LTC5576
1
5576fa
For more information www.linear.com/LTC5576
Typical applicaTion
FeaTures DescripTion
3GHz to 8GHz
High Linearity Active
Upconverting Mixer
The LT C
®
5576 is a high linearity active mixer optimized for
upconverting applications requiring wide input bandwidth,
low distortion and low LO leakage. The integrated output
transformer is optimized for 4GHz to 6GHz applications,
but is easily retuned for output frequencies as low as 3GHz,
or as high as 8GHz, with minor performance degradation.
The input is optimized for use with 1:1 transmission-line
baluns, allowing very wideband impedance matching.
The LO input port is single-ended and requires only 0dBm
of LO power to achieve excellent distortion and noise per-
formance while also reducing circuit requirements. The
LTC5576 offers low LO leakage, reducing the demands
of output filtering to meet LO suppression requirements.
The LTC5576 is optimized for 5V but can also be used
with a 3.3V supply with slightly reduced performance. The
enable function allows the part to be easily shut down for
further power savings.
applicaTions
n 25dBm OIP3
n –0.6dB Conversion Gain
n 14.1dB Noise Figure at 5.8GHz
n –154dBm/Hz Output Noise Floor
n Low LO-RF Leakage
n 0dBm LO Drive
n Broadband 50Ω Matched Input
n High Input P1dB: 10dBm at 5V
n 5V or 3.3V Supply at 99mA
n Single-Ended Output and LO Input
n Enable Pin
n –40°C to 105°C Operation (TC)
n 16-Lead (4mm × 4mm) QFN Package
n Wideband Transmitters
n 4G and 5G Wireless Infrastructure
n Fixed Wireless Access Equipment
n Wireless Repeaters
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.
IN
50Ω
OUT
50Ω
LO
50Ω
LO
EN
EN
VCC IADJ
OUT
2.61k
TC1-1-13M
1:1
100pF
BIAS
10nF
100pF
IN+
IN
LGND
TEMP
TEMPERATURE
MONITOR
5576 TA01a
F
5V
0.2pF
100pF 0.3pF
OUTPUT FREQUENCY (MHz)
3000
OIP3 (dBm)
30
20
25
15
5
10
GAIN (dB)
15
5
10
0
–10
–5
5576 TA01b
80004000 5000 6000 7000
fIN = 456MHz fIN = 900MHz
TC = 25°C, OUTPUT TUNED FOR EACH BAND
OIP3
GC
OIP3 and Conversion Gain vs
Output Frequency (LSLO)
LTC5576
2
5576fa
For more information www.linear.com/LTC5576
pin conFiguraTionabsoluTe MaxiMuM raTings
Supply Voltage (VCC) ..................................................6V
Enable Voltage .................................0.3V to VCC + 0.3V
IADJ Pin Voltage ..........................................0.3 to 2.7V
LO Input Power (1GHz to 8GHz) ......................... +10dBm
IN+, IN Input Power (30MHz to 6GHz) .............. +15dBm
TEMP Input Current ...............................................10mA
Operating Temperature Range (TC) ........ 40°C to 105°C
Junction Temperature (TJ) .................................... 150°C
Storage Temperature Range .................. 65°C to 150°C
(Note 1)
16 15 14 13
5 6 7 8
TOP VIEW
17
UF PACKAGE
16-LEAD (4mm × 4mm) PLASTIC QFN
9
10
11
12
4
3
2
1TEMP
IN+
IN
LGND
GND
GND
OUT
GND
TP
LO
GND
GND
EN
VCC
VCC
IADJ
TJMAX = 150°C, θJC = 6°C/W
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB
orDer inForMaTion
LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION CASE TEMPERATURE RANGE
LTC5576IUF#PBF LTC5576IUF#TRPBF 5576 16-Lead (4mm × 4mm) Plastic QFN –40°C to 105°C
Consult LTC Marketing for parts specified with wider operating temperature ranges.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through
designated sales channels with #TRMPBF suffix.
Dc elecTrical characTerisTics
PARAMETER CONDITIONS MIN TYP MAX UNITS
Supply Voltage (VCC) 5V Supply
3.3V Supply
l
l
4.5
3.1
5
3.3
5.3
3.5
V
V
Supply Current 5V, R1 = 2.61kΩ
3.3V, R1 = 649Ω
Shutdown (EN = Low)
99
85
1.3
112 mA
mA
mA
Enable Logic Input (EN)
EN Input High Voltage (On) 1.8 V
EN Input Low Voltage (Off) 0.5 V
EN Input Current –0.3V to VCC + 0.3V –20 200 µA
Turn-On Time 0.6 µs
Turn-Off Time 0.6 µs
Current Adjust Pin (IADJ)
Open Circuit DC Voltage 1.8 V
Short Circuit DC Current 1.9 mA
Temperature Sensing Diode (TEMP)
DC Voltage at TJ = 25°C IIN = 10μA
IIN = 80μA
697
755
mV
mV
Voltage Temperature Coefficient IIN = 10μA
IIN = 80μA
–1.80
–1.61
mV/°C
mV/°C
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C, VCC = 5V. Test circuit shown in Figure 1. (Note 2)
(http://www.linear.com/product/LTC5576#orderinfo)
LTC5576
3
5576fa
For more information www.linear.com/LTC5576
ac elecTrical characTerisTics
ac elecTrical characTerisTics
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. VCC = 5V, EN = High, PLO = 0dBm. Test circuit shown in Figure 1.
(Notes 2, 3)
The
l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f =
2MHz), PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3 and 4)
PARAMETER CONDITIONS MIN TYP MAX UNITS
LO Input Frequency Range External Matching Required l1 to 8 GHz
Input (IN) Frequency Range External Matching Required l0.03 to 6 GHz
Output (OUT) Frequency Range External Matching Required l3 to 8 GHz
Input Return Loss ZO = 50Ω >10 dB
LO Input Return Loss ZO = 50Ω >10 dB
LO Input Power Single-Ended l–6 0 6 dBm
LO to IN Leakage fLO = 1GHz to 8GHz ≤–30 dBm
IN to LO Isolation fIN = 0.1GHz to 6GHz >35 dB
5V Upmixer Application: Low Side LO, PLO, = 0dBm, PIN = –10dBm
PARAMETER CONDITIONS MIN TYP MAX UNITS
Conversion Gain fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
–1.5
–0.6
–0.6
–2.0
dB
dB
dB
Conversion Gain vs Temperature TC = –40°C to 105°C, fOUT = 5.8GHz l–0.009 dB/°C
Output 3rd Order Intercept fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
25
25
25
dBm
dBm
dBm
SSB Noise Figure fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
12.4
14.1
17.5
dB
dB
dB
SSB Noise Floor at PIN = 5dBm fIN = 1GHz, fOUT = 5801MHz, fLO = 4899MHz –154 dBm/Hz
Input 1dB Compression fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
10.8
10.4
10.3
dBm
dBm
dBm
LO-OUT Leakage fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
–36
–35
–28
dBm
dBm
dBm
IN to OUT Isolation fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
70
38
35
dB
dB
dB
(http://www.linear.com/product/LTC5576#orderinfo)
LTC5576
4
5576fa
For more information www.linear.com/LTC5576
ac elecTrical characTerisTics
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: The LTC5576 is guaranteed functional over the –40°C to 105°C
case temperature range.
