This is information on a product in full production.
September 2014 DocID015276 Rev 8 1/79
STA339BWS
2.1-channel 40-watt high-efficiency digital system
Sound Terminal®
Datasheet - production data
Features
Wide-range supply voltage, 4.5 V to 21.5 V
Three power output configurations:
2 channels of ternary PWM (2 x 20 W into
8 at 18 V) + PWM output
2 channels of ternary PWM (2 x 20 W into
8 at 18 V) + ternary stereo line-out
2.1 channels of binary PWM (left, right,
LFE) (2 x 9 W into 4 +1 x 20 W into 8
at 18 V)
FFX with 100-dB SNR and dynamic range
Scalable FFX modulation index
Selectable 32- to 192-kHz input sample rates
I2C control with selectable device address
Digital gain/attenuation +48 dB to -80 dB with
0.5-dB/step resolution
Soft volume update with programmable ratio
Individual channel and master gain/attenuation
Two independent DRCs configurable as a
dual-band anticlipper (B2DRC) or as
independent limiters/compressors
EQ-DRC for DRC based on filtered signals
Dedicated LFE processing for bass boosting
Audio presets:
15 preset crossover filters
5 preset anticlipping modes
Preset nighttime listening mode
Individual channel soft/hard mute
Independent channel volume and DSP bypass
I2S input data interface
Input and output channel mapping
Automatic invalid input-detect mute
Up to 8 user-programmable biquads/channel
Three coefficient banks for storing EQ presets
with fast recall via I2C interface
Bass/treble tones and de-emphasis control
Selectable high-pass filter for DC blocking
Advanced AM interference frequency
switching and noise suppression modes
Selectable high- or low-bandwidth
noise-shaping topologies
Selectable clock input ratio
96-kHz internal processing sample rate
Thermal overload and short-circuit protection
technology
Video apps: 576 x fS input mode supported
Pin and SW compatible with STA333BW,
STA339BW, STA559BW and STA559BWS
PowerSSO-36
with exposed pad down (EPD)
Table 1. Device summary
Order code Package Packaging
STA339BWS PowerSSO-36 EPD Tube
STA339BWS13TR PowerSSO-36 EPD Tape and reel
www.st.com
Contents STA339BWS
2/79 DocID015276 Rev 8
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Electrical specifications for the digital section . . . . . . . . . . . . . . . . . . . . . 13
3.5 Electrical specifications for the power section . . . . . . . . . . . . . . . . . . . . . 14
3.6 Power on/off sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Serial audio interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.0.1 Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.0.2 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.0.3 Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Processing data paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6I
2C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.1 Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3.2 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4.1 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DocID015276 Rev 8 3/79
STA339BWS Contents
79
6.4.2 Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4.3 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4.4 Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.1 Configuration registers (addr 0x00 to 0x05) . . . . . . . . . . . . . . . . . . . . . . . 25
7.1.1 Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.1.2 Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1.3 Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.4 Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.5 Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.6 Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Volume control registers (addr 0x06 - 0x0A) . . . . . . . . . . . . . . . . . . . . . . 44
7.2.1 Mute/line output configuration register (addr 0x06) . . . . . . . . . . . . . . . . 45
7.2.2 Master volume register (addr 0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.3 Channel 1 volume (addr 0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.4 Channel 2 volume (addr 0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.5 Channel 3 / line output volume (addr 0x0A) . . . . . . . . . . . . . . . . . . . . . 46
7.3 Audio preset registers (addr 0x0B and 0x0C) . . . . . . . . . . . . . . . . . . . . . 47
7.3.1 Audio preset register 1 (addr 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3.2 Audio preset register 2 (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4 Channel configuration registers (addr 0x0E - 0x10) . . . . . . . . . . . . . . . . . 49
7.5 Tone control register (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.6 Dynamic control registers (addr 0x12 - 0x15) . . . . . . . . . . . . . . . . . . . . . 51
7.6.1 Limiter 1 attack/release rate (addr 0x12) . . . . . . . . . . . . . . . . . . . . . . . . 51
7.6.2 Limiter 1 attack/release threshold (addr 0x13) . . . . . . . . . . . . . . . . . . . 51
7.6.3 Limiter 2 attack/release rate (addr 0x14) . . . . . . . . . . . . . . . . . . . . . . . . 52
7.6.4 Limiter 2 attack/release threshold (addr 0x15) . . . . . . . . . . . . . . . . . . . 52
7.6.5 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.6.6 Limiter 1 extended attack threshold (addr 0x32) . . . . . . . . . . . . . . . . . . 56
7.6.7 Limiter 1 extended release threshold (addr 0x33) . . . . . . . . . . . . . . . . . 57
7.6.8 Limiter 2 extended attack threshold (addr 0x34) . . . . . . . . . . . . . . . . . . 57
7.6.9 Limiter 2 extended release threshold (addr 0x35) . . . . . . . . . . . . . . . . . 57
7.7 User-defined coefficient control registers (addr 0x16 - 0x26) . . . . . . . . . . 57
7.7.1 Coefficient address register (addr 0x16) . . . . . . . . . . . . . . . . . . . . . . . . 57
7.7.2 Coefficient b1 data register bits (addr 0x17 - 0x19) . . . . . . . . . . . . . . . . 57
Contents STA339BWS
4/79 DocID015276 Rev 8
7.7.3 Coefficient b2 data register bits (addr 0x1A - 0x1C) . . . . . . . . . . . . . . . 58
7.7.4 Coefficient a1 data register bits (addr 0x1D - 0x1F) . . . . . . . . . . . . . . . 58
7.7.5 Coefficient a2 data register bits (addr 0x20 - 0x22) . . . . . . . . . . . . . . . . 58
7.7.6 Coefficient b0 data register bits (addr 0x23 - 0x25) . . . . . . . . . . . . . . . . 59
7.7.7 Coefficient read/write control register (addr 0x26) . . . . . . . . . . . . . . . . . 59
7.7.8 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.7.9 Thermal warning and overcurrent adjustment (TWOCL) . . . . . . . . . . . . 63
7.8 Variable max power correction registers (addr 0x27 - 0x28) . . . . . . . . . . 64
7.9 Distortion compensation registers (addr 0x29 - 0x2A) . . . . . . . . . . . . . . . 64
7.10 Fault detect recovery constant registers (addr 0x2B - 0x2C) . . . . . . . . . . 64
7.11 Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.12 EQ coefficients and DRC configuration register (addr 0x31) . . . . . . . . . . 66
7.13 Extended configuration register (addr 0x36) . . . . . . . . . . . . . . . . . . . . . . 67
7.13.1 Dual-band DRC (B2DRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.13.2 EQ DRC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.14 Soft volume configuration registers (addr 0x37 - 0x38) . . . . . . . . . . . . . . 70
7.15 DRC RMS filter coefficients (addr 0x39-0x3E) . . . . . . . . . . . . . . . . . . . . . 71
8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.1 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2 PLL filter circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3 Typical output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
DocID015276 Rev 8 5/79
STA339BWS List of tables
79
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. Recommended operating condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 6. Electrical specifications - digital section (Tamb = 25 °C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 7. Electrical specifications - power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 8. Timing parameters for slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 10. Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 11. Input sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 12. Internal interpolation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 13. IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 14. Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 15. Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 16. Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 17. Serial audio input interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 18. Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 19. Support serial audio input formats for MSB-first (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . . . 28
Table 20. Supported serial audio input formats for LSB-first (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . . 28
Table 21. Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 22. Channel input mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 23. FFX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 24. FFX compensating pulse size bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 25. Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 26. Overcurrent warning bypass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 27. High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 28. De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 29. DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 30. Postscale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 31. Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 32. Dynamic range compression/anticlipping bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 33. Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 34. Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 35. Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 36. Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 37. Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 38. AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 39. PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 40. Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 41. Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 42. Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 43. Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 44. Output configuration engine selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 45. Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 46. Binary output mode clock loss detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 47. LRCK double trigger protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 48. Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
List of tables STA339BWS
6/79 DocID015276 Rev 8
Table 49. IC power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 50. External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 51. Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 52. Master volume offset as a function of MVOL[7:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 53. Channel volume as a function of CxVOL[7:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 54. Audio preset gain compression/limiters selection for AMGC[3:2] = 00. . . . . . . . . . . . . . . . 47
Table 55. AM interference frequency switching bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 56. Audio preset AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 57. Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 58. Bass management crossover frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 59. Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 60. EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 61. Volume bypass register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 62. Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 63. Channel limiter mapping as a function of CxLS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 64. Channel output mapping as a function of CxOM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 65. Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 66. Limiter attack rate vs LxA bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 67. Limiter release rate vs LxR bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 68. Limiter attack threshold vs LxAT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 69. Limiter release threshold vs LxRT bits (AC mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 70. Limiter attack threshold vs LxAT bits (DRC mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 71. Limiter release threshold vs LxRT bits (DRC mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 72. RAM block for biquads, mixing, scaling, bass management. . . . . . . . . . . . . . . . . . . . . . . . 61
Table 73. Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 74. EQ RAM select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 75. Anticlipping and DRC preset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 76. Anticlipping selection for AMGC[3:2] = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 77. Bit PS48DB description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 78. Bit XAR1 description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 79. Bit XAR2 description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 80. Bit BQ5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 81. Bit BQ6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 82. Bit BQ7 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 83. Bit SVUPE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 84. Bit SVDWE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 85. PowerSSO-36 EPD dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 86. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
DocID015276 Rev 8 7/79
STA339BWS List of figures
79
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. Pin connection PowerSSO-36 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. Power-on sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 5. Power-off sequence for pop-free turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6. Timing diagram for SAI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Figure 7. Left and right processing, section 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Figure 8. Left and right processing, section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 9. Write mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 10. Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 11. OCFG = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 12. OCFG = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 13. OCFG = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 14. OCFG = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 15. Output mapping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 16. 2.0 channels (OCFG = 00) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 17. 2.1 channels (OCFG = 01) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 18. 2.1 channels (OCFG = 10) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 19. Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 20. B2DRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 21. EQDRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 22. Application circuit for 2 or 2.1-channel configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 23. Application circuit for mono BTL configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 24. Output configuration for stereo BTL mode (RL = 8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 25. PowerSSO-36 power derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 26. PowerSSO-36 EPD outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Description STA339BWS
8/79 DocID015276 Rev 8
1 Description
The STA339BWS is an integrated solution of digital audio processing, digital amplifier
controls and power output stage to create a high-power single-chip FFX digital amplifier with
high quality and high efficiency. Three channels of FFX processing are provided. The FFX
processor implements the ternary, binary and binary differential processing capabilities of
the full FFX processor.
The STA339BWS is part of the Sound Terminal® family that provides full digital audio
streaming to the speakers and offers cost effectiveness, low power dissipation and sound
enrichment.
Also provided in the STA339BWS are a full assortment of digital processing features. This
includes up to 8 programmable biquads (EQ) per channel. Available presets enable a time-
to-market advantage by substantially reducing the amount of software development needed
for functions such as audio preset volume loudness, preset volume curves and preset EQ
settings. There are also new advanced AM radio interference reduction modes. Dual-band
DRC dynamically equalizes the system to provide linear frequency speaker response
regardless of output power level. This feature separates the audio frequency band into two
sub-bands independently processed to provide better sound clarity and to avoid speaker
saturation.
The serial audio data input interface accepts all possible formats, including the popular I2S
format. The high-quality conversion from PCM audio to FFX PWM switching provides over
100 dB of SNR and of dynamic range.
Figure 1. Block diagram
Protection
current/thermal
Logic
Regulators
Bias
Power
control
FFX
PLL
Volume
control
Channel
1A
Channel
1B
Channel
2A
Channel
2B
I2S
interface
PowerDigital DSP
I2C
DocID015276 Rev 8 9/79
STA339BWS Description
79
The power section consists of four independent half-bridges. These can be configured via
digital control to operate in different modes.
2.1 channels can be provided by two half bridges and a single full bridge, supplying up
to 2 x 9 W + 1 x 20 W of output power.
Two channels can be provided by two full-bridges, supplying up to 2 x 20 W of output
power.
The IC can also be configured as 2.1 channels with 2 x 20 W supplied by the device
plus a drive for an external FFX power amplifier, such as STA533WF or STA515W.
One channel can be provided by parallel BTL to obtain 1 x 40 W of output power. In this
configuration the CONFIG pin must be connected to VDD.
