Datasheet
www.renesas.com
S3A7 Microcontroller Group
Datasheet
Renesas Synergy™ Platform
Synergy Microcontrollers
S3 Series
Oct 2018Rev.1.40
All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).
Cover
R01DS0263EU0140 Rev.1.40 Page 2 of 137
Oct 29, 2018
Features
■ Arm Cortex-M4 Core with Floating Point Unit (FPU)
Armv7E-M architecture with DSP instruction set
Maximum operating frequency: 48 MHz
Support for 4-GB address space
Arm Memory Protection Unit (Arm MPU) with 8 regions
Debug and Trace: ITM, DWT, FPB, TPIU, ETB
CoreSight™ Debug Port: JTAG-DP and SW-DP
■ Memory
Up to 1-MB code flash memory
16-KB data flash memory (100,000 program/erase (P/E) cycles)
Up to 192-KB SRAM
Flash Cache (FCACHE)
Memory Protection Unit (MPU)
Memory Mirror Function (MMF)
128-bit unique ID
■ Connectivity
USB 2.0 Full-Speed Module (USBFS)
- On-chip transceiver with voltage regulator
- Compliant with USB Battery Charging Specification 1.2
Serial Communications Interface (SCI) × 6
- UART
- Simple IIC
- Simple SPI
Serial Peripheral Interface (SPI) × 2
I2C bus interface (IIC) × 3
Controller Area Network (CAN) module
Serial Sound Interface (SSI) × 2
SD/MMC Host Interface (SDHI)
Quad Serial Peripheral Interface (QSPI)
IrDA interface
External address space
- 8- or 16-bit bus space selectable per area
■ Analog
14-Bit A/D Converter (ADC14)
12-Bit D/A Converter (DAC12) × 2
High-Speed Analog Comparator (ACMPHS) × 2
Low-Power Analog Comparator (ACMPLP) × 2
Operational Amplifier (OPAMP) × 4
Temperature Sensor (TSN)
■ Timers
General PWM Timer 32-bit (GPT32) × 10
Asynchronous General-Purpose Timer (AGT) × 2
- VBATT support
Watchdog Timer (WDT)
■ Safety
Error Correction Code (ECC) in SRAM
SRAM parity error check
Flash area protection
ADC self-diagnosis function
Clock Frequency Accuracy Measurement Circuit (CAC)
Cyclic Redundancy Check (CRC) calculator
Data Operation Circuit (DOC)
Port Output Enable for GPT (POEG)
Independent Watchdog Timer (IWDT)
GPIO readback level detection
Register write protection
Main oscillator stop detection
Illegal memory access
■ System and Power Management
Low power modes
Realtime Clock (RTC) with calendar and Battery Backup support
Event Link Controller (ELC)
DMA Controller (DMAC) × 4
Data Transfer Controller (DTC)
Key Interrupt Function (KINT)
Power-on reset
Low Voltage Detection (LVD) with voltage settings
■ Security and Encryption
AES128/256
GHASH
True Random Number Generator (TRNG)
■ Human Machine Interface (HMI)
Segment LCD Controller (SLCDC)
- Up to 52 segments × 4 commons
- Up to 48 segments × 8 commons
Capacitive Touch Sensing Unit (CTSU)
■ Multiple Clock Sources
Main clock oscillator (MOSC)
(1 to 20 MHz when VCC = 2.4 to 5.5 V)
(1 to 8 MHz when VCC = 1.8 to 2.4 V)
(1 to 4 MHz when VCC = 1.6 to 1.8 V)
Sub-clock oscillator (SOSC) (32.768 kHz)
High-speed on-chip oscillator (HOCO)
(24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V)
(24, 32, 48 MHz when VCC = 1.8 to 5.5 V)
(24, 32 MHz when VCC = 1.6 to 5.5 V)
Middle-speed on-chip oscillator (MOCO) (8 MHz)
Low-speed on-chip oscillator (LOCO) (32.768 kHz)
IWDT-dedicated on-chip oscillator (15 kHz)
Clock trim function for HOCO/MOCO/LOCO
Clock out support
■ General Purpose I/O Ports
Up to 124 input/output pins
- Up to 3 CMOS input
- Up to 121 CMOS input/output
- Up to 10 input/output 5-V tolerant
- Up to 2 high current (20 mA)
■ Operating Voltage
VCC: 1.6 to 5.5 V
■ Operating Temperature and Packages
Ta = -40°C to +85°C
- 145-pin LGA(7 mm × 7 mm, 0.5 mm pitch)
- 121-pin BGA (8 mm × 8 mm, 0.65 mm pitch)
- 100-pin LGA (7 mm × 7 mm, 0.65 mm pitch)
Ta = -40°C to +105°C
- 144-pin LQFP (20 mm × 20 mm, 0.5 mm pitch)
- 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)
- 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)
- 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch)
High efficiency 48-MHz Arm® Cortex®-M4 microcontroller, up to 1-MB code flash memory, 192-KB SRAM, Segment LCD
Controller, Capacitive Touch Sensing Unit, USB 2.0 Full-Speed Module, 14-bit A/D Converter, 12-bit D/A Converter,
security and safety features
Features
S3A7 Microcontroller Group
Datasheet
Features
R01DS0263EU0140 Rev.1.40 Page 3 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
1. Overview
The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit MCUs that share a common set
of Renesas peripherals to facilitate design scalability and efficient platform-based product development.
The MCU provides an optimal combination of low power, high performance Arm Cortex®-M4 core running up to
48 MHz with the following features:
Up to 1-MB code flash memory
192-KB SRAM
Segment LCD Controller (SLCDC)
Capacitive Touch Sensing Unit (CTSU)
USB 2.0 Full-Speed Module (USBFS)
14-bit A/D Converter (ADC14)
12-bit D/A Converter (DAC12)
Security features.
1.1 Function Outline
Table 1.1 Arm core
Feature Functional description
Arm Cortex-M4 Maximum operating frequency: up to 48 MHz
Arm Cortex-M4
- Revision: r0p1-01rel0
- Armv7E-M architecture profile
- Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.
Arm Memory Protection Unit (Arm MPU)
- Armv7 Protected Memory System Architecture
- 8 protected regions.
SysTick timer
- Driven by SYSTICCLK (LOCO) or ICLK.
Table 1.2 Memory
Feature Functional description
Code flash memory Maximum 1-MB code flash memory. See section 48, Flash Memory in User’s Manual.
Data flash memory 16-KB data flash memory. See section 48, Flash Memory in User’s Manual.
Option-setting memory The option-setting memory determines the state of the MCU after a reset. See section 7,
Option-Setting Memory in User’s Manual.
Memory Mirror Function (MMF) The Memory Mirror Function (MMF) can be configured to mirror the desired application image
load address in code flash memory to the application image link address in the 23-bit unused
memory space (memory mirror space addresses). Your application code is developed and
linked to run from this MMF destination address. The application code does not need to know
the load location where it is stored in code flash memory. See section 5, Memory Mirror
Function (MMF) in User’s Manual.
SRAM On-chip high-speed SRAM with either parity-bit or Error Correction Code (ECC). An area in
SRAM0 provides error correction capability using ECC. See section 47, SRAM in User’s
Manual.
R01DS0263EU0140 Rev.1.40 Page 4 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
Table 1.3 System (1 of 2)
Feature Functional description
Operating modes Two operating modes:
Single-chip mode
SCI/USB boot mode.
See section 3, Operating Modes in User’s Manual.
Resets 14 resets:
RES pin reset
Power-on reset
VBATT-selected voltage power-on reset
Independent watchdog timer reset
Watchdog timer reset
Voltage monitor 0 reset
Voltage monitor 1 reset
Voltage monitor 2 reset
SRAM parity error reset
SRAM ECC error reset
Bus master MPU error reset
Bus slave MPU error reset
CPU stack pointer error reset
Software reset.
See section 6, Resets in User’s Manual.
Low Voltage Detection (LVD) The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and
the detection level can be selected using a software program. See section 8, Low Voltage
Detection (LVD) in User’s Manual.
Clocks Main clock oscillator (MOSC)
Sub-clock oscillator (SOSC)
High-speed on-chip oscillator (HOCO)
Middle-speed on-chip oscillator (MOCO)
Low-speed on-chip oscillator (LOCO)
PLL frequency synthesizer
IWDT-dedicated on-chip oscillator
Clock out support.
See section 9, Clock Generation Circuit in User’s Manual.
Clock Frequency Accuracy
Measurement Circuit (CAC)
The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be
measured (measurement target clock) within the time generated by the clock to be used as a
measurement reference (measurement reference clock), and determines the accuracy
depending on whether the number of pulses is within the allowable range.
When measurement is complete or the number of pulses within the time generated by the
measurement reference clock is not within the allowable range, an interrupt request is
generated.
See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual.
Interrupt Controller Unit (ICU) The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC
module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt
Controller Unit (ICU) in User’s Manual.
Key Interrupt Function (KINT) A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting
a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function
(KINT) in User’s Manual.
Low power modes Power consumption can be reduced in multiple ways, such as by setting clock dividers,
controlling EBCLK output, stopping modules, selecting power control mode in normal
operation, and transitioning to low power modes. See section 11, Low Power Modes in User’s
Manual.
Battery backup function A battery backup function is provided for partial powering by a battery. The battery-powered
area includes RTC, AGT, SOSC, LOCO, Wakeup Control, Backup Memory, VBATT_R Low
Voltage Detection, and switches between VCC and VBATT.
During normal operation, the battery powered area is powered by the main power supply, the
VCC pin. When a VCC voltage drop is detected, the power source is switched to the dedicated
battery backup power pin, the VBATT pin.
When the voltage rises again, the power source is switched from the VBATT pin to the VCC
pin. See section 12, Battery Backup Function in User’s Manual.
Register write protection The register write protection function protects important registers from being overwritten due to
software errors. See section 13, Register Write Protection in User’s Manual.
R01DS0263EU0140 Rev.1.40 Page 5 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
Memory Protection Unit (MPU) Four MPUs and a CPU stack pointer monitor function are provided for memory protection. See
section 16, Memory Protection Unit (MPU) in User’s Manual.
Watchdog Timer (WDT) The WDT is a 14-bit down-counter. It can be used to reset the MCU when the counter
underflows because the system has run out of control and is unable to refresh the WDT. In
addition, a non-maskable interrupt or interrupt can be generated by an underflow.
A refresh-permitted period can be set to refresh the counter and be used as the condition for
detecting when the system runs out of control. See section 26, Watchdog Timer (WDT) in
User’s Manual.
Independent Watchdog Timer (IWDT) The IWDT consists of a 14-bit down-counter that must be serviced periodically to prevent
counter underflow. The IWDT provides functionality to reset the MCU or to generate a non-
maskable interrupt/interrupt for a timer underflow. Because the timer operates with an
independent, dedicated clock source, it is particularly useful in returning the MCU to a known
state as a fail safe mechanism when the system runs out of control.
The IWDT can be triggered automatically on a reset, underflow, or refresh error, or by a refresh
of the count value in the registers. See section 27, Independent Watchdog Timer (IWDT) in
User’s Manual.
Table 1.4 Event link
Feature Functional description
Event Link Controller (ELC) The ELC uses the interrupt requests generated by various peripheral modules as event signals
to connect them to different modules, enabling direct interaction between the modules without
CPU intervention. See section 19, Event Link Controller (ELC) in User’s Manual.
Table 1.5 Direct memory access
Feature Functional description
Data Transfer Controller (DTC) A DTC module is provided for transferring data when activated by an interrupt request. See
section 18, Data Transfer Controller (DTC) in User’s Manual.
DMA Controller (DMAC) A 4-channel DMAC module is provided for transferring data without the CPU. When a DMA
transfer request is generated, the DMAC transfers data stored at the transfer source address
to the transfer destination address. See section 17, DMA Controller (DMAC) in User’s Manual.
Table 1.6 External bus interface
Feature Functional description
External bus CS area: Connected to the external devices (external memory interface)
QSPI area: Connected to the QSPI (external device interface).
Table 1.3 System (2 of 2)
Feature Functional description
R01DS0263EU0140 Rev.1.40 Page 6 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
Table 1.7 Timers
Feature Functional description
General PWM Timer (GPT) The GPT is a 32-bit timer with 10 channels. PWM waveforms can be generated by controlling
the up-counter, down-counter, or the up- and down-counter. In addition, PWM waveforms can
be generated for controlling brushless DC motors. The GPT can also be used as a general-
purpose timer. See section 23, General PWM Timer (GPT) in Users Manual.
Port Output Enable for GPT (POEG) Use the POEG function to place the General PWM Timer (GPT) output pins in the output
disable state. See section 22, Port Output Enable for GPT (POEG) in User’s Manual.
Asynchronous General Purpose
Timer (AGT)
The AGT is a 16-bit timer that can be used for pulse output, external pulse width or period
measurement, and counting of external events.
This 16-bit timer consists of a reload register and a down-counter. The reload register and the
down-counter are allocated to the same address, and they can be accessed with the AGT
register. See section 24, Asynchronous General Purpose Timer (AGT) in User’s Manual.
Realtime Clock (RTC) The RTC has two counting modes, calendar count mode and binary count mode, that are
controlled by the register settings.
For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and
automatically adjusts dates for leap years.
For binary count mode, the RTC counts seconds and retains the information as a serial value.
Binary count mode can be used for calendars other than the Gregorian (Western) calendar.
See section 25, Realtime Clock (RTC) in User’s Manual.
Table 1.8 Communication interfaces (1 of 2)
Feature Functional description
Serial Communications Interface
(SCI)
The SCI is configurable to five asynchronous and synchronous serial interfaces:
Asynchronous interfaces (UART and asynchronous communications interface adapter
(ACIA))
8-bit clock synchronous interface
Simple IIC (master-only)
Simple SPI
Smart card interface.
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and
transmission protocol.
Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data
transfer speed can be configured individually using an on-chip baud rate generator.
See section 29, Serial Communications Interface (SCI) in User’s Manual.
IrDA Interface (IrDA) The IrDA interface sends and receives IrDA data communication waveforms in cooperation
with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 30,
IrDA Interface in User’s Manual.
I2C Bus Interface (IIC) The 3-channel IIC module conforms with and provides a subset of the NXP I2C bus (Inter-
Integrated Circuit bus) interface functions. See section 31, I2C Bus Interface (IIC) in User’s
Manual.
Serial Peripheral Interface (SPI) Two independent SPI channels are capable of high-speed, full-duplex synchronous serial
communications with multiple processors and peripheral devices. See section 33, Serial
Peripheral Interface (SPI) in User’s Manual.
Serial Sound Interface (SSI) The SSI peripheral provides functionality to interface with digital audio devices for transmitting
PCM audio data over a serial bus with the MCU. The SSI supports an audio clock frequency of
up to 50 MHz, and can be operated as a slave or master receiver, transmitter, or transceiver to
suit various applications. The SSI includes 8-stage FIFO buffers in the receiver and
transmitter, and supports interrupts and DMA-driven data reception and transmission. See
section 36, Serial Sound Interface (SSI) in User’s Manual.
Quad Serial Peripheral Interface
(QSPI)
The QSPI is a memory controller for connecting a serial ROM (nonvolatile memory such as a
serial flash memory, serial EEPROM, or serial FeRAM) that has an SPI-compatible interface.
