LTC5576 3GHz to 8GHz High Linearity Active Upconverting Mixer Description Features 25dBm OIP3 nn -0.6dB Conversion Gain nn 14.1dB Noise Figure at 5.8GHz nn -154dBm/Hz Output Noise Floor nn Low LO-RF Leakage nn 0dBm LO Drive nn Broadband 50 Matched Input nn High Input P1dB: 10dBm at 5V nn 5V or 3.3V Supply at 99mA nn Single-Ended Output and LO Input nn Enable Pin nn -40C to 105C Operation (T ) C nn 16-Lead (4mm x 4mm) QFN Package The LTC(R)5576 is a high linearity active mixer optimized for upconverting applications requiring wide input bandwidth, low distortion and low LO leakage. The integrated output transformer is optimized for 4GHz to 6GHz applications, but is easily retuned for output frequencies as low as 3GHz, or as high as 8GHz, with minor performance degradation. The input is optimized for use with 1:1 transmission-line baluns, allowing very wideband impedance matching. nn The LO input port is single-ended and requires only 0dBm of LO power to achieve excellent distortion and noise performance while also reducing circuit requirements. The LTC5576 offers low LO leakage, reducing the demands of output filtering to meet LO suppression requirements. The LTC5576 is optimized for 5V but can also be used with a 3.3V supply with slightly reduced performance. The enable function allows the part to be easily shut down for further power savings. Applications Wideband Transmitters 4G and 5G Wireless Infrastructure nn Fixed Wireless Access Equipment nn Wireless Repeaters nn nn L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Typical Application 100pF OIP3 and Conversion Gain vs Output Frequency (LSLO) 0.3pF LO 50 TC1-1-13M 1:1 100pF 100pF LO IN+ IN- LGND EN OUT BIAS 0.2pF VCC OUT 50 25 10 20 15 fIN = 456MHz fIN = 900MHz OIP3 GC 10 5 0 -5 TC = 25C, OUTPUT TUNED FOR EACH BAND 5 -10 3000 4000 5000 6000 7000 8000 OUTPUT FREQUENCY (MHz) IADJ 2.61k EN 15 GAIN (dB) IN 50 TEMP OIP3 (dBm) TEMPERATURE MONITOR 30 5576 TA01b 5V 10nF 1F 5576 TA01a 5576fa For more information www.linear.com/LTC5576 1 LTC5576 Absolute Maximum Ratings Pin Configuration (Note 1) Supply Voltage (VCC)...................................................6V Enable Voltage..................................-0.3V to VCC + 0.3V IADJ Pin Voltage...........................................-0.3 to 2.7V LO Input Power (1GHz to 8GHz).......................... +10dBm IN+, IN- Input Power (30MHz to 6GHz)............... +15dBm TEMP Input Current................................................10mA Operating Temperature Range (TC)......... -40C to 105C Junction Temperature (TJ)..................................... 150C Storage Temperature Range................... -65C to 150C GND GND LO TP TOP VIEW 16 15 14 13 12 GND TEMP 1 IN+ 2 11 GND 17 IN- 3 10 OUT LGND 4 7 EN VCC GND 8 IADJ 6 VCC 9 5 UF PACKAGE 16-LEAD (4mm x 4mm) PLASTIC QFN TJMAX = 150C, JC = 6C/W EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB Order Information (http://www.linear.com/product/LTC5576#orderinfo) LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION CASE TEMPERATURE RANGE LTC5576IUF#PBF LTC5576IUF#TRPBF 5576 16-Lead (4mm x 4mm) Plastic QFN -40C to 105C Consult LTC Marketing for parts specified with wider operating temperature ranges. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix. DC Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25C, VCC = 5V. Test circuit shown in Figure 1. (Note 2) PARAMETER CONDITIONS Supply Voltage (VCC) 5V Supply 3.3V Supply Supply Current 5V, R1 = 2.61k 3.3V, R1 = 649 Shutdown (EN = Low) l l MIN TYP MAX UNITS 4.5 3.1 5 3.3 5.3 3.5 V V 99 85 1.3 112 mA mA mA Enable Logic Input (EN) EN Input High Voltage (On) 1.8 V EN Input Low Voltage (Off) EN Input Current -0.3V to VCC + 0.3V -20 0.5 V 200 A Turn-On Time 0.6 s Turn-Off Time 0.6 s Open Circuit DC Voltage 1.8 V Short Circuit DC Current 1.9 mA mV mV Current Adjust Pin (IADJ) Temperature Sensing Diode (TEMP) DC Voltage at TJ = 25C IIN = 10A IIN = 80A 697 755 Voltage Temperature Coefficient IIN = 10A IIN = 80A -1.80 -1.61 2 mV/C mV/C 5576fa For more information www.linear.com/LTC5576 LTC5576 AC Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25C. VCC = 5V, EN = High, PLO = 0dBm. Test circuit shown in Figure 1. (Notes 2, 3) PARAMETER CONDITIONS MIN TYP MAX LO Input Frequency Range External Matching Required l 1 to 8 Input (IN) Frequency Range External Matching Required l 0.03 to 6 GHz Output (OUT) Frequency Range External Matching Required l 3 to 8 GHz Input Return Loss ZO = 50 >10 dB LO Input Return Loss ZO = 50 LO Input Power Single-Ended LO to IN Leakage fLO = 1GHz to 8GHz -30 dBm IN to LO Isolation fIN = 0.1GHz to 6GHz >35 dB GHz >10 l -6 0 UNITS dB 6 dBm AC Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25C. VCC = 5V, EN = High, PIN = -10dBm (-10dBm/Tone for 2-tone tests, f = 2MHz), PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3 and 4) 5V Upmixer Application: Low Side LO, PLO, = 0dBm, PIN = -10dBm PARAMETER CONDITIONS MIN TYP Conversion Gain fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz -1.5 -0.6 -0.6 -2.0 Conversion Gain vs Temperature TC = -40C to 105C, fOUT = 5.8GHz -0.009 dB/C Output 3rd Order Intercept fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz 25 25 25 dBm dBm dBm SSB Noise Figure fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz 12.4 14.1 17.5 dB dB dB SSB Noise Floor at PIN = 5dBm fIN = 1GHz, fOUT = 5801MHz, fLO = 4899MHz -154 dBm/Hz Input 1dB Compression fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz 10.8 10.4 10.3 dBm dBm dBm LO-OUT Leakage fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz -36 -35 -28 dBm dBm dBm IN to OUT Isolation fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz 70 38 35 dB dB dB l MAX UNITS dB dB dB 5576fa For more information www.linear.com/LTC5576 3 LTC5576 AC Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25C. VCC = 3.3V, EN = High, PIN = -10dBm (-10dBm/Tone for 2-tone tests, f = 2MHz), PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3 and 4) 3.3V Upmixer Application: Low Side LO, PLO, = 0dBm, PIN = -10dBm PARAMETER CONDITIONS MIN Conversion Gain fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz TYP -0.6 -0.6 -2.0 MAX UNITS dB dB dB Conversion Gain vs Temperature TC = -40C to 105C, fOUT = 5.8 GHz -0.009 dB/C Output 3rd Order Intercept fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz 21 23 19 dBm dBm dBm SSB Noise Figure fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz 11.5 12.8 17.8 dB dB dB SSB Noise Floor at PIN = 5dBm fIN = 1GHz, fOUT = 5801MHz, fLO = 4899MHz -154 dBm/Hz Input 1dB Compression fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO =4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz 8.4 8.5 8.1 dBm dBm dBm LO-OUT Leakage fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz -39 -36 -27 dBm dBm dBm IN to OUT Isolation fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz 70 38 33 dB dB dB Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTC5576 is guaranteed functional over the -40C to 105C case temperature range. 4 l Note 3: SSB noise figure measured with a small-signal noise source, bandpass filter and 3dB matching pad on IN port, and bandpass filter on the LO input. Note 4: Specified performance includes all external component and evaluation PCB losses. 5576fa For more information www.linear.com/LTC5576 LTC5576 Typical DC Performance Characteristics 5V Supply Current vs Supply Voltage 3.3V Supply Current vs Supply Voltage 110 R1 = 2.61k 105 105 100 100 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 110 95 90 85 80 TC = 105C 85C 25C -40C 75 70 4.5 (Test Circuit shown in Figure 1) 4.7 4.9 5.1 SUPPLY VOLTAGE (V) R1 = 649 TC = 105C 85C 25C -40C 95 90 85 80 75 70 5.3 3 3.1 3.2 3.3 3.4 SUPPLY VOLTAGE (V) 3.5 3.6 5576 G02 5576 G01 Typical AC Performance Characteristics 5V, 5800MHz Output Frequency: TC = 25C. VCC = 5V, EN = High, PIN = -10dBm (-10dBm/Tone for 2-tone tests, f = 2MHz), PLO = 0dBm, fIN = 900MHz, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain Distribution TC = 105C TC = 25C TC = -40C 30 25 20 15 10 25 15 10 5 5 0 -1.5 Noise Figure Distribution 30 TC = 105C TC = 25C TC = -40C 20 DISTRIBUTION (%) DISTRIBUTION (%) OIP3 Distribution 25 DISTRIBUTION (%) 35 -1 -0.5 GAIN (dB) 0 1.5 5576 G03 0 TC = 105C TC = 25C TC = -40C 20 15 10 5 18 20 22 24 26 OIP3 (dBm) 28 30 5576 G04 0 12.5 13.5 14.5 15.5 NF (dB) 5576 G05 5576fa For more information www.linear.com/LTC5576 5 LTC5576 Typical AC Performance Characteristics 5V, 3500MHz Output Frequency: TC = 25C. VCC = 5V, EN = High, PIN = -10dBm (-10dBm/Tone for 2-tone tests, f = 2MHz), PLO = 0dBm, fIN = 456MHz, fLO = fOUT - fIN, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain and OIP3 vs Output Frequency 30 30 25 OIP3 GAIN (dB), OIP3 (dBm) 25 20 15 NF 10 TC = 105C 85C 25C -40C 5 GC 0 -5 0 500 1000 1500 2000 2500 INPUT FREQUENCY (MHz) OIP3 TC = 105C 85C 25C -40C 15 5 3200 3400 3600 3800 OUTPUT FREQUENCY (MHz) -80 500 NF 15 10 TC = 105C 85C 25C -40C 5 GC -6 -4 -2 0 2 LO POWER (dBm) 4 PLO = -6dBm -4dBm -2dBm 0dBm 6dBm -154 -156 -158 -162 -20 -15 -10 -5 INPUT POWER (dBm) 0 2-Tone IM3 Level vs Output Power Level -10 -20 15 10 ISOLATION (dB) -60 -70 70 60 50 40 30 TC = 105C 85C 25C -40C 20 -80 10 5 5576 G12 TC = 105C 85C 25C -40C 5 GC 0 4.6 4.7 4.8 4.9 5 5.1 SUPPLY VOLTAGE (V) 0 5.2 5.3 5576 G11 30 80 -50 NF Conversion Gain, OIP3, NF and IP1dB vs Case Temperature 90 -40 -10 -5 0 OUTPUT POWER (dBm/TONE) 20 -5 4.5 5 100 -30 -90 -15 25 IN-OUT Isolation vs Input Frequency TC = 105C 85C 25C -40C 3500 OIP3 5576 G10 5576 G09 0 1500 2000 2500 3000 LO FREQUENCY (MHz) Conversion Gain, OIP3 and NF vs Supply Voltage 30 -160 6 1000 5576 G08 GAIN AND NF (dB), OIP3 (dBm) NOISE FLOOR (dBm/Hz) GAIN AND NF (dB), OIP3 (dBm) 4000 fOUT = 3663MHz fNOISE = 3581MHz -152 fLO = 3201MHz 20 LO-IN -70 -150 OIP3 0 IM3 LEVEL (dBc) -50 Output Noise Floor vs Input Power 25 LO-OUT -40 5576 G07 35 6 -30 -60 GC -5 3000 Conversion Gain, OIP3 and NF vs LO Input Power -5 -20 10 5576 G06 30 TC = 25C -10 20 0 3000 LO Leakage vs LO Frequency 0 LO LEAKAGE (dBm) 35 0 500 1000 1500 2000 2500 INPUT FREQUENCY (MHz) 3000 5576 G13 GAIN AND NF (dB), OIP3 AND IP1dB (dBm) GAIN AND NF (dB), OIP3 (dBm) Conversion Gain, OIP3 and NF vs Input Frequency 25 OIP3 20 15 10 NF IP1dB 5 0 -5 -45 GC -15 15 45 75 CASE TEMPERATURE (C) 105 5576 G14 5576fa For more information www.linear.com/LTC5576 LTC5576 Typical AC Performance Characteristics 5V, 5800MHz Output Frequency: TC = 25C. VCC = 5V, EN = High, PIN = -10dBm (-10dBm/Tone for 2-tone tests, f = 2MHz), PLO = 0dBm, fIN = 900MHz, fLO = fOUT - fIN, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain and OIP3 vs Output Frequency 35 35 30 30 20 NF 15 TC = 105C 85C 25C -40C 10 5 GC 0 -5 0 OIP3 800 1200 1600 2000 INPUT FREQUENCY (MHz) -10 20 15 10 5 GC -5 4500 2400 TC = 105C 85C 25C -40C 5000 5500 6000 6500 7000 OUTPUT FREQUENCY (MHz) Conversion Gain, OIP3 and NF vs LO Input Power LO-IN -50 7500 -60 3300 20 NF TC = 105C 85C 25C -40C 10 5 GC -6 -4 -2 0 2 LO POWER (dBm) 4 -156 -158 -160 6 -162 -20 -20 -10 -5 INPUT POWER (dBm) 0 5 ISOLATION (dB) 40 30 TC = 105C 85C 25C -40C 10 -80 5 5576 G21 4.6 4.7 4.8 4.9 5 5.1 SUPPLY VOLTAGE (V) 0 5.2 5.3 5576 G20 35 20 -70 GC Conversion Gain, OIP3, NF and IP1dB vs Case Temperature 50 -60 TC = 105C 85C 25C -40C 10 -5 4.5 5 60 -50 -10 -5 0 OUTPUT POWER (dBm/TONE) -15 70 TC = 105C 85C 25C -40C -40 NF 15 IN-OUT Isolation vs Input Frequency -30 -90 -15 20 5576 G19 2-Tone IM3 Level vs Output Power Level -10 OIP3 25 0 5576 G18 0 30 PLO = -6dBm -4dBm -2dBm 0dBm 6dBm -154 5800 Conversion Gain, OIP3 and NF vs Supply Voltage 0 500 1000 1500 2000 INPUT FREQUENCY (MHz) 2500 5576 G22 GAIN AND NF (dB), OIP3 AND IP1dB (dBm) 15 4300 4800 5300 LO FREQUENCY (MHz) 5576 G17 GAIN AND NF (dB), OIP3 (dBm) OIP3 25 3800 35 fOUT = 5899MHz fNOISE = 5801MHz -152 fLO = 4899MHz NOISE FLOOR (dBm/Hz) GAIN AND NF (dB), OIP3 (dBm) -40 -150 0 IM3 LEVEL (dBc) LO-OUT -30 Output Noise Floor vs Input Power 35 -5 -20 5576 G16 5576 G15 30 TC = 25C 25 0 400 LO Leakage vs LO Frequency 0 LO LEAKAGE (dBm) OIP3 25 GAIN (dB), OIP3 (dBm) GAIN AND NF (dB), OIP3 (dBm) Conversion Gain, OIP3 and NF vs Input Frequency 30 OIP3 25 20 15 10 5 0 -5 -45 NF IP1dB GC -15 15 45 75 CASE TEMPERATURE (C) 105 5576 G23 5576fa For more information www.linear.com/LTC5576 7 LTC5576 Typical AC Performance Characteristics 5V, 8000MHz Output Frequency: TC = 25C. VCC = 5V, EN = High, PIN = -10dBm (-10dBm/Tone for 2-tone tests, f = 2MHz), PLO = -4dBm, fIN = 900MHz, fLO = fOUT - fIN, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain and OIP3 vs Output Frequency 30 30 25 25 20 NF TC = 105C 85C 25C -40C 5 GC 0 -5 0 20 15 10 TC = 105C 85C 25C -40C 5 800 1200 1600 2000 INPUT FREQUENCY (MHz) -5 7400 2400 5576 G24 25 NF 10 TC = 105C 85C 25C -40C 5 -5 -6 -4 -2 0 2 LO POWER (dBm) 4 PLO = -6dBm -4dBm -2dBm 0dBm 6dBm -152 -154 6 -158 -20 -15 -10 -5 INPUT POWER (dBm) 0 5 -60 -70 30 25 20 15 TC = 105C 85C 25C -40C 5 -10 -5 0 OUTPUT POWER (dBm/TONE) 5 5576 G30 8 35 10 -80 0 8000 Conversion Gain, OIP3 and NF vs Supply Voltage OIP3 25 20 NF 15 10 TC = 105C 85C 25C -40C 5 GC 0 -5 4.5 4.6 4.7 4.8 4.9 5 5.1 SUPPLY VOLTAGE (V) 5.2 5.3 5576 G29 30 40 -50 6400 6800 7200 7600 LO FREQUENCY (MHz) Conversion Gain, OIP3, NF and IP1dB vs Case Temperature 45 -40 6000 5576 G26 50 TC = 105C 85C 25C -40C -30 -90 -15 -60 5600 IN-OUT Isolation vs Input Frequency ISOLATION (dB) IM3 LEVEL (dBc) -20 LO-IN 5576 G28 2-Tone IM3 Level vs Output Power Level -10 -40 30 5576 G27 0 8600 -156 GC 0 7600 7800 8000 8200 8400 OUTPUT FREQUENCY (MHz) fOUT = 8094MHz fNOISE = 7997MHz fLO = 7094MHz -150 NOISE FLOOR (dBm/Hz) GAIN AND NF (dB), OIP3 (dBm) -148 OIP3 15 -30 Output Noise Floor vs Input Power 20 LO-OUT 5576 G25 Conversion Gain, OIP3 and NF vs LO Input Power 30 -20 -50 GC 0 400 TC = 25C -10 GAIN AND NF (dB), OIP3 (dBm) 10 OIP3 0 400 800 1200 1600 2000 INPUT FREQUENCY (MHz) 2400 5576 G31 GAIN AND NF (dB), OIP3 AND IP1dB (dBm) 15 LO Leakage vs LO Frequency 0 LO LEAKAGE (dBm) OIP3 GAIN (dB), OIP3 (dBm) GAIN AND NF (dB), OIP3 (dBm) Conversion Gain, OIP3 and NF vs Input Frequency 25 20 OIP3 NF 15 10 IP1dB 5 0 -5 -45 GC -15 15 45 75 CASE TEMPERATURE (C) 105 5576 G32 5576fa For more information www.linear.com/LTC5576 LTC5576 Typical AC Performance Characteristics 3.3V, 3500MHz Output Frequency: TC = 25C. VCC = 3.3V, EN = High, PIN = -10dBm (-10dBm/Tone for 2-tone tests, f = 2MHz), PLO = 0dBm, fIN = 456MHz, fLO = fOUT - fIN, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain, OIP3 and NF vs Input Frequency Conversion Gain and OIP3 vs Output Frequency 20 NF TC = 105C 85C 25C -40C 5 GC 0 -5 0 500 1000 1500 2000 2500 INPUT FREQUENCY (MHz) 25 -10 OIP3 15 10 5 GC 0 -5 3000 3000 5576 G33 20 NF 10 TC = 105C 85C 25C -40C GC 0 -5 -6 -4 4 6 3200 3400 3600 3800 OUTPUT FREQUENCY (MHz) -156 -158 -160 -164 -20 -15 -10 -5 INPUT POWER (dBm) -50 -60 15 40 30 10 5576 G39 NF 10 TC = 105C 85C 25C -40C 5 GC 0 3 3.1 3.2 3.3 3.4 SUPPLY VOLTAGE (V) 3.5 0 TC = 105C 85C 25C -40C 0 500 3.6 5576 G38 25 50 -80 5 OIP3 Conversion Gain, OIP3, NF and IP1dB vs Case Temperature 60 20 3500 20 -5 5 70 -70 -10 -5 0 OUTPUT POWER (dBm/TONE) 0 80 -40 -90 -15 25 90 -30 1500 2000 2500 3000 LO FREQUENCY (MHz) Conversion Gain, OIP3 and NF vs Supply Voltage 100 TC = 105C 85C 25C -40C 1000 5576 G35 IN-OUT Isolation vs Input Frequency ISOLATION (dB) IM3 LEVEL (dBc) -20 -80 500 5576 G37 2-Tone IM3 Level vs Output Power Level -10 4000 PLO = -6dBm -4dBm -2dBm 0dBm 6dBm 5576 G36 0 LO-IN -70 -162 -2 0 2 LO POWER (dBm) LO-OUT -50 -60 fOUT = 3663MHz fNOISE = 3581MHz fLO = 3201MHz -154 NOISE FLOOR (dBm/Hz) GAIN AND NF (dB), OIP3 (dBm) -152 5 -40 Output Noise Floor vs Input Power OIP3 15 TC = 105C 85C 25C -40C -30 5576 G34 Conversion Gain, OIP3 and NF vs LO Input Power 25 TC = 25C -20 20 GAIN AND NF (dB), OIP3 (dBm) 10 0 1000 1500 2000 2500 INPUT FREQUENCY (MHz) 3000 5576 G39 GAIN AND NF (dB), OIP3 AND IP1dB (dBm) 15 LO Leakage vs LO Frequency 30 LO LEAKAGE (dBm) OIP3 25 GAIN (dB), OIP3 (dBm) GAIN AND NF (dB), OIP3 (dBm) 30 OIP3 20 15 NF 10 IP1dB 5 0 -5 -45 GC -15 15 45 75 CASE TEMPERATURE (C) 105 5576 G41 5576fa For more information www.linear.com/LTC5576 9 LTC5576 Typical AC Performance Characteristics 3.3V, 5800MHz Output Frequency: TC = 25C. VCC = 3.3V, EN = High, PIN = -10dBm (-10dBm/Tone for 2-tone tests, f = 2MHz), PLO = 0dBm, fIN = 900MHz, fLO = fOUT - fIN, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain, OIP3 and NF vs Input Frequency Conversion Gain and OIP3 vs Output Frequency 20 NF 10 TC = 105C 85C 25C -40C 5 GC 0 0 400 800 1200 1600 2000 INPUT FREQUENCY (MHz) -10 20 15 5 GC 0 -5 4500 2400 TC = 105C 85C 25C -40C 10 5000 5500 6000 6500 7000 OUTPUT FREQUENCY (MHz) NF TC = 105C 85C 25C -40C GC 0 -5 -6 -4 -2 0 2 LO POWER (dBm) 4 -154 PLO = -6dBm -4dBm -2dBm 0dBm 6dBm -156 -158 -160 6 -162 -20 -15 -10 -5 INPUT POWER (dBm) 0 -50 -60 40 30 TC = 105C 85C 25C -40C 10 -80 5 5576 G48 NF 15 10 TC = 105C 85C 25C -40C 5 GC 0 3 3.1 3.2 3.3 3.4 SUPPLY VOLTAGE (V) 3.5 0 3.6 5576 G47 30 20 -70 10 20 Conversion Gain, OIP3, NF and IP1dB vs Case Temperature 50 -40 -10 -5 0 OUTPUT POWER (dBm/TONE) 25 -5 5 60 -30 -90 -15 Conversion Gain, OIP3 and NF vs Supply Voltage 70 TC = 105C 85C 25C -40C 5800 5576 G44 IN-OUT Isolation vs Input Frequency ISOLATION (dB) IM3 LEVEL (dBc) -20 4300 4800 5300 LO FREQUENCY (MHz) 5576 G46 2-Tone IM3 Level vs Output Power Level -10 3800 OIP3 5576 G45 0 -60 3300 GAIN AND NF (dB), OIP3 (dBm) 20 LO-IN 30 fOUT = 5899MHz fNOISE = 5801MHz fLO = 4899MHz -152 NOISE FLOOR (dBm/Hz) GAIN AND NF (dB), OIP3 (dBm) -150 OIP3 5 7500 Output Noise Floor vs Input Power 30 10 -40 5576 G43 Conversion Gain, OIP3 and NF vs LO Input Power 15 LO-OUT -30 -50 5576 G42 25 -20 0 500 1000 1500 2000 INPUT FREQUENCY (MHz) 2500 5576 G49 GAIN AND NF (dB), OIP3 AND IP1dB (dBm) 15 TC = 25C OIP3 25 LO LEAKAGE (dBm) OIP3 25 -5 LO Leakage vs LO Frequency 0 30 GAIN (dB), OIP3 (dBm) GAIN AND NF (dB), OIP3 (dBm) 30 25 OIP3 20 15 NF 10 5 0 -5 -45 IP1dB GC -15 15 45 75 CASE TEMPERATURE (C) 105 5576 G50 5576fa For more information www.linear.com/LTC5576 LTC5576 Typical AC Performance Characteristics 3.3V, 8000MHz Output Frequency: TC = 25C. VCC = 3.3V, EN = High, PIN = -10dBm (-10dBm/Tone for 2-tone tests, f = 2MHz), PLO = -4dBm, fIN = 900MHz, fLO = fOUT - fIN, unless otherwise noted. Test circuit shown in Figure 1. Conversion Gain, OIP3 and NF vs Input Frequency 30 OIP3 20 NF 15 TC = 105C 85C 25C -40C GC -5 0 10 800 1200 1600 2000 INPUT FREQUENCY (MHz) 10 TC = 105C 85C 25C -40C 5 GC 0 5 400 15 -5 7400 0 2400 7600 7800 8000 8200 8400 OUTPUT FREQUENCY (MHz) TC = 105C 85C 25C -40C GC -5 -10 -8 -6 -4 -2 LO POWER (dBm) 0 10 5 2 0 NOISE FLOOR (dBm/Hz) 15 -154 20 -15 -10 -5 INPUT POWER (dBm) 0 15 TC = 105C 85C 10 25C -40C 5 5 -5 5 20 10 GC 0 3 3.1 3.2 3.3 3.4 SUPPLY VOLTAGE (V) Conversion Gain, OIP3, NF and IP1dB vs Case Temperature 25 45 40 -30 -40 -50 -60 35 30 25 20 15 -70 10 -80 5 -90 -15 0 5 5576 G57 0 3.6 3.5 5576 G56 50 TC = 105C 85C 25C -40C -10 -5 0 OUTPUT POWER (dBm/TONE) NF 15 IN-OUT Isolation vs Input Frequency ISOLATION (dB) IM3 LEVEL (dBc) -20 25 5576 G55 2-Tone IM3 Level vs Output Power Level -10 30 OIP3 5576 G54 0 Conversion Gain, OIP3 and NF vs Supply Voltage -156 -158 -20 8000 25 PLO = -6dBm -4dBm -2dBm 0dBm 6dBm -152 6400 6800 7200 7600 LO FREQUENCY (MHz) NOISE FIGURE (dB) 20 10 6000 5576 G53 fOUT = 8094MHz fNOISE = 7997MHz fLO = 7094MHz -150 NOISE FIGURE (dB) GAIN (dB), OIP3 (dBm) -148 25 NF LO-IN -60 5600 GAIN (dB), OIP3 (dBm) 30 20 0 8600 Output Noise Floor vs Input Power OIP3 5 -40 5576 G52 Conversion Gain, OIP3 and NF vs LO Input Power 15 LO-OUT -30 -50 5576 G51 25 -20 TC = 105C 85C 25C -40C 0 400 800 1200 1600 2000 INPUT FREQUENCY (MHz) 2400 5576 G58 GAIN AND NF (dB), OIP3 AND IP1dB (dBm) 5 TC = 25C -10 LO LEAKAGE (dBm) 15 20 GAIN (dB), OIP3 (dBm) 25 0 0 OIP3 20 10 LO Leakage vs LO Frequency 25 NOISE FIGURE (dB) GAIN (dB), OIP3 (dBm) 25 Conversion Gain and OIP3 vs Output Frequency OIP3 20 NF 15 10 IP1dB 5 0 GC -5 -45 -15 15 45 75 CASE TEMPERATURE (C) 105 5576 G59 5576fa For more information www.linear.com/LTC5576 11 LTC5576 Pin Functions TEMP (Pin 1): Temperature Monitor. This pin is connected to the anode of a diode through a 30 resistor. It may be used to measure the die temperature by forcing a current into the pin and measuring the resulting pin voltage. a 10nF capacitor located close to the IC. (See the Auto Supply Voltage Detection and Supply Voltage Ramping sections for additional information). IADJ (Pin 8): Bias Current Adjust Pin: This pin allows adjustment of the internal mixer current by adding an external pull-down resistor. The typical DC voltage on this pin is 1.8V. If not used, this pin must be left floating. IN+, IN- (Pins 2, 3): Differential Signal Input. For optimum performance these pins should be driven with a differential signal. The input can be driven single-ended with some performance degradation by connecting the unused pin to RF ground through a capacitor. An internally generated 1.6V DC bias voltage is present on these pins, thus DC blocking is required. GND (Pins 9, 11, 12, 13, 14, 17 (Exposed Pad)): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad on the package provides both electrical contact to the ground and a good thermal contact to the printed circuit board. LGND (Pin 4): DC Ground Return for the Input Amplifier. This pin must be connected to a good DC and RF ground. The typical current from this pin is 64mA. In some applications, an external chip inductor may be used, though any DC resistance will reduce current in the mixer core, which could affect performance. OUT (Pin 10): Single-Ended Output Pin. This pin is connected internally to a single-ended transformer