-98 Module Serial Number
99-127
128-255 open for Customer use
Byte# Description
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 15 2002-08-16 (0.91)
Package Outlines Raw Card L
Module Package
DDR-I Registered DIMM Modules 1.2” Low Profile Raw Card L
256MB (one physical bank, 9 components)
note: all outline dimensions and tolerances are in accordance with the JEDEC standard
L-DIM-184-13 Raw Card L Reg.
1U
*) on ECC modules only
Detail of Contacts A
2.5
1
1.27
0.20
+0.05
-
+0.20
-
+0.15
-
1.27
4.0 max.
+0.1
-
Detail of Contacts B
3.8 typ.
2.175
6.35
1.8
0.9R
PLL
Register Register
133.35
2.3 typ.
53
52
64.77
92
2.3 typ.
1.2"/ 30.4 max.
pin 1
+0.15
-
6.62
49.53
4.0
Front View
144 145 184
17.80
3
10.0
3
pin 93
2.5D
Backside View
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 16 2002-08-16 (0.91)
Package Outlines Raw Card M
L-DIM-184-12 Raw Card M Reg.
1U
*) on ECC modules only
Detail of Contacts A
2.5
1
1.27
0.20
+0.05
-
+0.20
-
+0.15
-
1.27
4.0 max.
+0.1
-
Detail of Contacts B
3.8 typ.
2.175
6.35
1.8
0.9R
PLL
133.35
2.3 typ.
53
52
64.77
92
2.3 typ.
1.2"/ 30.4 max.
pin 1
+0.15
-
6.62
49.53
4.0
Front View
144 145 184
17.80
3
10.0
3
pin 93
2.5D
Backside View
Register
Register
Module Package
DDR-I Registered DIMM Modules 1.2” Low Profile Raw Card M
512 MB (one physical bank, 18 components)
note: all outline dimensions and tolerances are in accordance with the JEDEC standard
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 17 2002-08-16 (0.91)
Package Outlines Raw Card with stacked components
Module Package
DDR-I Registered DIMM Modules 1.2” Low Profile Raw Card N
1GB (two physical banks, 36 components)
note: all outline dimensions and tolerances are in accordance with the JEDEC standard
L-DIM-184-14 Raw Card Reg.
1U
*) on ECC modules only
Detail of Contacts A
2.5
1
1.27
0.20
+0.05
-
+0.20
-
+0.15
-
1.27
6.8 max.
+0.1
-
Detail of Contacts B
3.8 typ.
2.175
6.35
1.8
0.9R
PLL
133.35
2.3 typ.
53
52
64.77
92
2.3 typ.
1.2"/30.4max.
pin 1
+0.15
-
6.62
49.53
4.0
Front View
144 145 184
17.80
3
10.0
3
pin 93
2.5D
Backside View
Register
Register
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 18 2002-08-16 (0.91)
APPLICATION NOTE:
Power Up and Power Management on DDR Registered DIMMs
(according to JEDEC ballot JC-42.5 Item 1173)
184-pin Double Data Rate (DDR) Registered DIMMs include two new features to facilitate controlled power-up
and to minimize power consumption during low power mode. One feature is externally controlled via a system-
generated RESET signal;the second is based on module detection of the input clocks. These enhancements
permit the modules to power up with SDRAM outputs in a High-Zstate (eliminating risk of high current dissipa-
tions and/or dotted I/Os), and result in the powering-down of module support devices (registers and Phase-
Locked Loop) when the memory is in Self-Refresh mode.
The new RESET pin controls power dissipation on the module’s registers and ensures that CKE and other
SDRAM inputs are maintained at a valid ‘low’ level during power-up and self refresh. When RESET is at a low
level, all the register outputs are forced to a low level, and all differential register input receivers are powered
down, resulting in very low register power consumption. The RESET pin, located on DIMM tab #10, is driven
from the system as an asynchronous signal according to the attached details. Using this function also permits the
system and DIMM clocks to be stopped during memory Self Refresh operation, while ensuring that the SDRAMs
stay in Self Refresh mode.
ThefunctionforRESETisasfollows:
As described in the table above, a low on the RESET input ensures that the Clock Enable (CKE) signal(s) are
maintained low at the SDRAM pins (CKE being one of the 'Q'signals at the register output). Holding CKE low
maintains a high impedance state on the SDRAM DQ, DQS and DM outputs where they will remain until acti-
vated by a valid ‘read’ cycle. CKE low also maintains SDRAMs in Self Refresh mode when applicable.