Pin connections STA339BWS
10/79 DocID015276 Rev 8
2 Pin connections
2.1 Connection diagram
Figure 2. Pin connection PowerSSO-36 (top view)
2.2 Pin description
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
VDD_DIG
GND_DIG
SCL
SDA
INT_LINE
RESET
SDI
LRCKI
BICKI
XTI
GND_PLL
FILTER_PLL
VDD_PLL
PWRDN
GND_DIG
VDD_DIG
TWARN / OUT4A
EAPD / OUT4B
GND_SUB
SA
TEST_MODE
VSS
VCC_REG
OUT2B
GND2
VCC2
OUT2A
OUT1B
VCC1
GND1
OUT1A
GND_REG
VDD
CONFIG
OUT3B / FFX3B
OUT3A / FFX3A

EP, exposed pad
(device ground)
Table 2. Pin description
Pin Type Name Description
1 GND GND_SUB Substrate ground
2 I SA I
2
C select address (pull-down)
3 I TEST_MODE This pin must be connected to ground (pull-down)
4 I/O VSS Internal reference at VCC - 3.3 V
5 I/O VCC_REG Internal VCC reference
6 O OUT2B Output half-bridge channel 2B
7 GND GND2 Power negative supply
8 Power VCC2 Power positive supply
9 O OUT2A Output half-bridge channel 2A
10 O OUT1B Output half-bridge channel 1B
DocID015276 Rev 8 11/79
STA339BWS Pin connections
79
11 Power VCC1 Power positive supply
12 GND GND1 Power negative supply
13 O OUT1A Output half-bridge channel 1A
14 GND GND_REG Internal ground reference
15 Power VDD Internal 3.3 V reference voltage
16 I CONFIG Parallel mode command
17 O OUT3B / FFX3B PWM out channel 3B / external bridge driver
18 O OUT3A / FFX3A PWM out channel 3A / external bridge driver
19 O EAPD / OUT4B Power down for external bridge / PWM out channel 4B
20 I/O TWARN / OUT4A Thermal warning from external bridge (pull-up when input)
/ PWM out channel 4A
21 Power VDD_DIG Digital supply voltage
22 GND GND_DIG Digital ground
23 I PWRDN Power down (pull-up)
24 Power VDD_PLL Positive supply for PLL
25 I FILTER_PLL Connection to PLL filter
26 GND GND_PLL Negative supply for PLL
27 I XTI PLL input clock
28 I BICKI I
2
S serial clock
29 I LRCKI I
2
S left/right clock
30 I SDI I
2
S serial data channels 1 and 2
31 I RESET Reset (pull-up)
32 O INT_LINE Fault interrupt
33 I/O SDA I
2
C serial data
34 I SCL I
2
C serial clock
35 GND GND_DIG Digital ground
36 Power VDD_DIG Digital supply voltage
- - EP Exposed pad for PCB heatsink, to be connected to GND
Table 2. Pin description (continued)
Pin Type Name Description
Electrical specifications STA339BWS
12/79 DocID015276 Rev 8
3 Electrical specifications
3.1 Absolute maximum ratings
Warning: Stresses beyond those listed in Table 3 above may cause
permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any
other conditions beyond those indicated under
“Recommended operating conditions” are not implied.
Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability. In the real
application, power supplies with nominal values rated within
the recommended operating conditions, may experience
some rising beyond the maximum operating conditions for a
short time when no or very low current is sinked (amplifier in
mute state). In this case the reliability of the device is
guaranteed, provided that the absolute maximum ratings are
not exceeded.
3.2 Thermal data
Table 3. Absolute maximum ratings
Symbol Parameter Min Typ Max Unit
VCC Power supply voltage (pins VCCx) -0.3 - 24 V
VDD Digital supply voltage (pins VDD_DIG) -0.3 - 4.0 V
VDD PLL supply voltage (pin VDD_PLL) -0.3 - 4.0 V
Top Operating junction temperature -20 - 150 °C
Tstg Storage temperature -40 - 150 °C
Table 4. Thermal data
Parameter Min Typ Max Unit
Rth j-case Thermal resistance junction-case (thermal pad) - - 1.5 °C/W
Tth_sdj Thermal shut-down junction temperature - 150 - °C
Tth_warn Thermal warning temperature - 130 - °C
Tth_sdh Thermal shut-down hysteresis - 20 - °C
Rth j-amb Thermal resistance junction-ambient (1)
1. See Chapter 9: Package thermal characteristics on page 75 for details.
- 24 - °C/W
DocID015276 Rev 8 13/79
STA339BWS Electrical specifications
79
3.3 Recommended operating conditions
3.4 Electrical specifications for the digital section
Table 5. Recommended operating condition
Symbol Parameter Min Typ Max Unit
VCC Power supply voltage (VCCxA, VCCxB) 4.5 - 21.5 V
VDD_DIG Digital supply voltage 2.7 3.3 3.6 V
VDD_PLL PLL supply voltage 2.7 3.3 3.6 V
Tamb Ambient temperature -20 - 70 °C
Table 6. Electrical specifications - digital section (Tamb = 25 °C)
Symbol Parameter Conditions Min Typ Max Unit
Iil
Low level input current without
pull-up/down device Vi = 0 V - - 1 μA
Iih
High level input current without
pull-up/down device
Vi = VDD_DIG
= 3.6 V --1μA
Vil Low level input voltage - - - 0.2 *
VDD_DIG V
Vih High level input voltage - 0.8 *
VDD_DIG --V
Vol Low level output voltage Iol = 2 mA - 0.4 *
VDD_DIG V
Voh High level output voltage Ioh = 2 mA 0.8 *
VDD_DIG --V
Rpu
Equivalent pull-up/down
resistance --50-k
Electrical specifications STA339BWS
14/79 DocID015276 Rev 8
3.5 Electrical specifications for the power section
The specifications given in this section are valid for the operating conditions: VCC = 18 V,
f = 1 kHz, fsw = 384 kHz, Tamb = 25 °C and RL = 8 , unless otherwise specified.
Table 7. Electrical specifications - power section
Symbol Parameter Conditions Min Typ Max Unit
Po
Output power BTL
THD = 1% - 16 -
W
THD = 10% - 20 -
Output power SE
THD = 1%,RL= 4 -7-
W
THD = 10%,RL= 4 -9-
RdsON Power P-channel or N-channel MOSFET ld = 0.75 A - - 250 m
gP Power P-channel RdsON matching ld = 0.75 A - 100 - %
gN Power N-channel RdsON matching ld = 0.75 A - 100 - %
Idss Power P-channel/N-channel leakage VCC = 20 V - - 1 A
trRise time Resistive load,
see Figure 3 below
- - 10 ns
tfFall time - - 10 ns
IVCC
Supply current from VCC in power down PWRDN = 0 - 0.3 - A
Supply current from VCC in operation PWRDN = 1 - 15 - mA
IVDD Supply current FFX processing Internal clock =
49.152 MHz - 55 - mA
ILIM Overcurrent limit (1) 2.5 3.0 - A
ISCP Short -circuit protection RL = 0 3.0 3.6 - A
VUVP Undervoltage protection - - - 4.3 V
tmin Output minimum pulse width No load 20 40 60 ns
DR Dynamic range - - 100 - dB
SNR
Signal to noise ratio, ternary mode A-Weighted - 100 - dB
Signal to noise ratio binary mode - - 90 - dB
THD+N Total harmonic distortion + noise
FFX stereo mode,
Po = 1 W
f = 1 kHz
- 0.2 - %
XTALK Crosstalk
FFX stereo mode,
<5 kHz
One channel driven
at 1 W, other channel
measured
-80-dB
Peak efficiency, FFX mode Po = 2 x 20 W
into 8 -90-
%
Peak efficiency, binary modes Po = 2 x 9 W into 4
+ 1 x 20 W into 8 -87-
1. Limit the current if overcurrent warning detect adjustment bypass is enabled (register bit CONFC.OCRB on page 31).
When disabled refer to the ISCP
.
DocID015276 Rev 8 15/79
STA339BWS Electrical specifications
79
Figure 3. Test circuit
tr tf
OUTxY
VCC
(0.9)*VCC
½VCC
(0.1)*VCC
t
+Vcc
Duty cycle = 50%
INxY OUTxY
gnd
vdc = Vcc/2
Rload = 8
+
-
Electrical specifications STA339BWS
16/79 DocID015276 Rev 8
3.6 Power on/off sequence
Figure 4. Power-on sequence
Note: The definition of a stable clock is when fmax - fmin < 1 MHz.
Section Serial audio input interface format on page 27 gives information on setting up the
I2S interface.
Figure 5. Power-off sequence for pop-free turn-off
Note: no specific VCC and
VDD_DIG turnon sequence
is required
TR = minimum time between XTI master clock stable and Reset removal: 1 ms
TC = minimum time between Reset removal and I2C program, sequence start: 1ms
Note: no specific VCC and
VDD_DIG turnoff sequence
is required
DocID015276 Rev 8 17/79
STA339BWS Serial audio interface
79
4 Serial audio interface
The STA339BWS audio serial input interface was designed to interface with standard digital
audio components and to accept a number of serial data formats. The STA339BWS always
acts as the slave when receiving audio input from standard digital audio components. Serial
data for two channels is provided using three inputs: left/right clock LRCKI, serial clock
BICKI, and serial data SDI12.
The SAI bit and the SAIFB bit are used to specify the serial data format. The default serial
data format is I2S, MSB-first.
4.0.1 Timings
In the STA339BWS the BICKI and LRCKI pins are configured as inputs and they must be
supplied by the external peripheral.
Figure 6. Timing diagram for SAI interface
4.0.2 Delay serial clock enable
To tolerate anomalies in some I2S master devices, a PLL clock cycle delay can be added to
the BICKI signal before the SAI interface.
4.0.3 Channel input mapping
Each channel received via I2S can be mapped to any internal processing channel via the
channel input mapping registers. This allows for flexibility in processing. The default settings
of these registers map each I2S input channel to its corresponding processing channel.
Table 8. Timing parameters for slave mode
Symbol Parameter Min Typ Max Unit
tBCy BICK cycle time 80 - - ns
tBCH BICK pulse width high 40 - - ns
tBCL BICK pulse width low 40 - - ns
tLRSU LRCKI setup time to BICKI strobing edge 40 - - ns
tLRH LRCKI hold time to BICKI strobing edge 40 - - ns
tLRJT LRCKI Jitter Tolerance 40 ns
Processing data paths STA339BWS
18/79 DocID015276 Rev 8
5 Processing data paths
Figure 7 and Figure 8 below show the data processing paths inside STA339BWS. The
whole processing chain is composed of two consecutive sections. In the first one,
dual-channel processing is implemented and in the second section each channel is fed into
the post-mixing block either to generate a third channel (typically used in 2.1 output
configuration and with crossover filters enabled) or to have the channels processed by the
dual-band DRC block (2.0 output configuration with crossover filters used to define the
cut-off frequency of the two bands).
The first section, Figure 7, begins with a 2x oversampling FIR filter providing 2 * fS audio
processing. Then a selectable high-pass filter removes the DC level (enabled if HPB = 0).
The left and right channel processing paths can include up to 8 filters, depending on the
selected configuration (bits BQL, BQ5, BQ6, BQ7 and XO[3:0]). By default, four user
programmable, independent filters per channel are enabled, plus the preconfigured
de-emphasis, bass and treble controls (BQL = 0, BQ5 = 0, BQ6 = 0, BQ7 = 0).
If the coefficient sets for the two channels are linked (BQL = 1) it is possible to use the
de-emphasis, bass and treble filters in a user defined configuration (provided the relevant
BQx bits are set). In this case both channels use the same processing coefficients and can
have up to seven filters each. If BQL = 0 the BQx bits are ignored and the fifth, sixth and
seventh filters are configured as de-emphasis, bass and treble controls, respectively.
Figure 7. Left and right processing, section 1
Moreover, the common 8th filter can be available on both channels provided the predefined
crossover frequencies are not used, XO[3:0] = 0, and the dual-band DRC is not used.
In the second section, Figure 8, mixing and crossover filters are available. If B2DRC is not
enabled they are fully user-programmable and allow the generation of a third channel
(2.1 outputs). Alternatively, in mode B2DRC, these blocks are used to split the sub-band and
define the cut-off frequencies of the two bands. A prescaler and a final postscaler allow full
control over the signal dynamics before and after the filtering stages. A mixer function is also
available.
DocID015276 Rev 8 19/79
STA339BWS Processing data paths
79
Figure 8. Left and right processing, section 2
Dual-band DRC enabled
Dual-band DRC disabled
#8
#8
I2C bus specification STA339BWS
20/79 DocID015276 Rev 8
6 I2C bus specification
The STA339BWS supports the I2C protocol via the input ports SCL and SDA_IN (master to
slave) and the output port SDA_OUT (slave to master). This protocol defines any device
that sends data on to the bus as a transmitter and any device that reads the data as a
receiver. The device that controls the data transfer is known as the master and the other as
the slave. The master always starts the transfer and provides the serial clock for
synchronization. The STA339BWS is always a slave device in all of its communications. It
supports up to 400 kb/s (fast-mode bit rate).
For correct operation of the I2C interface ensure that the master clock generated by the PLL
has a frequency at least 10 times higher than the frequency of the applied SCL clock.
6.1 Communication protocol
6.1.1 Data transition or change
Data changes on the SDA line must only occur when the clock SCL is low. A SDA transition
while the clock is high is used to identify a START or STOP condition.
6.1.2 Start condition
START is identified by a high to low transition of the data bus, SDA, while the clock, SCL, is
stable in the high state. A START condition must precede any command for data transfer.
6.1.3 Stop condition
STOP is identified by low to high transition of SDA while SCL is stable in the high state. A
STOP condition terminates communication between STA339BWS and the bus master.
6.1.4 Data input
During the data input the STA339BWS samples the SDA signal on the rising edge of SCL.
