International T@R Rectifier Description Advanced Process Technology Ultra Low On-Resistance isolated Package High Voltage isolation = 2.5KVRMS Sink to Lead Creepage Dist. = 4.8mm Fully Avalanche Rated PD - 9.1374B IRFI3205 HEXFET Power MOSFET D Voss = 55V Rogion) = 0.008Q ip = 64A Fifth Generation HEXFET Power MOSFETs from international Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design for which HEXFET Power MOSFETs are well known, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 Full-Pak eliminates the need for additional insulating hardware in commercial-industrial applications. The moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The Full-Pak is mounted to a heatsink using a single clip or by a single screw fixing. Absolute Maximum Ratings TO-220 Full-Pak Parameter Max. Units Ip @ Te = 25C Continuous Drain Current, Vag @ 10V 64 Ip @ Te = 100C! Continuous Drain Current, Veg @ 10V 45 A lom Pulsed Drain Current O 390 Pp @Te = 25C Power Dissipation 63 WwW Linear Derating Factor 0.42 wre Vas Gate-to-Source Voltage + 20 Vv Eas Single Pulse Avalanche Energy @ 480 mJ lar Avalanche Current 59 A Ear Repetitive Avalanche Energy 6.3 mJ dv/dt Peak Diode Recovery dv/dt @ 5.0 Vins Ty Operating Junction and -55 to+175 Tst Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 10 Ibfein (1.1Nem) Thermal Resistance Parameter Typ. Max. Units ReJe Junction-to-Case _ 2.4 CIW Resa Junction-to-Ambient 65 CW C-300 www.irf.com International IRFI3205 TOR Rectifier Electrical Characteristics @ T, = 25C (unless otherwise specified) Parameter Min. | Typ. | Max. | Units Conditions Vieryoss Drain-to-Source Breakdown Voltage 55 fl Vs| Ves = OV, Ip = 250A AVerpse/ATs| Breakdown Voltage Temp. Coefficient |0.057| | VC] Reference to 25C, Ip = imA Rosjon} Static Drain-to-Source On-Resistance | | |0.008} | Vgg=10V, Ip =34A@ Vasith) Gate Threshold Voltage 2.0 | | 4.0 V_ | Vos = Vas, Ip = 250pA Os Forward Transconductance 42 -f S| Vps = 25V, lp = 59A loss Drain-Source Leakage Current | | 25 pA Vos = 5SV, Vas = OV _ | 250 Vos = 44V, Veg = OV, Ty = 150C less Gate-to-Source Forward Leakage _ | 100 nA Vas = 20V Gate-to-Source Reverse Leakage _ |-100 Vas = -20V Qy Total Gate Charge -~ | | 170 Ip = 59A Qos Gate-to-Source Charge _ | 32 nC | Vos = 44V Qga Gate-to-Drain (Miller) Charge _ | 74 Ves = 10V, see figure 6 and 13 @ tavon) Turn-On Delay Time _ 14 | Vop = 28V t Rise Time | 100; Ip = 58A tao Turn-Off Delay Time =a ~] | rg=250 t Fall Time _ 70; Rp = 0.399, see figure 10 @ bo internal Drain inductance | 45s] Between lead, ~e nH em van . rom package : bs intemal Source Inductance | 75) and center of die contact ~~ Ciss input Capacitance ~~ }|4000} Ves = OV Coss Output Capacitance |13900| pF Vps = 25V Criss Reverse Transfer Capacitance {| 480] f = 1.0MHz, see figure 5 Cc Drain to Sink Capacitance 12) f = 1.0MHz Source-Drain Ratings and Characteristics Parameter Min. | Typ.) Max. | Units Conditions Is Continuous Source Current _|1| 64 MOSFET symbol 8 (Body Diode) A showing the ism Pulsed Source Current integral reverse a (Body Diode) D | = | 390 p-n junction diode. : Vsp Diode Forward Voltage }|) 13 Vo] Ty = 25C, Ig = 34A, Vag = OV @ ter Reverse Recovery Time | 110] 170 | ns | Ty= 25C, lp = 59A On Reverse RecoveryCharge | 450] 680 | nC | di/dt = 100A/us @ ton Forward Turn-On Time intrinsic tum-on time is negligible (tum-on is dominated by Lxg+p) Notes: Repetitive rating; pulse width limited by max. junction temperature. (see figure 11) Vpp = 25V, starting Tj = 25C, L = 190UH,Re = 250, Ing = 59A. (see figure 12) Isp < 59A, di/dt < 290A/us, Vop < Vianyoss, Ty s 175C www.irf.com @ Pulse width < 300ps; duty cycle < 2% t= 60s, f= 60Hz Uses IRF3205 data and test conditions C-301 IRFI3205 ip, Drain-to-Source Current (A) C-30 In , Drain-to-Source Current (A) 1000 100 mi 4.5 pik | | 20us PULSE WIDTH Ty= 25C 04 1 10 Vos: Drain-to-Source Voltage (V) 100 Fig 1. Typical Output Characteristics 1000 Ty= V os= 25V 20us PULSE WIDTH 4 5 6 7 8 9 Veg . Gate-to-Source Voltage (V) 10 Fig 3. Typical Transfer Characteristics 2 Drain-to-Source On Resistance R psion) b , Drain-to-Source Current (A) International TOR Rectifier 1000 100 20s PULSE WIDTH i Tas 175C 0.1 1 10 Vog. Drain-to-Source Voltage (V} 100 Fig 2. Typical Output Characteristics 2.0 Ip = 98A Ped, YY i ; | 4 : 15 ttt | 3 Of tobe f Bh 1.0 | : i a : o : : i i : 5 An 0.5 l Pe fe fo ded. of deh fp 0.0 : Vag = 10V 60 -40 -20 0 20 40 60 80 100 120 140 160 186 T, , Junction Temperature (C) Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com International TOR Rectifier 9000 gs = OV, f= 1MHz iss =Cgg + C Cys SHORTED iss gs gd. ds 7000 res = Cga =Cqs + C _ 6000 ub & @ 5000 o can 8 = 4000 oS Qa. 3000 oO 2000 1000 0 1 10 100 Vg, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voitage 1060 pooner T - : t ~ | = e 2 5 oO c Ss Oo 2 Do > wo cc 2 : Vas =0V 0.6 1.0 1.4 1.8 2.2 28 3.0 www. Vsp , Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage irf.com Ip, Drain Current (A) OR = 59A | > me o 16 _o 3 | be ly, = a = Lf > A @ 12 (Am 2 a i 5 oa t + on : ! 8 an: 3 Oo mofet 4 = : FOR TEST CIRCUIT 0 SEE FIGURE 13 0 30 60 90 120 150 180 Qg, Total Gate Charge (nC} Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000 OPERATION IN THIS AREA LIMITED 10 10 25C i 178C 0 0 P Pulse ; To r $ 1 1 10 Vos Drain-to-Source Voltage (V) 106 Fig 8. Maximum Safe Operating Area C-303 IRFI3205 International TOR Rectifier 70 1200 > lp E \ : TOP 24a 60 > : 42A 2 100 BOTTOM 59A na @ 4 , c ond : " " o Qo 5 40 & Oo oc < 30 o a 2 : a. 2 20 @ D> & 10 a a 0 Lt 25 50 75 100 125 150 175 " . To, Case Temperature (C) 26 80 75 100 125 150 175 Starting T; , Junction Temperature (C) Fig 9. Maximum Drain Current Vs. Fig 12. Maximum Avalanche Energy Case Temperature Vs. Drain Current 10 a1 pee hod edt vi Thermal Response (Z wnJjc) - E PULSE 7 ' : Notes: (THERMAL RESPONSE) a ie " " 4. Duty factor D= ty ite 2. Peak Ty=P om Zinsc + Tc 0.01 0.00001 0.0001 0.001 0.01 O41 1 10 t,, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case Mechanica! drawings, Appendix A Part marking information, Appendix B Test Circuit diagrams, Appendix C C-304 www.irf.com