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f
= 2MHz), PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3 and 4)
3.3V Upmixer Application: Low Side LO, PLO, = 0dBm, PIN = –10dBm
PARAMETER CONDITIONS MIN TYP MAX UNITS
Conversion Gain fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
–0.6
–0.6
–2.0
dB
dB
dB
Conversion Gain vs Temperature TC = –40°C to 105°C, fOUT = 5.8 GHz l–0.009 dB/°C
Output 3rd Order Intercept fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
21
23
19
dBm
dBm
dBm
SSB Noise Figure fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
11.5
12.8
17.8
dB
dB
dB
SSB Noise Floor at PIN = 5dBm fIN = 1GHz, fOUT = 5801MHz, fLO = 4899MHz –154 dBm/Hz
Input 1dB Compression fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO =4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
8.4
8.5
8.1
dBm
dBm
dBm
LO-OUT Leakage fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
–39
–36
–27
dBm
dBm
dBm
IN to OUT Isolation fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz
fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz
fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz
70
38
33
dB
dB
dB
Note 3: SSB noise figure measured with a small-signal noise source,
bandpass filter and 3dB matching pad on IN port, and bandpass filter on
the LO input.
Note 4: Specified performance includes all external component and
evaluation PCB losses.
LTC5576
5
5576fa
For more information www.linear.com/LTC5576
Typical Dc perForMance characTerisTics
Typical ac perForMance characTerisTics
Conversion Gain Distribution OIP3 Distribution Noise Figure Distribution
5V Supply Current vs Supply
Voltage
3.3V Supply Current vs Supply
Voltage
(Test Circuit shown in Figure 1)
5V, 5800MHz Output Frequency:
TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 900MHz, unless
otherwise noted.
Test circuit shown in Figure 1.
SUPPLY VOLTAGE (V)
4.5
SUPPLY CURRENT (mA)
110
100
95
105
90
85
80
75
70
5576 G01
5.34.94.7 5.1
R1 = 2.61k
TC = 105°C
85°C
25°C
–40°C
GAIN (dB)
–1.5
DISTRIBUTION (%)
35
25
20
30
15
10
5
0
5576 G03
1.5
–1 –0.5 0
TC = 105°C
TC = 25°C
TC = –40°C
OIP3 (dBm)
18
DISTRIBUTION (%)
25
20
15
10
5
0
5576 G04
30
20 2422 26 28
TC = 105°C
TC = 25°C
TC = –40°C
NF (dB)
12.5
DISTRIBUTION (%)
25
20
30
15
10
5
0
5576 G05
15.5
13.5 14.5
TC = 105°C
TC = 25°C
TC = –40°C
SUPPLY VOLTAGE (V)
3
SUPPLY CURRENT (mA)
110
100
95
105
90
85
80
75
70
5576 G02
3.6
3.23.1 3.3 3.4 3.5
R1 = 649Ω TC = 105°C
85°C
25°C
–40°C
LTC5576
6
5576fa
For more information www.linear.com/LTC5576
Conversion Gain, OIP3 and NF vs
LO Input Power Output Noise Floor vs Input Power
Conversion Gain, OIP3 and NF vs
Supply Voltage
2-Tone IM3 Level vs Output
Power Level
IN-OUT Isolation vs Input
Frequency
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
Conversion Gain, OIP3 and NF vs
Input Frequency
Conversion Gain and OIP3 vs
Output Frequency LO Leakage vs LO Frequency
Typical ac perForMance characTerisTics
5V, 3500MHz Output Frequency:
TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 456MHz, fLO = fOUT – fIN,
unless otherwise noted. Test circuit shown in Figure 1.
INPUT FREQUENCY (MHz)
0
GAIN AND NF (dB), OIP3 (dBm)
35
30
25
15
20
10
5
0
–5
5576 G06
30001000500 1500 2000 2500
OIP3
NF
TC = 105°C
85°C
25°C
–40°C
GC
OUTPUT FREQUENCY (MHz)
3000
GAIN (dB), OIP3 (dBm)
30
25
15
20
10
5
0
–5
5576 G07
400034003200 3600 3800
OIP3
GC
TC = 105°C
85°C
25°C
–40°C
LO FREQUENCY (MHz)
500
LO LEAKAGE (dBm)
0
–10
–30
–20
–40
–50
–60
–70
–80
5576 G08
350015001000 2000 2500 3000
LO-IN
LO-OUT
TC = 25°C
LO POWER (dBm)
–6
GAIN AND NF (dB), OIP3 (dBm)
35
30
25
15
20
10
5
0
–5
5576 G09
6–2–4 0 2 4
OIP3
GC
TC = 105°C
85°C
25°C
–40°C
NF
INPUT POWER (dBm)
–20
NOISE FLOOR (dBm/Hz)
–150
–154
–152
–156
–158
–160
–162
5576 G10
5–10–15 –5 0
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
fOUT = 3663MHz
fNOISE = 3581MHz
fLO = 3201MHz
SUPPLY VOLTAGE (V)
4.5
GAIN AND NF (dB), OIP3 (dBm)
30
25
15
20
10
5
0
–5
5576 G11
5.34.74.6 4.8 4.9 5 5.1 5.2
GC
TC = 105°C
85°C
25°C
–40°C
NF
OIP3
OUTPUT POWER (dBm/TONE)
–15
IM3 LEVEL (dBc)
0
–10
–30
–20
–40
–50
–60
–70
–80
–90
5576 G12
5–10 –5 0
TC = 105°C
85°C
25°C
–40°C
INPUT FREQUENCY (MHz)
0
ISOLATION (dB)
100
80
90
60
70
50
40
30
20
10
0
5576 G13
30002000 2500500 1000 1500
TC = 105°C
85°C
25°C
–40°C
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
30
25
15
20
10
5
0
–5
5576 G14
105–15 15 45 75
GC
NF
IP1dB
OIP3
LTC5576
7
5576fa
For more information www.linear.com/LTC5576
Conversion Gain, OIP3 and NF vs
LO Input Power Output Noise Floor vs Input Power
Conversion Gain, OIP3 and NF vs
Supply Voltage
2-Tone IM3 Level vs Output
Power Level
IN-OUT Isolation vs Input
Frequency
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
Conversion Gain, OIP3 and NF vs
Input Frequency
Conversion Gain and OIP3 vs
Output Frequency LO Leakage vs LO Frequency
Typical ac perForMance characTerisTics
5V, 5800MHz Output Frequency:
TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 900MHz, fLO = fOUT – fIN,
unless otherwise noted. Test circuit shown in Figure 1.