See section 34, Quad Serial Peripheral Interface (QSPI) in User’s Manual.
Controller Area Network (CAN)
Module
The CAN module provides functionality to receive and transmit data using a message-based
protocol between multiple slaves and masters in electromagnetically noisy applications.
The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports
up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox
and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are
supported. See section 32, Controller Area Network (CAN) Module in User’s Manual.
R01DS0263EU0140 Rev.1.40 Page 7 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
USB 2.0 Full-Speed Module (USBFS) The full-speed USB controller can operate as a host controller or device controller.
The module supports full-speed and low-speed (host controller only) transfer as defined in the
Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and
supports all of the transfer types defined in the Universal Serial Bus Specification 2.0.
The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9
can be assigned any endpoint number based on the peripheral devices used for
communication or based on the user system.
The MCU supports revision 1.2 of the battery charging specification. Because the MCU can be
powered at 5 V, the USB LDO regulator provides the internal USB transceiver power supply
3.3 V. See section 28, USB 2.0 Full-Speed Module (USBFS) in User’s Manual.
SD/MMC Host Interface (SDHI) The SDHI provides the functionality needed to connect a variety of external memory cards to
the MCU. The SDHI supports both 1-bit and 4-bit buses for connecting memory cards that
support SD, SDHC, and SDXC formats. When developing host devices that are compliant with
the SD specifications, you must comply with the SD Host/Ancillary Product License Agreement
(SD HALA).
The MMC interface supports 1-bit, 4-bit, and 8-bit MMC buses that provide eMMC 4.51
(JEDEC Standard JESD 84-B451) device access. This interface also provides backward
compatibility and supports high-speed SDR transfer modes. See section 37, SD/MMC Host
Interface (SDHI) in User’s Manual.
Table 1.9 Analog
Feature Functional description
14-bit A/D Converter (ADC14) A 14-bit successive approximation A/D converter is provided. Up to 28 analog input channels
are selectable. Temperature sensor output and internal reference voltage are selectable for
conversion. The A/D conversion accuracy is selectable from 12-bit and 14-bit conversion
making it possible to optimize the tradeoff between speed and resolution in generating a digital
value. See section 39, 14-Bit A/D Converter (ADC14) in User’s Manual.
12-bit D/A Converter (DAC12) The 12-bit D/A converts data and includes an output amplifier. See section 40, 12-Bit D/A
Converter (DAC12) in User’s Manual.
Temperature Sensor (TSN) The on-chip temperature sensor determines and monitors the die temperature for reliable
operation of the device. The sensor outputs a voltage directly proportional to the die
temperature, and the relationship between the die temperature and the output voltage is linear.
The output voltage is provided to the ADC14 for conversion and can be further used by the end
application. See section 41, Temperature Sensor (TSN) in User’s Manual.
High-Speed Analog Comparator
(ACMPHS)
ACMPHS compares the test voltage with a reference voltage and to provide a digital output
based on the result of conversion.
Both the test and reference voltages can be provided to the comparator from internal sources
such as the DAC12 output and internal reference voltage, and an external source.
Such flexibility is useful in applications that require go/no-go comparisons to be performed
between analog signals without necessarily requiring A/D conversion. See section 43, High-
Speed Analog Comparator (ACMPHS) in User’s Manual.
Low-Power Analog Comparator
(ACMPLP)
ACMPLP compares a reference input voltage and analog input voltage. The comparison result
can be read by software and also be output externally. The reference input voltage can be
selected from either an input to the CMPREFi (i = 0, 1) pin or from the internal reference
voltage (Vref) generated internally in the MCU.
The ACMPLP response speed can be set before starting an operation. Setting the high-speed
mode decreases the response delay time, but increases current consumption. Setting the low-
speed mode increases the response delay time, but decreases current consumption. See
section 44, Low Power Analog Comparator (ACMPLP) in User’s Manual.
Operational Amplifier (OPAMP) OPAMP amplifies small analog input voltages and outputs the amplified voltages. A total of
four differential operational amplifier units with two input pins and one output pin are provided.
See section 42, Operational Amplifier (OPAMP) in User’s Manual.
Table 1.8 Communication interfaces (2 of 2)
Feature Functional description
R01DS0263EU0140 Rev.1.40 Page 8 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
Table 1.10 Human machine interfaces
Feature Functional description
Segment LCD Controller (SLCDC) The SLCDC provides the following functions:
Waveform A or B selectable
The LCD driver voltage generator can switch between an internal voltage boosting method,
a capacitor split method, and an external resistance division method
Automatic output of segment and common signals based on automatic display data register
read
The reference voltage generated when operating the voltage boost circuit can be selected in
16 steps (contrast adjustment)
The LCD can be made to blink.
See section 49, Segment LCD Controller/Driver (SLCDC) in User’s Manual.
Capacitive Touch Sensing Unit
(CTSU)
The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the
touch sensor. Changes in the electrostatic capacitance are determined by software, which
enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode
surface of the touch sensor is usually enclosed with an electrical insulator so that a finger does
not come into direct contact with the electrodes. See section 45, Capacitive Touch Sensing
Unit (CTSU) in User’s Manual.
Table 1.11 Data processing
Feature Functional description
Cyclic Redundancy Check (CRC)
Calculator
The CRC calculator generates CRC codes to detect errors in the data. The bit order of CRC
calculation results can be switched for LSB-first or MSB-first communication. Additionally,
various CRC generation polynomials are available. The snoop function allows monitoring
reads from and writes to specific addresses. This function is useful in applications that require
CRC code to be generated automatically in certain events, such as monitoring writes to the
serial transmit buffer and reads from the serial receive buffer. See section 35, Cyclic
Redundancy Check (CRC) Calculator in User’s Manual.
Data Operation Circuit (DOC) The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 46,
Data Operation Circuit (DOC) in User’s Manual.
Table 1.12 Security
Feature Functional description
Secure Crypto Engine 5 (SCE5) Security algorithm:
- Symmetric algorithm: AES.
Other support features:
- TRNG (True Random Number Generator)
- Hash-value generation: GHASH.
R01DS0263EU0140 Rev.1.40 Page 9 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
1.2 Block Diagram
Figure 1.1 shows the block diagram of the MCU superset. Some individual devices within the group have a subset of the
features.
Figure 1.1 Block diagram
Memories
1 MB Code Flash
16 KB Data Flash
192 KB SRAM
DMA
DMAC × 4
System
Mode Control
Power Control
ICU
MOSC/SOSC
Clocks
(H/M/L) OCO
PLL
Battery Backup
GPT32 × 10
Timers
AGT × 2
RTC
CTSU
Arm Cortex-M4
DSP FPU
MPU
NVIC
System Timer
Test and DBG Interface
Bus
MPU
DTC
CSC
External
WDT/IWDT
CAC
POR/LVD
Reset
Human Machine Interfaces
SLCDC
ELC
Event Link
SCE5
Security
Analogs
CRC
Data Processing
DOC
Communication Interfaces
QSPI
IIC × 3 SDHI
× 1
SPI × 2 CAN × 1
SSI × 2 USBFS
with BC1.2
SCI × 6
IrDA × 1
TSN
DAC12 ACMPHS × 2
ACMPLP × 2
ADC14 OPAMP × 4
KINT Register Write
Protection
R01DS0263EU0140 Rev.1.40 Page 10 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
1.3 Part Numbering
Figure 1.2 shows the product part number information, including memory capacity, and package type. Table 1.13 shows
a product list.
Figure 1.2 Part numbering scheme
Table 1.13 Product list
Part number Ordering part number Package Code flash Data flash SRAM
Operating
temperature
R7FS3A77C2A01CLK R7FS3A77C2A01CLK#AC1 PTLG0145KA-A 1 MB 16 KB 192 KB -40 to +85°C
R7FS3A77C3A01CFB R7FS3A77C3A01CFB#AA1 PLQP0144KA-B 1 MB 16 KB 192 KB -40 to +105°C
R7FS3A77C2A01CBJ R7FS3A77C2A01CBJ#AC1 PLBG0121JA-A 1 MB 16 KB 192 KB -40 to +85°C
R7FS3A77C3A01CFP R7FS3A77C3A01CFP#AA1 PLQP0100KB-B 1 MB 16 KB 192 KB -40 to +105°C
R7FS3A77C2A01CLJ R7FS3A77C2A01CLJ#AC1 PTLG0100JA-A 1 MB 16 KB 192 KB -40 to +85°C
R7FS3A77C3A01CFM R7FS3A77C3A01CFM#AA1 PLQP0064KB-C 1 MB 16 KB 192 KB -40 to +105°C
R7FS3A77C3A01CNB R7FS3A77C3A01CNB#AC1 PWQN0064LA-A 1 MB 16 KB 192 KB -40 to +105°C
R 7 F S 3 A 7 7
Package type
BJ: BGA 121 pins
FB: LQFP 144 pins
FP: LQFP 100 pins
FM: LQFP 64 pins
LK: LGA 145 pins
LJ: LGA 100 pins
NB: QFN 64 pins
Quality ID
Software ID
Operating temperature
2: -40° C to 85° C
3: -40° C to 105° C
Code flash memory size
C: 1 MB
Feature set
7: Superset
Group name
A7: S3A7 Group, Arm Cortex-M4, 48 MHz
Series name
3: High efficiency
Renesas Synergy™ family
Fl ash memory
Renesas microcontroller
Renesas
C 2 A 0 1 C L K # A C 1
Packing, terminal material (Pb-free)
#AA: Tray/Sn (Tin) only
#AC: Tray/others
Product identification code
R01DS0263EU0140 Rev.1.40 Page 11 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
1.4 Function Comparison
Table 1.14 Function comparison
Parts number R7FS3A77C2A01CLK R7FS3A77C3A01CFB R7FS3A77C2A01CBJ R7FS3A77C3A01CFP R7FS3A77C2A01CLJ
R7FS3A77C3A01CFM
R7FS3A77C3A01CNB
Pin count 145 144 121 100 100 64
Package LGA LQFP BGA LQFP LGA LQFP/QFN
Code flash memory 1 MB
Data flash memory 16 KB
SRAM 192 KB
Parity 176 KB
ECC 16 KB
System CPU clock 48 MHz
Backup
registers 512 bytes
ICU Yes
KINT 8
Event control ELC Yes
DMA DTC Yes
DMAC 4
BUS External bus 16-bit bus 8-bit bus No
Timers GPT32 10 10 10 10 10 9
AGT 22222 2
RTC Yes
WDT/IWDT Yes
Communication SCI 6
IIC 32
SPI 2
SSI 21
QSPI 1No
SDHI 1No
CAN 1
USBFS Yes
Analog ADC14 28 26 25 25 18
DAC12 2
ACMPHS 2
ACMPLP 2
OPAMP 44444 3
TSN Yes
HMI SLCDC 4 com × 52 seg
or 8 com x 48 seg
4 com × 38 seg or
8 com x 34 seg
4 com × 26 seg or
8 com x 22 seg
4 com × 26 seg or
8 com x 22 seg
No
CTSU 31 26 14
Data
processing
CRC Yes
DOC Yes
Security SCE5
R01DS0263EU0140 Rev.1.40 Page 12 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
1.5 Pin Functions
Function Signal I/O Description
Power supply VCC Input Power supply pin. Connect to the system power supply. Connect this pin to
VSS through a 0.1-μF capacitor. Place the capacitor close to the pin.
VCL Input Connect this pin to the VSS pin through the smoothing capacitor used to
stabilize the internal power supply. Place the capacitor close to the pin.
VSS Input Ground pin. Connect it to the system power supply (0 V).
VBATT Input Backup power supply pin
Clock XTAL Output Pins for a crystal resonator. An external clock signal can be input through
the EXTAL pin.
EXTAL Input
XCIN Input Input/output pins for the sub-clock oscillator. Connect a crystal resonator
between XCOUT and XCIN.
XCOUT Output
EBCLK Output Outputs the external bus clock for external devices
CLKOUT Output Clock output pin
Operating mode
control
MD Input Pin for setting the operating mode. The signal level on this pin must not be
changed during operation mode transition on release from the reset state.
System control RES Input Reset signal input pin. The MCU enters the reset state when this signal
goes low.
CAC CACREF Input Measurement reference clock input pin
Interrupt NMI Input Non-maskable interrupt request pin
IRQ0 to IRQ15 Input Maskable interrupt request pins
KINT KR00 to KR07 Input A key interrupt (KINT) can be generated by inputting a falling edge to the
key interrupt input pins
On-chip debug TMS I/O On-chip emulator or boundary scan pins
TDI Input
TCK Input
TDO Output
SWDIO I/O Serial wire debug data Input/output pin
SWCLK Input Serial wire clock pin
SWO Output Serial wire trace output pin
External bus
interface
RD Output Strobe signal indicating that reading from the external bus interface space is
in progress, active-low
WR Output Strobe signal indicating that writing to the external bus interface space is in
progress, in 1-write strobe mode, active-low
WR0, WR1 Output Strobe signals indicating that either group of data bus pins (D07 to D00,
D15 to D08) is valid in writing to the external bus interface space, in byte
strobe mode, active-low
BC0, BC1 Output Strobe signals indicating that either group of data bus pins (D07 to D00,
D15 to D08) is valid in access to the external bus interface space, in 1-write
strobe mode, active-low
WAIT Input Input pin for wait request signals in access to the external space, active-low
CS0 to CS3 Output Select signals for CS areas, active-low
A00 to A16 Output Address bus
D00 to D15 I/O Data bus
Battery Backup VBATWIO0 to
VBATWIO2
I/O Output wakeup signal for the VBATT wakeup control function.
External event input for the VBATT wakeup control function.