For correct device operation the SDA signal must be stable during the rising edge of the
clock and the data can change only when the SCL line is low.
6.2 Device addressing
To start communication between the master and the STA339BWS, the master must initiate
with a start condition. Following this, the master sends onto the SDA line 8-bits (MSB first)
corresponding to the device select address and read or write mode bit.
The seven most significant bits are the device address identifiers, corresponding to the I2C
bus definition. In the STA339BWS the I2C interface has two device addresses depending on
the SA pin configuration, 0x38 when SA = 0, and 0x3A when SA = 1.
The eighth bit (LSB) identifies a read or write operation (R/W); this is set to 1 for read and to
0 for write. After a START condition the STA339BWS identifies the device address on the
SDA bus and if a match is found, acknowledges the identification during the 9th bit time
frame. The byte following the device identification is the address of a device register.
DocID015276 Rev 8 21/79
STA339BWS I2C bus specification
79
6.3 Write operation
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA339BWS acknowledges this and then waits for the byte of internal address.
After receiving the internal byte address the STA339BWS again responds with an
acknowledgement.
6.3.1 Byte write
In the byte write mode the master sends one data byte, this is acknowledged by the
STA339BWS. The master then terminates the transfer by generating a STOP condition.
6.3.2 Multi-byte write
The multi-byte write modes can start from any internal address. The master generating a
STOP condition terminates the transfer.
Figure 9. Write mode sequence
6.4 Read operation
6.4.1 Current address byte read
Following the START condition the master sends a device select code with the RW bit set
to 1. The STA339BWS acknowledges this and then responds by sending one byte of data.
The master then terminates the transfer by generating a STOP condition.
6.4.2 Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are
read from sequential addresses within the STA339BWS. The master acknowledges each
data byte read and then generates a STOP condition terminating the transfer.
6.4.3 Random address byte read
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA339BWS acknowledges this and then the master writes the internal address
byte. After receiving, the internal byte address the STA339BWS again responds with an
acknowledgement. The master then initiates another START condition and sends the device
select code with the RW bit set to 1. The STA339BWS acknowledges this and then
responds by sending one byte of data. The master then terminates the transfer by
generating a STOP condition.
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
BYTE
WRITE
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
MULTIBYTE
WRITE
DATA IN
ACK
I2C bus specification STA339BWS
22/79 DocID015276 Rev 8
6.4.4 Random address multi-byte read
The multi-byte read modes could start from any internal address. Sequential data bytes are
read from sequential addresses within the STA339BWS. The master acknowledges each
data byte read and then generates a STOP condition terminating the transfer.
Figure 10. Read mode sequence
DEV-ADDR
ACK
START RW
DATA
NO ACK
STOP
CURRENT
ADDRESS
READ
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
STOP
RANDOM
ADDRESS
READ
DATA
NO ACK
START RW
DEV-ADDR
ACK
START
DATA
ACK
DATA
ACK
STOP
SEQUENTIAL
CURRENT
READ
DATA
NO ACK
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
SEQUENTIAL
RANDOM
READ
DATA
ACK
START RW
DATA
ACK NO ACK
STOP
DATA
RW=
HIGH
DocID015276 Rev 8 23/79
STA339BWS Register description
79
7 Register description
Note: Addresses exceeding the maximum address number must not be written.
Table 9. Register summary
Addr Name D7 D6 D5 D4 D3 D2 D1 D0
0x00 CONFA FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0
0x01 CONFB C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
0x02 CONFC OCRB Reserved CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0
0x03 CONFD SME ZDE DRC BQL PSL DSPB DEMP HPB
0x04 CONFE SVE ZCE DCCV PWMS AME NSBW MPC MPCV
0x05 CONFF EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0
0x06 MUTELOC LOC1 LOC0 Reserved Reserved C3M C2M C1M Reserved
0x07 MVOL MVOL[7:0]
0x08 C1VOL C1VOL[7:0]
0x09 C2VOL C2VOL[7:0]
0x0A C3VOL C3VOL[7:0]
0x0B AUTO1 Reserved Reserved AMGC[1:0] Reserved Reserved Reserved Reserved
0x0C AUTO2 XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
0x0D AUTO3 Reserved
0x0E C1CFG C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB
0x0F C2CFG C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB
0x10 C3CFG C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP Reserved Reserved
0x11 TONE TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
0x12 L1AR L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
0x13 L1ATRT L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
0x14 L2AR L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
0x15 L2ATRT L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
0x16 CFADDR Reserved Reserved CFA[5:0]
0x17 B1CF1 C1B[23:16]
0x18 B1CF2 C1B[15:8]
0x19 B1CF3 C1B[7:0]
0x1A B2CF1 C2B[23:16]
0x1B B2CF2 C2B[15:8]
0x1C B2CF3 C2B[7:0]
0x1D A1CF1 C3B[23:16]
0x1E A1CF2 C3B[15:8]
Register description STA339BWS
24/79 DocID015276 Rev 8
0x1F A1CF3 C3B[7:0]
0x20 A2CF1 C4B[23:16]
0x21 A2CF2 C4B[15:8]
0x22 A2CF3 C4B[7:0]
0x23 B0CF1 C5B[23:16]
0x24 B0CF2 C5B[15:8]
0x25 B0CF3 C5B[7:0]
0x26 CFUD Reserved RA R1 WA W1
0x27 MPCC1 MPCC[15:8]
0x28 MPCC2 MPCC[7:0]
0x29 DCC1 DCC[15:8]
0x2A DCC2 DCC[7:0]
0x2B FDRC1 FDRC[15:8]
0x2C FDRC2 FDRC[7:0]
0x2D STATUS PLLUL FAULT UVFAULT Reserved OCFAULT OCWARN TFAULT TWARN
0x2E Reserved Reserved
0x2F Reserved Reserved
0x30 Reserved Reserved
0x31 EQCFG XOB Reserved Reserved AMGC[3:2] Reserved SEL[1:0]
0x32 EATH1 EATHEN1 EATH1[6:0]
0x33 ERTH1 ERTHEN1 ERTH1[6:0]
0x34 EATH2 EATHEN2 EATH2[6:0]
0x35 ERTH2 ERTHEN2 ERTH2[6:0]
0x36 CONFX MDRC[1:0] PS48DB XAR1 XAR2 BQ5 BQ6 BQ7
0x37 SVCA Reserved Reserved SVUPE SVUP[4:0]
0x38 SVCB Reserved Reserved SVDWE SVDW[4:0]
0x39 RMS0A R_C0[23:16]
0x3A RMS0B R_C0[15:8]
0x3B RMS0C R_C0[7:0]
0x3C RMS1A R_C1[23:16]
0x3D RMS1B R_C1[15:8]
0x3E RMS1C R_C1[7:0]
Table 9. Register summary (continued)
Addr Name D7 D6 D5 D4 D3 D2 D1 D0
DocID015276 Rev 8 25/79
STA339BWS Register description
79
7.1 Configuration registers (addr 0x00 to 0x05)
7.1.1 Configuration register A (addr 0x00)
Master clock select
The STA339BWS supports sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz,
176.4 kHz, and 192 kHz. Therefore the internal clock is:
32.768 MHz for 32 kHz
45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz
49.152 MHz for 48 kHz, 96 kHz, and 192 kHz
The external clock frequency provided to the XTI pin must be a multiple of the input sample
frequency (fs).
The relationship between the input clock and the input sample rate is determined by both
the MCSx and the IR (input rate) register bits. The MCSx bits determine the PLL factor
generating the internal clock and the IR bit determines the oversampling ratio used
internally.
Interpolation ratio select
D7 D6 D5 D4 D3 D2 D1 D0
FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0
01100011
Table 10. Master clock select
Bit R/W RST Name Description
0 R/W 1 MCS0
Selects the ratio between the input I2S sample
frequency and the input clock.
1 R/W 1 MCS1
2 R/W 0 MCS2
Table 11. Input sampling rates
Input sample rate
fs (kHz) IR MCS[2:0]
101 100 011 010 001 000
32, 44.1, 48 00 576 * fs 128 * fs 256 * fs 384 * fs 512 * fs 768 * fs
88.2, 96 01 NA 64 * fs 128 * fs 192 * fs 256 * fs 384 * fs
176.4, 192 1X NA 32 * fs 64 * fs 96 * fs 128 * fs 192 * fs
Table 12. Internal interpolation ratio
Bit R/W RST Name Description
4:3 R/W 00 IR [1:0] Selects internal interpolation ratio based on input I2S
sample frequency
Register description STA339BWS
26/79 DocID015276 Rev 8
The STA339BWS has variable interpolation (oversampling) settings such that internal
processing and FFX output rates remain consistent. The first processing block interpolates
by either 2-times or 1-time (pass-through) or provides a 2-times downsample. The
oversampling ratio of this interpolation is determined by the IR bits.
Thermal warning recovery bypass
This bit sets the behavior of the IC after a thermal warning disappears. If TWRB is enabled
the device automatically restores the normal gain and output limiting is no longer active. If it
is disabled the device keeps the output limit active until a reset is asserted or until TWRB set
to 0. This bit works in conjunction with TWAB
Thermal warning adjustment bypass
Bit TWAB enables automatic output limiting when a power stage thermal warning condition
persists for longer than 400ms. When the feature is active (TWAB = 0) the desired output
limiting, set through bit TWOCL (-3 dB by default) at address 0x37 in the RAM coefficients
bank, is applied. The way the limiting acts after the warning condition disappears is
controlled by bit TWRB.
Table 13. IR bit settings as a function of input sample rate
Input sample rate fs (kHz) IR 1st stage interpolation ratio
32 00 2-times oversampling
44.1 00 2-times oversampling
48 00 2-times oversampling
88.2 01 Pass-through
96 01 Pass-through
176.4 10 2-times downsampling
192 10 2-times downsampling
Table 14. Thermal warning recovery bypass
Bit R/W RST Name Description
5 R/W 1 TWRB 0: thermal warning recovery enabled
1: thermal warning recovery disabled
Table 15. Thermal warning adjustment bypass
Bit R/W RST Name Description
6 R/W 1 TWAB 0: thermal warning adjustment enabled
1: thermal warning adjustment disabled
DocID015276 Rev 8 27/79
STA339BWS Register description
79
Fault detect recovery bypass
The on-chip power block provides feedback to the digital controller which is used to indicate
a fault condition (either overcurrent or thermal). When fault is asserted, the power control
block attempts a recovery from the fault by asserting the 3-state output, holding it for period
of time in the range of 0.1 ms to 1 second, as defined by the fault-detect recovery constant
register (FDRC registers 0x2B-0x2C), then toggling it back to normal condition. This
sequence is repeated as log as the fault indication exists. This feature is enabled by default
but can be bypassed by setting the FDRB control bit to 1. The fault condition is also
asserted by a low-state pulse of the normally high INT_LINE output pin.
7.1.2 Configuration register B (addr 0x01)
Serial audio input interface format
Serial data interface
The STA339BWS audio serial input interfaces with standard digital audio components and
accepts a number of serial data formats. STA339BWS always acts as slave when receiving
audio input from standard digital audio components. Serial data for two channels is provided
using three inputs: left/right clock LRCKI, serial clock BICKI, and serial data SDI.
Bits SAI and bit SAIFB are used to specify the serial data format. The default serial data
format is I2S, MSB first. Available formats are shown in the tables and figure that follow.
Serial data first bit
Table 16. Fault detect recovery bypass
Bit R/W RST Name Description
7 R/W 0 FDRB 0: fault detect recovery enabled
1: fault detect recovery disabled
D7 D6 D5 D4 D3 D2 D1 D0
C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
10000000
Table 17. Serial audio input interface
Bit R/W RST Name Description
0 R/W 0 SAI0
Determines the interface format of the input serial
digital audio interface.
1 R/W 0 SAI1
2 R/W 0 SAI2
3 R/W 0 SAI3
Table 18. Serial data first bit
SAIFB Format
0 MSB-first
1 LSB-first
Register description STA339BWS
28/79 DocID015276 Rev 8
Table 19. Support serial audio input formats for MSB-first (SAIFB = 0)
BICKI SAI [3:0] SAIFB Interface format
32 * fs
0000 0 I2S 15-bit data
0001 0 Left/right-justified 16-bit data
48 * fs
0000 0 I2S 16 to 23-bit data
0001 0 Left-justified 16 to 24-bit data
0010 0 Right-justified 24-bit data
0110 0 Right-justified 20-bit data
1010 0 Right-justified 18-bit data
1110 0 Right-justified 16-bit data
64 * fs
0000 0 I2S 16 to 24-bit data
0001 0 Left-justified 16 to 24-bit data
0010 0 Right-justified 24-bit data
0110 0 Right-justified 20-bit data
1010 0 Right-justified 18-bit data
1110 0 Right-justified 16-bit data
Table 20. Supported serial audio input formats for LSB-first (SAIFB = 1)
BICKI SAI [3:0] SAIFB Interface Format
32 * fs
1100 1 I2S 15-bit data
1110 1 Left/right-justified 16-bit data
48 * fs
0100 1 I2S 23-bit data
0100 1 I2S 20-bit data
1000 1 I2S 18-bit data
1100 1 LSB first I2S 16-bit data
0001 1 Left-justified 24-bit data
0101 1 Left-justified 20-bit data
1001 1 Left-justified 18-bit data
1101 1 Left-justified 16-bit data
0010 1 Right-justified 24-bit data
0110 1 Right-justified 20-bit data
1010 1 Right-justified 18-bit data
1110 1 Right-justified 16-bit data
DocID015276 Rev 8 29/79
STA339BWS Register description
79
To make the STA339BWS work properly, the serial audio interface LRCKI clock must be
synchronous to the PLL output clock. It means that:
N-4< = (frequency of PLL clock) / (frequency of LRCKI) = < N+4 cycles,
where N depends on the settings in Table 13 on page 26
the PLL must be locked.
