"3875081 G E SOLID STATE OL DE 3675081 0018324 2 O1E 18324 File Number 1827 IRF450, IRF451, IRF452, IRF453 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Fieid-Effect Transistors 12 A and 13 A, 450 V - 500 V fos(on) =0.4Q and 0.59 Features: = SOA is power-dissipation limited Nanosecond switching speeds Linear transfer characteristics High input impedance Majority carrier device The IRF450, [RF451, [RF452 and IRF453 are n-channel enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high speed and tow gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA metal package. Absolute Maximum Ratings o 6 $s 9258-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION SOURCE GATE DRAIN (FLANGE) 92CS-37801 JEDEC TO-204AA N-CHANNEL ENHANCEMENT MODE Lead Temperature Parameter - IRF450 IRF451 IRF452 IRF453 Units Vos Drain - Source Voltage @ 500 450 500 450 Vv VpGR Drain - Gate Voltage (Res = 20kn} 500 450 500 450 Vv Ip @Tc = 26C Continuous Drain Current 13 13 12 12 A ip @Tc = 100C Continuous Drain Current 8.0 8.0 7.0 7.0 A lom Pulsed Drain Current @) 52 52 48 48 A Ves Gate - Source Voltage 20 v Pp @Tc = 25C = Max. Power Dissipation 150 (See Fig, 14) Ww Linear Derating Factor 1.2 (See Fig. 14) WiK 1M Inductive Current, Clamped {See Fig. 14 and 15)L = 100nH A 52 l 52 48 | 48 Ty Operating Junction and -55 to 160 c | Tstg Storage Temperature Range 300 (0.063 in. (1.6mm) from case for 10s} C 267 D T-39~(3 Standard Power MOSFETs3875081 GE SOLID STATE O1E 18325 p11 39-/B Standard Power MOSFETs DEM 3475081 O9,8325 4 IRF450, IRF451, IRF452, IRF453 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. | Typ. | Max Units Test Conditions BVpss Drain - Source Breakdown Voltage IRF450 _ IRFA52 500 - - Vv Ves = OV IRF451 _ IRF453 450 - - Vv Ip = 250zA VGsith) Gate Threshold Voltage ALL 2.0 = 4.0 v Vos = Ves- lo = 250nA Iss _ Gate-Source Leakage Forward ALL = = 100 nA Ves = 20V Iosg Gate-Source Leakage Reverse ALL - - -100 nA Vgg = -20V loss Zero Gate Voltage Drain Current ALL - ~ 250 nA Vos = Max. Rating, Veg = OV - - 1000 BA Vog = Max. Rating x 0.8, V@s = OV. Tr = 125C Ipjon} = ON-State Drain Current @ IRF450 13 - - A IRF AS Vos? 'Dion) * 9 Vg = 10V iRF452 OS * 'Dion} * "OSion) max. GS measg {| 12 | - | A Roston} Static Drain-Source On-State IRF450 _ Resistance 1RF451 0.3 | 04 a Vee = 10V. ln = 7.0a neas2 [Toa | os a css iep = 7 IRF453 . . Sts Forward Transconductance @ ALL 60 11 - stu) Vos > 'piont * Rpsion) max. p = 7 0A Ciss Input Capacitance we ALL = 2000 | 3000 pF Vs = OV. Vpg = 25V.f = 1 0MHz Coss Output Capacitance ALL - 400 } 600 pF See Fig. 10 Ciss Reverse Transfer Capacitance ALL =~ 100 | 200 pF tdtony _Tutn-On Delay Time ALL - - 35 as Vop = 210V, Ip = 7.0A, Zp = 472 t Rise Time ALL - - 50 as See Fig. 17 tatoff) _ Turn-Off Delay Time ALL ~_ - 150 ns (MOSFET switching umes are essenually tf Fall Time ALL _ _ 70 ns independent of operating temperature.) Qa Total Gate Charge v, = 10V, In = 16A, V, = 0.8 Max. Rating. a = GS 0 DS (Gate-Source Plus Gate-Drain} ALL 82 120 nc See Fig. 18 for test circunt. (Gate charge is essentialiv Qgs Gate-Source Charge ALL _ 40 _ nc independent of operating temperature.) Qoa Gate Diain (Miller*) Charge ALL - 42 ~ ac bp Internat Drain Inductance ALL - 5.0 - oH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances and center of die. Ls Interna! Source Inductance ALL - 12.5 - nH Measured from the source pin, 6 mm {0.25 in.