R01DS0263EU0140 Rev.1.40 Page 13 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
GPT GTETRGA,
GTETRGB,
GTETRGC,
GTETRGD
Input External trigger input pins
GTIOC0A to
GTIOC9A,
GTIOC0B to
GTIOC9B
I/O Input capture, output capture, or PWM output pins
GTIU Input Hall sensor input pin U
GTIV Input Hall sensor input pin V
GTIW Input Hall sensor input pin W
GTOUUP Output 3-phase PWM output for BLDC motor control (positive U phase)
GTOULO Output 3-phase PWM output for BLDC motor control (negative U phase)
GTOVUP Output 3-phase PWM output for BLDC motor control (positive V phase)
GTOVLO Output 3-phase PWM output for BLDC motor control (negative V phase)
GTOWUP Output 3-phase PWM output for BLDC motor control (positive W phase)
GTOWLO Output 3-phase PWM output for BLDC motor control (negative W phase)
AGT AGTEE0, AGTEE1 Input External event input enable signals
AGTIO0, AGTIO1 I/O External event input and pulse output pins
AGTO0, AGTO1 Output Pulse output pins
AGTOA0, AGTOA1 Output Output compare match A output pins
AGTOB0, AGTOB1 Output Output compare match B output pins
RTC RTCOUT Output Output pin for 1-Hz/64-Hz clock
RTCIC0 to RTCIC2 Input Time capture event input pins
SCI SCK0 to SCK4,
SCK9
I/O Input/output pins for the clock (clock synchronous mode)
RXD0 to RXD4,
RXD9
Input Input pins for received data (asynchronous mode/clock synchronous mode)
TXD0 to TXD4,
TXD9
Output Output pins for transmitted data (asynchronous mode/clock synchronous
mode)
CTS0_RTS0 to
CTS4_RTS4,
CTS9_RTS9
I/O Input/output pins for controlling the start of transmission and reception
(asynchronous mode/clock synchronous mode), active-low
SCL0 to SCL4,
SCL9
I/O Input/output pins for the I2C clock (simple IIC)
SDA0 to SDA4,
SDA9
I/O Input/output pins for the I2C data (simple IIC)
SCK0 to SCK4,
SCK9
I/O Input/output pins for the clock (simple SPI)
MISO0 to MISO4,
MISO9
I/O Input/output pins for slave transmission of data (simple SPI)
MOSI0 to MOSI4,
MOSI9
I/O Input/output pins for master transmission of data (simple SPI)
SS0 to SS4, SS9 Input Chip-select input pins (simple SPI), active-low
IIC SCL0 to SCL2 I/O Input/output pins for the clock
SDA0 to SDA2 I/O Input/output pins for the data
SSI SSISCK0 I/O SSI serial bit clock pins
SSISCK1
SSIWS0 I/O Word select pins
SSIWS1
SSITXD0 Output Serial data output pin
SSIRXD0 Input Serial data input pin
SSIDATA1 I/O Serial data input/output pin
AUDIO_CLK Input External clock pin for audio (input oversampling clock)
Function Signal I/O Description
R01DS0263EU0140 Rev.1.40 Page 14 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
SPI RSPCKA, RSPCKB I/O Clock input/output pin
MOSIA, MOSIB I/O Input or output pins for data output from the master
MISOA, MISOB I/O Input or output pins for data output from the slave
SSLA0, SSLB0 I/O Input or output pins for slave selection
SSLA1, SSLA2,
SSLA3, SSLB1,
SSLB2, SSLB3
Output Output pins for slave selection
QSPI QSPCLK Output QSPI clock output pin
QSSL Output QSPI slave output pin
QIO0 I/O Master transmit data/Data 0
QIO1 I/O Master input data/Data 1
QIO2, QIO3 I/O Data 2, Data 3
CAN CRX0 Input Receive data
CTX0 Output Transmit data
USBFS VSS_USB Input Ground pins
VCC_USB_LDO Input Power supply pin for USB LDO regulator
VCC_USB I/O Input: Power supply pin for USB transceiver.
Output: USB LDO regulator output pin. This pin should be connected to an
external capacitor.
USB_DP I/O D+ I/O pin of the USB on-chip transceiver. Connect this pin to the D+ pin of
the USB bus.
USB_DM I/O D- I/O pin of the USB on-chip transceiver. Connect this pin to the D- pin of
the USB bus.
USB_VBUS Input USB cable connection monitor pin. Connect this pin to VBUS of the USB
bus. The VBUS pin status (connected or disconnected) can be detected
when the USB module is operating as a device controller.
USB_EXICEN Output Low power control signal for external power supply (OTG) chip
USB_VBUSEN Output VBUS (5 V) supply enable signal for external power supply chip
USB_OVRCURA,
USB_OVRCURB
Input Connect the external overcurrent detection signals to these pins. Connect
the VBUS comparator signals to these pins when the OTG power supply
chip is connected.
USB_ID Input Connect the MicroAB connector ID input signal to this pin during operation
in OTG mode
SDHI SD0CLK Output SD clock output pin
SD0CMD I/O Command output pin and response input signal pin
SD0DAT0 to
SD0DAT7
I/O SD and MMC data bus pins
SD0WP Input SD write-protect signal
Analog power
supply
AVCC0 Input Analog voltage supply pin
AVSS0 Input Analog voltage supply ground pin
VREFH0 Input Analog reference voltage supply pin
VREFL0 Input Reference power supply ground pin
VREFH Input Analog reference voltage supply pin for DAC12
VREFL Input Analog reference ground pin for DAC12
ADC14 AN000 to AN027 Input Input pins for the analog signals to be processed by the ADC14
ADTRG0 Input Input pins for the external trigger signals that start the A/D conversion,
active-low
DAC12 DA0, DA1 Output Output pins for the analog signals to be processed by the D/A converter
Comparator output VCOUT Output Comparator output pin
ACMPHS IVREF0 to IVREF5 Input Reference voltage input pin
IVCMP0 to IVCMP5 Input Analog voltage input pins
ACMPLP CMPREF0,
CMPREF1
Input Reference voltage input pins
CMPIN0, CMPIN1 Input Analog voltage input pins
OPAMP AMP0+ to AMP3+ Input Analog voltage input pins
AMP0- to AMP3- Input Analog voltage input pins
AMP0O to AMP3O Output Analog voltage output pins
Function Signal I/O Description
R01DS0263EU0140 Rev.1.40 Page 15 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
CTSU TS00, TS01,
TS03 to TS22,
TS26 to TS27,
TS29 to TS35 
Input Capacitive touch detection pins (touch pins)
TSCAP - Secondary power supply pin for the touch driver
I/O ports P000 to P015 I/O General-purpose input/output pins
P100 to P115 I/O General-purpose input/output pins
P200 Input General-purpose input pin
P201 to P206,
P212, P213
I/O General-purpose input/output pins
P214, P215 Input General-purpose input pins
P300 to P315 I/O General-purpose input/output pins
P400 to P415 I/O General-purpose input/output pins
P500 to P507,
P511, P512
I/O General-purpose input/output pins
P600 to P606,
P608 to P614
I/O General-purpose input/output pins
P700 to P705,
P708 to P713
I/O General-purpose input/output pins
P800 to P809 I/O General-purpose input/output pins
P900 to P902 I/O General-purpose input/output pins
SLCDC VL1, VL2, VL3, VL4 I/O Voltage pin for driving the LCD
CAPH, CAPL I/O Capacitor connection pin for the LCD controller/driver
COM0 to COM7 Output Common signal output pins for the LCD controller/driver
SEG00 to SEG51 Output Segment signal output pins for the LCD controller/driver
Function Signal I/O Description
R01DS0263EU0140 Rev.1.40 Page 16 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
1.6 Pin Assignments
Figure 1.3 to Figure 1.9 show the pin assignments.
Figure 1.3 Pin assignment for 145-pin LGA (top view)
P400
VCC
VSS
P001
P008
P010
/VREFH0
P012
/VREFH
P014
VCC
P507
P802
P801
P100
P402
P511
P512
P002
P009
P011
/VREFL0
P013
/VREFL
P015
VSS
P501
P803
P101
P102
P405
P404
P401
P000
P006
AVSS0
AVCC0
P506
P504
P502
P104
P800
P103
P702
P701
P403
P003
P004
P005
P007
P505
P503
P500
P106
P805
P804
VCL
VBATT
P703
P406
P105
P107
P601
P602
P215
/XCIN
P214
/XCOUT
P704
P700
P600
P603
P605
P606
P212
/EXTAL
P213
/XTAL
P705
P713
P604
P614
VSS
VCC
VCC
VSS
P712
P709
P608
P610
P612
P613
P711
P710
P415
P413
P114
P115
P609
P611
P708
P414
P411
P408
P314
P315
P310
P305
P303
P109/TDO
/SWO
P112
P806
P807
P412
P410
VCC_
USB_LDO
P204
P202
P200
RES
P312
P308
P304
P301
P111
P113
P409
USB_DP
VSS_
USB
P206
P313
P901
P902
P201/MD
P311
P306
P809
P300/TCK
/SWCLK
P110/TDI
P407
USB_DM
VCC_
USB
P205
P203
P900
VSS
VCC
P309
P307
P808
P302
P108/TMS
/SWDIO
R7FS3A77C2A01CLK
13
12
11
10
9
8
7
6
5
4
3
2
1
13
12
11
10
9
8
7
6
5
4
3
2
1
N K L MG H JD E FA B C
N K L MG H JD E FA B C
NC
R01DS0263EU0140 Rev.1.40 Page 17 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
Figure 1.4 Pin assignment for 144-pin LQFP (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
P802
P803
P500
P501
P502
P503
P504
P505
P506
P507
VCC
VSS
P014
P013/VREFL
P012/VREFH
AVCC0
AVSS0
P011/VREFL0
P010VREFH0
P009
P008
P007
P006
P005
P004
P003
P002
P001
P000
VSS
VCC
P511
P801
P015
P512
P300/TCK/SWCLK
P302
P303
P809
P808
P304
P305
P306
P307
P308
P309
P310
P311
P200
P201/MD
RES
VCC
VSS
P902
P901
P900
P315
P314
P313
P202
P203
P204
P205
P206
VCC_USB_LDO
VCC_USB
USB_DP
VSS_USB
P301
P312
USB_DM
P100
P102
P103
P104
P105
P106
P107
P804
P805
P600
P601
P602
P603
P605
P606
VSS
VCC
P614
P613
P612
P611
P610
P609
P608
P807
P806
P115
P114
P113
P112
P111
P110/TDI
P108/TMS/SWDIO
P101
P604
P109/TDO/SWO
P400
P402
P403
P404
P405
P406
P700
P701
P702
P703
P704
P705
VBATT
P215/XCIN
P214/XCOUT
VSS
P213/XTAL
P212/EXTAL
VCC
P713
P712
P711
P710
P708
P415
P414
P413
P412
P411
P410
P409
P407
P401
VCL
P408
P709
P800
R7FS3A77C3A01CFB
R01DS0263EU0140 Rev.1.40 Page 18 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
Figure 1.5 Pin assignment for 121-pin BGA (top view)
R7FS3A77C2A01CBJ
11
10
9
8
7
6
5
4
3
2
1
11
10
9
8
7
6
5
4
3
2
1
ABCDEFGHJKL
ABCDEFGHJKL
P407
USB_DM
VCC_
USB
P205
P203
VSS
P308
P305
P809
P301
P300/
TCK/
SWCLK
P408 P411 P414 P212/
EXTAL
P215/
XCIN VCL P406 P403 P401 P400
USB_DP P410 P415 P213/
XTAL
P214/
XCOUT VBATT P405 P402 P511 P512
VSS_
USB P409 P412 P708 VCC VSS P404 P002 P001 P000
VCC_
USB_
LDO
P206 P204 P413 P710 P702 P006 P004 P003 P005
VCC RES P201/MD P200 NC P700 P008 AVCC0 P013/
VREFL
P012/
VREFH
P309 P307 P302 P304 P612 P601 P506 P505 P015 P014
P306 P808 P114 P611 P603 P600 P504 P503 VSS VCC
P303 P110/TDI P111 P609 P604 P106 P104 P502 P500 P501
P108/
TMS/
SWDIO
P113 P608 P613 P605 P602 P105 P102 P801 P800
P202 P313 P314 P315 P709 P701 P007 AVSS0 P011/
VREFL0
P010/
VREFH0
P109/
TDO/
SWO
P112 P115 P610 VCC VSS P107 P103 P101 P100
R01DS0263EU0140 Rev.1.40 Page 19 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
Figure 1.6 Pin assignment for 100-pin LQFP (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
P502
P503
P504
P505
VCC
VSS
P015
P014
P013/VREFL
P012/VREFH
AVCC0
AVSS0
P010/VREFH0
P008
P007
P006
P005
P004
P003
P002
P001
P501
P011/VREFL0
P300/TCK/SWCLK
P302
P303
P809
P808
P304
P305
P306
P307
P200
P201/MD
RES
VCC
P202
P203
P204
P205
P206
VCC_USB_LDO
VCC_USB
USB_DP
USB_DM