If these two conditions are not met, and IDE bit (register 0x05, bit 2) is set to 1, the
STA339BWS immediately mutes the I2S PCM data out (provided to the processing block)
and it freezes any active processing task.
Clock desyncronization can happen during STA339BWS operation because of source
switching or TV channel change. To avoid audio side effects, like click or pop noise, it is
strongly recommended to complete the following actions:
1. soft volume change
2. I2C read /write instructions
while the serial audio interface and the internal PLL are still synchronous.
Delay serial clock enable
64 * fs
0000 1 I2S 24-bit data
0100 1 I2S 20-bit data
1000 1 I2S 18-bit data
1100 1 LSB first I2S 16-bit data
0001 1 Left-justified 24-bit data
0101 1 Left-justified 20-bit data
1001 1 Left-justified 18-bit data
1101 1 Left-justified 16-bit data
0010 1 Right-justified 24-bit data
0110 1 Right-justified 20-bit data
1010 1 Right-justified 18-bit data
1110 1 Right-justified 16-bit data
Table 21. Delay serial clock enable
Bit R/W RST Name Description
5 R/W 0 DSCKE
0: no serial clock delay
1: serial clock delay by 1 core clock cycle to tolerate
anomalies in some I2S master devices
Table 20. Supported serial audio input formats for LSB-first (SAIFB = 1) (continued)
BICKI SAI [3:0] SAIFB Interface Format
Register description STA339BWS
30/79 DocID015276 Rev 8
Channel input mapping
Each channel received via I2S can be mapped to any internal processing channel via the
Channel Input Mapping registers. This allows for flexibility in processing. The default
settings of these registers maps each I2S input channel to its corresponding processing
channel.
7.1.3 Configuration register C (addr 0x02)
FFX power output mode
The FFX power output mode selects how the FFX output timing is configured.
Different power devices use different output modes.
FFX compensating pulse size register
Table 22. Channel input mapping
Bit R/W RST Name Description
6 R/W 0 C1IM 0: processing channel 1 receives left I2S Input
1: processing channel 1 receives right I2S Input
7 R/W 1 C2IM 0: processing channel 2 receives left I2S Input
1: processing channel 2 receives right I2S Input
D7 D6 D5 D4 D3 D2 D1 D0
OCRB Reserved CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0
10010111
Table 23. FFX power output mode
Bit R/W RST Name Description
0 R/W 1 OM0 Selects configuration of FFX output:
00: drop compensation
01: discrete output stage: tapered compensation
10: full-power mode
11: variable drop compensation (CSZx bits)
1 R/W 1 OM1
Table 24. FFX compensating pulse size bits
Bit R/W RST Name Description
2 R/W 1 CSZ0
When OM[1,0] = 11, this register determines the size
of the FFX compensating pulse from 0 clock ticks to
15 clock periods.
3 R/W 1 CSZ1
4 R/W 1 CSZ2
5 R/W 0 CSZ3
DocID015276 Rev 8 31/79
STA339BWS Register description
79
Overcurrent warning adjustment bypass
The OCRB is used to indicate how STA339BWS behaves when an overcurrent warning
condition occurs. If OCRB = 0 and the overcurrent condition happens, the power control
block forces an adjustment to the modulation limit (default is -3 dB) in an attempt to
eliminate the overcurrent warning condition. Once the overcurrent warning clipping
adjustment is applied, it remains in this state until reset is applied or OCRB is set to 1. The
level of adjustment can be changed via the TWOCL (thermal warning/overcurrent limit)
setting at address 0x37 of the user defined coefficient RAM (Section 7.7.7 on page 59). The
OCRB can be enabled when the output bridge is already on.
7.1.4 Configuration register D (addr 0x03)
High-pass filter bypass
The STA339BWS features an internal digital high-pass filter for the purpose of AC coupling.
The purpose of this filter is to prevent DC signals from passing through a FFX amplifier. DC
signals can cause speaker damage. When HPB = 0, this filter is enabled.
Table 25. Compensating pulse size
CSZ[3:0] Compensating pulse size
0000 0 ns (0 tick) compensating pulse size
0001 20 ns (1 tick) clock period compensating pulse size
……
1111 300 ns (15 tick) clock period compensating pulse size
Table 26. Overcurrent warning bypass
Bit R/W RST Name Description
7 R/W 1 OCRB 0: overcurrent warning adjustment enabled
1: overcurrent warning adjustment disabled
D7 D6 D5 D4 D3 D2 D1 D0
SME ZDE DRC BQL PSL DSPB DEMP HPB
01000000
Table 27. High-pass filter bypass
Bit R/W RST Name Description
0 R/W 0 HPB 1: bypass internal AC coupling digital high-pass filter
Register description STA339BWS
32/79 DocID015276 Rev 8
De-emphasis
DSP bypass
Setting the DSPB bit bypasses the EQ function of the STA339BWS.
Postscale link
Postscale functionality can be used for power-supply error correction. For multi-channel
applications running off the same power-supply, the postscale values can be linked to the
value of channel 1 for ease of use and update the values faster.
Biquad coefficient link
For ease of use, all channels can use the biquad coefficients loaded into the Channel-1
coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to
be performed once.
Dynamic range compression/anticlipping bit
Table 28. De-emphasis
Bit R/W RST Name Description
1 R/W 0 DEMP 0: no de-emphasis
1: enable de-emphasis on all channels
Table 29. DSP bypass
Bit R/W RST Name Description
2 R/W 0 DSPB 0: normal operation
1: bypass of biquad and bass/treble functions
Table 30. Postscale link
Bit R/W RST Name Description
3 R/W 0 PSL 0: each channel uses individual postscale value
1: each channel uses channel 1 postscale value
Table 31. Biquad coefficient link
Bit R/W RST Name Description
4 R/W 0 BQL 0: each channel uses coefficient values
1: each channel uses channel 1 coefficient values
Table 32. Dynamic range compression/anticlipping bit
Bit R/W RST Name Description
5 R/W 0 DRC 0: limiters act in anticlipping mode
1: limiters act in dynamic range compression mode
DocID015276 Rev 8 33/79
STA339BWS Register description
79
Both limiters can be used in one of two ways, anticlipping or dynamic range compression.
When used in anticlipping mode the limiter threshold values are constant and dependent on
the limiter settings. In dynamic range compression mode the limiter threshold values vary
with the volume settings allowing a nighttime listening mode that provides a reduction in the
dynamic range regardless of the volume level.
Zero-detect mute enable
Setting the ZDE bit enables the zero-detect automatic mute. The zero-detect circuit looks at
the data for each processing channel at the output of the crossover (bass management)
filter. If any channel receives 2048 consecutive zero value samples (regardless of fs) then
that individual channel is muted if this function is enabled.
Submix mode enable
7.1.5 Configuration register E (addr 0x04)
Max power correction variable
Max power correction
Table 33. Zero-detect mute enable
Bit R/W RST Name Description
6 R/W 1 ZDE 0: automatic zero-detect mute disabled
1: automatic zero-detect mute enabled
Table 34. Submix mode enable
Bit R/W RST Name Description
7 R/W 0 SME 0: submix into left/right disabled
1: submix into left/right enabled
D7 D6 D5 D4 D3 D2 D1 D0
SVE ZCE DCCV PWMS AME NSBW MPC MPCV
11000010
Table 35. Max power correction variable
Bit R/W RST Name Description
0 R/W 0 MPCV 0: use standard MPC coefficient
1: use MPCC bits for MPC coefficient
Table 36. Max power correction
Bit R/W RST Name Description
1 R/W 1 MPC
0: function disabled
1: enables power bridge correction for THD
reduction near maximum power output.
Register description STA339BWS
34/79 DocID015276 Rev 8
Setting the MPC bit turns on special processing that corrects the STA339BWS power device
at high power. This mode should lower the THD+N of a full FFX system at maximum power
output and slightly below. If enabled, MPC is operational in all output modes except tapered
(OM[1,0] = 01) and binary. When OCFG = 00, MPC has no effect on channels 3 and 4, the
line-out channels.
Noise-shaper bandwidth selection
AM mode enable
STA339BWS features a FFX processing mode that minimizes the amount of noise
generated in frequency range of AM radio. This mode is intended for use when FFX is
operating in a device with an AM tuner active. The SNR of the FFX processing is reduced to
approximately 83 dB in this mode, which is still greater than the SNR of AM radio.
PWM speed mode
Distortion compensation variable enable
Table 37. Noise-shaper bandwidth selection
Bit R/W RST Name Description
2 R/W 0 NSBW 1: third-order NS
0: fourth-order NS
Table 38. AM mode enable
Bit R/W RST Name Description
3 R/W 0 AME 0: normal FFX operation.
1: AM reduction mode FFX operation
Table 39. PWM speed mode
Bit R/W RST Name Description
4 R/W 0 PWMS 0: normal speed (384 kHz) all channels
1: odd speed (341.3 kHz) all channels
Table 40. Distortion compensation variable enable
Bit R/W RST Name Description
5 R/W 0 DCCV 0: use preset DC coefficient
1: use DCC coefficient
DocID015276 Rev 8 35/79
STA339BWS Register description
79
Zero-crossing volume enable
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital
zero-crossings no clicks are audible.
Soft volume update enable
7.1.6 Configuration register F (addr 0x05)
Output configuration
Table 41. Zero-crossing volume enable
Bit R/W RST Name Description
6 R/W 1 ZCE
1: volume adjustments only occur at digital zero-
crossings
0: volume adjustments occur immediately
Table 42. Soft volume update enable
Bit R/W RST Name Description
7 R/W 1 SVE
1: volume adjustments ramp according to SVUP/SVDW
settings
0: volume adjustments occur immediately
D7 D6 D5 D4 D3 D2 D1 D0
EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0
01011100
Table 43. Output configuration
Bit R/W RST Name Description
0 R/W 0 OCFG0
Selects the output configuration
1 R/W 0 OCFG1
Register description STA339BWS
36/79 DocID015276 Rev 8
Note: To the left of the arrow is the processing channel. When using channel output mapping, any
of the three processing channel outputs can be used for any of the three inputs.
Figure 11. OCFG = 00 (default value)
Table 44. Output configuration engine selection
OCFG[1:0] Output configuration Config pin
00
2 channel (full-bridge) power, 2 channel data-out:
1A/1B 1A/1B
2A/2B 2A/2B
LineOut1 3A/3B
LineOut2 4A/4B
Line Out Configuration determined by LOC register
0
01
2 (half-bridge), 1(full-bridge) on-board power:
1A 1A Binary 0 °
2A 1B Binary 90°
3A/3B 2A/2B Binary 45°
1A/B 3A/B Binary 0°
2A/B 4A/B Binary 90°
0
10
2 channel (full-bridge) power, 1 channel FFX:
1A/1B 1A/1B
2A/2B 2A/2B
3A/3B 3A/3B
EAPDEXT and TWARNEXT Active
0
11
1 channel mono-parallel:
3A 1A/1B w/ C3BO 45°
3B 2A/2B w/ C3BO 45°
1A/1B 3A/3B
2A/2B 4A/4B
1
DocID015276 Rev 8 37/79
STA339BWS Register description
79
Figure 12. OCFG = 01
Figure 13. OCFG = 10
Figure 14. OCFG = 11
The STA339BWS can be configured to support different output configurations. For each
PWM output channel a PWM slot is defined. A PWM slot is always 1 / (8 * fs) seconds
length. The PWM slot define the maximum extension for PWM rise and fall edge, that is,
rising edge as far as the falling edge cannot range outside PWM slot boundaries.
Register description STA339BWS
38/79 DocID015276 Rev 8
Figure 15. Output mapping scheme
For each configuration the PWM signals from the digital driver are mapped in different ways
to the power stage:
DocID015276 Rev 8 39/79
STA339BWS Register description
79
2.0 channels, two full-bridges (OCFG = 00)
Mapping:
FFX1A -> OUT1A
FFX1B -> OUT1B
FFX2A -> OUT2A
FFX2B -> OUT2B
FFX3A -> OUT3A
FFX3B -> OUT3B
FFX4A -> OUT4A
FFX4B -> OUT4B
Default modulation:
FFX1A/1B configured as ternary
FFX2A/2B configured as ternary
FFX3A/3B configured as lineout ternary
FFX4A/4B configured as lineout ternary
On channel 3 line out (LOC bits = 00) the same data as channel 1 processing is sent. On
channel 4 line out (LOC bits = 00) the same data as channel 2 processing is sent. In this
configuration, volume control or EQ have no effect on channels 3 and 4.