The DDR PLL devices automatically detect clock activity above 20MHz. When an input clock frequency of
20MHz or greater is detected, the PLL begins operation and initiates clock frequency lock (the minimum operat-
ing frequency at which all specifications will be met is 95MHz). If the clock input frequency drops below 20MHz
(actual detect frequency will vary by vendor), the PLL VCO (Voltage Controlled Oscillator) is stopped, outputs are
Register Inputs Register
Outputs
RESET CK CK Data in (D) Data out (Q)
H Rising Falling H H
H Rising Falling L L
H L or H L or H XQo
HHighZHigh ZX
Illegal input
conditions
LXor Hi-ZXor Hi-ZXor Hi-ZL
X:Dontcare,Hi-Z: High Impedance, Qo: Data latched at the previous of CK
risning and CK falling
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 19 2002-08-16 (0.91)
made High-Z, and the differential inputs are powered down resulting in a total PLL current consumption of less
than 1mA. Use of this low power PLL function makes the use of the PLL RESET (or G pin) unnecessary, and it is
tied inactive on the DIMM.
This application note describes the required and optional system sequences associated with the DDR Regis-
tered DIMM 'RESET'function. It is important to note that all references to CKE refer to both CKE0 and CKE1 for
a 2-bank DIMM. Because RESET applies to all DIMM register devices, it is therefore not possible to uniquely
control CKE to one physical DIMM bank through the use of the RESET pin.
Power-Up Sequence with RESET —Required
1. The system sets RESET at a valid low level.
This is the preferred default state during power-up. This input condition forces all register outputs to a low
state independent of the condition on the register inputs (data and clock), ensuring that CKE is at a stable
low-level at the DDR SDRAMs.
2. The power supplies should be initialized according to the JEDEC-approved initialization sequence for DDR
SDRAMs.
3. Stabilization of Clocks to the SDRAM
The system must drive clocks to the application frequency (PLL operation is not assured until the input clock
reaches 20MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices,
and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM
PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds. When
a stable clock is present at the SDRAM input (driven from the PLL), the DDR SDRAM requires 200 µsec prior
to SDRAM operation.
4. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM con-
nector).
CKE must be maintained low and all other inputs should be driven to a known state. In general these com-
mands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with
CKE low), as this is the first command defined by the JEDEC initialization sequence (ideally this would be a
‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs to be consistent
with the state of the register outputs.
5. The system switches RESET toalogichighlevel.
The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous,
setting the RESET timing in relation to a specific clock edge is not required (during this period, register inputs
must remain stable).
6. The system must maintain stable register inputs until normal register operation is attained.
The registers have an activation time that allows their clock receivers, data input receivers, and output drivers
sufficient time to be turned on and become stable. During this time the system must maintain the valid logic
levels described in step 5. It is also a functional requirement that the registers maintain a low state at the CKE
outputs to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time
(t (ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to
accept an input signal, is specified in the register and DIMM do-umentation.
7. The system can begin the JEDEC-defined DDR SDRAM power-up sequence (according to the JEDEC-
pproved initialization sequence).
Self Refresh Entry (RESET low, clocks powered off) Optional
Self Refresh can be used to retain data in DDR SDRAM DIMMs even if the rest of the system is powered down
and the clocks are off. This mode allows the DDR SDRAMs on the DIMM to retain data without external clocking.
Self Refresh mode is an ideal time to utilize the RESET pin, as this can reduce register power consumption
(RESET low deactivates register CK and CK, data input receivers, and data output drivers).
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 20 2002-08-16 (0.91)
1. The system applies Self Refresh entry command.
(CKELow, CSLow, RASLow, CASLow, WEHigh)
Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a
Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input
conditions to the SDRAM are Don’t Cares— with the exception of CKE.
2. The system sets RESET at a valid low level.
This input condition forces all register outputs to a low state, independent of the condition on the registerm
inputs (data and clock), and ensures that CKE, and all other control and address signals, are a stable low-
level at the DDR SDRAMs. Since the RESET signal is asynchronous, setting the RESET timing in relation to
a specific clock edge is not required.
3. The system turns off clock inputs to the DIMM. (Optional)
a. In order to reduce DIMM PLL current, the clock inputs to the DIMM are turned off, resulting in High-Zclock
inputs to both the SDRAMs and the registers. This must be done after the RESET deactivate time of the reg-
ister (t (INACT) ). The deactivate time defines the time in which the clocks and the control and address sig-
nals must maintain valid levels after RESET low has been applied and is specified in the register and DIMM
documentation.
b. The system may release DIMM address and control inputs to High-Z.