VSS_USB
P301
VSS
P100
P102
P103
P104
P105
P106
P107
P600
P601
P602
P603
VSS
VCC
P609
P608
P115
P114
P113
P112
P111
P110/TDI
P109/TDO/SWO
P108/TMS/SWDIO
P101
P610
P400
P402
P403
P404
P405
P406
VBATT
VCL
P215/XCIN
P214/XCOUT
VSS
P213/XTAL
VCC
P708
P415
P414
P413
P412
P411
P410
P409
P407
P401
P212/EXTAL
P500
P000
P408
R7FS3A77C3A01CFP
R01DS0263EU0140 Rev.1.40 Page 20 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
Figure 1.7 Pin assignment for 100-pin LGA (top view)
R7FS3A77C2A01CLJ
P407
USB_DM
VCC_
USB
P205
VSS
P200
P305
P809
P300/
TCK/
SWCLK
P108/
TMS/
SWDIO
P409 P412 VCC P212/
EXTAL
P215/
XCIN VCL P403 P400 P000
USB_DP P413 VSS P213/
XTAL
P214/
XCOUT VBATT P405 P401 P001
VSS_
USB
VCC_US
B_LDO P411 P415 P708 P404 P003 P004 P002
P204 P206 P408 P414 P406 P006 P007 P008 P005
P201/MD P307 RES P113 P600 P504 AVCC0 P013/
VREFL
P012/
VREFH
P304 P808 P306 P115 P601 P503 P100 P015 P014
P303 P110/TDI P111 P609 P602 P107 P103 VSS VCC
P302 P301 P114 P610 P603 P106 P101 P501 P502
P109/
TDO/
SWO
P112 P608 VCC VSS P105 P104 P102 P500
VCC P202 P203 P410 P402 P505 AVSS0 P011/
VREFL0
P010/
VREFH0
10
9
8
7
6
5
4
3
2
1
10
9
8
7
6
5
4
3
2
1
ABCDEFGHJK
ABCDEFGHJK
R01DS0263EU0140 Rev.1.40 Page 21 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
Figure 1.8 Pin assignment for 64-pin LQFP (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
P501
P502
P015
P014
P012/VREFH
AVCC0
AVSS0
P011/VREFL0
P010/VREFH0
P004
P003
P002
P001
P013/VREFL
P300/TCK/SWCLK
P301
P302
P303
P304
P201/MD
RES
P204
P205
P206
VCC_USB_LDO
VCC_USB
USB_DP
USB_DM
VSS_USB
P200
P100
P102
P103
P104
P105
P106
P107
VSS
VCC
P113
P112
P111
P110/TDI
P108/TMS/SWDIO
P101
P109/TDO/SWO
P400
P402
VBATT
VCL
P215/XCIN
P214/XCOUT
VSS
P213/XTAL
P212/EXTAL
VCC
P411
P410
P408
P407
P401
P409
P000
R7FS3A77C3A01CFM
P500
R01DS0263EU0140 Rev.1.40 Page 22 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
Figure 1.9 Pin assignment for 64-pin QFN (top view)
R01DS0263EU0140 Rev.1.40 Page 23 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
1.7 Pin Lists
Pin number
Power, System, Clock,
Debug, CAC, VBATT
Interrupt
I/O ports
External bus
Timers Communication interfaces Analogs HMI
LGA145
LQFP144
BGA121
LQFP100
LGA100
LQFP64
QFN64
AGT
GPT_OPS, POEG
GPT
RTC
USBFS,CAN
SCI
IIC
SPI/QSPI
SSI
SDHI
ADC14
DAC12, OPAMP
ACMPHS,
ACMPLP
SLCDC
CTSU
N13 1 L11 1 J10 1 1 IRQ0 P400 GTIOC
6A_A
SCK4_
B
SCL0_
A
AUDIO
_CLK
TS20
L11 2 K11 2 J9 2 2 IRQ5 P401 GTET
RGA_
B
GTIOC
6B_A
CTX0_
B
CTS4_
RTS4_
B/
SS4_B
SDA0_
A
TS19
M13 3 J10 3 F6 3 3 VBAT
WIO0
IRQ4 P402 AGTIO
0_B/
AGTIO
1_B
RTCIC
0
CRX0_
B
TS18
K11 4 J11 4 H10 VBAT
WIO1
P403 AGTIO
0_C/
AGTIO
1_C
GTIOC
3A_B
RTCIC
1
SSISC
K0_A
TS17
L12 5 H9 5 G8 VBAT
WIO2
P404 GTIOC
3B_B
RTCIC
2
SSIWS
0_A
TS16
L13 6 H10 6 H9 P405 GTIOC
1A_B
SSITX
D0_A
TS15
J10 7 H11 7 F7 P406 GTIOC
1B_B
SSIRX
D0_A
TS14
H10 8 G6 P700 GTIOC
5A_B
TS32
K12 9 G7 P701 GTIOC
5B_B
TS33
K13 10 G8 P702 GTIOC
6A_B
TS34
J11 11 P703 GTIOC
6B_B
H11 12 P704
G11 13 P705
J1214G108G944VBATT
J1315G119G1055VCL
H13 16 F11 10 F10 6 6 XCIN P215
H12 17 F10 11 F9 7 7 XCOU
T
P214
F1218G912D98 8 VSS
G12 19 E10 13 E9 9 9 XTAL IRQ2 P213 GTET
RGC_
A
TXD1_
A/
MOSI1
_A/
SDA1_
A
G1320E1114E101010EXTALIRQ3P212 AGTE
E1
GTET
RGD_
A
RXD1_
A/
MISO1
_A/
SCL1_
A
F1321F915D101111VCC
G10 22 P713 GTIOC
2A_B
F11 23 P712 GTIOC
2B_B
E13 24 P711 CTS1_
RTS1_
B/
SS1_B
E12 25 F8 P710 SCK1_
B
TS35
F10 26 F7 IRQ10 P709 TXD1_
B/
MOSI1
_B/
SDA1_
B
TS13
D1327E916F8 CACR
EF_B
IRQ11 P708 RXD1_
B/
MISO1
_B/
SCL1_
B
SSLA3
_B
TS12
E11 28 D10 17 E8 P415 SSLA2
_B
TS11
D12 29 D11 18 E7 P414 SSLA1
_B
SD0W
P
TS10
E1030E819C9 P413 GTOU
UP_B
CTS0_
RTS0_
B/
SS0_B
SSLA0
_B
SD0CL
K
TS09
C13 31 D9 20 C10 P412 GTOU
LO_B
SCK0_
B
RSPC
KA_B
SD0C
MD
TS08
R01DS0263EU0140 Rev.1.40 Page 24 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
D11 32 C11 21 D8 12 12 IRQ4 P411 AGTO
A1
GTOV
UP_B
GTIOC
9A_A
TXD0_
B/
MOSI0
_B/
SDA0_
B/
CTS3_
RTS3_
A/
SS3_A
MOSIA
_B
SD0D
AT0
TS07
C12 33 C10 22 E6 13 13 IRQ5 P410 AGTO
B1
GTOV
LO_B
GTIOC
9B_A
RXD0_
B/
MISO0
_B/
SCL0_
B/
SCK3_
A
MISOA
_B
SD0D
AT1
TS06
B13 34 C9 23 B10 14 14 IRQ6 P409 GTOW
UP_B
USB_E
XICEN
_A
TXD3_
A/
MOSI3
_A/
SDA3_
A
TS05
D10 35 B11 24 D7 15 15 IRQ7 P408 GTOW
LO_B
USB_I
D_A
RXD3_
A/
MISO3
_A/
SCL3_
A
TS04
A13 36 A11 25 A10 16 16 P407 RTCO
UT
USB_V
BUS
CTS4_
RTS4_
A/
SS4_A
SDA0_
B
SSLB3
_A
ADTR
G0_B
TS03
B1137B926B81717VSS_U
SB
A12 38 A10 27 A9 18 18 USB_
DM
B12 39 B10 28 B9 19 19 USB_
DP
A1140A929A82020VCC_
USB
C1141B830C82121VCC_
USB_L
DO
B1042C831C72222 IRQ0P206WAIT GTIU_
A
USB_V
BUSE
N_A
RXD4_
A/
MISO4
_A/
SCL4_
A
SDA1_
A
SSLB1
_A
SSIDA
TA1_A
SD0D
AT2
TS01
A1043A832A72323CLKO
UT_A
IRQ1 P205 A16 AGTO
1
GTIV_
A
GTIOC
4A_B
USB_
OVRC
URA
TXD4_
A/
MOSI4
_A/
SDA4_
A/
CTS9_
RTS9_
A/
SS9_A
SCL1_
A
SSLB0
_A
SSIWS
1_A
SD0D
AT3
TSCA
P_A
C1044D833B72424CACR
EF_A
P204 AGTIO
1_A
GTIW_
A
GTIOC
4B_B
USB_
OVRC
URB
SCK4_
A/
SCK9_
A
SCL0_
B
RSPC
KB_A
SSISC
K1_A
SD0D
AT4
SEG23 TS00
A9 45 A7 34 D6 IRQ2 P203 GTIOC
5A_A
CTX0_
A
CTS2_
RTS2_
A/
SS2_A
/
TXD9_
A/
MOSI9
_A/
SDA9_
A
MOSIB
_A
SD0D
AT5
SEG22 TSCA
P_B
C9 46 B7 35 C6 IRQ3 P202 WR1/
BC1
GTIOC
5B_A
CRX0_
A
SCK2_
A/
RXD9_
A/
MISO9
_A/
SCL9_
A
MISOB
_A
SD0D
AT6
SEG21
B9 47 C7 P313 SD0D
AT7
SEG20
D9 48 D7 P314 SEG4
D8 49 E7 P315 SEG5
A8 50 P900 SEG6
B8 51 P901 SEG7
B7 52 P902 SEG8
A7 53 A6 36 A6 VSS
A6 54 B6 37 B6 VCC
C7 55 C6 38 D5 25 25 RES
B6 56 D6 39 B5 26 26 MD P201
C8 57 E6 40 A5 27 27 NMI P200
C6 58 P312 CS3 SEG9
Pin number
Power, System, Clock,
Debug, CAC, VBATT
Interrupt
I/O ports
External bus
Timers Communication interfaces Analogs HMI
LGA145
LQFP144
BGA121
LQFP100
LGA100
LQFP64
QFN64
AGT
GPT_OPS, POEG
GPT
RTC
USBFS,CAN
SCI
IIC
SPI/QSPI
SSI
SDHI
ADC14
DAC12, OPAMP
ACMPHS,
ACMPLP
SLCDC
CTSU
R01DS0263EU0140 Rev.1.40 Page 25 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
B5 59 P311 CS2 SEG10
D7 60 P310 A15 SEG11
A5 61 B5 P309 A14 SEG12
C5 62 A5 P308 A13 SEG13
A4 63 C5 41 C5 P307 A12 SEG14
B4 64 B4 42 D4 P306 A11 SEG15
D6 65 A4 43 A4 IRQ8 P305 A10 SEG16
C4 66 E5 44 B4 28 28 IRQ9 P304 A09 GTIOC
7A_A
SEG17
A3 67 C4 45 C4 P808 SEG18
B3 68 A3 46 A3 P809 SEG19
D5 69 B3 47 B3 29 29 P303 A08 GTIOC
7B_A
SEG3/
COM7
A2 70 D5 48 B2 30 30 IRQ5 P302 A07 GTOU
UP_A
GTIOC
4A_A
TXD2_
A/
MOSI2
_A/
SDA2_
A
SSLB3
_B
SEG2/
COM6
C3 71 A2 49 C2 31 31 IRQ6 P301 A06 GTOU
LO_A
GTIOC
4B_A
RXD2_
A/
MISO2
_A/
SCL2_
A
SSLB2
_B
SEG1/
COM5
B2 72 A1 50 A2 32 32 TCK/
SWCL
K
P300 GTIOC
0A_A
SSLB1
_B
A1 73 B2 51 A1 33 33 TMS/
SWDI
O
P108 GTIOC
0B_A
CTS9_
RTS9_
B/
SS9_B
SSLB0
_B
D4 74 B1 52 B1 34 34 TDO/
SWO/
CLKO
UT_B
P109 GTOV
UP_A
GTIOC
1A_A
TXD9_
B/
MOSI9
_B/
SDA9_
B
MOSIB
_B
B1 75 C3 53 C3 35 35 TDI IRQ3 P110 GTOV
LO_A
GTIOC
1B_A
CTS2_
RTS2_
B/
SS2_B
/
RXD9_
B/
MISO9
_B/
SCL9_
B
MISOB
_B
VCOU
T
C2 76 D3 54 D3 36 36 IRQ4 P111 A05 GTIOC
3A_A
SCK2_
B/
SCK9_
B
RSPC
KB_B
CAPH
D3 77 C1 55 C1 37 37 P112 A04 GTIOC
3B_A
TXD2_
B/
MOSI2
_B/
SDA2_
B
SSISC
K0_B
CAPL
C1 78 C2 56 E5 38 38 P113 A03 RXD2_
B/
MISO2
_B/
SCL2_
B
SSIWS
0_B
SEG0/
COM4
E4 79 D4 57 D2 P114 A02 SSIRX
D0_B
SEG24
E3 80 D1 58 E4 P115 A01 SSITX
D0_B
SEG25
D2 81 P806 SEG26
D1 82 P807 SEG27
F4 83 D2 59 D1 P608 A00/
BC0
SEG28
E2 84 E3 60 E3 P609 CS1 SEG29
F3 85 E1 61 E2 P610 CS0 SEG30
E1 86 E4 P611 SEG31
F2 87 F5 P612 D08 SEG32
F1 88 E2 P613 D09 SEG33
G3 89 P614 D10 SEG34
G1 90 F1 62 E1 39 39 VCC
G2 91 G1 63 F1 40 40 VSS
H1 92 P606 SEG35
H2 93 F2 P605 D11 SEG36
G4 94 F3 P604 D12 SEG37
H3 95 F4 64 F2 P603 D13 SEG38
J1 96 G2 65 F3 P602 EBCLK SEG39
J2 97 G5 66 F4 P601 WR/
WR0
SEG40
H4 98 G4 67 F5 P600 RD SEG41
K2 99 P805 SEG42
K1 100 P804 SEG43
Pin number
Power, System, Clock,
Debug, CAC, VBATT
Interrupt
I/O ports
External bus
Timers Communication interfaces Analogs HMI
LGA145
LQFP144
BGA121
LQFP100
LGA100
LQFP64
QFN64
AGT
GPT_OPS, POEG
GPT
RTC
USBFS,CAN
SCI
IIC
SPI/QSPI
SSI
SDHI
ADC14
DAC12, OPAMP
ACMPHS,
ACMPLP
SLCDC
CTSU
R01DS0263EU0140 Rev.1.40 Page 26 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
J3 101 H1 68 G3 41 41 KR07 P107 D07 GTIOC
8A_A
COM3
K3 102 G3 69 G2 42 42 KR06 P106 D06 GTIOC
8B_A
SSLA3
_A
COM2
J4 103 H2 70 G1 43 43 KR05/
IRQ0
P105 D05 GTET
RGA_
C
SSLA2
_A
COM1
L3 104 H3 71 H1 44 44 KR04/
IRQ1
P104 D04 GTET
RGB_
B
SSLA1
_A
COM0
L1 105 J1 72 H3 45 45 KR03 P103 D03 GTOW
UP_A
GTIOC
2A_A
CTS0_
RTS0_
A/
SS0_A
SSLA0
_A
AN024 CMPR
EF1
VL4
M1 106 J2 73 J1 46 46 KR02 P102 D02 AGTO
0
GTOW
LO_A
GTIOC
2B_A
SCK0_
A
RSPC
KA_A
AN025
/
ADTR
G0_A
CMPIN
1
VL3
M2 107 K1 74 H2 47 47 KR01/
IRQ1
P101 D01 AGTE
E0
GTET
RGB_
A
TXD0_
A/
MOSI0
_A/
SDA0_
A/
CTS1_
RTS1_
A/
SS1_A
SDA1_
B
MOSIA
_A
AN026 CMPR
EF0
VL2
N1 108 L1 75 H4 48 48 KR00/
IRQ2
P100 D00 AGTIO
0_A
GTET
RGA_
A
RXD0_
A/
MISO0
_A/
SCL0_
A/
SCK1_
A
SCL1_
B
MISOA
_A
AN027 CMPIN
0
VL1
L2 109 L2 P800 D14 SEG44
N2 110 K2 P801 D15 SEG45
N3 111 P802 SEG46
M3 112 P803 SEG47
K4113K376K14949 P500 AGTO
A0
GTIU_
B
USB_V
BUSE
N_B
QSPC
LK
AN016 SEG48
M4114L377J25050 IRQ11P501 AGTO
B0
GTIV_
B
USB_
OVRC
URA
QSSL AN017 SEG49
L4 115 J3 78 K2 51 51 IRQ12 P502 GTIW_
B
USB_
OVRC
URB
QIO0 AN018 SEG50
K5 116 J4 79 G4 P503 GTET
RGC_
B
USB_E
XICEN
_B
QIO1 AN019 SEG51
L5 117 H4 80 G5 P504 GTET
RGD_
B
USB_I
D_B
QIO2 AN020
K6 118 J5 81 G6 IRQ14 P505 QIO3 AN021
L6 119 H5 IRQ15 P506 AN022
N4 120 P507 AN023
N5 121 L4 82 K3 VCC
M5 122 K4 83 J3 VSS
M6 123 K5 84 J4 52 52 IRQ13 P015 AN015 DA1 IVCMP
5/
IVCMP
2
N6 124 L5 85 K4 53 53 P014 AN014 DA0 IVREF
5/
IVREF
2
M7 125 K6 86 J5 54 54 VREFL P013 AN013 AMP1+
N7 126 L6 87 K5 55 55 VREF
H
P012 AN012 AMP1-
L7 127 J6 88 H5 56 56 AVCC0
L8 128 J7 89 H6 57 57 AVSS0
M8 129 K7 90 J6 58 58 VREFL
0
IRQ15 P011 AN011 AMP2+ TS31
N8 130 L7 91 K6 59 59 VREF
H0
IRQ14 P010 AN010 AMP2- TS30
M9 131 IRQ13 P009 AN009
N9 132 H6 92 J7 IRQ12 P008 AN008 TS29
K7 133 H7 93 H7 P007 AN007 AMP3
O
IVCMP
4/
IVCMP
1
L9 134 H8 94 G7 IRQ11 P006 AN006 AMP3- IVREF
4/
IVREF
1
TS27
K8 135 L8 95 K7 IRQ10 P005 AN005 AMP3+ IVREF
0
TS26
K9 136 J8 96 J8 60 60 IRQ9 P004 AN004 AMP2
O
IVCMP
0
Pin number
Power, System, Clock,
Debug, CAC, VBATT
Interrupt
I/O ports
External bus
Timers Communication interfaces Analogs HMI
LGA145
LQFP144
BGA121
LQFP100
LGA100
LQFP64
QFN64
AGT
GPT_OPS, POEG
GPT
RTC
USBFS,CAN
SCI
IIC
SPI/QSPI
SSI
SDHI
ADC14
DAC12, OPAMP
ACMPHS,
ACMPLP
SLCDC
CTSU
R01DS0263EU0140 Rev.1.40 Page 27 of 137
Oct 29, 2018
S3A7 Datasheet 1. Overview
Note: Some pin names have the added suffix of _A, _B, and _C. The suffix can be ignored when assigning functionality.