In this configuration the PWM slot phase is the following as shown in Figure 16.
Figure 16. 2.0 channels (OCFG = 00) PWM slots
Register description STA339BWS
40/79 DocID015276 Rev 8
2.1 channels, two half-bridges + one full-bridge (OCFG = 01)
Mapping:
FFX1A -> OUT1A
FFX2A -> OUT1B
FFX3A -> OUT2A
FFX3B -> OUT2B
FFX1A -> OUT3A
FFX1B -> OUT3B
FFX2A -> OUT4A
FFX2B -> OUT4B
Modulation:
FFX1A/1B configured as binary
FFX2A/2B configured as binary
FFX3A/3B configured as binary
FFX4A/4B configured as binary
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT3/OUT4
channels the channel 1 and channel 2 PWM are replicated.
In this configuration the PWM slot phase is the following as shown in Figure 17.
Figure 17. 2.1 channels (OCFG = 01) PWM slots
DocID015276 Rev 8 41/79
STA339BWS Register description
79
2.1 channels, two full-bridges + one external full-bridge (OCFG = 10)
Mapping:
FFX1A -> OUT1A
FFX1B -> OUT1B
FFX2A -> OUT2A
FFX2B -> OUT2B
FFX3A -> OUT3A
FFX3B -> OUT3B
EAPD -> OUT4A
TWARN -> OUT4B
Default modulation:
FFX1A/1B configured as ternary
FFX2A/2B configured as ternary
FFX3A/3B configured as ternary
FFX4A/4B is not used
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT4 channel the
external bridge control signals are multiplexed.
In this configuration the PWM slot phase is the following as shown in Figure 18.
Figure 18. 2.1 channels (OCFG = 10) PWM slots
Register description STA339BWS
42/79 DocID015276 Rev 8
1 channel mono-parallel (OCFG = 11)
Mapping:
FFX1A -> OUT3A
FFX1B -> OUT3B
FFX2A -> OUT4A
FFX2B -> OUT4B
FFX3A -> OUT1A/OUT1B
FFX3B -> OUT2A/OUT2B
In this configuration, the CONFIG pin must be connected to the VDD pin.
DocID015276 Rev 8 43/79
STA339BWS Register description
79
Invalid input detect mute enable
Setting the IDE bit enables this function, which looks at the input I2S data and automatically
mutes if the signals are perceived as invalid.
Binary output mode clock loss detection
Detects loss of input MCLK in binary mode and will output 50% duty cycle.
LRCK double trigger protection
LDTE, when enabled, prevents double trigger of LRCLK on instable I2S input.
Auto EAPD on clock loss
When active, issues a power device power down signal (EAPD) on clock loss detection.
IC power down
Table 45. Invalid input detect mute enable
Bit R/W RST Name Description
2 R/W 1 IDE 0: disables the automatic invalid input detect mute
1: enables the automatic invalid input detect mute
Table 46. Binary output mode clock loss detection
Bit R/W RST Name Description
3 R/W 1 BCLE 0: binary output mode clock loss detection disabled
1: binary output mode clock loss detection enable
Table 47. LRCK double trigger protection
Bit R/W RST Name Description
4 R/W 1 LDTE 0: LRCLK double trigger protection disabled
1: LRCLK double trigger protection enabled
Table 48. Auto EAPD on clock loss
Bit R/W RST Name Description
5 R/W 0 ECLE 0: auto EAPD on clock loss not enabled
1: auto EAPD on clock loss
Table 49. IC power down
Bit R/W RST Name Description
6 R/W 1 PWDN 0: IC power down low-power condition
1: IC normal operation
Register description STA339BWS
44/79 DocID015276 Rev 8
The PWDN register is used to place the IC in a low-power state. When PWDN is written
as 0, the output begins a soft-mute. After the mute condition is reached, EAPD is asserted
to power down the power-stage, then the master clock to all internal hardware expect the
I2C block is gated. This places the IC in a very low power consumption state.
External amplifier power down
The EAPD register directly disables/enables the internal power circuitry.
When EAPD = 0, the internal power section is placed in a low-power state (disabled). This
register also controls the FFX4B/EAPD output pin when OCFG = 10.
7.2 Volume control registers (addr 0x06 - 0x0A)
The volume structure of the STA339BWS consists of individual volume registers for each
channel and a master volume register that provides an offset to each channels volume
setting. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB
to -80 dB.
As an example if C3VOL = 0x00 or +48 dB and MVOL = 0x18 or -12 dB, then the total gain
for channel 3 = +36 dB.
The channel mutes provide a “soft mute” with the volume ramping down to mute in
4096 samples from the maximum volume setting at the internal processing rate
(approximately 96 kHz).
All changes in volume take place at zero-crossings when ZCE = 1 (Configuration register E
(addr 0x04)) on a per channel basis as this creates the smoothest possible volume
transitions. When ZCE = 0, volume updates occur immediately.
Table 50. External amplifier power down
Bit R/W RST Name Description
7 R/W 0 EAPD 0: external power stage power down active
1: normal operation
DocID015276 Rev 8 45/79
STA339BWS Register description
79
7.2.1 Mute/line output configuration register (addr 0x06)
Line output is only active when OCFG = 00. In this case LOC determines the line output
configuration. The source of the line output is always the channel 1 and 2 inputs.
7.2.2 Master volume register (addr 0x07)
7.2.3 Channel 1 volume (addr 0x08)
7.2.4 Channel 2 volume (addr 0x09)
D7 D6 D5 D4 D3 D2 D1 D0
LOC1 LOC0 Reserved Reserved C3M C2M C1M Reserved
00010000
Table 51. Line output configuration
LOC[1:0] Line output configuration
00 Line output fixed - no volume, no EQ
01 Line output variable - channel 3 volume effects line output, no EQ
10 Line output variable with EQ - channel 3 volume effects line output
D7 D6 D5 D4 D3 D2 D1 D0
MVOL7 MVOL6 MVOL5 MVOL4 MVOL3 MVOL2 MVOL1 MVOL0
11111111
Table 52. Master volume offset as a function of MVOL[7:0]
MVOL[7:0] Volume offset from channel value
00000000 (0x00) 0 dB
00000001 (0x01) -0.5 dB
00000010 (0x02) -1 dB
……
01001100 (0x4C) -38 dB
……
11111110 (0xFE) -127.5 dB
11111111 (0xFF) Default mute, not to be used during operation
D7 D6 D5 D4 D3 D2 D1 D0
C1VOL7 C1VOL6 C1VOL5 C1VOL4 C1VOL3 C1VOL2 C1VOL1 C1VOL0
01100000
D7 D6 D5 D4 D3 D2 D1 D0
C2VOL7 C2VOL6 C2VOL5 C2VOL4 C2VOL3 C2VOL2 C2VOL1 C2VOL0
01100000
Register description STA339BWS
46/79 DocID015276 Rev 8
7.2.5 Channel 3 / line output volume (addr 0x0A)
D7 D6 D5 D4 D3 D2 D1 D0
C3VOL7 C3VOL6 C3VOL5 C3VOL4 C3VOL3 C3VOL2 C3VOL1 C3VOL0
01100000
Table 53. Channel volume as a function of CxVOL[7:0]
CxVOL[7:0] Volume
00000000 (0x00) +48 dB
00000001 (0x01) +47.5 dB
00000010 (0x02) +47 dB
……
01011111 (0x5F) +0.5 dB
01100000 (0x60) 0 dB
01100001 (0x61) -0.5 dB
……
11010111 (0xD7) -59.5 dB
11011000 (0xD8) -60 dB
11011001 (0xD9) -61 dB
11011010 (0xDA) -62 dB
……
11101100 (0xEC) -80 dB
11101101 (0xED) Hard channel mute
……
11111111 (0xFF) Hard channel mute
DocID015276 Rev 8 47/79
STA339BWS Register description
79
7.3 Audio preset registers (addr 0x0B and 0x0C)
7.3.1 Audio preset register 1 (addr 0x0B)
Using AMGC[3:0] bits, attack and release thresholds and rates are automatically configured
to properly fit application specific configurations. AMGC[3:2] is defined in register EQ
coefficients and DRC configuration register (addr 0x31) on page 66.
The AMGC[1:0] bits behave in two different ways depending on the value of AMGC[3:2].
When this value is 00 then bits AMGC[1:0] are defined below in Table 54.
7.3.2 Audio preset register 2 (addr 0x0C)
AM interference frequency switching
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved AMGC[1] AMGC[0] Reserved Reserved Reserved Reserved
10000000
Table 54. Audio preset gain compression/limiters selection for AMGC[3:2] = 00
AMGC[1:0] Mode
00 User programmable GC
01 AC no clipping 2.1
10 AC limited clipping (10%) 2.1
11 DRC night-time listening mode 2.1
D7 D6 D5 D4 D3 D2 D1 D0
XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
00000000
Table 55. AM interference frequency switching bits
Bit R/W RST Name Description
0 R/W 0 AMAME
Audio preset AM enable
0: switching frequency determined by PWMS setting
1: switching frequency determined by AMAM settings
Table 56. Audio preset AM switching frequency selection
AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs
000 0.535 MHz - 0.720 MHz 0.535 MHz - 0.670 MHz
001 0.721 MHz - 0.900 MHz 0.671 MHz - 0.800 MHz
010 0.901 MHz - 1.100 MHz 0.801 MHz - 1.000 MHz
011 1.101 MHz - 1.300 MHz 1.001 MHz - 1.180 MHz
100 1.301 MHz - 1.480 MHz 1.181 MHz - 1.340 MHz
Register description STA339BWS
48/79 DocID015276 Rev 8
Bass management crossover
101 1.481 MHz - 1.600 MHz 1.341 MHz - 1.500 MHz
110 1.601 MHz - 1.700 MHz 1.501 MHz - 1.700 MHz
Table 57. Bass management crossover
Bit R/W RST Name Description
4 R/W 0 XO0
Selects the bass-management crossover frequency.
A 1st-order hign-pass filter (channels 1 and 2) or a
2nd-order low-pass filter (channel 3) at the selected
frequency is performed.
5 R/W 0 XO1
6 R/W 0 XO2
7 R/W 0 XO3
Table 58. Bass management crossover frequency
XO[3:0] Crossover frequency
0000 User-defined (Section 7.7.8 on page 59)
0001 80 Hz
0010 100 Hz
0011 120 Hz
0100 140 Hz
0101 160 Hz
0110 180 Hz
0111 200 Hz
1000 220 Hz
1001 240 Hz
1010 260 Hz
1011 280 Hz
1100 300 Hz
1101 320 Hz
1110 340 Hz
1111 360 Hz
Table 56. Audio preset AM switching frequency selection (continued)
AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs
DocID015276 Rev 8 49/79
STA339BWS Register description
79
7.4 Channel configuration registers (addr 0x0E - 0x10)
Tone control bypass
Tone control (bass/treble) can be bypassed on a per channel basis for channels 1 and 2.
EQ bypass
EQ control can be bypassed on a per channel basis for channels 1 and 2. If EQ control is
bypassed on a given channel the prescale and all filters (high-pass, biquads, de-emphasis,
bass, treble in any combination) are bypassed for that channel.
Volume bypass
Each channel contains an individual channel volume bypass. If a particular channel has
volume bypassed via the CxVBP = 1 register then only the channel volume setting for that
particular channel affects the volume setting, the master volume setting has no effect on that
channel.
D7 D6 D5 D4 D3 D2 D1 D0
C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VPB C1EQBP C1TCB
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VPB C2EQBP C2TCB
01000000
D7 D6 D5 D4 D3 D2 D1 D0
C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VPB Reserved Reserved
10000000
Table 59. Tone control bypass
CxTCB Mode
0 Perform tone control on channel x - normal operation
1 Bypass tone control on channel x
Table 60. EQ bypass
CxEQBP Mode
0 Perform EQ on channel x - normal operation
1 Bypass EQ on channel x
Table 61. Volume bypass register
CxVBP Mode
0 Normal volume operations
1 Volume is by-passed
Register description STA339BWS
50/79 DocID015276 Rev 8
Binary output enable registers
Each individual channel output can be set to output a binary PWM stream. In this mode
output A of a channel is considered the positive output and output B is negative inverse.
Limiter select
Limiter selection can be made on a per-channel basis according to the channel limiter select
bits. CxLS bits are not considered when dual band DRC (Section 7.13.1 on page 67) or
EQ DRC (Section 7.13.2) is used.
.
Output mapping
Output mapping can be performed on a per channel basis according to the CxOM channel
output mapping bits. Each input into the output configuration engine can receive data from
any of the three processing channel outputs.
.