INPUT FREQUENCY (MHz)
0
GAIN AND NF (dB), OIP3 (dBm)
35
30
25
15
20
10
5
0
–5
5576 G15
2400800400 1200 1600 2000
OIP3
NF
TC = 105°C
85°C
25°C
–40°C
GC
OUTPUT FREQUENCY (MHz)
4500
GAIN (dB), OIP3 (dBm)
35
30
25
15
20
10
5
0
–5
5576 G16
750055005000 6000 6500 7000
OIP3
TC = 105°C
85°C
25°C
–40°C
GC
LO FREQUENCY (MHz)
3300
LO LEAKAGE (dBm)
0
–10
–30
–20
–40
–50
–60
5576 G17
580043003800 4800 5300
LO-OUT
TC = 25°C
LO-IN
LO POWER (dBm)
–6
GAIN AND NF (dB), OIP3 (dBm)
35
30
25
15
20
10
5
0
–5
5576 G18
6–2–4 0 2 4
OIP3
NF
TC = 105°C
85°C
25°C
–40°C
GC
INPUT POWER (dBm)
–20
NOISE FLOOR (dBm/Hz)
–150
–154
–152
–156
–158
–160
–162
5576 G19
5–10–15 –5 0
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
fOUT = 5899MHz
fNOISE = 5801MHz
fLO = 4899MHz
SUPPLY VOLTAGE (V)
4.5
GAIN AND NF (dB), OIP3 (dBm)
35
30
25
15
20
10
5
0
–5
5576 G20
5.34.74.6 4.8 4.9 5 5.1 5.2
OIP3
NF
TC = 105°C
85°C
25°C
–40°C
GC
OUTPUT POWER (dBm/TONE)
–15
IM3 LEVEL (dBc)
0
–10
–30
–20
–40
–50
–60
–70
–80
–90
5576 G21
5–10 –5 0
TC = 105°C
85°C
25°C
–40°C
INPUT FREQUENCY (MHz)
0
ISOLATION (dB)
70
60
50
40
30
20
10
0
5576 G22
25001500 2000500 1000
TC = 105°C
85°C
25°C
–40°C
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
35
25
30
15
20
10
5
0
–5
5576 G23
105–15 15 45 75
GC
IP1dB
NF
OIP3
LTC5576
8
5576fa
For more information www.linear.com/LTC5576
Typical ac perForMance characTerisTics
5V, 8000MHz Output Frequency:
TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = –4dBm, fIN = 900MHz, fLO = fOUT – fIN,
unless otherwise noted. Test circuit shown in Figure 1.
Conversion Gain, OIP3 and NF vs
LO Input Power Output Noise Floor vs Input Power
Conversion Gain, OIP3 and NF vs
Supply Voltage
2-Tone IM3 Level vs Output
Power Level
IN-OUT Isolation vs Input
Frequency
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
Conversion Gain, OIP3 and NF vs
Input Frequency
Conversion Gain and OIP3 vs
Output Frequency LO Leakage vs LO Frequency
INPUT FREQUENCY (MHz)
0
GAIN AND NF (dB), OIP3 (dBm)
30
25
15
20
10
5
0
–5
5576 G24
2400800400 1200 1600 2000
TC = 105°C
85°C
25°C
–40°C
OIP3
NF
GC
OUTPUT FREQUENCY (MHz)
7400
GAIN (dB), OIP3 (dBm)
30
25
15
20
10
5
0
–5
5576 G25
860078007600 8000 8200 8400
TC = 105°C
85°C
25°C
–40°C
OIP3
GC
LO FREQUENCY (MHz)
5600
LO LEAKAGE (dBm)
0
–10
–30
–20
–40
–50
–60
5576 G26
800064006000 6800 7200 7600
LO-OUT
TC = 25°C
LO-IN
LO POWER (dBm)
–6
GAIN AND NF (dB), OIP3 (dBm)
30
25
15
20
10
5
0
–5
5576 G27
6–2–4 0 2 4
TC = 105°C
85°C
25°C
–40°C
OIP3
NF
GC
INPUT POWER (dBm)
–20
NOISE FLOOR (dBm/Hz)
–148
–152
–150
–154
–156
–158
5576 G28
5–10–15 –5 0
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
fOUT = 8094MHz
fNOISE = 7997MHz
fLO = 7094MHz
SUPPLY VOLTAGE (V)
4.5
GAIN AND NF (dB), OIP3 (dBm)
30
25
15
20
10
5
0
–5
5576 G29
5.34.74.6 4.8 4.9 5 5.1 5.2
OIP3
TC = 105°C
85°C
25°C
–40°C
NF
GC
OUTPUT POWER (dBm/TONE)
–15
IM3 LEVEL (dBc)
0
–10
–30
–20
–40
–50
–60
–70
–80
–90
5576 G30
5–10 –5 0
TC = 105°C
85°C
25°C
–40°C
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
25
30
15
20
10
5
0
–5
5576 G32
105–15 15 45 75
IP1dB
NF
OIP3
GC
INPUT FREQUENCY (MHz)
0
ISOLATION (dB)
50
45
40
35
30
25
20
15
10
5
0
5576 G31
24001200 1600 2000400 800
TC = 105°C
85°C
25°C
–40°C
LTC5576
9
5576fa
For more information www.linear.com/LTC5576
Typical ac perForMance characTerisTics
3.3V, 3500MHz Output Frequency:
TC = 25°C. VCC = 3.3V, EN = High, PIN =10dBm (10dBm/Tone for 2-tone tests, f = 2MHz), PLO = 0dBm, fIN = 456MHz, fLO = fOUT fIN,
unless otherwise noted. Test circuit shown in Figure 1.
Conversion Gain, OIP3 and NF vs
LO Input Power Output Noise Floor vs Input Power
Conversion Gain, OIP3 and NF vs
Supply Voltage
2-Tone IM3 Level vs Output
Power Level
IN-OUT Isolation vs Input
Frequency
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
Conversion Gain, OIP3 and NF vs
Input Frequency
Conversion Gain and OIP3 vs
Output Frequency LO Leakage vs LO Frequency
INPUT FREQUENCY (MHz)
0
GAIN AND NF (dB), OIP3 (dBm)
25
30
15
20
10
5
0
–5
5576 G33
3000
500 1000 1500 2000 2500
OIP3
GC
TC = 105°C
85°C
25°C
–40°C
NF
OUTPUT FREQUENCY (MHz)
GAIN (dB), OIP3 (dBm)
25
30
15
20
10
5
0
–5
5576 G34
4000
3000 3200 3400 3600 3800
OIP3
GC
TC = 105°C
85°C
25°C
–40°C
LO FREQUENCY (MHz)
LO LEAKAGE (dBm)
–20
0
–10
–40
–30
–50
–60
–70
–80
5576 G35
3500
500 1000 1500 2000 2500 3000
TC = 25°C
LO-IN
LO-OUT
LO POWER (dBm)
–6
GAIN AND NF (dB), OIP3 (dBm)
25
15
20
10
5
0
–5
5576 G36
6
–4 –2 0 2 4
OIP3
GC
TC = 105°C
85°C
25°C
–40°C
NF
INPUT POWER (dBm)
–20
NOISE FLOOR (dBm/Hz)
–152
–156
–154
–158
–160
–162
–164
5576 G37
5
–15 –10 –5 0
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
fOUT = 3663MHz
fNOISE = 3581MHz
fLO = 3201MHz
INPUT FREQUENCY (MHz)
0
ISOLATION (dB)
100
80
90
70
60
50
40
30
20
10
0
5576 G39
3000
500 1500 2000 25001000
TC = 105°C
85°C
25°C
–40°C
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
25
15
20
10
5
0
–5
5576 G41
105
–15 15 45 75
OIP3
GC
IP1dB
NF
SUPPLY VOLTAGE (V)
3
GAIN AND NF (dB), OIP3 (dBm)
15
20
10
5
0
–5
3.1 3.2 3.3 3.4 3.5
OIP3
GC
TC = 105°C
85°C
25°C
–40°C
NF
OUTPUT POWER (dBm/TONE)
–15
IM3 LEVEL (dBc)
0
–30
–10
–20
–40
–50
–60
–70
–80
–90
5576 G39
5
–10 –5 0
TC = 105°C
85°C
25°C
–40°C
LTC5576
10
5576fa
For more information www.linear.com/LTC5576
Typical ac perForMance characTerisTics
3.3V, 5800MHz Output Frequency:
TC = 25°C. VCC = 3.3V, EN = High, PIN =10dBm (10dBm/Tone for 2-tone tests, f = 2MHz), PLO = 0dBm, fIN = 900MHz, fLO = fOUT fIN,
unless otherwise noted. Test circuit shown in Figure 1.