K10 137 K8 97 H8 61 61 P003 AN003 AMP1
O
IVREF
3/
IVCMP
3
M10 138 J9 98 K8 62 62 IRQ8 P002 AN002 AMP0
O
IVREF
2/
IVCMP
2
N10 139 K9 99 K9 63 63 IRQ7 P001 AN001 AMP0- IVREF
1/
IVCMP
1
TS22
L10 140 L9 100 K10 64 64 IRQ6 P000 AN000 AMP0+ IVREF
0/
IVCMP
0
TS21
N11 141 VSS
N12 142 VCC
M11 143 L10 IRQ14 P512 GTIOC
0A_B
TXD4_
B/
MOSI4
_B/
SDA4_
B
SCL2
M12 144 K10 IRQ15 P511 GTIOC
0B_B
RXD4_
B/
MISO4
_B/
SCL4_
B
SDA2
E5 F6 NC
Pin number
Power, System, Clock,
Debug, CAC, VBATT
Interrupt
I/O ports
External bus
Timers Communication interfaces Analogs HMI
LGA145
LQFP144
BGA121
LQFP100
LGA100
LQFP64
QFN64
AGT
GPT_OPS, POEG
GPT
RTC
USBFS,CAN
SCI
IIC
SPI/QSPI
SSI
SDHI
ADC14
DAC12, OPAMP
ACMPHS,
ACMPLP
SLCDC
CTSU
R01DS0263EU0140 Rev.1.40 Page 28 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2. Electrical Characteristics
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:
VCC*1 = AVCC0 = VCC_USB*2 = VCC_USB_LDO*2 = 1.6 to 5.5V, VREFH = VREFH0 = 1.6 to AVCC0, VBATT =
1.6 to 3.6V, VSS = AVSS0 = VREFL = VREFL0 = VSS_USB = 0V, Ta = Topr
Note 1. The typical condition is set to VCC = 3.3V.
Note 2. When USBFS is not used.
Figure 2.1 shows the timing conditions.
Figure 2.1 Input or output timing measurement conditions
The measurement conditions of timing specification in each peripherals are recommended for the best peripheral
operation. However, make sure to adjust driving abilities of each pin to meet your conditions.
Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function
pin is mixed, the AC specification of each function is not guaranteed.
For example P100
C
VOH = VCC × 0.7, VOL = VCC × 0.3
VIH = VCC × 0.7, VIL = VCC × 0.3
Load capacitance C = 30pF
R01DS0263EU0140 Rev.1.40 Page 29 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.1 Absolute Maximum Ratings
Note 1. Ports P205, P206, P400 to P404, P407, P511, P512 are 5V-tolerant.
Note 2. See section 2.2.1, Tj/Ta Definition.
Note 3. Contact Renesas Electronics sales office for information on derating operation under Ta = +85°C to +105°C. Derating is the
systematic reduction of load for improved reliability.
Note 4. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, refer to section 1.3, Part
Numbering.
Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded.
To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics
between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins,
between the VREFH0 and VREFL0 pins, and between the VREFH and VREFL pins. Place capacitors of about 0.1 μF
as close as possible to every power supply pin and use the shortest and heaviest possible traces. Also, connect
capacitors as stabilization capacitance.
Connect the VCL pin to a VSS pin by a 4.7 µF capacitor. The capacitor must be placed close to the pin.
Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that
results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in
the device at this time might cause degradation of internal elements.
Table 2.1 Absolute maximum ratings
Parameter Symbol Value Unit
Power supply voltage VCC –0.5 to +6.5 V
Input voltage 5V-tolerant ports*1Vin –0.3 to +6.5 V
P000 to P015 Vin –0.3 to AVCC0 + 0.3 V
Others Vin –0.3 to VCC + 0.3 V
Reference power supply voltage VREFH0 –0.3 to +6.5 V
VREFH V
VBATT power supply voltage VBATT –0.5 to +6.5 V
Analog power supply voltage AVCC0 –0.5 to +6.5 V
USB power supply voltage VCC_USB –0.5 to +6.5 V
VCC_USB_LDO –0.5 to +6.5 V
Analog input voltage When AN000 to AN015 are
used
VAN –0.3 to AVCC0 + 0.3 V
When AN016 to AN027 are
used
–0.3 to VCC + 0.3 V
LCD voltage VL1 voltage VL1 –0.3 to +2.8 V
VL2 voltage VL2 –0.3 to +6.5 V
VL3 voltage VL3 –0.3 to +6.5 V
VL4 voltage VL4 –0.3 to +6.5 V
Operating temperature*2 *3 *4Topr –40 to +85 °C
–40 to +105 °C
Storage temperature Tstg –55 to +125 °C
R01DS0263EU0140 Rev.1.40 Page 30 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. Use AVCC0 and VCC under the following conditions:
AVCC0 and VCC can be set individually within the operating range when VCC ≥ 2.2 V and AVCC0 ≥ 2.2 V
AVCC0 = VCC when VCC < 2.2 V or AVCC0 < 2.2 V
Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pin.
Table 2.2 Recommended operating conditions
Parameter Symbol Value Min Typ Max Unit
Power supply voltages VCC*1, *2 When USBFS is not used 1.6 - 5.5 V
When USBFS is used
USB Regulator
Disable
VCC_USB - 3.6 V
When USBFS is used
USB Regulator
Enable
VCC_USB
_LDO
-5.5V
VSS -0-V
USB power supply voltages VCC_USB When USBFS is not used - VCC - V
When USBFS is used
USB Regulator
Disable
(Input)
3.0 3.3 3.6 V
VCC_USB_LDO When USBFS is not used - VCC - V
When USBFS is used
USB Regulator Disable
-VCC-V
When USBFS is used
USB Regulator Enable
3.8 - 5.5 V
VSS_USB -0-V
VBATT power supply voltage VBATT When the battery backup
function is not used
-VCC-V
When the battery backup
function is used
1.6 - 3.6 V
Analog power supply voltages AVCC0*1, *2 1.6 - 5.5 V
AVSS0 - 0 - V
VREFH0 When used as ADC14
Reference
1.6 - AVCC0 V
VREFL0 - 0 - V
VREFH When used as DAC12
Reference
1.6 - AVCC0 V
VREFL - 0 - V
R01DS0263EU0140 Rev.1.40 Page 31 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.2 DC Characteristics
2.2.1 Tj/Ta Definition
Note: Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC – VOH) ×
ΣIOH + VOL × ΣIOL + ICCmax × VCC.
Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section
1.3, Part Numbering. If the part number shows the operation temperature as 85°C, then Tj max is 105°C,
otherwise it is 125°C.
2.2.2 I/O VIH, VIL
Note 1. SCL0_A, SDA0_A, SCL1_A, SDA1_A, SCL2, SDA2, SDA0_B (total 7 pins).
Note 2. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B, SCL2, SDA2 (total 10 pins).
Note 3. P205, P206, P400 to P404, P407, P511, P512 (total 10 pins).
Table 2.3 DC Characteristics
Conditions: Products with operating temperature (Ta) –40 to +105°C
Parameter Symbol Typ Max Unit Test conditions
Permissible junction temperature Tj - 125 °C High-speed mode
Middle-speed mode
Low-voltage mode
Low-speed mode
Subosc-speed mode
105*1
Table 2.4 I/O VIH, VIL (1)
Conditions: VCC = 2.7 to 5.5 V, AVCC0 = 2.7 to 5.5 V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V
Parameter Symbol Min Typ Max Unit Test conditions
Schmitt trigger
input voltage
IIC*1 (except for SMBus) VIH VCC × 0.7 - 5.8 V -
VIL --VCC × 0.3
ΔVTVCC × 0.05 - -
RES, NMI
Other peripheral input pins
excluding IIC
VIH VCC × 0.8 - -
VIL - - VCC × 0.2
ΔVTVCC × 0.1 - -
Input voltage
(except for
Schmitt trigger
input pin)
IIC (SMBus)*2VIH 2.2 - - VCC = 3.6 to 5.5 V
VIH 2.0 - - VCC = 2.7 to 3.6 V
VIL --0.8 -
5V-tolerant ports*3VIH VCC × 0.8 - 5.8
VIL - - VCC × 0.2
P000 to P015 VIH AVCC0 × 0.8 - -
VIL --AVCC0 × 0.2
EXTAL
D00 to D15
Input ports pins except for
P000 to P015
VIH VCC × 0.8 - -
VIL - - VCC × 0.2
When VBATT
power supply is
selected
P402, P403, P404 VIH VBATT × 0.8 - VBATT + 0.3
VIL --V
BATT × 0.2
ΔVTVBATT × 0.05 - -
R01DS0263EU0140 Rev.1.40 Page 32 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. P205, P206, P400 to P404, P407, P511, P512 (total 10 pins)
Table 2.5 I/O VIH, VIL (2)
Conditions: VCC = 1.6 to 2.7 V, AVCC0 = 1.6 to 2.7 V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V
Parameter Symbol Min Typ Max Unit
Test
conditions
Schmitt trigger
input voltage
RES, NMI
Peripheral input pins
VIH VCC × 0.8 - - V -
VIL - - VCC × 0.2
ΔVTVCC × 0.01 - -
Input voltage
(except for
Schmitt trigger
input pin)
5V-tolerant ports*1VIH VCC × 0.8 - 5.8
VIL - - VCC × 0.2
P000 to P015 VIH AVCC0 × 0.8 - -
VIL - - AVCC0 × 0.2
EXTAL
D0 to D15
Input ports pins except for
P000 to P015
VIH VCC × 0.8 - -
VIL - - VCC × 0.2
When VBATT
power supply is
selected
P402, P403, P404 VIH VBATT × 0.8 - VBATT + 0.3
VIL --V
BATT × 0.2
ΔVTVBATT × 0.01 - -
R01DS0263EU0140 Rev.1.40 Page 33 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.2.3 I/O IOH, IOL
Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The
average output current indicates the average value of current measured during 100 μs.
Note 1. This is the value when low driving ability is selected with the Port Drive Capability bit in PmnPFS register.
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
Note 3. Except for ports P200, P214, P215, which are input ports.
Table 2.6 I/O IOH, IOL
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Min Typ Max Unit
Permissible output current
(average value per pin)
Ports P000 to P015,
Ports P212, P213
-IOH --–4.0mA
IOL - - 4.0 mA
Ports P408, P409 Low drive*1IOH --–4.0mA
IOL - - 4.0 mA
Middle drive*2
VCC = 2.7 to 3.0 V IOH --–8.0mA
IOL - - 8.0 mA
Middle drive*2
VCC = 3.0 to 5.5 V IOH - - –20.0 mA
IOL --20.0mA
Ports P100 to P115,
P201 to P204, P300 to P315,
P500 to P503, P600 to P606,
P608 to P614, P800 to P809,
P900 to P902
(total 67 pins)
Low drive*1IOH --–4.0mA
IOL - - 4.0 mA
Middle drive*2IOH --–4.0mA
IOL - - 8.0 mA
Other output pin*3 Low drive*1IOH --–4.0mA
IOL - - 4.0 mA
Middle drive*2IOH --–8.0mA
IOL - - 8.0 mA
Permissible output current
(Max value per pin)
Ports P000 to P015,
Ports P212, P213
-IOH --–4.0mA
IOL - - 4.0 mA
Ports P408, P409 Low drive*1IOH --–4.0mA
IOL - - 4.0 mA
Middle drive*2
VCC = 2.7 to 3.0 V IOH --–8.0mA
IOL - - 8.0 mA
Middle drive*2
VCC = 3.0 to 5.5 V IOH - - –20.0 mA
IOL --20.0mA
Ports P100 to P115,
P201 to P204, P300 to P315,
P500 to P503, P600 to P606,
P608 to P614, P800 to P809,
P900 to P902
(total 67 pins)
Low drive*1IOH --–4.0mA
IOL - - 4.0 mA
Middle drive*2IOH --–4.0mA
IOL - - 8.0 mA
Other output pin*3 Low drive*1IOH --–4.0mA
IOL - - 4.0 mA
Middle drive*2IOH --–8.0mA
IOL - - 8.0 mA
Permissible output current
(max value total pins)
Total of ports P000 to P015 ΣIOH (max) --–30mA
ΣIOL (max) --30mA
Total of all output pin ΣIOH (max) --–60mA
ΣIOL (max) --60mA
R01DS0263EU0140 Rev.1.40 Page 34 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.2.4 I/O VOH, VOL, and Other Characteristics
Note 1. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B, SCL2, SDA2 (total 10 pins).
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
Note 3. Based on characterization data, not tested in production.
Note 4. Except for ports P200, P214, P215, which are input ports.
Note 5. Except for P212, P213.
Note 1. SCL0_A, SDA0_A, SCL0_B, SDA0_B, SCL1_A, SDA1_A, SCL1_B, SDA1_B, SCL2, SDA2 (total 10 pins).
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
Note 3. Based on characterization data, not tested in production.
Note 4. Except for ports P200, P214, P215, which are input ports.
Note 5. Except for P212, P213.
Table 2.7 I/O VOH, VOL (1)
Conditions: VCC = AVCC0 = 4.0 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
Output voltage IIC*1, *2VOL --0.4VI
OL = 3.0 mA
VOL --0.6 I
OL = 6.0 mA
Ports P408, P409*2, *3VOH VCC – 1.0 - - IOH = –20 mA
VOL --1.0 I
OL = 20 mA
Ports P000 to P015 Low drive VOH AVCC0 – 0.8 - - IOH = –2.0 mA
VOL --0.8 I
OL = 2.0 mA
Middle drive VOH AVCC0 – 0.8 - - IOH = –4.0 mA
VOL --0.8 I
OL = 4.0 mA
Other output pins*4Low drive VOH VCC – 0.8 - - IOH = –2.0 mA
VOL --0.8 I
OL = 2.0 mA
Middle
drive*5
VOH VCC – 0.8 - - IOH = –4.0 mA
VOL --0.8 I
OL = 4.0 mA
Table 2.8 I/O VOH, VOL (2)
Conditions: VCC = AVCC0 = 2.7 to 4.0 V
Parameter Symbol Min Typ Max Unit Test conditions
Output voltage IIC*1, *2VOL --0.4VI
OL = 3.0 mA
VOL --0.6 I
OL = 6.0 mA
Ports P408, P409*2, *3VOH VCC – 1.0 - - IOH = –20 mA
VCC = 3.3 V
VOL --1.0 I
OL = 20 mA
VCC = 3.3 V
Ports P000 to P015 Low drive VOH AVCC0 – 0.5 - - IOH = –1.0 mA
VOL --0.5 I
OL = 1.0 mA
Middle drive VOH AVCC0 – 0.5 - - IOH = –2.0 mA
VOL --0.5 I
OL = 2.0 mA
Other output pins*4Low drive VOH VCC – 0.5 - - IOH = –1.0 mA
VOL --0.5 I
OL = 1.0 mA
Middle
drive*5
VOH VCC – 0.5 - - IOH = –2.0 mA
VOL --0.5 I
OL = 2.0 mA
R01DS0263EU0140 Rev.1.40 Page 35 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. Except for ports P200, P214, P215, which are input ports.