This can be done after the RESET deactivate time of the register. The deactivate time defines the time in
which the clocks and the control and the address signals must maintain valid levels after RESET low has
been applied. It is highly recommended that CKE continue to remain low during this operation.
4. The DIMM is in lowest power Self Refresh mode.
Self Refresh Exit (RESET low, clocks powered off) Optional
1. Stabilization of Clocks to the SDRAM.
The system must drive clocks to the application frequency (PLL operation is not assured until the input clock
reaches ~20MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices,
and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM
PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds.
2. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM con-
nector).
CKE must be maintained low and all other inputs should be driven to a known state. In general these com-
mands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with
CKE low), as this is the first command defined by the JEDEC Self Refresh Exit sequence (ideally this would
be a ‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs, to be con-
sistent with the state of the register outputs.
3. The system switches RESET toalogichighlevel.
The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous,
RESET timing relationship to a specific clock edge is not required (during this period, register inputs must
remain stable).
4. The system must maintain stable register inputs until normal register operation is attained.
The registers have an activation time that allows the clock receivers, input receivers, and output drivers suffi-
cient time to be turned on and become stable. During this time the system must maintain the valid logic levels
described in Step 2. It is also a functional requirement that the registers maintain a low state at the CKE out-
puts to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time (t
(ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to
accept an input signal, is specified in the register and DIMM do-umentation.
5. System can begin the JEDEC-defined DDR SDRAM Self Refresh Exit Procedure.
Self Refresh Entry (RESET low, clocks running) Optional
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 21 2002-08-16 (0.91)
Although keeping the clocks running increases power consumption from the on-DIMM PLL during self refresh,
this is an alternate operating mode for these DIMMs.
1. System enters Self Refresh entry command.
(CKELow, CSLow, RASLow, CASLow, WEHigh)
Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a
Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input
conditions to the SDRAM are Don’t Cares with the exception of CKE.
2. The system sets RESET at a valid low level.
This input condition forces all register outputs to a low state, independent of the condition on the data and
clock register inputs, and ensures that CKE is a stable low-level at the DDR SDRAMs.
3. The system may release DIMM address and control inputs to High-Z.
This can be done after the RESET deactivate time of the register (t (INACT) ). The deactivate time describes
the time in which the clocks and the control and the address signals must maintain valid levels after RESET
low has been applied. It is highly recommended that CKE continue to remain low during the operation.
4. The DIMM is in a low power, Self Refresh mode.
Self Refresh Exit (RESET low, clocks running) Optional
1. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM con-
nector).
CKE must be maintained low and all other inputs should be driven to a known state. In general these com-
mands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with
CKE low), as this is the first command defined by the Self Refresh Exit sequence (ideally this would be a
‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs to be consistent
with the state of the register outputs.
2. The system switches RESET to a logic 'high' level.
The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous,
it does not need to be tied to a particular clock edge (during this period, register inputs must continue to
remain stable).
3. The system must maintain stable register inputs until normal register operation is attained.
The registers have an activation time that allows the clock receivers, input receivers, and output drivers suffi-
cient time to be turned on and become stable. During this time the system must maintain the valid logic levels
described in Step 1. It is also a functional requirement that the registers maintain a low state at the CKE out-
puts in order to guarantee that the DDR SDRAMs continue to receive a low level on CKE. This activation
time, from asynchronous switching of RESET from low to high, until the registers are stable and ready to
accept an input signal, is t (ACT ) as specified in the register and DIMM documentation.
4. The system can begin JEDEC defined DDR SDRAM Self Refresh Exit Procedure.
Self Refresh Entry/Exit (RESET high, clocks running) Optional
As this sequence does not involve the use of the RESET function, the JEDEC standard SDRAM specification
explains in detail the method for entering and exiting Self Refresh for this case.
Self Refresh Entry (RESET high, clocks powered off) Not Permissible
In order to maintain a valid low level on the register output, it is required that either the clocks be running and the
system drive a low level on CKE, or the clocks are powered off and RESET is asserted low according to the
HYS 72Dxx5xxGR-7F/7/8-B
Registered DDR-I SDRAM-Modules
INFINEON Technologies 22 2002-08-16 (0.91)
sequence defined in this application note. In the case where RESET remains high and the clocks are powered
off, the PLL drives a High-Zclock input into the register clock input. Without the low level on RESET an unknown
DIMM state will result.