Conversion Gain, OIP3 and NF vs
LO Input Power Output Noise Floor vs Input Power
Conversion Gain, OIP3 and NF vs
Supply Voltage
2-Tone IM3 Level vs Output
Power Level
IN-OUT Isolation vs Input
Frequency
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
Conversion Gain, OIP3 and NF vs
Input Frequency
Conversion Gain and OIP3 vs
Output Frequency LO Leakage vs LO Frequency
INPUT FREQUENCY (MHz)
0
GAIN AND NF (dB), OIP3 (dBm)
25
30
15
20
10
5
0
–5
5576 G42
2400
400 800 1200 1600 2000
OIP3
GC
TC = 105°C
85°C
25°C
–40°C
NF
OUTPUT FREQUENCY (MHz)
GAIN (dB), OIP3 (dBm)
25
30
15
20
10
5
0
–5
5576 G43
7500
4500 5000 5500 6000 6500 7000
OIP3
GC
TC = 105°C
85°C
25°C
–40°C
LO FREQUENCY (MHz)
LO LEAKAGE (dBm)
0
–10
–30
–20
–40
–50
–60
5576 G44
5800
3300 3800 4300 4800 5300
TC = 25°C
LO-IN
LO-OUT
LO POWER (dBm)
–6
GAIN AND NF (dB), OIP3 (dBm)
30
15
20
25
10
5
0
–5
5576 G45
6
–4 –2 0 2 4
OIP3
GC
TC = 105°C
85°C
25°C
–40°C
NF
INPUT POWER (dBm)
–20
NOISE FLOOR (dBm/Hz)
–150
–154
–152
–156
–158
–160
–162
5576 G46
5
–15 –10 –5 0
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
fOUT = 5899MHz
fNOISE = 5801MHz
fLO = 4899MHz
SUPPLY VOLTAGE (V)
3
GAIN AND NF (dB), OIP3 (dBm)
30
15
20
25
10
5
0
–5
5576 G47
3.6
3.1 3.2 3.3 3.4 3.5
OIP3
GC
TC = 105°C
85°C
25°C
–40°C
NF
OUTPUT POWER (dBm/TONE)
–15
IM3 LEVEL (dBc)
0
–20
–10
–30
–40
–50
–60
–70
–80
–90
5576 G48
5
–10 –5 0
TC = 105°C
85°C
25°C
–40°C
INPUT FREQUENCY (MHz)
0
ISOLATION (dB)
70
60
50
40
30
20
10
0
5576 G49
500 1500 2000
2500
1000
TC = 105°C
85°C
25°C
–40°C
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
30
25
15
20
10
5
0
–5
5576 G50
105
–15 15 45 75
OIP3
GC
IP1dB
NF
LTC5576
11
5576fa
For more information www.linear.com/LTC5576
Typical ac perForMance characTerisTics
3.3V, 8000MHz Output Frequency:
TC = 25°C. VCC = 3.3V, EN = High, PIN = –10dBm (10dBm/Tone for 2-tone tests, f = 2MHz), PLO = –4dBm, fIN = 900MHz, fLO = fOUT fIN,
unless otherwise noted. Test circuit shown in Figure 1.
Conversion Gain, OIP3 and NF vs
LO Input Power Output Noise Floor vs Input Power
Conversion Gain, OIP3 and NF vs
Supply Voltage
2-Tone IM3 Level vs Output
Power Level
IN-OUT Isolation vs Input
Frequency
Conversion Gain, OIP3, NF and
IP1dB vs Case Temperature
Conversion Gain, OIP3 and NF vs
Input Frequency
Conversion Gain and OIP3 vs
Output Frequency LO Leakage vs LO Frequency
INPUT FREQUENCY (MHz)
0
GAIN (dB), OIP3 (dBm)
NOISE FIGURE (dB)
25
15
20
10
5
0
–5
30
20
25
15
10
5
0
5576 G51
2400400 800 1200 1600 2000
OIP3
TC = 105°C
85°C
25°C
–40°C
NF
GC
OUTPUT FREQUENCY (MHz)
GAIN (dB), OIP3 (dBm)
25
15
20
10
5
0
–5
5576 G52
8600
7400 7600 7800 8000 8200 8400
OIP3
GC
TC = 105°C
85°C
25°C
–40°C
LO FREQUENCY (MHz)
LO LEAKAGE (dBm)
0
–10
–30
–20
–40
–50
–60
5576 G53
8000
5600 6000 6400 6800 7200 7600
LO-IN
LO-OUT
TC = 25°C
LO POWER (dBm)
–10
GAIN (dB), OIP3 (dBm)
NOISE FIGURE (dB)
15
20
25
10
5
0
–5
20
25
30
15
10
5
0
5576 G54
2–8 –6 –4 –2 0
OIP3
TC = 105°C
85°C
25°C
–40°C
NF
GC
INPUT POWER (dBm)
–20
NOISE FLOOR (dBm/Hz)
–148
–152
–150
–154
–156
–158
5576 G55
5
–15 –10 –5 0
PLO = –6dBm
–4dBm
–2dBm
0dBm
6dBm
fOUT = 8094MHz
fNOISE = 7997MHz
fLO = 7094MHz
SUPPLY VOLTAGE (V)
3
GAIN (dB), OIP3 (dBm)
15
20
25
10
5
0
–5
NOISE FIGURE (dB)
20
25
30
15
10
5
0
5576 G56
3.63.1 3.2 3.3 3.4 3.5
OIP3
TC = 105°C
85°C
25°C
–40°C
GC
NF
OUTPUT POWER (dBm/TONE)
–15
IM3 LEVEL (dBc)
0
–20
–10
–30
–40
–50
–60
–70
–80
–90
5576 G57
5
–10 –5 0
TC = 105°C
85°C
25°C
–40°C
INPUT FREQUENCY (MHz)
0
ISOLATION (dB)
50
45
40
35
30
25
20
15
10
5
0
5576 G58
400 1200 1600 2000
2400
800
TC = 105°C
85°C
25°C
–40°C
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), OIP3 AND IP1dB (dBm)
25
15
20
10
5
0
–5
5576 G59
105
–15 15 45 75
GC
NF
OIP3
IP1dB
LTC5576
12
5576fa
For more information www.linear.com/LTC5576
pin FuncTions
TEMP (Pin 1): Temperature Monitor. This pin is connected
to the anode of a diode through a 30Ω resistor. It may be
used to measure the die temperature by forcing a current
into the pin and measuring the resulting pin voltage.
IN+, IN (Pins 2, 3): Differential Signal Input. For optimum
performance these pins should be driven with a differential
signal. The input can be driven single-ended with some
performance degradation by connecting the unused pin
to RF ground through a capacitor. An internally generated
1.6V DC bias voltage is present on these pins, thus DC
blocking is required.
LGND (Pin 4): DC Ground Return for the Input Amplifier.