output. A DC voltage should not be applied to this pin. External components may be needed for impedance matching. LO (Pin 15): Single-Ended LO Input. This pin is impedance matched over a broad frequency range. It is internally biased at 1.7V, thus a DC blocking capacitor is required. EN (Pin 5): Enable Pin. The IC is enabled when the applied voltage on this pin is greater than 1.8V. An applied voltage less than 0.5V will disable the IC. An internal 300k resistor pulls this pin low if it is left floating. TP (Pin 16): Test Pin: This pin is used for production test purposes only and must be connected to ground. VCC (Pins 6, 7): Power Supply Pin: These pins should be connected together on the circuit board and bypassed with Block Diagram 17 1 2 3 4 GND EXPOSED PAD 16 TP 15 14 LO GND 13 TEMP GND GND LINEAR AMP IN+ IN- GND OUT DOUBLEBALANCED MIXER LGND 12 LO AMP GND 11 10 9 BIAS 5 12 EN 6 VCC 7 VCC 8 IADJ 5576 BD01 5576fa For more information www.linear.com/LTC5576 LTC5576 Test Circuit DC2322A EVALUATION BOARD STACK-UP (NELCO 4000-13EP) LO 50 C4 C5 0.016 0.062 16 LO 14 13 GND BIAS GND 0.016 GND GND 12 TEMP 1 IN 50 TP 15 RF GND C1 T1 1:1 2 IN+ LTC5576 GND 11 C3 C2 L1 OUT 10 3 IN- L2 C6 4 LGND 5 EN 6 VCC 7 VCC OUT 50 GND 9 IADJ 8 5576 TC01 R1 EN VCC C7 REF DES C8 VALUE SIZE VENDOR C1, C2 1000pF 0402 Murata GRM C3 See Table 0402 Murata GJM C4 100pF 0402 Murata GRM C5 0.3pF 0402 AVX Accu-P C6 See Table 0402 AVX Accu-P C7 10nF 0402 Murata GRM C8 1F 0603 Murata GRM L1 See Table 0402 Coilcraft HP L2 0 0402 Vishay R1 See Table 0402 Vishay T1 1:1, 4.5MHz to 3000MHz AT224-1 Mini-Circuits OUTPUT FREQUENCY C3 C6 L1 R1 (5V) R1 (3.3V) 3500MHz 0.7pF 6.8nH (L) 0.5pF (C ) 2.61k, 1% 511, 1% 5800MHz - 0.2pF 0 2.61k, 1% 649, 1% 8000MHz - 0.2pF 1nH 2.61k, 1% 649, 1% Figure 1. Test Circuit Schematic 5576fa For more information www.linear.com/LTC5576 13 LTC5576 Applications Information Introduction IN Port The LTC5576 uses a high performance LO buffer amplifier driving a double-balanced mixer core to achieve frequency conversion with high linearity. A differential commonemitter stage at the mixer input allows very broad band matching of the input. The Block Diagram and Pin Functions sections provide additional details. The LTC5576 is primarily intended for upmixer applications, however, due to its broadband input capability, it could be used as a downmixer as well. A simplified schematic of the mixer's input path is shown in Figure 3. The IN+ and IN- pins drive the bases of the input transistors while internal R-C networks are used for impedance matching. The input pins are internally biased to a common-mode voltage of 1.6V, thus external DC blocking capacitors, C1 and C2 are required. A small value of C3 can be used to extend the impedance match to higher frequencies. The 1:1 transformer provides single-ended to differential signal conversion for optimum performance. The test circuit schematic in Figure 1 shows the external component values used for the IC characterization. The evaluation board layout is shown in Figure 2. Additional components may be used to optimize performance for different applications. Single-ended operation is possible by driving one input pin and connecting the unused input pin to RF ground through a capacitor. The performance will be degraded but may be acceptable at lower frequencies. The single-ended LO port is impedance matched over a very broad frequency range for ease of use. Low side or high side LO injection can be used, though the value of R1 may need to be adjusted accordingly for best performance. The IC includes an internal RF balun at the mixer output, thus the OUT port is single-ended. External components are required to optimize the impedance match for the desired frequency range. LTC5576 VCC C1 2 IN VBIAS IN+ T1 C3 1:1 C2 3 IN- VCC VBIAS VCC 4 LGND 5576 F03 Figure 3. IN Port with External Matching 5576 F02 Figure 2. LTC5576 Evaluation Board Layout 14 5576fa For more information www.linear.com/LTC5576 LTC5576 Applications Information Figure 4 shows the typical return loss at the IN port of the evaluation board with C1 and C2 values of 1000pF. The curves illustrate that adding a C3 value of 0.7pF improves the return loss at higher frequencies. Differential reflection coefficients and impedances for the IN port are listed vs frequency in Table 1. 0 T1 = TC1-1-13M+ C3 = 0pF C3 = 0.7pF RETURN LOSS (dB) -5 The tail current of the input amplifier stage flows through pin 4 (LGND). Typically, this pin should be connected directly to a good RF ground; however, at lower input frequencies, it may be beneficial to insert an inductor to ground for improved IP2 performance. To minimize the inductors effect on DC current, the inductor should have low DC resistance. The expected current from this pin is approximately 64mA and any DC resistance on this pin will reduce the current in the mixer core which could adversely impact performance. The value of R1 can be adjusted to account for L1's DC resistance. -10 LO Port -15 The LTC5576 uses a single-ended LO signal to drive an input of a bipolar differential amplifier, as shown in Figure 5. The diff-pair provides single-ended to differential conversion to drive the mixer core. Internal resistors provide a broad band impedance match of 50 that is maintained when the part is disabled. The LO pin is biased internally to 1.7V, thus an external DC blocking capacitor (C4) is required. Optional