Table 62. Binary output enable registers
CxBO Mode
0 FFX output operation
1 Binary output
Table 63. Channel limiter mapping as a function of CxLS bits
CxLS[1:0] Channel limiter mapping
00 Channel has limiting disabled
01 Channel is mapped to limiter #1
10 Channel is mapped to limiter #2
Table 64. Channel output mapping as a function of CxOM bits
CxOM[1:0] Channel x output source from
00 Channel1
01 Channel 2
10 Channel 3
DocID015276 Rev 8 51/79
STA339BWS Register description
79
7.5 Tone control register (addr 0x11)
Tone control
7.6 Dynamic control registers (addr 0x12 - 0x15)
7.6.1 Limiter 1 attack/release rate (addr 0x12)
7.6.2 Limiter 1 attack/release threshold (addr 0x13)
D7 D6 D5 D4 D3 D2 D1 D0
TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
01110111
Table 65. Tone control boost/cut as a function of BTC and TTC bits
BTC[3:0]/TTC[3:0] Boost/Cut
0000 -12 dB
0001 -12 dB
0010 -10 dB
……
0101 -4 dB
0110 -2 dB
0111 0 dB
1000 +2 dB
1001 +4 dB
……
1100 +10 dB
1101 +12 dB
1110 +12 dB
1111 +12 dB
D7 D6 D5 D4 D3 D2 D1 D0
L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
01101010
D7 D6 D5 D4 D3 D2 D1 D0
L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
01101001
Register description STA339BWS
52/79 DocID015276 Rev 8
7.6.3 Limiter 2 attack/release rate (addr 0x14)
7.6.4 Limiter 2 attack/release threshold (addr 0x15)
7.6.5 Description
The STA339BWS includes two independent limiter blocks. The purpose of the limiters is to
automatically reduce the dynamic range of a recording to prevent the outputs from clipping
in anticlipping mode or to actively reduce the dynamic range for a better listening
environment such as a night-time listening mode which is often needed for DVDs. The two
modes are selected via the DRC bit in Configuration register E (addr 0x04) on page 33.
Each channel can be mapped to either limiter or not mapped, meaning that channel will clip
when 0 dBFS is exceeded. Each limiter looks at the present value of each channel that is
mapped to it, selects the maximum absolute value of all these channels, performs the
limiting algorithm on that value, and then if needed adjusts the gain of the mapped channels
in unison.
Figure 19. Basic limiter and volume flow diagram
The limiter attack thresholds are determined by the LxAT registers if EATHx[7] bits are set
to 0 else the thresholds are determined by EATHx[6:0]. It is recommended in anticlipping
mode to set this to 0 dBFS, which corresponds to the maximum unclipped output power of a
FFX amplifier. Since gain can be added digitally within the STA339BWS it is possible to
exceed 0 dBFS or any other LxAT setting, when this occurs, the limiter, when active,
automatically starts reducing the gain. The rate at which the gain is reduced when the attack
threshold is exceeded is dependent upon the attack rate register setting for that limiter. Gain
reduction occurs on a peak-detect algorithm. Setting EATHx[7] bits to 1 selects the
anticlipping mode.
The limiter release thresholds are determined by the LxRT registers if ERTHx[7] bits are set
to 0 else the thresholds are determined by ERTHx[6:0]. Settings to 1 ERTHx[7] bits the
anticlipping mode is selected automatically. The release of limiter, when the gain is again
increased, is dependent on a RMS-detect algorithm. The output of the volume/limiter block
is passed through a RMS filter. The output of this filter is compared to the release threshold,
determined by the Release Threshold register. When the RMS filter output falls below the
D7 D6 D5 D4 D3 D2 D1 D0
L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
01101010
D7 D6 D5 D4 D3 D2 D1 D0
L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
01101001
DocID015276 Rev 8 53/79
STA339BWS Register description
79
release threshold, the gain is again increased at a rate dependent upon the Release Rate
register. The gain can never be increased past its set value and, therefore, the release only
occurs if the limiter has already reduced the gain. The release threshold value can be used
to set what is effectively a minimum dynamic range, this is helpful as over limiting can
reduce the dynamic range to virtually zero and cause program material to sound “lifeless”.
In AC mode, the attack and release thresholds are set relative to full-scale. In DRC mode,
the attack threshold is set relative to the maximum volume setting of the channels mapped
to that limiter and the release threshold is set relative to the maximum volume setting plus
the attack threshold.
Table 66. Limiter attack rate vs LxA bits
LxA[3:0] Attack Rate dB/ms
0000 3.1584
Fast
Slow
0001 2.7072
0010 2.2560
0011 1.8048
0100 1.3536
0101 0.9024
0110 0.4512
0111 0.2256
1000 0.1504
1001 0.1123
1010 0.0902
1011 0.0752
1100 0.0645
1101 0.0564
1110 0.0501
1111 0.0451
Register description STA339BWS
54/79 DocID015276 Rev 8
Anticlipping mode
Table 67. Limiter release rate vs LxR bits
LxR[3:0] Release Rate dB/ms
0000 0.5116
Fast
Slow
0001 0.1370
0010 0.0744
0011 0.0499
0100 0.0360
0101 0.0299
0110 0.0264
0111 0.0208
1000 0.0198
1001 0.0172
1010 0.0147
1011 0.0137
1100 0.0134
1101 0.0117
1110 0.0110
1111 0.0104
Table 68. Limiter attack threshold vs LxAT bits (AC mode)
LxAT[3:0] AC (dB relative to fs)
0000 -12
0001 -10
0010 -8
0011 -6
0100 -4
0101 -2
0110 0
0111 +2
1000 +3
1001 +4
1010 +5
1011 +6
1100 +7
1101 +8
DocID015276 Rev 8 55/79
STA339BWS Register description
79
Dynamic range compression mode
1110 +9
1111 +10
Table 69. Limiter release threshold vs LxRT bits (AC mode)
LxRT[3:0] AC (dB relative to fs)
0000 -
0001 -29
0010 -20
0011 -16
0100 -14
0101 -12
0110 -10
0111 -8
1000 -7
1001 -6
1010 -5
1011 -4
1100 -3
1101 -2
1110 -1
1111 -0
Table 70. Limiter attack threshold vs LxAT bits (DRC mode)
LxAT[3:0] DRC (dB relative to Volume)
0000 -31
0001 -29
0010 -27
0011 -25
0100 -23
0101 -21
0110 -19
0111 -17
1000 -16
Table 68. Limiter attack threshold vs LxAT bits (AC mode) (continued)
LxAT[3:0] AC (dB relative to fs)
Register description STA339BWS
56/79 DocID015276 Rev 8
7.6.6 Limiter 1 extended attack threshold (addr 0x32)
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH1 / 4
1001 -15
1010 -14
1011 -13
1100 -12
1101 -10
1110 -7
1111 -4
Table 71. Limiter release threshold vs LxRT bits (DRC mode)
LxRT[3:0] DRC (db relative to Volume + LxAT)
0000 -
0001 -38
0010 -36
0011 -33
0100 -31
0101 -30
0110 -28
0111 -26
1000 -24
1001 -22
1010 -20
1011 -18
1100 -15
1101 -12
1110 -9
1111 -6
Table 70. Limiter attack threshold vs LxAT bits (DRC mode) (continued)
LxAT[3:0] DRC (dB relative to Volume)
D7 D6 D5 D4 D3 D2 D1 D0
EATHEN1 EATH1[6] EATH1[5] EATH1[4] EATH1[3] EATH1[2] EATH1[1] EATH1[0]
00110000
DocID015276 Rev 8 57/79
STA339BWS Register description
79
7.6.7 Limiter 1 extended release threshold (addr 0x33)
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH1 / 4
7.6.8 Limiter 2 extended attack threshold (addr 0x34)
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH2 / 4
7.6.9 Limiter 2 extended release threshold (addr 0x35)
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH2 / 4
Note: Attack/release threshold step is 0.125 dB in the range -12 dB and 0 dB.
7.7 User-defined coefficient control registers (addr 0x16 - 0x26)
7.7.1 Coefficient address register (addr 0x16)
7.7.2 Coefficient b1 data register bits (addr 0x17 - 0x19)
D7 D6 D5 D4 D3 D2 D1 D0
ERTHEN1 ERTH1[6] ERTH1[5] ERTH1[4] ERTH1[3] ERTH1[2] ERTH1[1] ERTH1[0]
00110000
D7 D6 D5 D4 D3 D2 D1 D0
EATHEN2 EATH2[6] EATH2[5] EATH2[4] EATH2[3] EATH2[2] EATH2[1] EATH2[0]
00110000
D7 D6 D5 D4 D3 D2 D1 D0
ERTHEN2 ERTH2[6] ERTH2[5] ERTH2[4] ERTH2[3] ERTH2[2] ERTH2[1] ERTH2[0]
00110000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
00000000
Register description STA339BWS
58/79 DocID015276 Rev 8
7.7.3 Coefficient b2 data register bits (addr 0x1A - 0x1C)
7.7.4 Coefficient a1 data register bits (addr 0x1D - 0x1F)
7.7.5 Coefficient a2 data register bits (addr 0x20 - 0x22)
D7 D6 D5 D4 D3 D2 D1 D0
C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
00000000
DocID015276 Rev 8 59/79
STA339BWS Register description
79
7.7.6 Coefficient b0 data register bits (addr 0x23 - 0x25)
7.7.7 Coefficient read/write control register (addr 0x26)
7.7.8 Description
Coefficients for user-defined EQ, mixing, scaling, and bass management are handled
internally in the STA339BWS via RAM. Access to this RAM is available to the user via an
I2C register interface. A collection of I2C registers are dedicated to this function. One
contains a coefficient base address, five sets of three store the values of the 24-bit
coefficients to be written or that were read, and one contains bits used to control the
write/read of the coefficient(s) to/from RAM.
Three different RAM banks are embedded in STA339BWS. The three banks are managed
in paging mode using EQCFG register bits. They can be used to store different EQ settings.
For speaker frequency compensation, a sampling frequency independent EQ must be
implemented. Computing three different coefficients set for 32 kHz, 44.1kHz, 48 kHz and
downloading them into the three RAM banks, it is possible to select the suitable RAM block
depending from the incoming frequency with a simple I2C write operation on register 0x31.
For example, in case of different input sources (different sampling rates), the three different
sets of coefficients can be downloaded once at the start up, and during the normal play it is
possible to switch among the three RAM blocks allowing a faster operation, without any
additional download from the microcontroller.
To write the coefficients in a particular RAM bank, this bank must be selected first writing
bit 0 and bit 1 in register 0x31. Then the write procedure below can be used.
Note that as soon as a RAM bank is selected, the EQ settings are automatically switched to
the coefficients stored in the active RAM block.
Note: The read write operation on RAM coefficients works only if RLCKI (pin29) is switching and
stable (ref. Table 8, tLRJT timing) and PLL must be locked (ref bit D7 reg 0x2D).
D7 D6 D5 D4 D3 D2 D1 D0
C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved RA R1 WA W1
0 0000
Register description STA339BWS
60/79 DocID015276 Rev 8
Reading a coefficient from RAM
1. Select the RAM block with register 0x31 bit1, bit0.
2. Write 6-bits of address to I2C register 0x16.
3. Write 1 to R1 bit in I2C address 0x26.
4. Read top 8-bits of coefficient in I2C address 0x17.
5. Read middle 8-bits of coefficient in I2C address 0x18.
6. Read bottom 8-bits of coefficient in I2C address 0x19.
Reading a set of coefficients from RAM
1. Select the RAM block with register 0x31 bit1, bit0.
2. Write 6-bits of address to I2C register 0x16.
3. Write 1 to RA bit in I2C address 0x26.
4. Read top 8-bits of coefficient in I2C address 0x17.
5. Read middle 8-bits of coefficient in I2C address 0x18.
6. Read bottom 8-bits of coefficient in I2C address 0x19.
7. Read top 8-bits of coefficient b2 in I2C address 0x1A.
8. Read middle 8-bits of coefficient b2 in I2C address 0x1B.
9. Read bottom 8-bits of coefficient b2 in I2C address 0x1C.
10. Read top 8-bits of coefficient a1 in I2C address 0x1D.
11. Read middle 8-bits of coefficient a1 in I2C address 0x1E.
12. Read bottom 8-bits of coefficient a1 in I2C address 0x1F.
13. Read top 8-bits of coefficient a2 in I2C address 0x20.
14. Read middle 8-bits of coefficient a2 in I2C address 0x21.
15. Read bottom 8-bits of coefficient a2 in I2C address 0x22.
16. Read top 8-bits of coefficient b0 in I2C address 0x23.
17. Read middle 8-bits of coefficient b0 in I2C address 0x24.
18. Read bottom 8-bits of coefficient b0 in I2C address 0x25.
Writing a single coefficient to RAM
1. Select the RAM block with register 0x31 bit1, bit0.
2. Write 6-bits of address to I2C register 0x16.
3. Write top 8-bits of coefficient in I2C address 0x17.
4. Write middle 8-bits of coefficient in I2C address 0x18.
5. Write bottom 8-bits of coefficient in I2C address 0x19.
6. Write 1 to W1 bit in I2C address 0x26.
DocID015276 Rev 8 61/79
STA339BWS Register description
79
Writing a set of coefficients to RAM
1. Select the RAM block with register 0x31 bit1, bit0.
2. Write 6-bits of starting address to I2C register 0x16.
3. Write top 8-bits of coefficient b1 in I2C address 0x17.
4. Write middle 8-bits of coefficient b1 in I2C address 0x18.
5. Write bottom 8-bits of coefficient b1 in I2C address 0x19.
6. Write top 8-bits of coefficient b2 in I2C address 0x1A.
7. Write middle 8-bits of coefficient b2 in I2C address 0x1B.
8. Write bottom 8-bits of coefficient b2 in I2C address 0x1C.
9. Write top 8-bits of coefficient a1 in I2C address 0x1D.
10. Write middle 8-bits of coefficient a1 in I2C address 0x1E.
11. Write bottom 8-bits of coefficient a1 in I2C address 0x1F.
12. Write top 8-bits of coefficient a2 in I2C address 0x20.
13. Write middle 8-bits of coefficient a2 in I2C address 0x21.
14. Write bottom 8-bits of coefficient a2 in I2C address 0x22.
15. Write top 8-bits of coefficient b0 in I2C address 0x23.
16. Write middle 8-bits of coefficient b0 in I2C address 0x24.
17. Write bottom 8-bits of coefficient b0 in I2C address 0x25.
18. Write 1 to WA bit in I2C address 0x26.
The mechanism for writing a set of coefficients to RAM provides a method of updating the
five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible
unpleasant acoustic side-effects. When using this technique, the 6-bit address specifies the
address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and the
STA339BWS generates the RAM addresses as offsets from this base value to write the
complete set of coefficient data.