This pin must be connected to a good DC and RF ground.
The typical current from this pin is 64mA. In some ap-
plications, an external chip inductor may be used, though
any DC resistance will reduce current in the mixer core,
which could affect performance.
EN (Pin 5): Enable Pin. The IC is enabled when the applied
voltage on this pin is greater than 1.8V. An applied voltage
less than 0.5V will disable the IC. An internal 300k resistor
pulls this pin low if it is left floating.
VCC (Pins 6, 7): Power Supply Pin: These pins should be
connected together on the circuit board and bypassed with
a 10nF capacitor located close to the IC. (See the Auto
Supply Voltage Detection and Supply Voltage Ramping
sections for additional information).
IADJ (Pin 8): Bias Current Adjust Pin: This pin allows
adjustment of the internal mixer current by adding an
external pull-down resistor. The typical DC voltage on
this pin is 1.8V. If not used, this pin must be left floating.
GND (Pins 9, 11, 12, 13, 14, 17 (Exposed Pad)): Ground.
These pins must be soldered to the RF ground plane on the
circuit board. The exposed pad on the package provides
both electrical contact to the ground and a good thermal
contact to the printed circuit board.
OUT (Pin 10): Single-Ended Output Pin. This pin is con-
nected internally to a single-ended transformer output.
A DC voltage should not be applied to this pin. External
components may be needed for impedance matching.
LO (Pin 15): Single-Ended LO Input. This pin is impedance
matched over a broad frequency range. It is internally
biased at 1.7V, thus a DC blocking capacitor is required.
TP (Pin 16): Test Pin: This pin is used for production test
purposes only and must be connected to ground.
block DiagraM
LOTP GNDGND
EXPOSED
PAD
GND
DOUBLE-
BALANCED
MIXER
LINEAR
AMP
LO
AMP
IN+
IN
LGND
EN VCC IADJ
GND
OUT
VCC
TEMP
5576 BD01
1
2
17 16 15 14 13
3
4
12
11
10
9
5 6 7 8
BIAS
GND
GND
LTC5576
13
5576fa
For more information www.linear.com/LTC5576
TesT circuiT
REF DES VALUE SIZE VENDOR
C1, C2 1000pF 0402 Murata GRM
C3 See Table 0402 Murata GJM
C4 100pF 0402 Murata GRM
C5 0.3pF 0402 AVX Accu-P
C6 See Table 0402 AVX Accu-P
C7 10nF 0402 Murata GRM
C8 1µF 0603 Murata GRM
L1 See Table 0402 Coilcraft HP
L2 0402 Vishay
R1 See Table 0402 Vishay
T1 1:1, 4.5MHz to 3000MHz AT224-1 Mini-Circuits
Figure 1. Test Circuit Schematic
IN
50Ω
LTC5576
IN+
C1
T1
1:1
C2
L2
C3
IN
LGND
EN
EN
C7 C8
C6
VCC
VCC
IADJ
R1
GND
GND
OUT
VCC
TEMP
5576 TC01
1
2
3
4
12
11
10
9
5 6 7 8
OUT
50Ω
GND
LOTP GND GND
16 15 14 13
L1
C5
C4
LO
50Ω
RF
0.016˝
0.016˝
0.062˝
GND
BIAS
GND
DC2322A
EVALUATION BOARD
STACK-UP
(NELCO 4000-13EP)
OUTPUT FREQUENCY C3 C6 L1 R1 (5V) R1 (3.3V)
3500MHz 0.7pF 6.8nH (L) 0.5pF (C ) 2.61kΩ, 1% 511Ω, 1%
5800MHz - 0.2pF 2.61kΩ, 1% 649Ω, 1%
8000MHz - 0.2pF 1nH 2.61kΩ, 1% 649Ω, 1%
LTC5576
14
5576fa
For more information www.linear.com/LTC5576
Introduction
The LTC5576 uses a high performance LO buffer amplifier
driving a double-balanced mixer core to achieve frequency
conversion with high linearity. A differential common-
emitter stage at the mixer input allows very broad band
matching of the input. The Block Diagram and Pin Func-
tions sections provide additional details. The LTC5576
is primarily intended for upmixer applications, however,
due to its broadband input capability, it could be used as
a downmixer as well.
The test circuit schematic in Figure 1 shows the external
component values used for the IC characterization. The
evaluation board layout is shown in Figure 2. Additional
components may be used to optimize performance for
different applications.
The single-ended LO port is impedance matched over a
very broad frequency range for ease of use. Low side or
high side LO injection can be used, though the value of R1
may need to be adjusted accordingly for best performance.
The IC includes an internal RF balun at the mixer output,
thus the OUT port is single-ended. External components
are required to optimize the impedance match for the
desired frequency range.
applicaTions inForMaTion
IN Port
A simplified schematic of the mixer’s input path is shown
in Figure 3. The IN+ and IN pins drive the bases of the
input transistors while internal R-C networks are used for
impedance matching. The input pins are internally biased to
a common-mode voltage of 1.6V, thus external DC block-
ing capacitors, C1 and C2 are required. A small value of
C3 can be used to extend the impedance match to higher
frequencies. The 1:1 transformer provides single-ended to
differential signal conversion for optimum performance.
Single-ended operation is possible by driving one input
pin and connecting the unused input pin to RF ground
through a capacitor. The performance will be degraded
but may be acceptable at lower frequencies.
Figure 2. LTC5576 Evaluation Board Layout
Figure 3. IN Port with External Matching
IN
VCC
T1
1:1
5576 F03
C3
C2
VBIAS
LGND
VBIAS
LTC5576
C1 IN+
IN
3
4
2
VCC VCC
5576 F02
LTC5576
15
5576fa
For more information www.linear.com/LTC5576
applicaTions inForMaTion
Figure 4 shows the typical return loss at the IN port of the
evaluation board with C1 and C2 values of 1000pF. The
curves illustrate that adding a C3 value of 0.7pF improves
the return loss at higher frequencies.
Differential reflection coefficients and impedances for the
IN port are listed vs frequency in Table 1.
Table 1. IN Port Differential Impedance vs Frequency
FREQUENCY
(MHz)
IMPEDANCE (Ω) REFL. COEFF.
REAL* IMAG* MAG ANG (°)
0.2 823 –j3971 0.89 –1.4
1 751 –j800 0.88 –7.2
10 133 –j154 0.50 –41
30 78.1 –j248 0.25 –36
50 73.3 –j378 0.20 –27
100 71.3 –j665 0.18 –17
200 70.7 –j961 0.17 –12
500 70.0 –j832 0.17 –14
1000 67.9 –j509 0.16 –24
1200 66.7 –j439 0.16 –28
1500 64.6 –j367 0.15 –35
2000 60.4 –j302 0.13 –49
2200 58.5 –j289 0.12 –55
2500 55.5 –j280 0.11 –66
3000 50.6 –j303 0.08 –91
4000 42.9 –j7460 0.08 –178
5000 42.7 j155 0.17 126
6000 55.9 j89 0.29 96
*Parallel Equivalent Impedance
Figure 4. IN Port Return Loss
Figure 5. LO Port with External Matching
The tail current of the input amplifier stage flows through
pin 4 (LGND). Typically, this pin should be connected
directly to a good RF ground; however, at lower input
frequencies, it may be beneficial to insert an inductor to
ground for improved IP2 performance. To minimize the
inductors effect on DC current, the inductor should have
low DC resistance. The expected current from this pin is
approximately 64mA and any DC resistance on this pin will
reduce the current in the mixer core which could adversely
impact performance. The value of R1 can be adjusted to
account for L1's DC resistance.