capacitor, C5, can be used to improve the return loss at higher frequencies if needed. -20 -25 0 1000 2000 3000 FREQUENCY (MHz) 4000 5576 F04 Figure 4. IN Port Return Loss Table 1. IN Port Differential Impedance vs Frequency IMPEDANCE () REFL. COEFF. FREQUENCY (MHz) REAL* IMAG* MAG ANG () 0.2 823 -j3971 0.89 -1.4 1 751 -j800 0.88 -7.2 10 133 -j154 0.50 -41 30 78.1 -j248 0.25 -36 50 73.3 -j378 0.20 -27 100 71.3 -j665 0.18 -17 200 70.7 -j961 0.17 -12 500 70.0 -j832 0.17 -14 1000 67.9 -j509 0.16 -24 1200 66.7 -j439 0.16 -28 1500 64.6 -j367 0.15 -35 2000 60.4 -j302 0.13 -49 2200 58.5 -j289 0.12 -55 2500 55.5 -j280 0.11 -66 3000 50.6 -j303 0.08 -91 4000 42.9 -j7460 0.08 -178 5000 42.7 j155 0.17 126 6000 55.9 j89 0.29 96 LTC5576 VCC LO 50 C4 15 LO 50 50 C5 15pF 5576 F05 Figure 5. LO Port with External Matching *Parallel Equivalent Impedance 5576fa For more information www.linear.com/LTC5576 15 LTC5576 Applications Information Measured return loss of the LO port is shown in Figure 6 for a C4 value of 100pF. Without C5, the return loss is better than 10dB from 100MHz to beyond 4GHz. The addition of 0.3pF at C5 extends the 10dB match to beyond 8GHz. 0 C5 = 0.3pF RETURN LOSS (dB) -5 Table 2. OUT Port Impedance vs Frequency -10 -15 EN = ON -20 -25 External components C6 and L2 are used to optimize the impedance for the desired frequency range. High-Q components should be used here to minimize the impact on conversion gain. Table 2 lists the single-ended reflection coefficients and impedances of the OUT port and Table 3 lists component values for several application frequencies. In Figure 8, return loss is plotted for several of these values. EN = OFF 0 2000 4000 6000 FREQUENCY (MHz) 8000 5576 F06 Figure 6. LO Port Return Loss OUT Port The LTC5576 uses an on-chip balun to provide a singleended output, as shown in Figure 7. The output is optimized for 4GHz to 6GHz applications, but may be used for output frequencies as low as 3GHz, and as high as 8GHz. LTC5576 OUT L2 10 VCC OUT 50 FREQ (MHz) REAL* IMPEDANCE () IMAG* MAG REFL COEFF ANGLE 2500 12.8 51.8 0.78 86 3000 24.9 68.1 0.72 68 3500 50.7 80.7 0.63 51 4000 94.6 61.6 0.48 31 4500 89.5 4.7 0.29 5 5000 55.8 -8.0 0.09 -50 5500 38.7 -2.0 0.13 -169 6000 32.0 6.6 0.23 155 6500 30.6 16.5 0.31 128 7000 34.1 27.9 0.36 101 7500 41.2 39.4 0.41 79 8000 51.1 51.7 0.46 62 8500 62.5 57.7 0.47 51 *Series Impedance: Z = REAL + jIMAG Table 3. Output Component Values FREQ (MHz) 12dB RL BAND (MHz) VALUES C6 L2 3000 2800 to 3200 Open 0.5pF (C) 3500 3360 to 3830 6.8nH (L) 0.5pF (C) 5000 4000 to 6700 3.3nH (L) 0.6pF (C) 5200 4700 to 5800 Open 0 5800 4870 to 7040 0.2pF 0 8000 7500 to 8700 0.2pF 1nH C6 5576 F07 Figure 7. OUT Port with External Matching 16 5576fa For more information www.linear.com/LTC5576 LTC5576 Applications Information 0 LTC5576 VCC RETURN LOSS (dB) -5 5 50k EN -10 300k D 5576 F09 -15 -20 2500 B C A 3500 4500 5500 6500 FREQUENCY (MHz) Figure 9. EN Pin Interface E 7500 8500 5576 F08 Figure 8. OUT Port Return Loss Tuned for (A) 3000MHz, (B) 3500MHz, (C) 5200MHz, (D) 5800MHz, (E) 8000MHz DC and RF Grounding The LTC5576 relies on the backside ground of the package for both RF and thermal performance. The exposed pad must be soldered to the low impedance topside ground plane of the board. The topside ground should also be connected to other ground layers to aid in thermal dissipation and ensure a low inductance RF ground. The LTC5576 evaluation board (Figure 2) utilizes a four by four array of vias under the exposed pad for this purpose. Current Adjust Pin (IADJ) The IADJ pin (Pin 8) can be used to optimize the performance of the mixer. The nominal open-circuit DC voltage on this pin is 1.8V and the typical short-circuit current is 1.9mA. As shown in Figure 10, an internal 4mA reference sets the current in the mixer core. Connecting R1 to the IADJ pin shunts some of this current to ground, thus reducing the mixer core current. The optimum value of R1 depends on the supply voltage and LO injection (low side or high side). Some recommended values are shown in Table 4 but the values can be optimized as required for individual applications. LTC5576 VCC Enable Interface Figure 9 shows a simplified schematic of the EN interface. To enable the part, the applied EN voltage must be greater than 1.8V. Setting the voltage to below 0.5V will disable the IC. If the enable function is not required, the enable pin can be connected directly to VCC. If the enable pin is left floating, an internal 300k pull-down resistor will disable the IC. 8 R1 IADJ 4mA 715 BIAS 5576 F10 Figure 10. Current Adjust Pin Interface The voltage at the enable pin should never exceed the power supply voltage (VCC) by more than 0.3V, otherwise supply current may be sourced through the upper ESD diode. Under no circumstances should voltage be applied to the enable pin before the supply voltage is applied to the VCC pin. If this occurs, damage to the IC may result. 