Table 72. RAM block for biquads, mixing, scaling, bass management
Index
(Decimal) Index (Hex) Description Coefficient Default
0 0x00
Channel 1 - Biquad 1
C1H10(b1/2) 0x000000
1 0x01 C1H11(b2) 0x000000
2 0x02 C1H12(a1/2) 0x000000
3 0x03 C1H13(a2) 0x000000
4 0x04 C1H14(b0/2) 0x400000
5 0x05 Channel 1 - Biquad 2 C1H20 0x000000
……
19 0x13 Channel 1 - Biquad 4 C1H44 0x400000
20 0x14
Channel 2 - Biquad 1
C2H10 0x000000
21 0x15 C2H11 0x000000
……
39 0x27 Channel 2 - Biquad 4 C2H44 0x400000
Register description STA339BWS
62/79 DocID015276 Rev 8
User-defined EQ
The STA339BWS can be programmed for four EQ filters (biquads) per each of the two input
channels. The biquads use the following equation:
Y[n] = 2 * (b0 / 2) * X[n] + 2 * (b1 / 2) * X[n-1] + b2 * X[n-2] - 2 * (a1 / 2) * Y[n-1] - a2 * Y[n-2]
= b0 * X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2]
where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed
fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF
(0.9999998808).
40 0x28
Channel 1/2 - Biquad 8
for XO = 000
High-pass 2nd order filter
for XO 000
C12H0(b1/2) 0x000000
41 0x29 C12H1(b2) 0x000000
42 0x2A C12H2(a1/2) 0x000000
43 0x2B C12H3(a2) 0x000000
44 0x2C C12H4(b0/2) 0x400000
45 0x2D
Channel 3 - Biquad
for XO = 000
Low-pass 2nd order filter
for XO 000
C3H0(b1/2) 0x000000
46 0x2E C3H1(b2) 0x000000
47 0x2F C3H2(a1/2) 0x000000
48 0x30 C3H3(a2) 0x000000
49 0x31 C3H4(b0/2) 0x400000
50 0x32 Channel 1 - Prescale C1PreS 0x7FFFFF
51 0x33 Channel 2 - Prescale C2PreS 0x7FFFFF
52 0x34 Channel 1 - Postscale C1PstS 0x7FFFFF
53 0x35 Channel 2 - Postscale C2PstS 0x7FFFFF
54 0x36 Channel 3 - Postscale C3PstS 0x7FFFFF
55 0x37 TWARN/OC - Limit TWOCL 0x5A9DF7
56 0x38 Channel 1 - Mix 1 C1MX1 0x7FFFFF
57 0x39 Channel 1 - Mix 2 C1MX2 0x000000
58 0x3A Channel 2 - Mix 1 C2MX1 0x000000
59 0x3B Channel 2 - Mix 2 C2MX2 0x7FFFFF
60 0x3C Channel 3 - Mix 1 C3MX1 0x400000
61 0x3D Channel 3 - Mix 2 C3MX2 0x400000
62 0x3E Unused
63 0x3F Unused
Table 72. RAM block for biquads, mixing, scaling, bass management (continued)
Index
(Decimal) Index (Hex) Description Coefficient Default
DocID015276 Rev 8 63/79
STA339BWS Register description
79
Coefficients stored in the user defined coefficient RAM are referenced in the following
manner:
CxHy0 = b1 / 2
CxHy1 = b2
CxHy2 = -a1 / 2
CxHy3 = -a2
CxHy4 = b0 / 2
where x represents the channel and the y the biquad number. For example, C2H41 is the b2
coefficient in the fourth biquad for channel 2.
Crossover and biquad #8
Additionally, the STA339BWS can be programmed for a high-pass filter (processing
channels 1 and 2) and a low-pass filter (processing channel 3) to be used for bass-
management crossover when the XO setting is 000 (user-defined). Both of these filters
when defined by the user (rather than using the preset crossover filters) are second order
filters that use the biquad equation given above. They are loaded into the C12H0-4 and
C3Hy0-4 areas of RAM noted in Table 72, addresses 0x28 to 0x31.
By default, all user-defined filters are pass-through where all coefficients are set to 0, except
the b0/2 coefficient which is set to 0x400000 (representing 0.5)
Prescale
The STA339BWS provides a multiplication for each input channel for the purpose of scaling
the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed
fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor
for this multiply is loaded into RAM. All channels can use the channel-1 prescale factor by
setting the Biquad link bit. By default, all prescale factors (RAM addresses 0x32 to 0x33) are
set to 0x7FFFFF.
Postscale
The STA339BWS provides one additional multiplication after the last interpolation stage and
the distortion compensation on each channel. This postscaling is accomplished by using a
24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The
scale factor for this multiply is loaded into RAM. This postscale factor can be used in
conjunction with an ADC equipped micro-controller to perform power-supply error
correction. All channels can use the channel-1 postscale factor by setting the postscale link
bit. By default, all postscale factors (RAM addresses 0x34 to 0x36) are set to 0x7FFFFF.
When line output is being used, channel-3 postscale affects both channels 3 and 4.
7.7.9 Thermal warning and overcurrent adjustment (TWOCL)
The STA339BWS provides a simple mechanism for reacting to overcurrent or thermal
warning detection in the power block. When the warning occurs, the TWOCL value is used
to provide output attenuation clipping on all channels.
The amount of attenuation to be applied in this situation can be adjusted by modifying the
overcurrent and thermal warning limiting value (RAM addr 0x37). By default, the overcurrent
postscale adjustment factor is set to 0x5A9DF7 (that is, -3 dB). Once the limiting is applied,
it remains until the device is reset or according to the TWRB and OCRB settings.
Register description STA339BWS
64/79 DocID015276 Rev 8
7.8 Variable max power correction registers (addr 0x27 - 0x28)
MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is
used in place of the default coefficient when MPCV = 1.
7.9 Distortion compensation registers (addr 0x29 - 0x2A)
DCC bits determine the 16 MSBs of the distortion compensation coefficient. This coefficient
is used in place of the default coefficient when DCCV = 1.
7.10 Fault detect recovery constant registers (addr 0x2B - 0x2C)
FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is asserted, the
TRISTATE output is immediately asserted low and held low for the time period specified by
this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The
default value of 0x000C gives approximately 0.1 ms.
Note: 0x0000 is a reserved value for these registers.
D7 D6 D5 D4 D3 D2 D1 D0
MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8
00011010
D7 D6 D5 D4 D3 D2 D1 D0
MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0
11000000
D7 D6 D5 D4 D3 D2 D1 D0
DCC15 DCC14 DCC13 DCC12 DCC11 DCC10 DCC9 DCC8
11110011
D7 D6 D5 D4 D3 D2 D1 D0
DCC7 DCC6 DCC5 DCC4 DCC3 DCC2 DCC1 DCC0
00110011
D7 D6 D5 D4 D3 D2 D1 D0
FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
00001100
DocID015276 Rev 8 65/79
STA339BWS Register description
79
7.11 Device status register (addr 0x2D)
This read-only register provides fault and thermal-warning status information from the power
control block. Logic value 1 for faults or warning means normal state. Logic 0 means a fault
or warning detected on power bridge. The PLLUL = 1 means that the PLL is not locked.
D7 D6 D5 D4 D3 D2 D1 D0
PLLUL FAULT UVFAULT Reserved OCFAULT OCWARN TFAULT TWARN
Table 73. Status register bits
Bit R/W RST Name Description
7 R - PLLUL 0: PLL locked
1: PLL not locked
6 R - FAULT 0: fault detected on power bridge
1: normal operation
5 R - UVFAULT 0: VCCxX internally detected
< undervoltage threshold
4 R - Reserved -
3 R - OCFAULT 0: overcurrent fault detected
2 R - OCWARN 0: overcurrent warning
1 R - TFAULT 0: thermal fault, junction temperature over limit
0 R - TWARN 0: thermal warning, junction temperature is close to
the fault condition
Register description STA339BWS
66/79 DocID015276 Rev 8
7.12 EQ coefficients and DRC configuration register (addr 0x31)
EQ RAM
DRC / Anticlipping
Bits AMGC[3:2] change the behavior of the bits AMGC[1:0] as given in Table 75 below.
Anticlipping when AMGC[3:2] = 01
AC0, AC1, AC2 settings are designed for the loudspeaker protection function, limiting at the
minimum any audio artefacts introduced by typical anticlipping / DRC algorithms. More
detailed information is available in the applications notes “Configurable output power rate
using STA335BW” and “STA335BWS vs STA335BW”.
XOB
This bit can be used to bypass the crossover filters. Logic 1 means that the function is not
active. In this case, high pass crossover filter works as a pass-through on the data path
(b0 = 1, all the other coefficients at logic 0) while the low-pass filter is configured to have
zero signal on channel-3 data processing (all the coefficients are at logic 0).
D7 D6 D5 D4 D3 D2 D1 D0
XOB Reserved Reserved AMGC[3] AMGC[2] Reserved SEL[1] SEL[0]
00000000
Table 74. EQ RAM select
SEL[1:0] EQ RAM bank selected
00 / 11 Bank 0 activated
01 Bank 1 activated
10 Bank 2 activated
Table 75. Anticlipping and DRC preset
AMGC[3:2] Anticlipping and DRC preset selected
00 DRC / Anticlipping behavior is described in Table 54 on page 47 (default)
01 DRC / Anticlipping behavior is described Table 76 on page 66
10 / 11 Reserved
Table 76. Anticlipping selection for AMGC[3:2] = 01
AMGC[1:0] Mode
00 AC0, stereo anticlipping 0 dB limiter
01 AC1, stereo anticlipping +1.25 dB limiter
10 AC2, stereo anticlipping +2 dB limiter
11 Reserved do not use
DocID015276 Rev 8 67/79
STA339BWS Register description
79
7.13 Extended configuration register (addr 0x36)
Extended configuration register provides access to B2DRC and biquad 5, 6 and 7.
7.13.1 Dual-band DRC (B2DRC)
STA339BWS device provide a dual-band DRC (B2DRC) on the left and right channels data
path, as depicted in Figure 20. Dual-band DRC is activated by setting MDRC[1:0] = 1x.
Figure 20. B2DRC scheme
The low frequency information (LFE) is extracted from left and right channels, removing the
high frequencies using a programmable biquad filter, and then computing the difference with
the original signal. Limiter 1 (DRC1) is then used to control left/right high frequency
components amplitude while limiter 2 (DRC2) is used to control the low frequency
components (see Chapter 7.6).
The cut-off frequency of the high pass filters can be user defined, XO[3:0] = 0, or selected
from the predefined values.
DRC1 and DRC2 are then used to independently limit L/R high frequencies and LFE
channels amplitude (see Chapter 7.6) as well as their volume control. To be noted that, in
this configuration, the dedicated channel 3 volume control can be actually acted as a bass
boost enhancer as well (0.5 dB/step resolution).
The processed LFE channel is then recombined with the L and R channels in order to
reconstruct the 2.0 output signal.
Sub-band decomposition
The sub-band decomposition for B2DRC can be configured specifying the cutoff frequency.
The cut off frequency can be programmed in two ways, using XO bits in register 0x0C, or
using “user programmable” mode (coefficients stored in RAM addresses 0x28 to 0x31).
D7 D6 D5 D4 D3 D2 D1 D0
MDRC[1] MDRC[0] PS48DB XAR1 XAR2 BQ5 BQ6 BQ7
00000000
Register description STA339BWS
68/79 DocID015276 Rev 8
For the user programmable mode, use the formulae below to compute the high pass filters:
where alpha = (1-sin(0)) / cos(0), and 0 is the cut-off frequency.