LO Port
The LTC5576 uses a single-ended LO signal to drive an
input of a bipolar differential amplifier, as shown in Figure 5.
The diff-pair provides single-ended to differential conver-
sion to drive the mixer core. Internal resistors provide a
broad band impedance match of 50Ω that is maintained
when the part is disabled. The LO pin is biased internally
to 1.7V, thus an external DC blocking capacitor (C4) is
required. Optional capacitor, C5, can be used to improve
the return loss at higher frequencies if needed.
LO
50Ω
VCC
5576 F05
LTC5576
C4
C5
LO
50Ω
15
50Ω
15pF
FREQUENCY (MHz)
0
RETURN LOSS (dB)
0
–10
–5
–15
–20
–25
5576 F04
40001000 2000 3000
T1 = TC1-1-13M+
C3 = 0pF
C3 = 0.7pF
LTC5576
16
5576fa
For more information www.linear.com/LTC5576
applicaTions inForMaTion
Figure 6. LO Port Return Loss
Measured return loss of the LO port is shown in Figure 6
for a C4 value of 100pF. Without C5, the return loss is bet-
ter than 10dB from 100MHz to beyond 4GHz. The addition
of 0.3pF at C5 extends the 10dB match to beyond 8GHz.
Figure 7. OUT Port with External Matching
External components C6 and L2 are used to optimize the
impedance for the desired frequency range. High-Q com-
ponents should be used here to minimize the impact on
conversion gain. Table 2 lists the single-ended reflection
coefficients and impedances of the OUT port and Table 3
lists component values for several application frequencies.
In Figure 8, return loss is plotted for several of these values.
Table 2. OUT Port Impedance vs Frequency
FREQ
(MHz)
IMPEDANCE (Ω) REFL COEFF
REAL* IMAG* MAG ANGLE
2500 12.8 51.8 0.78 86
3000 24.9 68.1 0.72 68
3500 50.7 80.7 0.63 51
4000 94.6 61.6 0.48 31
4500 89.5 4.7 0.29 5
5000 55.8 –8.0 0.09 –50
5500 38.7 –2.0 0.13 –169
6000 32.0 6.6 0.23 155
6500 30.6 16.5 0.31 128
7000 34.1 27.9 0.36 101
7500 41.2 39.4 0.41 79
8000 51.1 51.7 0.46 62
8500 62.5 57.7 0.47 51
*Series Impedance: Z = REAL + jIMAG
Table 3. Output Component Values
FREQ
(MHz)
12dB RL BAND
(MHz)
VALUES
C6 L2
3000 2800 to 3200 Open 0.5pF (C)
3500 3360 to 3830 6.8nH (L) 0.5pF (C)
5000 4000 to 6700 3.3nH (L) 0.6pF (C)
5200 4700 to 5800 Open
5800 4870 to 7040 0.2pF
8000 7500 to 8700 0.2pF 1nH
OUT
50Ω
5576 F07
LTC5576
C6
L2
10
VCC
OUT
FREQUENCY (MHz)
0
RETURN LOSS (dB)
0
–10
–5
–15
–20
–25
5576 F06
80002000 4000 6000
EN = ON
C5 = 0.3pF
EN = OFF
OUT Port
The LTC5576 uses an on-chip balun to provide a single-
ended output, as shown in Figure 7. The output is opti-
mized for 4GHz to 6GHz applications, but may be used for
output frequencies as low as 3GHz, and as high as 8GHz.
LTC5576
17
5576fa
For more information www.linear.com/LTC5576
Figure 10. Current Adjust Pin Interface
applicaTions inForMaTion
DC and RF Grounding
The LTC5576 relies on the backside ground of the package
for both RF and thermal performance. The exposed pad
must be soldered to the low impedance topside ground
plane of the board. The topside ground should also be con-
nected to other ground layers to aid in thermal dissipation
and ensure a low inductance RF ground. The LTC5576
evaluation board (Figure 2) utilizes a four by four array of
vias under the exposed pad for this purpose.
Enable Interface
Figure 9 shows a simplified schematic of the EN interface.
To enable the part, the applied EN voltage must be greater
than 1.8V. Setting the voltage to below 0.5V will disable
the IC. If the enable function is not required, the enable
pin can be connected directly to VCC. If the enable pin
is left floating, an internal 300k pull-down resistor will
disable the IC.
The voltage at the enable pin should never exceed the
power supply voltage (VCC) by more than 0.3V, otherwise
supply current may be sourced through the upper ESD
diode. Under no circumstances should voltage be applied
to the enable pin before the supply voltage is applied to
the VCC pin. If this occurs, damage to the IC may result.
Figure 8. OUT Port Return Loss Tuned for (A) 3000MHz,
(B) 3500MHz, (C) 5200MHz, (D) 5800MHz, (E) 8000MHz
Figure 9. EN Pin Interface
Current Adjust Pin (IADJ)
The IADJ pin (Pin 8) can be used to optimize the perfor-
mance of the mixer. The nominal open-circuit DC voltage
on this pin is 1.8V and the typical short-circuit current is
1.9mA. As shown in Figure 10, an internal 4mA reference
sets the current in the mixer core. Connecting R1 to the
IADJ pin shunts some of this current to ground, thus
reducing the mixer core current. The optimum value of
R1 depends on the supply voltage and LO injection (low
side or high side). Some recommended values are shown
in Table 4 but the values can be optimized as required for
individual applications.
5576 F09
LTC5576
5
300k
50k
VCC
EN
5576 F10
LTC5576
R1
VCC
4mA
IADJ 715Ω
8
BIAS
FREQUENCY (MHz)
2500
RETURN LOSS (dB)
0
–10
–5
–15
–20
5576 F08
8500
55003500 4500 6500 7500
A
B
C
D
E
LTC5576
18
5576fa
For more information www.linear.com/LTC5576
Figure 11. TEMP Pin Voltage vs Junction Temperature
applicaTions inForMaTion
Table 4. Recommended R1 Values
VCC (V) fIN (MHz) fOUT (MHz) fLO (MHz) R1 (Ω)
3.3 456 3500 3044 511
3.3 900 5800 4900 649
3.3 900 8000 7100 649
5.0 456 3500 3044 2.61k
5.0 900 5800 4900 2.61k
5.0 1300 5000 6300 2.61K
Temperature Monitor Pin (TEMP)
The TEMP pin (pin 1) is connected to an on-chip diode that
can be used as a coarse temperature monitor by forcing
current into it and measuring the resulting voltage. The
temperature diode is protected by a series 30Ω resistor and
additional ESD diodes to ground. The TEMP pin voltage is
shown as a function of junction temperature in Figure 11.
Given the voltage at the pin, VTEMP, (in mV) the junction
temperature in °C can be estimated for forced input cur-
rents of 10µA and 80µA using the following equations:
TJ(10µA) = (742.4 – VTEMP)/1.796
TJ(80µA) = (795.6 – VTEMP)/1.609
Supply Voltage Ramping
Fast ramping of the supply voltage can cause a current
glitch in the internal ESD protection circuits. Depending on
the supply inductance, this could result in a supply volt-
age transient that exceeds the maximum rating. A supply
voltage ramp time of greater than 1ms is recommended.