5576fa For more information www.linear.com/LTC5576 17 LTC5576 Applications Information Supply Voltage Ramping Table 4. Recommended R1 Values VCC (V) fIN (MHz) fOUT (MHz) fLO (MHz) R1 () 3.3 456 3500 3044 511 3.3 900 5800 4900 649 3.3 900 8000 7100 649 5.0 456 3500 3044 2.61k 5.0 900 5800 4900 2.61k 5.0 1300 5000 6300 2.61K Temperature Monitor Pin (TEMP) The TEMP pin (pin 1) is connected to an on-chip diode that can be used as a coarse temperature monitor by forcing current into it and measuring the resulting voltage. The temperature diode is protected by a series 30 resistor and additional ESD diodes to ground. The TEMP pin voltage is shown as a function of junction temperature in Figure 11. Given the voltage at the pin, VTEMP, (in mV) the junction temperature in C can be estimated for forced input currents of 10A and 80A using the following equations: TJ(10A) = (742.4 - VTEMP)/1.796 Fast ramping of the supply voltage can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply voltage transient that exceeds the maximum rating. A supply voltage ramp time of greater than 1ms is recommended. It is recommended that the EN pin be used to enable or disable the LTC5576 with VCC held constant. However, if the EN pin and VCC are switched simultaneously, then the configuration shown in Figure 12 is recommended. A maximum VCC ramp rate at pins 6 and 7 of 20V/ms is recommended. LTC5576 EN VCC VCC 5 6 7 10k VCC SUPPLY 0.5 220F 10nF 5576 F12 TJ(80A) = (795.6 - VTEMP)/1.609 Figure 12. Suggested Configuration for Simultaneous VCC and EN Switching 900 TEMP PIN VOLTAGE (mV) 850 800 Spurious Output Levels IIN = 80A 750 Mixer spurious output levels vs harmonics of the IN and LO frequencies are tabulated in Tables 5 and 6 for the 5V, 5800MHz application. Results are shown for spur frequencies up to 18GHz. The spur frequencies can be calculated using the following equation: 700 650 IIN = 10A 600 550 500 -50 -30 -10 10 30 50 70 90 110 JUNCTION TEMPERATURE (C) 5576 F11 Figure 11. TEMP Pin Voltage vs Junction Temperature Auto Supply Voltage Detection An internal circuit automatically detects the supply voltage and configures internal components for 3.3V or 5V operation. The DC current is affected when the auto-detect circuit switches at approximately 4.1V. To avoid undesired operation, the mixer should only be operated in the 3.1V to 3.5V or 4.5V to 5.3V supply ranges. 18 fSPUR = |M * fIN N * fLO| Table 5 lists the difference spurs (fSPUR = |M * fIN - N * fLO|) and Table 6 lists the sum spurs (fSPUR = |M * fIN + N * fLO|). The spur levels were measured on a standard evaluation board at room temperature using the test circuit of Figure 1. The spurious output levels for any application will be dependent on the external matching circuits and the particular application frequencies. For more information www.linear.com/LTC5576 5576fa LTC5576 Applications Information Table 5. Output Spur Levels (dBc), fSPUR = |M * fIN - N * fLO| (fIN = 900MHz, fOUT = 5.8GHz, Low Side LO at 0dBm) Table 6. Output Spur Levels (dBc), fSPUR = |M * fIN + N * fLO| (fIN = 900MHz, fOUT = 5.8GHz, Low Side LO at 0dBm) N M N 0 1 2 3 4 0 - -22.4 2.3 -24.6 1 -56.3 -0.8 -38.5 -34.6 2 -72.3 -51.9 -49.7 -68.6 3 -81.9 -75.7 -76.7 4 * * * 5 * * 6 * 7 * 8 5 0 1 2 3 0 - -22.4 2.3 -24.7 1 -56.3 0.0 -39.3 -39.5 -81.1 2 -72.2 -49.2 -45.6 -73.4 -69.7 * 3 -81.9 -71.7 -82.6 * * * 4 * * -87.0 * * * 5 * * * * * * * 6 * * * * * * * 7 * * * * * * * * * 8 * * * 9 * * * * * * 9 * * * 10 * * * * * * 10 * * M *Less Than -90dBc 4 5 *Less Than -90dBc Typical Applications 1.2GHz to 5.8GHz Upmixer with 2.3GHz Bandwidth Conversion Gain and OIP3 vs Output Frequency LO 4600MHz 30 100pF 25 16 TEMP IN 100MHz TO 2400MHz TC1-1-13M+ 1:1 1 TP 15 14 LO GND 13 GAIN (dB), OIP3 (dBm) 0.3pF GND GND 12 TEMP 1000pF 2 IN+ LTC5576 0 OUT 10 3 IN- 0.2pF 4 LGND 5 6 VCC 7 fLO = 4.6GHz 15 10 5 GND 11 1000pF EN 20 VCC 8 GND 9 IADJ OUT 4700MHz TO 7000MHz TC = 105C 85C 25C -40C 0 -5 4500 5000 5500 6000 6500 OUTPUT FREQUENCY (MHz) 7000 5576 TA02b 5576 TA02a 2.61k EN 5V 10nF 1F 5576fa For more information www.linear.com/LTC5576 19 LTC5576 Typical Applications Upmixer with Broadband Input and 3GHz Output LO 1800MHz TO 4200MHz 100pF 0.3pF 16 TEMP 15 LO 14 GND 13 GND GND 12 TEMP 1 1000pF TC1-1-13M+ 1:1 IN 100MHz TO 1200MHz TP 2 IN+ 0.7pF GND 11 LTC5576 0.5pF 1000pF 3 4 LGND 5 OUT 3000MHz OUT 10 IN- EN 6 VCC 7 VCC GND 9 IADJ 8 5576 TA03a 2.61k EN 5V 10nF 1F Conversion Gain and OIP3 vs Input Frequency 4 25 3 15 LSLO HSLO 2 1 10 0 5 -1 0 0 200 400 600 800 1000 INPUT FREQUENCY (MHz) TC = 25C LSLO HSLO -10 GAIN (dB) TC = 25C 0 LO LEAKAGE (dBm) 30 20 OIP3 (dBm) LO-OUT Leakage vs LO Frequency -20 -30 -40 -50 -60 -2 1200 -70 1800 2200 2600 3000 3400 3800 LO FREQUENCY (MHz) 5576 TA03b 5576 TA03c IN, OUT and LO Port Return Loss vs Frequency Noise Figure vs Input Frequency 16 0 TC = 25C 15 -5 RETURN LOSS (dB) NOISE FIGURE (dB) 14 13 12 11 10 OUT -10 -15 IN -20 9 8 LSLO HSLO 0 200 400 600 800 1000 INPUT FREQUENCY (MHz) 1200 LO -25 0 5576 TA03d 20 4200 1000 2000 3000 FREQUENCY (MHz) 4000 5576 TA03e 5576fa For more information www.linear.com/LTC5576 LTC5576 Typical Applications Broadband 4GHz to 6GHz Output Matching with Fixed LO Frequency (High Side LO) LO 6.3GHz 100pF 0.3pF 16 TEMP IN 300MHz TO 2300MHz 1 15 TP LO 14 13 GND GND GND 12 TEMP 1000pF TC1-1-13M+ 1:1 2 IN+ 0.7pF GND 11 LTC5576 0.6pF 1000pF 3 3.3nH 4 LGND 5 OUT 4GHz TO 6GHz OUT 10 IN- EN 6 VCC 7 VCC 8 GND 9 IADJ 5576 TA04a 2.61k EN 5V 10nF 1F Conversion Gain vs Input Frequency OIP3 vs Input Frequency 35 5 fLO = 6300MHz 3 GAIN (dB) 20 15 10 0 500 1000 1500 2000 INPUT FREQUENCY (MHz) fLO = 6300MHz 2 1 0 -1 TC = 105C 85C 25C -40C 5 -2 -3 2500 0 5576 TA04b 500 1000 1500 2000 INPUT FREQUENCY (MHz) 2500 5576 TA04c IN, OUT and LO Return Loss vs Frequency 0 OUT -5 RETURN LOSS (dB) OIP3 (dBm) 25 0 TC = 105C 85C 25C -40C 4 30 -10 IN -15 LO -20 -25 0 2000 4000 6000 FREQUENCY (MHz) 