A first-order filter is suggested to guarantee that for every 0 the corresponding low-pass
filter obtained as difference (as shown in Figure 20) has a symmetric (relative to HP filter)
frequency response, and the corresponding recombination after the DRC has low ripple.
Second-order filters can be used as well, but in this case the filter shape must be carefully
chosen to provide good low pass response and minimum ripple recombination. For second-
order is not possible to give a closed formula to get the best coefficients, but empirical
adjustment should be done.
DRC settings
The DRC blocks used by B2DRC are the same as those described in Chapter 7.6. B2DRC
configure automatically the DRC blocks in anticlipping mode. Attack and release thresholds
can be selected using registers 0x32, 0x33, 0x34, 0x35, while attack and release rates are
configured by registers 0x12 and 0x14.
Band downmixing
The low-frequency band is down-mixed to the left and right channels at the B2DRC output.
Channel volume can be used to weight the bands recombination to fine tune the overall
frequency response.
7.13.2 EQ DRC mode
Setting MDRC = 01, it is possible to add a programmable biquad (the XO biquad at RAM
addresses 0x28 to 0x2C is used for this purpose) to the Limiter/compressor measure path
(side chain). Using EQDRC the peak detector input can be shaped in frequency using the
programmable biquad. For example, if a bass boost of 2 dB is applied (using a low-shelf
filter, for example), the effect is that the EQDRC out will limit bass frequencies to 2 dB below
the selected attack threshold.
Generally speaking, if the biquad boosts frequency f with an amount of X dB, the level of a
compressed sine wave at the output is TH - X, where TH is the selected attack threshold.
Note: EQDRC works only if the biquad frequency response magnitude is >= 0 dB for every
frequency.
b0 = (1 + alpha) / 2 a0 = 1
b1 = -(1 + alpha) / 2 a1 = -alpha
b2 = 0 a2 = 0
DocID015276 Rev 8 69/79
STA339BWS Register description
79
Figure 21. EQDRC scheme
Extended postscale range
Postscale is an attenuation by default. When PS48DB is set to 1, an offset of 48 dB is
applied to the configured word, so postscale can act as a gain too.
Extended attack rate
The attack rate shown in Table 66 can be extended to provide up to 8 dB/ms attack rate on
both limiters.
Extended biquad selector
De-emphasis filter as well as bass and treble controls can be configured as user defined
filters when equalization coefficients link is activated (BQL = 1) and the corresponding BQx
bit is set to 1.
Table 77. Bit PS48DB description
PS48DB Mode
0 Postscale value is applied as defined in coefficient RAM
1Postscale value is applied with offset of +48 dB with respect to the coefficient
RAM value
Table 78. Bit XAR1 description
XAR1 Mode
0 Limiter1 attack rate is configured using Table 66
1 Limiter1 attack rate is 8 dB/ms
Table 79. Bit XAR2 description
XAR2 Mode
0 Limiter2 attack rate is configured using Table 66
1 Limiter2 attack rate is 8 dB/ms
Register description STA339BWS
70/79 DocID015276 Rev 8
When filters from 5th to 7th are configured as user-programmable, the corresponding
coefficients are stored respectively in addresses 0x14-0x18 (BQ5), 0x19-0x1D (BQ6) and
0x1E-0x22 (BQ7) as in Table 72 on page 61.
Note: BQx bits are ignored if BQL = 0 or if DEMP = 1 (relevant for BQ5) or CxTCB = 1 (relevant for
BQ6 and BQ7).
7.14 Soft volume configuration registers (addr 0x37 - 0x38)
Soft volume update has a fixed rate by default. Using register 0x37 and 0x38 it is possible to
override the default behavior allowing different volume change rates.
It is also possible to independently define the fade-in (volume is increased) and fade-out
(volume is decreased) rates according to the desired behavior.
Table 80. Bit BQ5 description
BQ5 Mode
0 Preset de-emphasis filter selected
1 User defined biquad 5 coefficients are selected
Table 81. Bit BQ6 description
BQ6 Mode
0 Preset bass filter selected as per Table 65
1 User defined biquad 6 coefficients are selected
Table 82. Bit BQ7 description
BQ7 Mode
0 Preset treble filter selected as per Table 65
1 User defined biquad 7 coefficients are selected
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved SVUPE SVUP[4] SVUP[3] SVUP[2] SVUP[1] SVUP[0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved SVDWE SVDW4] SVDW[3] SVDW[2] SVDW[1] SVDW[0]
00000000
Table 83. Bit SVUPE description
SVUPE Mode
0 When volume is increased, use the default rate
1 When volume is increased, use the rates defined by SVUP[4:0]
DocID015276 Rev 8 71/79
STA339BWS Register description
79
When SVUPE = 1 the fade-in rate is defined by the SVUP[4:0] bits according to the
following formula:
Fade-in rate = 48 / (N + 1) dB/ms
where N is the SVUP[4:0] value.
When SVDWE = 1 the fade-out rate is defined by the SVDW[4:0] bits according to the
following formula:
Fade-in rate = 48 / (N + 1) dB/ms
where N is the SVDW[4:0] value.
Note: For fade-out rates greater than 6 dB/ms it is suggested to disable bit ZCE (Section 7.1.5 on
page 33) in order to avoid any audible pop noise.
7.15 DRC RMS filter coefficients (addr 0x39-0x3E)
Signal level detection in DRC algorithm is computed using the following formula:
y(t) = c0 * abs(x(t)) + c1 * y(t-1)
where x(t) represents the audio signal applied to the limiter, and y(t) the measured level.
Table 84. Bit SVDWE description
SVDWE Mode
0 When volume is decreased, use the default rate
1 When volume is decreased, use the rates defined by SVDW[4:0]
D7 D6 D5 D4 D3 D2 D1 D0
R_C0[23] R_C0[22] R_C0[21] R_C0[20] R_C0[19] R_C0[18] R_C0[17] R_C0[16]
00000001
D7 D6 D5 D4 D3 D2 D1 D0
R_C0[15] R_C0[14] R_C0[13] R_C0[12] R_C0[11] R_C0[10] R_C0[9] R_C0[8]
11101110
D7 D6 D5 D4 D3 D2 D1 D0
R_C0[7] R_C0[6] R_C0[5] R_C0[4] R_C0[3] R_C0[2] R_C0[1] R_C0[0]
11111111
D7 D6 D5 D4 D3 D2 D1 D0
R_C1[23] R_C1[22] R_C1[21] R_C1[20] R_C1[19] R_C1[18] R_C1[17] R_C1[16]
01111110
D7 D6 D5 D4 D3 D2 D1 D0
R_C1[15] R_C1[14] R_C1[13] R_C1[12] R_C1[11] R_C1[10] R_C1[9] R_C1[8]
11000000
D7 D6 D5 D4 D3 D2 D1 D0
R_C1[7] R_C1[6] R_C1[5] R_C1[4] R_C1[3] R_C1[2] R_C1[1] R_C1[0]
00100110
STA339BWS Applications
DocID015276 Rev 8 72/79
8 Applications
8.1 Application schematics
Figure 22 and Figure 23 show the typical application schematics for stereo and mono configuration, respectively. Special attention
has to be paid to the layout of the PCB. All the decoupling capacitors have to be placed as close as possible to the device to limit
spikes on the supplies.
Figure 22. Application circuit for 2 or 2.1-channel configuration
STA339BWS Applications
DocID015276 Rev 8 73/79
Figure 23. Application circuit for mono BTL configuration
Applications STA339BWS
74/79 DocID015276 Rev 8
8.2 PLL filter circuit
It is recommended to use the applications circuit and values for the PLL loop filter to achieve
the best performance from the device in general applications. Note that the ground of this
filter circuit has to be connected to the ground of the PLL without any resistive path.
Concerning the component values, it must be taken into account that the greater the filter
bandwidth, the less is the lock time but the higher is the PLL output jitter.
8.3 Typical output configuration
Figure 24 shows the typical output configuration used for BTL stereo mode. Please contact
STMicroelectronics for other recommended output configurations.
Figure 24. Output configuration for stereo BTL mode (RL = 8 
OUT1A
100 nF
100 nF
100 nF
100 nF
6R2
6R2
330 pF
22R
OUT1B
22 μH
22 μH
Left
470 nF
OUT2A
100 nF
100 nF
100 nF
100 nF
6R2
6R2
330 pF
22R
OUT2B
22 μH
22 μH
Right
470 nF
DocID015276 Rev 8 75/79
STA339BWS Package thermal characteristics
79
9 Package thermal characteristics
Using a double-layer PCB the thermal resistance, junction to ambient, with 2 copper ground
areas of 3 x 3 cm2 and with 16 via holes is 24 °C/W in natural air convection.
The dissipated power within the device depends primarily on the supply voltage, load
impedance and output modulation level.
Thus, the maximum estimated dissipated power for the STA339BWS is:
Figure 25 shows the power derating curve for the PowerSSO-36 package on PCBs with
copper areas of 2 x 2 cm2 and 3 x 3 cm2.
Figure 25. PowerSSO-36 power derating curve
2 x 20 W @ 8, 18 V Pd max is approximately 4 W
2 x 9 W + 1 x 20 W @ 4 , 8 ,18 V Pd max is approximately 5 W
STA339BWS
PowerSSO-
Package mechanical data STA339BWS
76/79 DocID015276 Rev 8
10 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 26 shows the package outline and Table 85 gives the dimensions.
Table 85. PowerSSO-36 EPD dimensions
Symbol
Dimensions in mm Dimensions in inches
Min Typ Max Min Typ Max
A 2.15 - 2.47 0.085 - 0.097
A2 2.15 - 2.40 0.085 - 0.094
a1 0.00 - 0.10 0.00 - 0.004
b 0.18 - 0.36 0.007 - 0.014
c 0.23 - 0.32 0.009 - 0.013
D 10.10 - 10.50 0.398 - 0.413
E 7.40 - 7.60 0.291 - 0.299
e - 0.5 - - 0.020 -
e3 - 8.5 - - 0.335 -
F - 2.3 - - 0.091 -
G - - 0.10 - - 0.004
H 10.10 - 10.50 0.398 - 0.413
h - - 0.40 - - 0.016
k 0 - 8 degrees 0 - 8 degrees
L 0.60 - 1.00 0.024 - 0.039
M - 4.30 - - 0.169 -
N - - 10 degrees - - 10 degrees
O - 1.20 - - 0.047 -
Q - 0.80 - - 0.031 -
S - 2.90 - - 0.114 -
T - 3.65 - - 0.144 -
U - 1.00 - - 0.039 -
X 4.10 - 4.70 0.161 - 0.185
Y 6.50 - 7.10 0.256 - 0.280
STA339BWS Package mechanical data
DocID015276 Rev 8 77/79
Figure 26. PowerSSO-36 EPD outline drawing
h x 45°
Revision history STA339BWS
78/79 DocID015276 Rev 8
11 Revision history
Table 86. Document revision history
Date Revision Changes
10-Dec-2008 1 Initial release.
16-Feb-2009 2
Updated names/descriptions for pins 17-20 in Chapter 2 on page 10
Added cross reference to I2S interface setup in Section 3.6: Power
on/off sequence on page 18
Added Figure 4: Power-off sequence for pop-free turn-off on page 18
Updated text and Figure 22: Application diagram on page 71
Updated Section 7.2: PLL filter on page 71
01-Mar-2010 3
Updated presentation
Removed master mute from Section 7.2.5 on page 46
Added Rth j-amb typical value to Table 4 on page 12
Updated Biquad # in Figure 8 on page 19
Updated section Fault detect recovery bypass on page 27
Updated SV naming in Table 42 on page 35
Updated CxBO description in Table 62 on page 50
Updated Biquad # for C12Hx in Table 72 on page 61
Updated text in sections Crossover and biquad #8, Prescale and
Postscale on page 63.
17-Dec-2010 4
“Sound Terminal” now has registered trademark status
Updated test circuit in Figure 3 on page 15
Removed text concerning hard mute in Section 7.2 on page 44
Updated coefficient register addresses towards end of
Section 7.13.2 on page 68
Updated applications circuit in Figure 24 on page 74
22-Nov-2011 5 Updated bit D4 to “1” in Section 7.2.1: Mute/line output configuration
register (addr 0x06) on page 45
20-Sep-2012 6
Added Section 4 on page 17
Modified Note:: The read write operation on RAM coefficients works
only if RLCKI (pin29) is switching and stable (ref. Table 8, tLRJT
timing) and PLL must be locked (ref bit D7 reg 0x2D).
Updated Company information appearing on last page of document
24-Oct-2013 7 Modified ILIM and ISCP min. values in Table 7 on page 14
22-Sep-2014 8
Updated power section paragraph in Section 1: Description
Added 1 channel mono-parallel (OCFG = 11) in Section 7.1.6:
Configuration register F (addr 0x05)
Updated Figure 22: Application circuit for 2 or 2.1-channel
configuration and added Figure 23: Application circuit for mono BTL
configuration
DocID015276 Rev 8 79/79
STA339BWS
79
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2014 STMicroelectronics – All rights reserved