It is recommended that the EN pin be used to enable or
disable the LTC5576 with VCC held constant. However,
if the EN pin and VCC are switched simultaneously, then
the configuration shown in Figure 12 is recommended.
A maximum VCC ramp rate at pins 6 and 7 of 20V/ms is
recommended.
JUNCTION TEMPERATURE (°C)
–50
TEMP PIN VOLTAGE (mV)
800
850
750
700
650
600
9070503010–10–30 110
550
500
900
5576 F11
IIN = 80µA
IIN = 10µA
Figure 12. Suggested Configuration for Simultaneous VCC
and EN Switching
Auto Supply Voltage Detection
An internal circuit automatically detects the supply volt-
age and configures internal components for 3.3V or 5V
operation. The DC current is affected when the auto-detect
circuit switches at approximately 4.1V. To avoid undesired
operation, the mixer should only be operated in the 3.1V
to 3.5V or 4.5V to 5.3V supply ranges.
Spurious Output Levels
Mixer spurious output levels vs harmonics of the IN and
LO frequencies are tabulated in Tables 5 and 6 for the 5V,
5800MHz application. Results are shown for spur frequen-
cies up to 18GHz. The spur frequencies can be calculated
using the following equation:
fSPUR = |M fIN ± N fLO|
Table 5 lists the difference spurs (fSPUR = |M fIN N
fLO|) and Table 6 lists the sum spurs (fSPUR = |M fIN +
N fLO|). The spur levels were measured on a standard
evaluation board at room temperature using the test circuit
of Figure 1.
The spurious output levels for any application will be de-
pendent on the external matching circuits and the particular
application frequencies.
5576 F12
LTC5576
5 6 7
220µF
0.5Ω
10k
10nF
VCC
SUPPLY
VCC
VCC
EN
LTC5576
19
5576fa
For more information www.linear.com/LTC5576
applicaTions inForMaTion
Table 5. Output Spur Levels (dBc), fSPUR = |M fIN – N fLO|
(fIN = 900MHz, fOUT = 5.8GHz, Low Side LO at 0dBm)
N
0 1 2 3 4 5
M
0 –22.4 2.3 –24.6
1–56.3 –0.8 –38.5 –34.6
2–72.3 –51.9 –49.7 –68.6 –81.1
3–81.9 –75.7 –76.7 –69.7 *
4* * * * *
5* * * * *
6* * * * *
7* * * * *
8* * * * * *
9* * * * * *
10 * * * * * *
*Less Than –90dBc
Table 6. Output Spur Levels (dBc), fSPUR = |M fIN + N fLO|
(fIN = 900MHz, fOUT = 5.8GHz, Low Side LO at 0dBm)
N
0 1 2 3 4 5
M
0 –22.4 2.3 –24.7
1–56.3 0.0 –39.3 –39.5
2–72.2 –49.2 –45.6 –73.4
3-81.9 –71.7 –82.6 *
4* * –87.0
5* * *
6* * *
7* * *
8* * *
9* * *
10 * *
*Less Than –90dBc
Typical applicaTions
IN
100MHz TO
2400MHz
LTC5576
IN+
1000pF
1:1
TC1-1-13M+
1000pF
IN
LGND
EN
EN
10nF F
0.2pF
VCC
5V
IADJ
2.61k
GND
GND
OUT
VCC
TEMP
TEMP
5576 TA02a
1
2
3
4
12
11
10
9
5 6 7 8
OUT
4700MHz TO
7000MHz
GND
LOTP GND GND
16 15 14 13
0.3pF
100pF
LO
4600MHz
OUTPUT FREQUENCY (MHz)
4500
GAIN (dB), OIP3 (dBm)
25
30
15
20
10
5
0
–5
5576 TA02b
7000
5000 5500 6000 6500
TC = 105°C
85°C
25°C
–40°C
fLO = 4.6GHz
1.2GHz to 5.8GHz Upmixer with 2.3GHz Bandwidth Conversion Gain and OIP3 vs
Output Frequency
LTC5576
20
5576fa
For more information www.linear.com/LTC5576
Typical applicaTions
Conversion Gain and OIP3 vs
Input Frequency
Noise Figure vs Input Frequency
LO-OUT Leakage vs LO
Frequency
IN, OUT and LO Port Return Loss
vs Frequency
Upmixer with Broadband Input and 3GHz Output
IN
100MHz TO
1200MHz
LTC5576
IN+
1000pF
1:1
TC1-1-13M+
1000pF
IN
LGND
EN
EN
10nF F
0.5pF
VCC
5V
IADJ
2.61k
GND
GND
OUT
VCC
TEMP
TEMP
5576 TA03a
1
2
3
4
12
11
10
9
5 6 7 8
OUT
3000MHz
GND
LOTP GND GND
16 15 14 13
0.3pF
100pF
LO 1800MHz
TO 4200MHz
0.7pF
INPUT FREQUENCY (MHz)
0
OIP3 (dBm)
GAIN (dB)
25
30
15
20
10
5
0
3
4
1
2
0
–1
–2
5576 TA03b
1200200 400 600 800 1000
LSLO
HSLO
TC = 25°C
LO FREQUENCY (MHz)
1800
LO LEAKAGE (dBm)
–10
0
–30
–20
–40
–50
–60
–70
5576 TA03c
4200
2200 2600 3000 3400 3800
LSLO
HSLO
TC = 25°C
INPUT FREQUENCY (MHz)
0
NOISE FIGURE (dB)
15
16
13
14
12
11
10
9
8
5576 TA03d
1200
200 400 600 800 1000
LSLO
HSLO
TC = 25°C
FREQUENCY (MHz)
0
RETURN LOSS (dB)
0
–10
–5
–15
–20
–25
5576 TA03e
4000
IN
OUT
LO
1000 2000 3000
LTC5576
21
5576fa
For more information www.linear.com/LTC5576
Typical applicaTions
OIP3 vs Input Frequency
Conversion Gain vs Input
Frequency
IN, OUT and LO Return Loss vs
Frequency
Broadband 4GHz to 6GHz Output Matching with Fixed LO Frequency (High Side LO)
IN
300MHz TO
2300MHz
LTC5576
IN+
1000pF
1:1
TC1-1-13M+
1000pF
IN
LGND
EN
EN
10nF F
0.6pF
3.3nH
VCC
5V
IADJ
2.61k
GND
GND
OUT
VCC
TEMP
TEMP
5576 TA04a
1
2
3
4
12
11
10
9
5 6 7 8
OUT
4GHz TO 6GHz
GND
LOTP GND GND
16 15 14 13
0.3pF
100pF
LO 6.3GHz
0.7pF
INPUT FREQUENCY (MHz)
0
OIP3 (dBm)
30
25
35
15
20
10
5
0
5576 TA04b
2500
500 1000 1500 2000
fLO = 6300MHz
TC = 105°C
85°C
25°C
–40°C
INPUT FREQUENCY (MHz)
0
GAIN (dB)
4
3
5
1
2
0
–1
–2
–3
5576 TA04c
2500
500 1000 1500 2000
fLO = 6300MHz
TC = 105°C
85°C
25°C
–40°C
FREQUENCY (MHz)
0
RETURN LOSS (dB)
0
–10
–5
–15
–20
–25
5576 TA04d
8000
IN
OUT
LO
2000 4000 6000
LTC5576
22
5576fa
For more information www.linear.com/LTC5576
Typical applicaTions
IN
100MHz TO
6000MHz
LTC5576
IN+
1000pF
1:1
TCM1-63AX+
1000pF
IN
LGND
EN
EN
10nF F
0.2pF
VCC
5V
IADJ
1.7k
GND
GND
OUT
VCC
TEMP
TEMP