Note 2. Except for P212, P213.
Table 2.9 I/O VOH, VOL (3)
Conditions: VCC = AVCC0 = 1.6 to 2.7 V
Parameter Symbol Min Typ Max Unit Test conditions
Output voltage Ports P000 to P015 Low drive VOH AVCC0 – 0.3 - - V IOH = –0.5 mA
VOL --0.3 I
OL = 0.5 mA
Middle drive VOH AVCC0 – 0.3 - - IOH = –1.0 mA
VOL --0.3 I
OL = 1.0 mA
Other output pins*1Low drive VOH VCC – 0.3 - - IOH = –0.5 mA
VOL --0.3 I
OL = 0.5 mA
Middle
drive*2
VOH VCC – 0.3 - - IOH = –1.0 mA
VOL --0.3 I
OL = 1.0 mA
Table 2.10 I/O Other Characteristics
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
Input leakage current RES, P200, P214, P215 | Iin | - - 1.0 μA Vin = 0 V
Vin = VCC
Three-state leakage
current (off state)
5V-tolerant ports | ITSI | - - 1.0 μA Vin = 0 V
Vin = 5.8 V
Other ports
(except for ports P200, P214,
P215 and 5 V tolerant)
--1.0 V
in = 0 V
Vin = VCC
Input pull-up resistor All Ports
(except for ports P200, P214,
P215)
RU10 20 50 Vin = 0 V
Input capacitance USB_DP, USB_DM,
P100 to P103, P111, P112,
P200
Cin - - 30 pF Vin = 0 V
f = 1 MHz
Ta = 25°C
Other input pins - - 15
R01DS0263EU0140 Rev.1.40 Page 36 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.2.5 I/O Pin Output Characteristics of Low Drive Capacity
Figure 2.2 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when low drive output is selected
(reference data)
Figure 2.3 VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when low drive output is selected
(reference data)
0123456
-60
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
VCC = 5.5 V
VCC = 3.3 V
VCC = 2.7 V
VCC = 1.6 V
VCC = 1.6 V
VCC = 2.7 V
VCC = 3.3 V
VCC = 5.5 V
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3
-2
-1
0
1
2
3
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0263EU0140 Rev.1.40 Page 37 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.4 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when low drive output is selected
(reference data)
Figure 2.5 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when low drive output is selected
(reference data)
00.511.522.53
-20
-15
-10
-5
0
5
10
15
20
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
0 0.5 1 1.5 2 2.5 3 3.5
-30
-20
-10
0
10
20
30
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0263EU0140 Rev.1.40 Page 38 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.6 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when low drive output is selected
(reference data)
2.2.6 I/O Pin Output Characteristics of Middle Drive Capacity
Figure 2.7 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected
(reference data)
0123456
-60
-40
-20
0
20
40
60
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
0123456
-140
-120
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
VCC = 5.5 V
VCC = 3.3 V
VCC = 2.7 V
VCC = 1.6 V
VCC = 1.6 V
VCC = 2.7 V
VCC = 3.3 V
VCC = 5.5 V
R01DS0263EU0140 Rev.1.40 Page 39 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.8 VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when middle drive output is
selected (reference data)
Figure 2.9 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is
selected (reference data)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-6
-4
-2
0
2
4
6
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
00.511.522.53
-40
-30
-20
-10
0
10
20
30
40
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0263EU0140 Rev.1.40 Page 40 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.10 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is
selected (reference data)
Figure 2.11 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is
selected (reference data)
0 0.5 1 1.5 2 2.5 3 3.5
-60
-40
-20
0
20
40
60
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
0123456
-140
-120
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0263EU0140 Rev.1.40 Page 41 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.2.7 P408, P409 I/O Pin Output Characteristics of Middle Drive Capacity
Figure 2.12 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected
(reference data)
Figure 2.13 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is
selected (reference data)
0123456
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
VCC = 5.5 V
VCC = 3.3 V
VCC = 2.7 V
VCC = 2.7 V
VCC = 3.3 V
VCC = 5.5 V
-140
-120
-100
-80
-60
-40
-20
20
40
60
80
100
120
140
200
180
160
0
-160
-180
-200
00.511.522.53
-60
-40
-20
0
20
40
60
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0263EU0140 Rev.1.40 Page 42 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.14 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is
selected (reference data)
Figure 2.15 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is
selected (reference data)
00.511.522.533.5
-100
-80
-60
-40
-20
0
20
40
60
80
100
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
0123456
-220
-180
-140
-100
-60
-20
20
60
100
140
180
220
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0263EU0140 Rev.1.40 Page 43 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.2.8 IIC I/O Pin Output Characteristics
Figure 2.16 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C
0123456
0
10
20
30
40
50
60
70
80
90
100
110
120
IOL vs VOL
VOL [V]
IOL [mA]
VCC = 2.7V (Low drive)
VCC = 3.3V (Low drive)
VCC = 5.5V (Low drive)
VCC = 5.5 V (Middle drive)
VCC = 3.3V (Middle drive)
VCC = 2.7V (Middle drive)
R01DS0263EU0140 Rev.1.40 Page 44 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.2.9 Operating and Standby Current
Table 2.11 Operating and standby current (1) (1 of 2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Typ*10 Max Unit
Test
conditions
Supply
current*1High-speed
mode*2 Normal mode All peripheral clock
disabled, while (1) code
executing from flash*5
ICLK = 48 MHz ICC 11.8 - mA *7
ICLK = 32 MHz 8.6 -
ICLK = 16 MHz 5.1 -
ICLK = 8 MHz 3.4 -
All peripheral clock
disabled, CoreMark code
executing from flash*5
ICLK = 48 MHz 18.6 -
ICLK = 32 MHz 12.7 -
ICLK = 16 MHz 7.2 -
ICLK = 8 MHz 4.5 -
All peripheral clock
enabled, while (1) code
executing from flash*5
ICLK = 48 MHz 30.1 - *9
ICLK = 32 MHz 23.2 - *8
ICLK = 16 MHz 12.6 -
ICLK = 8 MHz 7.3 -
All peripheral clock
enabled, code executing
from SRAM*5
ICLK = 48 MHz - 75.0 *9
Sleep mode All peripheral clock
disabled*5ICLK = 48 MHz 6.4 - *7
ICLK = 32 MHz 4.7 -
ICLK = 16 MHz 3.2 -
ICLK = 8 MHz 2.4 -
All peripheral clock
enabled*5ICLK = 48 MHz 24.7 - *9
ICLK = 32 MHz 19.2 - *8
ICLK = 16 MHz 10.7 -
ICLK = 8 MHz 6.4 -
Increase during BGO operation*62.5 - -
Middle-speed
mode*2Normal mode All peripheral clock
disabled, while (1) code
executing from flash*5
ICLK = 12 MHz ICC 3.6 - mA *7
ICLK = 8 MHz 3.0 -
ICLK = 1 MHz 1.4 -
All peripheral clock
disabled, CoreMark code
executing from flash*5
ICLK = 12 MHz 5.2 -
ICLK = 8 MHz 4.0 -
ICLK = 1 MHz 1.6 -
All peripheral clock
enabled, while (1) code
executing from flash*5
ICLK = 12 MHz 9.4 - *8
ICLK = 8 MHz 6.9 -
ICLK = 1 MHz 2.2 -
All peripheral clock
enabled, code executing
from SRAM*5
ICLK = 12 MHz - 30.0
Sleep mode All peripheral clock
disabled*5ICLK = 12 MHz 2.2 - *7
ICLK = 8 MHz 2.0 -
ICLK = 1 MHz 1.3 -
All peripheral clock
enabled*5ICLK = 12 MHz 7.9 - *8
ICLK = 8 MHz 5.9 -
ICLK = 1 MHz 2.1 -
Increase during BGO operation*62.5 - -
R01DS0263EU0140 Rev.1.40 Page 45 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up
MOSs are in the off state.
Note 2. The clock source is HOCO.
Note 3. The clock source is MOCO.
Note 4. The clock source is the sub-clock oscillator.
Note 5. This does not include BGO operation.
Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution.
Note 7. FCLK, BCLK, PCLKA, PCLKB, PCLKC and PCLKD are set to divided by 64.
Note 8. FCLK, BCLK, PCLKA, PCLKB, PCLKC and PCLKD are the same frequency as that of ICLK.
Note 9. FCLK, BCLK, and PCLKB are set to divided by 2 and PCLKA, PCLKC and PCLKD are the same frequency as that of ICLK.
Note 10. VCC = 3.3 V.
Supply
current*1Low-speed
mode*3Normal mode All peripheral clock
disabled, while (1) code
executing from flash*5
ICLK = 1 MHz ICC 0.5 - mA *7
All peripheral clock
disabled, CoreMark code
executing from flash*5
ICLK = 1 MHz 0.7 -
All peripheral clock
enabled, while (1) code
executing from flash*5
ICLK = 1 MHz 1.5 - *8
All peripheral clock
enabled, code executing
from SRAM*5
ICLK = 1 MHz - 3.2
Sleep mode All peripheral clock
disabled*5ICLK = 1 MHz 0.4 - *7
All peripheral clock
enabled*5ICLK = 1 MHz 1.3 - *8
Low-voltage
mode*3Normal mode All peripheral clock
disabled, while (1) code
executing from flash*5
ICLK = 4 MHz ICC 2.5 - mA *7
All peripheral clock
disabled, CoreMark code
executing from flash*5
ICLK = 4 MHz 3.0 -
All peripheral clock
enabled, while (1) code
executing from flash*5
ICLK = 4 MHz 4.5 - *8
All peripheral clock
enabled, code executing
from SRAM*5
ICLK = 4 MHz - 11.2
Sleep mode All peripheral clock
disabled*5ICLK = 4 MHz 2.0 - *7
All peripheral clock
enabled*5ICLK = 4 MHz 4.0 - *8
Subosc-
speed
mode*4
Normal mode All peripheral clock
disabled, while (1) code
executing from flash*5
ICLK = 32.768 kHz ICC 13.5 - μA *8
All peripheral clock
enabled, while (1) code
executing from flash*5
ICLK = 32.768 kHz 25.0 -
All peripheral clock
enabled, code executing
from SRAM*5
ICLK = 32.768 kHz - 214.1
Sleep mode All peripheral clock
disabled*5ICLK = 32.768 kHz 9.5 -
All peripheral clock
enabled*5ICLK = 32.768 kHz 21.0 -
Table 2.11 Operating and standby current (1) (2 of 2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Typ*10 Max Unit
Test
conditions
R01DS0263EU0140 Rev.1.40 Page 46 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.17 Voltage dependency in High-speed operating mode (reference data)
Figure 2.18 Voltage dependency in Middle-speed mode (reference data)
0
10
20
30
40
50
60
70
㻚㻡 㻚㻜 㻚㻡 㻚㻜 㻚㻡 㻚㻜 㻚㻡 㻚㻜 㻚㻡 㻚㻜
ICC (mA)
VCC (V)
Ta = 25Ԩ, I CLK = 48MHz *1 Ta = 105Ԩ, ICLK = 48MHz *2
Ta = 25Ԩ, I CLK = 32MHz *1 Ta = 105Ԩ, ICLK = 32MHz *2
Ta = 25Ԩ, I CLK = 16MHz *1 Ta = 105Ԩ, ICLK = 16MHz *2
Ta = 25Ԩ, I CLK = 8MHz *1 Ta = 105Ԩ, I CLK = 8MHz *2
Ta = 25Ԩ, I CLK = 4MHz *1 Ta = 105Ԩ, ICLK = 4MHz *2
Note 1. All peripheral operations e xcept a ny BGO operation are operating normally. This is the a verage of the actual
measurements of the sample cores during product evaluation.
Note 2. All peripheral operations e xcept a ny BGO operation are operating a t maximum. This is the average of the
actual measurements for the upper-limit samples during product evaluation.
Ta = 105 Ԩ, ICLK = 48MHz
*2
Ta = 25 Ԩ, ICLK = 48MHz
*1
Ta = 105Ԩ, ICLK = 32MHz
*2
Ta = 105 Ԩ, ICLK = 16MHz*2
Ta = 105Ԩ, ICLK = 8MHz
*2
Ta = 105 Ԩ, ICLK = 4MHz
*2
Ta = 25Ԩ, ICLK = 32MHz
*1
Ta = 25 Ԩ, ICLK = 16MHz
*1
Ta = 25 Ԩ, ICLK = 8MHz*1
Ta = 25 Ԩ, ICLK = 4MHz
*1
0
10
20
㻝㻚㻡 㻞㻚㻜 㻞㻚㻡 㻟㻚㻜 㻟㻚㻡 㻠㻚㻜 㻠㻚㻡 㻡㻚㻜 㻡㻚㻡 㻚㻜
ICC (mA)
VCC (V)
Ta = 25Ԩ, ICLK = 12MHz *1 Ta = 105Ԩ, ICLK = 12MHz *2
Ta = 25Ԩ, ICLK = 8MHz *1 Ta = 105Ԩ, ICLK = 8MHz *2
Ta = 25Ԩ, ICLK = 4MHz *1 Ta = 105Ԩ, ICLK = 4MHz *2
Ta = 25Ԩ, ICLK = 1MHz *1 Ta = 105Ԩ, ICLK = 1MHz *2
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual
measurements of the sample cores during product evaluation.
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the
actual measurements for the upper-limit samples during product evaluation.
Ta = 105
Ԩ
, ICLK = 12MHz
*2
Ta = 105
Ԩ
, ICLK = 1MHz
*2
Ta = 105
Ԩ
, ICLK = 8MHz
*2
Ta = 105
Ԩ
, ICLK = 4MHz
*2
Ta = 25
Ԩ
, ICLK = 12MHz
*1
Ta = 25
Ԩ
, ICLK = 4MHz
*1
Ta = 25
Ԩ
, ICLK = 1MHz
*1
Ta = 25
Ԩ
, ICLK = 8MHz
*1
R01DS0263EU0140 Rev.1.40 Page 47 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.19 Voltage dependency in Low-speed mode (reference data)
Figure 2.20 Voltage dependency in Low-voltage mode (reference data)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
㻝㻚㻡 㻞㻚㻜 㻞㻚㻡 㻟㻚㻜 㻟㻚㻡 㻠㻚㻜 㻠㻚㻡 㻡㻚㻜 㻡㻚㻡 㻢㻚㻜
ICC(ŵA)
VCC (V)
Ta = 25
Ԩ
, ICLK = 1MHz *1 Ta = 105
Ԩ
, ICLK = 1MHz *2
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual
measurements of the sample cores during product evaluation.
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the
actual measurements for the upper-limit samples during product evaluation.