8000 5576 TA04d 5576fa For more information www.linear.com/LTC5576 21 LTC5576 Typical Applications Very Broadband 100MHz to 6GHz Input Matching with 6.5GHz Output and Low Side LO LO 500MHz TO 6400MHz 100pF 0.3pF 16 TEMP IN 100MHz TO 6000MHz TCM1-63AX+ 1:1 1 TP 15 LO 14 GND 13 GND GND 12 TEMP 1000pF 2 IN+ 0.3pF 1000pF 0.05pF 3 GND 11 LTC5576 0 OUT 10 IN- OUT 6500MHz 0.2pF 4 LGND 5 EN 6 VCC 7 VCC 8 GND 9 IADJ 5576 TA05a 1.7k EN 5V 10nF 1F Conversion Gain, OIP3 and IN Return Loss vs Input Frequency 5 30 0 OIP3 -5 20 IN RET LOSS 15 -10 -15 10 TC = 25C fOUT = 6.5GHz fLO = fOUT -fIN 5 0 -5 GC 0 2000 4000 6000 INPUT FREQUENCY (MHz) -20 RETURN LOSS (dB) GAIN(dB), OIP3 (dBm) 25 -25 -30 8000 5576 TA05b 22 5576fa For more information www.linear.com/LTC5576 LTC5576 Typical Applications Downmixer Applications, 5.8GHz to 3.5GHz with Low Side LO LO 2300MHz 100pF 0.3pF 16 TEMP TCM1-63AX+ 1:1 LO 14 GND 13 GND GND 12 TEMP 1 1000pF 2 IN+ 0.3pF 1000pF GND 11 LTC5576 0.05pF 0.5pF 4 LGND 5 OUT 3.2GHz TO 3.7GHz OUT 10 IN- 3 EN 6 VCC 7 VCC GND 9 IADJ 8 6.8nH 5576 TA06a OPEN EN 5V 10nF 1F Conversion Gain and OIP3 vs Input Frequency 25 20 GAIN (dB), OIP3 (dBm) IN 5.5GHz TO 6GHz 15 TP 15 10 fLO = 2300MHz fOUT = fIN - fLO TC = 105C 85C 25C -40C 5 0 -5 5500 5600 5700 5800 5900 INPUT FREQUENCY (MHz) 6000 5576 TA06b 5576fa For more information www.linear.com/LTC5576 23 LTC5576 Package Description Please refer to http://www.linear.com/product/LTC5576#packaging for the most recent package drawings. UF Package 16-Lead Plastic QFN (4mm x 4mm) (Reference LTC DWG # 05-08-1692 Rev O) 0.72 0.05 4.35 0.05 2.15 0.05 2.90 0.05 (4 SIDES) PACKAGE OUTLINE 0.30 0.05 0.65 BSC RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS BOTTOM VIEW--EXPOSED PAD 4.00 0.10 (4 SIDES) 0.75 0.05 R = 0.115 TYP 15 PIN 1 NOTCH R = 0.20 TYP OR 0.35 x 45 CHAMFER 16 0.55 0.20 PIN 1 TOP MARK (NOTE 6) 1 2.15 0.10 (4-SIDES) 2 (UF16) QFN 10-04 0.200 REF 0.00 - 0.05 0.30 0.05 0.65 BSC NOTE: 1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC) 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 24 5576fa For more information www.linear.com/LTC5576 LTC5576 Revision History REV DATE DESCRIPTION A 02/16 Delete Conversion Gain Maximum value PAGE NUMBER 3 5576fa Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representaFor more information www.linear.com/LTC5576 tion that the interconnection of its circuits as described herein will not infringe on existing patent rights. 25 LTC5576 Typical Application Single-Ended Input with 3.5GHz Output LO 3600MHz TO 4700MHz Gain and OIP3 vs Input Frequency 100pF 30 TEMP IN 100MHz TO 1200MHz 1 TP 15 LO 14 GND 13 25 GND GND 12 TEMP 1000pF 2 IN+ GND 11 LTC5576 0.5pF 1000pF 3 4 LGND 5 OUT 3.5GHz OUT 10 IN- EN 6 VCC VCC 7 8 GND 9 IADJ 6.8nH 20 5576 TA07a TC = 105C 85C 25C -40C fOUT = 3500MHz fLO = fOUT - fIN 15 10 5 0 -5 3k EN GAIN (dB), OIP3 (dBm) 16 0 200 400 600 800 1000 INPUT FREQUENCY (MHz) 1200 5576 TA07b 5V 1F 10nF Related Parts PART NUMBER DESCRIPTION Mixers and Modulators LTC5510 1MHz to 6MHz, Wideband High Linearity Active Mixer LT(R)5578 400MHz to 2.7GHz Upconverting Mixer LT5579 1.5GHz to 3.8GHz Upconverting Mixer LTC5577 300MHz to 6GHz High Signal Level Active Downconverting Mixer LTC5551 300MHz to 3.5GHz Ultra High Dynamic Range Downconverting Mixer LTC5544 4GHz to 6GHz, 3.3V High Gain Downconverting Mixer LTC5588-1 200MHz to 6GHz I/Q Modulator LTC5585 700MHz to 3GHz Wideband I/Q Demodulator Amplifiers LTC6430-15 High Linearity Differential IF Amp LTC6431-15 High Linearity Single-Ended IF Amp LTC6412 31dB Linear Analog VGA LT5554 Ultralow Distortion IF Digital VGA RF Power Detectors LT5538 40MHz to 3.8GHz Log Detector LT5581 6GHz Low Power RMS Detector LTC5582 40MHz to 10GHz RMS Detector LTC5583 Dual 6GHz RMS Power Detector ADCs LTC2208 16-Bit, 130Msps ADC LTC2153-14 14-Bit, 310Msps Low Power ADC RF PLL/Synthesizer with VCO LTC6948 Low Noise, Low Spurious Fractional-N PLL with Integrated VCO 26 Linear Technology Corporation COMMENTS 1.5dB Gain, Up and Downconversion, 3.3V or 5V Supply 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Output Transformer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports 0dB Gain, 30dBm IIP3 and 15dBm Input P1dB, 3.3V/180mA Supply 36dBm IIP3, 2.4dB Gain, 9.7dB NF, 0dBm LO Drive, 18dBm P1dB 24dB Gain, 25.9dBm IIP3 and 11.3dB NF at 5.25GHz, 3.3V/194mA Supply 31dBm OIP3 at 2.14GHz, -160.6dBm/Hz Noise Floor >530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling 20MHz to 2GHz Bandwidth, 15.2dB Gain, 50dBm OIP3, 3dB NF at 240MHz 20MHz to 1.7GHz Bandwidth, 15.5dB Gain, 47dBm OIP3, 3.3dB NF at 240MHz 35dBm OIP3 at 240MHz, Continuous Gain Range -14dB to 17dB 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps 0.8dB Accuracy Over Temperature, -72dBm Sensitivity, 75dB Dynamic Range 40dB Dynamic Range, 1dB Accuracy Over Temperature, 1.5mA Supply Current 0.5dB Accuracy Over Temperature, 0.2dB Linearity Error, 57dB Dynamic Range Up to 60dB Dynamic Range, 0.5dB Accuracy Over Temperature, >50dB Isolation 78dBFS Noise Floor, >83dB SFDR at 250MHz 68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption 373MHz to 6.39GHz, -157dBc/Hz WB Phase Noise Floor, -108dBc/Hz Closed-Loop Phase Noise 1630 McCarthy Blvd., Milpitas, CA 95035-7417 For more information www.linear.com/LTC5576 (408) 432-1900 FAX: (408) 434-0507 www.linear.com/LTC5576 5576fa LT 0216 REV A * PRINTED IN USA LINEAR TECHNOLOGY CORPORATION 2015