5576 TA05a
1
2
3
4
12
11
10
9
5 6 7 8
OUT
6500MHz
GND
LOTP GND GND
16 15 14 13
0.3pF
100pF
LO 500MHz TO
6400MHz
0.3pF 0.05pF
Very Broadband 100MHz to 6GHz Input Matching with 6.5GHz Output and Low Side LO
INPUT FREQUENCY (MHz)
0
GAIN(dB), OIP3 (dBm)
RETURN LOSS (dB)
30
20
25
15
10
5
0
–5
5
–5
0
–10
–15
–20
–25
–30
5576 TA05b
8000
OIP3
GC
2000 4000 6000
IN RET LOSS
TC = 25°C
fOUT = 6.5GHz
fLO = fOUT –fIN
Conversion Gain, OIP3 and IN Return
Loss vs Input Frequency
LTC5576
23
5576fa
For more information www.linear.com/LTC5576
Typical applicaTions
IN
5.5GHz TO
6GHz
LTC5576
IN+
1000pF
1:1
TCM1-63AX+
1000pF
IN
LGND
EN
EN
10nF F
0.5pF
6.8nH
VCC
5V
IADJ
OPEN
GND
GND
OUT
VCC
TEMP
TEMP
5576 TA06a
1
2
3
4
12
11
10
9
5 6 7 8
OUT 3.2GHz
TO 3.7GHz
GND
LOTP GND GND
16 15 14 13
0.3pF
100pF
LO 2300MHz
0.3pF 0.05pF
INPUT FREQUENCY (MHz)
5500
GAIN (dB), OIP3 (dBm)
25
15
20
10
5
–5
0
5576 TA06b
6000
5600 5700 5800 5900
fLO = 2300MHz
fOUT = fIN – fLO
TC = 105°C
85°C
25°C
–40°C
Downmixer Applications, 5.8GHz to 3.5GHz with Low Side LO
Conversion Gain and OIP3
vs Input Frequency
LTC5576
24
5576fa
For more information www.linear.com/LTC5576
package DescripTion
Please refer to http://www.linear.com/product/LTC5576#packaging for the most recent package drawings.
4.00 ±0.10
(4 SIDES)
NOTE:
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
ON THE TOP AND BOTTOM OF PACKAGE
PIN 1
TOP MARK
(NOTE 6)
0.55 ±0.20
1615
1
2
BOTTOM VIEW—EXPOSED PAD
2.15 ±0.10
(4-SIDES)
0.75 ±0.05 R = 0.115
TYP
0.30 ±0.05
0.65 BSC
0.200 REF
0.00 – 0.05
(UF16) QFN 10-04
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
0.72 ±0.05
0.30 ±0.05
0.65 BSC
2.15 ±0.05
(4 SIDES)
2.90 ±0.05
4.35 ±0.05
PACKAGE OUTLINE
PIN 1 NOTCH R = 0.20 TYP
OR 0.35 × 45° CHAMFER
UF Package
16-Lead Plastic QFN (4mm × 4mm)
(Reference LTC DWG # 05-08-1692 Rev Ø)
LTC5576
25
5576fa
For more information www.linear.com/LTC5576
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.
revision hisTory
REV DATE DESCRIPTION PAGE NUMBER
A 02/16 Delete Conversion Gain Maximum value 3
LTC5576
26
5576fa
For more information www.linear.com/LTC5576
LINEAR TECHNOLOGY CORPORATION 2015
LT 0216 REV A • PRINTED IN USA
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 FAX: (408) 434-0507 www.linear.com/LTC5576
relaTeD parTs
Typical applicaTion
PART NUMBER DESCRIPTION COMMENTS
Mixers and Modulators
LTC5510 1MHz to 6MHz, Wideband High Linearity Active
Mixer 1.5dB Gain, Up and Downconversion, 3.3V or 5V Supply
LT
®
5578 400MHz to 2.7GHz Upconverting Mixer 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Output Transformer
LT5579 1.5GHz to 3.8GHz Upconverting Mixer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports
LTC5577 300MHz to 6GHz High Signal Level Active
Downconverting Mixer 0dB Gain, 30dBm IIP3 and 15dBm Input P1dB, 3.3V/180mA Supply
LTC5551 300MHz to 3.5GHz Ultra High Dynamic Range
Downconverting Mixer 36dBm IIP3, 2.4dB Gain, 9.7dB NF, 0dBm LO Drive, 18dBm P1dB
LTC5544 4GHz to 6GHz, 3.3V High Gain Downconverting
Mixer 24dB Gain, 25.9dBm IIP3 and 11.3dB NF at 5.25GHz, 3.3V/194mA Supply
LTC5588-1 200MHz to 6GHz I/Q Modulator 31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor
LTC5585 700MHz to 3GHz Wideband I/Q Demodulator >530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling
Amplifiers
LTC6430-15 High Linearity Differential IF Amp 20MHz to 2GHz Bandwidth, 15.2dB Gain, 50dBm OIP3, 3dB NF at 240MHz
LTC6431-15 High Linearity Single-Ended IF Amp 20MHz to 1.7GHz Bandwidth, 15.5dB Gain, 47dBm OIP3, 3.3dB NF at 240MHz
LTC6412 31dB Linear Analog VGA 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB
LT5554 Ultralow Distortion IF Digital VGA 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps
RF Power Detectors
LT5538 40MHz to 3.8GHz Log Detector ±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range
LT5581 6GHz Low Power RMS Detector 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current
LTC5582 40MHz to 10GHz RMS Detector ±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic Range
LTC5583 Dual 6GHz RMS Power Detector Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB Isolation
ADCs
LTC2208 16-Bit, 130Msps ADC 78dBFS Noise Floor, >83dB SFDR at 250MHz
LTC2153-14 14-Bit, 310Msps Low Power ADC 68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption
RF PLL/Synthesizer with VCO
LTC6948 Low Noise, Low Spurious Fractional-N PLL with
Integrated VCO 373MHz to 6.39GHz, –157dBc/Hz WB Phase Noise Floor, –108dBc/Hz Closed-Loop
Phase Noise
IN
100MHz TO
1200MHz LTC5576
IN+
1000pF
IN
LGND
EN
EN
10nF 1µF
0.5pF
6.8nH
VCC
5V
IADJ
3k
GND
GND
OUT
VCC
TEMP
TEMP
5576 TA07a
1
2
3
4
12
11
10
9
5 6 7 8
OUT 3.5GHz
GND
LOTP GND GND
16 15 14 13
100pF
LO 3600MHz
TO 4700MHz
1000pF
INPUT FREQUENCY (MHz)
0
GAIN (dB), OIP3 (dBm)
30
25
15
20
10
5
–5
0
5576 TA07b
1200
200 400 600 800 1000
fOUT = 3500MHz
fLO = fOUT – fIN
TC = 105°C
85°C
25°C
–40°C
Single-Ended Input with 3.5GHz Output
Gain and OIP3 vs Input Frequency