Ta = 105
Ԩ
, ICLK = 1MHz
*2
Ta = 25
Ԩ
, ICLK = 1MHz
*1
0
1
2
3
4
5
6
7
8
㻝㻚㻡 㻞㻚㻜 㻞㻚㻡 㻟㻚㻜 㻟㻚㻡 㻠㻚㻜 㻠㻚㻡 㻡㻚㻜 㻡㻚㻡 㻚㻜
ICC (mA)
VCC (V)
Ta = 25Ԩ, ICLK = 4MHz *1 Ta = 105Ԩ, ICLK = 4MHz *2
Ta = 25Ԩ, ICLK = 1MHz *1 Ta = 105Ԩ, ICLK = 1MHz *2
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual
measurements of the sample cores during product evaluation.
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the
actual measurements for the upper-limit samples during product evaluation.
Ta = 105
Ԩ
, ICLK = 1MHz
*2
Ta = 105
Ԩ
, ICLK = 4MHz
*2
Ta = 25
Ԩ
, ICLK = 1MHz
*1
Ta = 25
Ԩ
, ICLK = 4MHz
*1
R01DS0263EU0140 Rev.1.40 Page 48 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.21 Voltage dependency in Subosc-speed mode (reference data)
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up
MOSs are in the off state.
Note 2. The IWDT and LVD are not operating.
Note 3. Includes the current of sub-oscillation circuit or low-speed on-chip oscillator.
Note 4. VCC = 3.3 V.
Table 2.12 Operating and standby current (2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Typ*4Max Unit Test conditions
Supply
current*1
Software Standby
mode*2
Ta = 25°C ICC 0.9 6.0 μA PSMCR.PSMC[1:0] = 01b (48 KB
SRAM on)
Ta = 55°C 1.6 12.2
Ta = 85°C 4.8 27.1
Ta = 105°C 12.2 66.7
Ta = 25°C 1.1 7.5 PSMCR.PSMC[1:0] = 00b (All SRAM
on)
Ta = 55°C 2.2 17.0
Ta = 85°C 7.5 43.3
Ta = 105°C 19.6 105.9
Increment for RTC operation with
low-speed on-chip oscillator*3
0.5 --
Increment for RTC operation with
sub-clock oscillator*3
0.5 - SOMCR.SODRV[1:0] are 11b
(Low power mode 3)
1.6 - SOMCR.SODRV[1:0] are 00b
(Normal mode)
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
㻚㻡 㻚㻜 㻚㻡 㻚㻜 㻚㻡 㻚㻜 㻚㻡 㻚㻜 㻚㻡 㻚㻜
ICC(ђA)
VCC (V)
Ta = 25Ԩ, I CLK = 32kHz *1 Ta = 105Ԩ, ICLK = 32kHz *2
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual
measurements of the sample cores during product evaluation.
Note 2. Al l peripheral operations except a ny BGO operation a re operating a t maximum. This is the average of the
actual measurements for the upper-limit samples during product evaluation.
Ta = 105Ԩ, ICLK = 32kHz
*2
Ta = 25Ԩ, ICLK = 32kHz
*1
R01DS0263EU0140 Rev.1.40 Page 49 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.22 Temperature dependency in Software Standby mode 48 KB SRAM on (reference data)
Figure 2.23 Temperature dependency in Software Standby mode all SRAM on (reference data)
R01DS0263EU0140 Rev.1.40 Page 50 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up
MOSs are in the off state.
Figure 2.24 Temperature dependency of RTC operation with VCC off (reference data)
Table 2.13 Operating and standby current (3)
Conditions: VCC = AVCC0 = 0V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0V
Parameter Symbol Typ Max Unit Test conditions
Supply
current*1
RTC operation
when VCC is off
Ta = 25°C ICC 1.1 - μA VBATT = 2.0 V
SOMCR.SORDRV[1:0] = 11b
(Low power mode 3)
Ta = 55°C 1.2 -
Ta = 85°C 1.4 -
Ta = 105°C 1.6 -
Ta = 25°C 1.2 - VBATT = 3.3 V
SOMCR.SORDRV[1:0] = 11b
(Low power mode 3)
Ta = 55°C 1.3 -
Ta = 85°C 1.5 -
Ta = 105°C 1.7 -
Ta = 25°C 1.8 - VBATT = 2.0 V
SOMCR.SORDRV[1:0] = 00b
(Normal mode)
Ta = 55°C 2.1 -
Ta = 85°C 2.4 -
Ta = 105°C 2.7 -
Ta = 25°C 1.9 - VBATT = 3.3 V
SOMCR.SORDRV[1:0] = 00b
(Normal mode)
Ta = 55°C 2.2 -
Ta = 85°C 2.5 -
Ta = 105°C 2.8 -
Note 1. Average value of the tested middle sample during product evaluation.
R01DS0263EU0140 Rev.1.40 Page 51 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. Includes the reference power supply current in the power supply current value for D/A conversion.
Note 2. Includes current consumed by the USBFS only.
Note 3. Includes current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition to
the current consumed by the MCU during the suspended state.
Note 4. When VCC = VCC_USB = 3.3 V.
Note 5. Includes current flowing to the LCD controller only. Does not include current flowing through the LCD panel.
Note 6. When the MSTPCRD.MSTPD16 (14-Bit A/D Converter Module Stop bit) is in the module-stop state.
Table 2.14 Operating and standby current (4)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VREFH0 = 2.7 V to AVCC0
Parameter Symbol Min Typ Max Unit
Test
conditions
Analog power
supply current
During A/D conversion (at high-speed conversion) IAVCC -- 3.0 mA-
During A/D conversion (at low power conversion) - - 1.0 mA -
During D/A conversion (per channel)*1-0.4 0.8 mA-
Waiting for A/D and D/A conversion (all units)*6-- 1.0 μA-
Reference
power supply
current
During A/D conversion IREFH0 -- 150μA-
Waiting for A/D conversion (all units) - - 60 nA -
During D/A conversion IREFH -50 100μA-
Waiting for D/A conversion (all units) - - 100 μA -
Temperature sensor ITNS -75 - μA-
Low power
Analog
Comparator
operating
current
Window mode ICMPLP -15 - μA-
Comparator High-speed mode - 10 - μA -
Comparator Low-speed mode - 2 - μA -
High-Speed Analog Comparator operating current ICMPHS - 70 100 μA AVCC0 ≥ 2.7 V
Operational
Amplifier
operating
current
Low power mode 1 unit operating IAMP -2.5 4.0 μA-
2 units operating - 4.5 8.0 μA -
3 units operating - 6.5 11.0 μA -
4 units operating - 8.5 14.0 μA -
High-speed mode 1 unit operating - 140 220 μA -
2 units operating - 280 410 μA -
3 units operating - 420 600 μA -
4 units operating - 560 780 μA -
LCD operating
current
External resistance division method
fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice
ILCD1*5-0.34 - μA-
Internal voltage boosting method
fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice
ILCD2*5-0.92 - μA-
Capacitor split method
fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice
ILCD3*5-0.19 - μA-
USB operating
current
During USB communication operation under the
following settings and conditions:
Host controller operation is set to Full-speed mode
Bulk OUT transfer (64 bytes) × 1,
bulk IN transfer (64 bytes) × 1
Connect peripheral devices via a 1-meter USB
cable from the USB port.
IUSBH*2- 4.3 (VCC)
0.9 (VCC_USB)*4-mA-
During USB communication operation under the
following settings and conditions:
Function controller operation is set to Full-speed
mode
Bulk OUT transfer (64 bytes) × 1,
bulk IN transfer (64 bytes) × 1
Connect the host device via a 1-meter USB cable
from the USB port.
IUSBF*2- 3.6 (VCC)
1.1 (VCC_USB)*4-mA-
During suspended state under the following setting
and conditions:
Function controller operation is set to Full-speed
mode (pull up the USB_DP pin)
Software standby mode
Connect the host device via a 1-meter USB cable
from the USB port.
ISUSP*3- 0.35 (VCC)
170 (VCC_USB)*4A-
R01DS0263EU0140 Rev.1.40 Page 52 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.2.10 VCC Rise and Fall Gradient and Ripple Frequency
Note 1. When OFS1.LVDAS = 0.
Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of the OFS1.LVDAS bit.
Figure 2.25 Ripple waveform
Table 2.15 Rise and fall gradient characteristics
Conditions: VCC = AVCC0 = 0 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
Power-on VCC
rising gradient
Voltage monitor 0 reset disabled at startup SrVCC 0.02 - 2 ms/V -
Voltage monitor 0 reset enabled at startup*1 0.02--
SCI/USB Boot mode*20.02 - 2
Table 2.16 Rising and falling gradient and ripple frequency characteristics
Conditions: VCC = AVCC0 = VCC_USB = 1.6 to 5.5 V
The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (5.5 V) and lower limit
(1.6 V).
When VCC change exceeds VCC ±10%, the allowable voltage change rising/falling gradient dt/dVCC must be met.
Parameter Symbol Min Typ Max Unit Test conditions
Allowable ripple frequency fr (VCC) --10kHzFigure 2.25
Vr (VCC) ≤ VCC × 0.2
--1MHzFigure 2.25
Vr (VCC) ≤ VCC × 0.08
--10MHzFigure 2.25
Vr (VCC) ≤ VCC × 0.06
Allowable voltage change rising and
falling gradient
dt/dVCC 1.0 - - ms/V When VCC change exceeds VCC ±10%
Vr(VCC)
VCC
1/fr(VCC)
R01DS0263EU0140 Rev.1.40 Page 53 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.3 AC Characteristics
2.3.1 Frequency
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer
frequency such as 1.5 MHz cannot be set.
Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency
accuracy of the clock source.
Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in
use.
Note 4. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,
PCLKC, PCLKD, FCLK, and BCLK.
Note 5. The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed
with the errors of the internal oscillator. For details, on the range for the guaranteed operation, see Table 2.22, Clock timing.
Table 2.17 Operation frequency value in High-speed operating mode
Conditions: VCC = AVCC0 = 2.4 to 5.5 V
Parameter Symbol Min Typ Max*5Unit
Operation
frequency
System clock (ICLK)*42.7 to 5.5 V f 0.032768 - 48 MHz
2.4 to 2.7 V 0.032768 - 16
FlashIF clock (FCLK)*1, *2, *42.7 to 5.5 V 0.032768 - 32
2.4 to 2.7 V 0.032768 - 16
Peripheral module clock (PCLKA)*42.7 to 5.5 V - - 48
2.4 to 2.7 V - - 16
Peripheral module clock (PCLKB)*42.7 to 5.5 V - - 32
2.4 to 2.7 V - - 16
Peripheral module clock (PCLKC)*3, *42.7 to 5.5 V - - 64
2.4 to 2.7 V - - 16
Peripheral module clock (PCLKD)*42.7 to 5.5 V - - 64
2.4 to 2.7 V - - 16
External bus clock (BCLK)*42.7 to 5.5 V - - 24
2.4 to 2.7 V - - 16
EBCLK pin output 2.7 to 5.5 V - - 12
2.4 to 2.7 V - - 8
R01DS0263EU0140 Rev.1.40 Page 54 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer
frequency such as 1.5 MHz cannot be set.
Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency
accuracy of the clock source.
Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
Note 4. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,
PCLKC, PCLKD, FCLK, and BCLK.
Note 5. The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed
with the errors of the internal oscillator. For details on the range for the guaranteed operation, see Table 2.22, Clock timing.
Table 2.18 Operation frequency value in Middle-speed mode
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Parameter Symbol Min Typ Max*5Unit
Operation
frequency
System clock (ICLK)*42.7 to 5.5 V f 0.032768 - 12 MHz
2.4 to 2.7 V 0.032768 - 12
1.8 to 2.4 V 0.032768 - 8
FlashIF clock (FCLK)*1, *2, *42.7 to 5.5 V 0.032768 - 12
2.4 to 2.7 V 0.032768 - 12
1.8 to 2.4 V 0.032768 - 8
Peripheral module clock (PCLKA)*42.7 to 5.5 V - - 12
2.4 to 2.7 V - - 12
1.8 to 2.4 V - - 8
Peripheral module clock (PCLKB)*42.7 to 5.5 V - - 12
2.4 to 2.7 V - - 12
1.8 to 2.4 V - - 8
Peripheral module clock (PCLKC)*3, *42.7 to 5.5 V - - 12
2.4 to 2.7 V - - 12
1.8 to 2.4 V - - 8
Peripheral module clock (PCLKD)*42.7 to 5.5 V - - 12
2.4 to 2.7 V - - 12
1.8 to 2.4 V - - 8
External bus clock (BCLK)*42.7 to 5.5 V - - 12
2.4 to 2.7 V - - 12
1.8 to 2.4 V - - 8
EBCLK pin output 2.7 to 3.6 V - - 12
2.4 to 2.7 V - - 8
1.8 to 2.4 V - - 8
R01DS0263EU0140 Rev.1.40 Page 55 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory.
Note 2. The lower-limit frequency of PCLKC is 1 MHz when the A/D converter is in use.
Note 3. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,
PCLKC, PCLKD, FCLK, and BCLK.
Note 4. The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed
with the errors of the internal oscillator. For details on the range for the guaranteed operation, Table 2.22, Clock timing.
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer
frequency such as 1.5 MHz cannot be set.
Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency
accuracy of the clock source.
Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-Bit A/D converter is in
use.
Note 4. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,
PCLKC, PCLKD, FCLK, and BCLK.
Note 5. The maximum value of operation frequency does not include errors of the internal oscillator. The operation can be guaranteed
with the errors of the internal oscillator. For details on the range for guaranteed operation, see Table 2.22, Clock timing.
Table 2.19 Operation frequency value in Low-speed mode
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Parameter Symbol Min Typ Max*4Unit
Operation
frequency
System clock (ICLK)*31.8 to 5.5 V f 0.032768 - 1 MHz
FlashIF clock (FCLK)*1, *31.8 to 5.5 V 0.032768 - 1
Peripheral module clock (PCLKA)*31.8 to 5.5 V - - 1
Peripheral module clock (PCLKB)*31.8 to 5.5 V - - 1
Peripheral module clock (PCLKC)*2, *31.8 to 5.5 V - - 1
Peripheral module clock (PCLKD)*31.8 to 5.5 V - - 1
External bus clock (BCLK)*31.8 to 5.5 V - - 1
EBCLK pin output 1.8 to 5.5 V - - 1
Table 2.20 Operation frequency value in Low-voltage mode
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Min Typ Max*5Unit
Operation
frequency
System clock (ICLK)*41.6 to 5.5 V f 0.032768 - 4 MHz
FlashIF clock (FCLK)*1, *2, *41.6 to 5.5 V 0.032768 - 4
Peripheral module clock (PCLKA)*41.6 to 5.5 V - - 4
Peripheral module clock (PCLKB)*41.6 to 5.5 V - - 4
Peripheral module clock (PCLKC)*3, *41.6 to 5.5 V - - 4
Peripheral module clock (PCLKD)*41.6 to 5.5 V - - 4
External bus clock (BCLK)*41.6 to 5.5 V - - 4
EBCLK pin output 1.8 to 5.5 V - - 4
1.6 to 1.8 V - - 2
R01DS0263EU0140 Rev.1.40 Page 56 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. Programming and erasing the flash memory is not possible.
Note 2. The 14-bit A/D converter cannot be used.
Note 3. See section 9, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,
PCLKC, PCLKD, FCLK, and BCLK.