} from header and source bonding . pad. Thermal Resistance Rihsc Junction-to-Case ALL - - 83 KW Rincs _Case-to-Sink ALL - 01 - K'Ww Mounting surface flat, smooth, and greased. RingA _Junction-to-Ambient ALL = - 30 KW Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF450 _ _ 13 A Modified MOSFET symbol {Body Diode} (RF451 showing the integral reverse P-N junction rectifier. inF452 [ ~ | 12 A > IRF453 ism Pulse Source Current IRF450 _ _ 52 A (Bady Diode) @ IRF451 IRF452 ras3 | | ~ | 48 | A Vsp _ Diode Forward Voitage @ ineaee - - 14 Vv To = 25C, is = 134, Veg = OV neces | - | - faa dv To = 28C, Ig = 124, Vag = OV ter Reverse Recovery Time ALL ~- [1300] - ns Ty = 150C, Ip = 13A, dig/dt = 100Aips Cpr Reverse Recovered Charge ALL - 7.4 - ac Ty = 150C, Ip = 13A, dig/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by ig +tp. OT, = 25C to 150C, @Pulse Test: Pulse width < 300us, Duty Cycle < 2%, @ Repetitive Rating: Pulse width lImited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). 268 .O1 pe ff sa7sosi O0L832b & i 3875081 G E SOLID STATE ote 183260 60D. J SF7-/3 Standard Power MOSFETs IRF450, IRF451, IRF452, IRF453 Ty * -500C Ty 2 2500 Vos > 'p(on) Roston) max. = a 80 us PULSE TEST Ty= W606 g _ e a w Z & a < = e =< 2 Ee = z = ec = z eo < z 6 z a 3 0 50 100 180 200 250 300 a 1 2 q 4 5 6 7 8 Vpg, ORAIN-TO-SOURCE VOLTAGE (VOLTS} Vg, GATE-TO SOURCE VOLTAGE (VOLTS! Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics Vgs = il {RF450,1 | 3 Up, DRAIN CURRENT {AMPERES} Ty = 25C Ty= 180C MAX. Rinic = 083 KW Ip, DRAIN CURRENT (AMPERES} SINGLE PULSE 35V . 0 1 2 3 4 4 10 2 5 0 20 50 100 200 500 Vps. DRAIN-TO SOURCE VOLTAGE (VOLTS) Vpg, DRAIN TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area y = mn nS L 0. an 1. DUTY FACTOR, 0 = 7 2 2 ih THERMAL IMPEDANCE (PER UNIT) SINGLE PULSE [TRANSIENT THERMAL It4PEDANCE) 1 PERUNIT BASE fy 083 065 CMW 3 Ty - Te = Pom 2tnscit). 0.01 w5 2 19-4 2 5 19-3 2 5 19-2 2 10-t 2 5 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONOS) oS 3 Zeractt Pinsc. NOAMALIZED EFFECTIVE TRANSIENT Fig. 5 Maximum Effective Transient Thermal !mpedance, Junction-to-Case Vs. Pulse Duration - a = 269 "3875081 GE SOLID STATE " Standard Power MOSFETs 01 def) aa7sos) Oo1saz? 8 rT OD1E 18327 p 7 39-13 IRF450, IRF451, IRF452, IRF453 20 Ty = -500C a Ty= 12590 = 34g, TRANSCONDUCTANCE (SIEMENS) a Vos> * Rston) max. eo TEST = Q 5 10 15 20 25 Ip, ORAIN CURRENT {AMPERES} Fig. 6 Typical Transconductance Vs. Drain Current 1.25 & & am BVpss, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) S a -40 0 40 80 Ty. JUNCTION TEMPERATURE (C) 120 160 Fig. 8 Breakdown Voltage Vs. Temperature Ciss = Cop + Cyd, Coy SHORTED Cry = oa Coe C, Cogs = Cys + tert = Cds + Cog Ves=d { f=1MRz 3200 2400 C, CAPACITANCE {pF} a 3 800 40 Vpg. ORAIN TO SOURCE VOLTAGE (VOLTS) 0 it} 20 30 50 Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage S ~ 5 Ty = 180C Ty 160C 2 5 y= 25C ing. REVERSE DRAIN CURRENT {AMPERES) Ne 1 2 3 4 Vso, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Souree-Drain Diode Forward Voltage Vos = 10V | los = 5A Rosion). ORAIN TO-SOURCE ON RESISTANCE (NORMALIZED) 40 0 40 &0 160 Ty, JUNCTION TEMPERATURE (C) 120 Fig. 8 Normalized On-Resistance Vs. Temperature 20 a on Ves. GATE-TO-SOURCE VOLTAGE {VOLTS} s Ip = 16A FOR TEST CIRCUIT SEE FIGURE 18 G 28 6 84 112 140 Qy, TOTAL GATE CHARGE (nC) Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 270 =OL DEM 3875081 0018328 O i 3875081 GE SOLID STATE Die 18328 DT*S9-/S Standard Power MOSFETs IRF450, IRF451, IRF452, IRF453 09 Vos= y 08 Veg = 20V 07 06 a Ip, ORAIN CURRENT (AMPERES) 08 J soe MEASURED WITH CURRENT PULSE OF 20 ys CURATION. 4 YA INITIAL Ty = 25C {HEATING EFFECT OF 2 0s PULSE IS MINIMAL } Apston|. DRAIN-TO-SOURCE ON RESISTANCE (CHNS) 03 PA L L arlene 0 10 20 30 40 50 60 10 5 50 1 100 125 150 Ip, ORAIN CURRENT (AMP2RES) Tg, CASE TEMPERATURE (C} Fig. 12 Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature VARY tp TO O8TAIN REQUIRED PEAK Ip TT Vgg= lov Jt, DUT 'L }=058Vpgg Ep = 075 BVpgs Fig. 15 Clamped Inductive Test Circuit Pp, POWER DISSIPATION (WATTS} 6 20 40 60 80 190 120 140 Te CASE TEMPERATURE (C) Fig. 16 Clamped Inductive Waveforms Fig. 14 Power Vs. Temperature Derating Curve Wos CURRENT HISOLATED REGULATOR SUPPLY} Yoo SAME TYPE av AS OUT ADJUST Ry TO OBTAIN