2.3.2 Clock Timing
Table 2.21 Operation frequency value in Subosc-speed mode
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Parameter Symbol Min Typ Max Unit
Operation
frequency
System clock (ICLK)*31.8 to 5.5 V f 27.8528 32.768 37.6832 kHz
FlashIF clock (FCLK)*1, *31.8 to 5.5 V 27.8528 32.768 37.6832
Peripheral module clock (PCLKA)*31.8 to 5.5 V - - 37.6832
Peripheral module clock (PCLKB)*31.8 to 5.5 V - - 37.6832
Peripheral module clock (PCLKC)*2, *31.8 to 5.5 V - - 37.6832
Peripheral module clock (PCLKD)*31.8 to 5.5 V - - 37.6832
External bus clock (BCLK)*31.8 to 5.5 V - - 37.6832
EBCLK pin output 1.8 to 5.5 V - - 37.6832
Table 2.22 Clock timing (1 of 2)
Parameter Symbol Min Typ Max Unit Test conditions
EBCLK pin output cycle time VCC = 2.7 V or above tBcyc 83.3 - - ns Figure 2.26
VCC = 1.8 V or above 125 - -
VCC = 1.6 V or above 500 - -
EBCLK pin output high pulse
width
VCC = 2.7 V or above tCH 20 - - ns
VCC = 1.8 V or above 30 - -
VCC = 1.6 V or above 150 - -
EBCLK pin output low pulse width VCC = 2.7 V or above tCL 20 - - ns
VCC = 1.8 V or above 30 - -
VCC = 1.6 V or above 150 - -
EBCLK pin output rise time VCC = 2.7 V or above tCr --15ns
VCC = 2.4 V or above - - 25
VCC = 1.8 V or above - - 30
VCC = 1.6 V or above - - 50
EBCLK pin output fall time VCC = 2.7 V or above tCf --15ns
VCC = 2.4 V or above - - 25
VCC = 1.8 V or above - - 30
VCC = 1.6 V or above - - 50
EXTAL external clock input cycle time tXcyc 50 - - ns Figure 2.27
EXTAL external clock input high pulse width tXH 20 - - ns
EXTAL external clock input low pulse width tXL 20 - - ns
EXTAL external clock rising time tXr --5ns
EXTAL external clock falling time tXf --5ns
EXTAL external clock input wait time*1tEXWT 0.3 - - μs -
EXTAL external clock input frequency fEXTAL - - 20 MHz 2.4 ≤ VCC ≤ 5.5
- - 8 1.8 ≤ VCC < 2.4
- - 1 1.6 ≤ VCC < 1.8
Main clock oscillator oscillation frequency fMAIN 1- 20MHz
2.4 ≤ VCC ≤ 5.5
1- 8 1.8 ≤ VCC < 2.4
1- 4 1.6 ≤ VCC < 1.8
LOCO clock oscillation frequency fLOCO 27.8528 32.768 37.6832 kHz -
R01DS0263EU0140 Rev.1.40 Page 57 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the
external clock is stable.
Note 2. The VCC range that the PLL can be used is 2.4 to 5.5 V.
Note 3. After changing the setting of the SOSCCR.SOSTP bit to start sub-clock oscillator operation, only start using the sub-clock
oscillator after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time value recommended by the
oscillator manufacturer.
Note 4. The 48-MHz HOCO can be used within a VCC range of 1.8 V to 5.5 V.
Note 5. The 64-MHz HOCO can be used within a VCC range of 2.4 V to 5.5 V.
Note 6. This is a characteristic when HOCOCR.HCSTP bit is set to 0 (oscillation) in MOCO stop state.
When HOCOCR.HCSTP bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 μs.
Note 7. Whether stabilization time has elapsed can be confirmed by OSCSF.HOCOSF.
Note 8. This is a characteristic when PLLCR.PLLSTP bit is set to 0 (operation) in MOCO stop state.
When PLLCR.PLLSTP bit is set to 0 (operation) during MOCO oscillation, this specification is shortened by 1 μs.
LOCO clock oscillation stabilization time tLOCO --100μsFigure 2.28
IWDT-dedicated clock oscillation frequency fILOCO 12.75 15 17.25 kHz -
MOCO clock oscillation frequency fMOCO 6.88 9.2MHz-
MOCO clock oscillation stabilization time tMOCO --1μs-
HOCO clock oscillation frequency fHOCO24 23.64 24 24.36 MHz Ta = –40 to –20°C
1.8 ≤ VCC ≤ 5.5
22.68 24 25.32 Ta = –40 to 85°C
1.6 ≤ VCC < 1.8
23.76 24 24.24 Ta = –20 to 85°C
1.8 ≤ VCC ≤ 5.5
23.52 24 24.48 Ta = 85 to 105°C
2.4 ≤ VCC ≤ 5.5
fHOCO32 31.52 32 32.48 Ta = –40 to -20°C
1.8 ≤ VCC ≤ 5.5
30.24 32 33.76 Ta = –40 to 85°C
1.6 ≤ VCC < 1.8
31.68 32 32.32 Ta = –20 to 85°C
1.8 ≤ VCC ≤ 5.5
31.36 32 32.64 Ta = 85 to 105°C
2.4 ≤ VCC ≤ 5.5
fHOCO48*447.28 48 48.72 Ta = –40 to –20°C
1.8 ≤ VCC ≤ 5.5
47.52 48 48.48 Ta = –20 to 85°C
1.8 ≤ VCC ≤ 5.5
47.04 48 48.96 Ta = 85°C to 105°C
2.4 ≤ VCC ≤ 5.5
fHOCO64*563.04 64 64.96 Ta = –40 to –20°C
2.4 ≤ VCC ≤ 5.5
63.36 64 64.64 Ta = –20 to 85°C
2.4 ≤ VCC ≤ 5.5
62.72 64 65.28 Ta = 85 to 105°C
2.4 ≤ VCC ≤ 5.5
HOCO clock oscillation
stabilization time*6, *7Except Low-Voltage
mode
tHOCO24
tHOCO32
--37.1μsFigure 2.29
tHOCO48 --43.3
tHOCO64 --80.6
Low-Voltage mode tHOCO24
tHOCO32
tHOCO48
tHOCO64
- - 100.9
PLL input frequency*2fPLLIN 4- 12.5MHz-
PLL circuit oscillation frequency*2fPLL 24 - 64 MHz -
PLL clock oscillation stabilization time*8tPLL --55.5μsFigure 2.31
PLL free-running oscillation frequency fPLLFR -8-MHz-
Sub-clock oscillator oscillation frequency fSUB - 32.768 - kHz -
Sub-clock oscillation stabilization time*3 t
SUBOSC -0.5-sFigure 2.32
Table 2.22 Clock timing (2 of 2)
Parameter Symbol Min Typ Max Unit Test conditions
R01DS0263EU0140 Rev.1.40 Page 58 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.26 EBCLK pin output timing
Figure 2.27 EXTAL external clock input timing
Figure 2.28 LOCO clock oscillation start timing
Figure 2.29 HOCO clock oscillation start timing (started by setting HOCOCR.HCSTP bit)
tCf
tCH
tBcyc
tCr
tCL
EBCLK pin output
Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF
tXH
tXcyc
EXTAL external clock input VCC × 0.5
tXL
tXr tXf
LOCO clock oscillator output
LOCOCR.LCSTP
tLOCO
HOCO clock
HOCOCR.HCSTP
tHOCOx*1
Note 1. x = 24, 32, 48, 64
R01DS0263EU0140 Rev.1.40 Page 59 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.30 Main clock oscillation start timing
Figure 2.31 PLL clock oscillation start timing (PLL is operated after main clock oscillation has settled)
Figure 2.32 Sub-clock oscillation start timing
Main clock oscillator output
MOSCCR.MOSTP
Main clock
tMAINOSCWT
PLLCR.PLLSTP
PLL clock
tPLL
Sub-clock oscillator output
SOSCCR.SOSTP
tSUBOSC
R01DS0263EU0140 Rev.1.40 Page 60 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.3.3 Reset Timing
Note 1. When OFS1.LVDAS = 0.
Note 2. When OFS1.LVDAS = 1.
Figure 2.33 Reset input timing at power-on
Figure 2.34 Reset input timing (1)
Table 2.23 Reset timing
Parameter Symbol Min Typ Max Unit
Test
conditions
RES pulse width At power-on tRESWP 3--ms Figure 2.33
Other than above tRESW 30 - sFigure 2.34
Wait time after RES cancellation
(at power-on)
LVD0: enable*1tRESWT -0.7 -msFigure 2.33
LVD0: disable*2-0.3 -
Wait time after RES cancellation
(during powered-on state)
LVD0: enable*1tRESWT2 -0.5 -msFigure 2.34
LVD0: disable*2-0.05 -
Wait time after internal reset cancellation
(Watchdog timer reset, SRAM parity error
reset, SRAM ECC error reset, bus master
MPU error reset, bus slave MPU error
reset, stack pointer error reset, software
reset)
LVD0: enable*1tRESWT3 -0.6 -ms
LVD0: disable*2-0.15 -
VCC
RES
tRESWP
Internal reset
tRESWT
RES
Internal reset
tRESWT2
tRESW
R01DS0263EU0140 Rev.1.40 Page 61 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.3.4 Wakeup Time
Note 1. The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The
recovery time is determined by the system clock source.
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
Note 4. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 05h.
Note 5. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 06h.
Note 1. The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The
recovery time is determined by the system clock source.
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
Note 4. The system clock is 12 MHz.
Table 2.24 Timing of recovery from Low power modes (1)
Parameter Symbol Min Typ Max Unit
Test
conditions
Recovery time
from Software
Standby mode*1
High-speed
mode
Crystal
resonator
connected to
main clock
oscillator
System clock source is
main clock oscillator
(20 MHz)*2
tSBYMC -23msFigure 2.35
System clock source is
PLL (48 MHz) with Main
clock oscillator*2
tSBYPC -23ms
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
(20 MHz)*3
tSBYEX -1425μs
System clock source is
PLL (48 MHz) with Main
clock oscillator*3
tSBYPE -5376μs
System clock source is HOCO*4
(HOCO clock is 32 MHz)
tSBYHO -4352μs
System clock source is HOCO*4
(HOCO clock is 48 MHz)
tSBYHO -4452μs
System clock source is HOCO*5
(HOCO clock is 64 MHz)
tSBYHO -82110μs
System clock source is MOCO tSBYMO -1625μs
Table 2.25 Timing of Recovery from Low power modes (2)
Parameter Symbol Min Typ Max Unit
Test
conditions
Recovery time
from Software
Standby mode*1
Middle-speed
mode
Crystal
resonator
connected to
main clock
oscillator
System clock source is
main clock oscillator
(12 MHz)*2
tSBYMC -23msFigure 2.35
System clock source is
PLL (24 MHz) with Main
clock oscillator*2
tSBYPC -23ms
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
(12 MHz)*3
tSBYEX -2.910μs
System clock source is
PLL (24 MHz) with Main
clock oscillator*3
tSBYPE -4976μs
System clock source is HOCO*4tSBYHO -3850μs
System clock source is MOCO tSBYMO -3.55.5μs
R01DS0263EU0140 Rev.1.40 Page 62 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The
recovery time is determined by the system clock source.
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
Note 1. The division ratio of ICK, BCK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The
recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be
determined by the following expression.
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
Note 1. The sub-clock oscillator or LOCO itself continues to oscillate in Software Standby mode during Subosc-speed mode.
Table 2.26 Timing of recovery from Low power modes (3)
Parameter Symbol Min Typ Max Unit
Test
conditions
Recovery time
from Software
Standby mode*1
Low-speed
mode
Crystal
resonator
connected to
main clock
oscillator
System clock source is
main clock oscillator
(1 MHz)*2
tSBYMC -23msFigure 2.35
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
(1 MHz)*3
tSBYEX -2850μs
System clock source is MOCO tSBYMO -2535μs
Table 2.27 Timing of recovery from Low power modes (4)
Parameter Symbol Min Typ Max Unit
Test
conditions
Recovery time
from Software
Standby mode*1
Low-voltage
mode
Crystal
resonator
connected to
main clock
oscillator
System clock source is
main clock oscillator
(4 MHz)*2
tSBYMC -23msFigure 2.35
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
(4 MHz)*3
tSBYEX - 108 130 μs
System clock source is HOCO tSBYHO - 108 130 μs
Table 2.28 Timing of recovery from Low power modes (5)
Parameter Symbol Min Typ Max Unit
Test
conditions
Recovery time
from Software
Standby mode*1
Subosc-speed mode System clock source is sub-clock
oscillator (32.768 kHz)
tSBYSC -0.851msFigure 2.35
System clock source is LOCO
(32.768 kHz)
tSBYLO - 0.85 1.2 ms
R01DS0263EU0140 Rev.1.40 Page 63 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.35 Software Standby mode cancellation timing
Figure 2.36 Recovery timing from Software Standby mode to Snooze mode
Table 2.29 Timing of recovery from Low power modes (6)
Parameter Symbol Min Typ Max Unit Test conditions
Recovery time from
Software Standby
mode to Snooze
mode
High-speed mode
System clock source is HOCO
tSNZ - 364sFigure 2.36
Middle-speed mode
System clock source is MOCO
tSNZ -1.33.6μs
Low-speed mode
System clock source is MOCO
tSNZ - 101s
Low-voltage mode
System clock source is HOCO
tSNZ -87110μs
Oscillator
ICLK
IRQ
Software Standby mode
tSBYSC, tSBYLO
Oscillator
ICLK
IRQ
Software Standby mode
tSBYMC, tSBYPC, tSBYEX,
tSBYPE, tSBYMO, tSBYHO
tSNZ
IRQ
ICLK (to DTC, SRAM)*1
PCLK
ICLK (except DTC, SRAM)
Note1: When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM.
Oscillator
Software Standby mode Snooze mode
R01DS0263EU0140 Rev.1.40 Page 64 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.3.5 NMI and IRQ Noise Filter
Note: 200 ns minimum in Software Standby mode.
Note 1. tPcyc indicates the cycle of PCLKB.
Note 2. tNMICK indicates the cycle of the NMI digital filter sampling clock.
Note 3. tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 15).
Figure 2.37 NMI interrupt input timing
Figure 2.38 IRQ interrupt input timing
Table 2.30 NMI and IRQ noise filter
Parameter Symbol Min Typ Max Unit Test conditions
NMI pulse width tNMIW 200 --ns NMI digital filter disabled tPcyc × 2 ≤ 200 ns
tPcyc × 2*1-- tPcyc × 2 > 200 ns
200 -- NMI digital filter enabled tNMICK × 3 ≤ 200 ns
tNMICK × 3.5*2-- tNMICK × 3 > 200 ns
IRQ pulse width tIRQW 200 --ns IRQ digital filter disabled tPcyc × 2 ≤ 200 ns
tPcyc × 2*1-- tPcyc × 2 > 200 ns
200 -- IRQ digital filter enabled tIRQCK × 3 ≤ 200 ns
tIRQCK × 3.5*3-- tIRQCK × 3 > 200 ns
tNMIW
NMI
tIRQW
IRQ
R01DS0263EU0140 Rev.1.40 Page 65 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.3.6 Bus Timing
Table 2.31 Bus timing (1)
Conditions: Low drive output is selected in the Port Drive Capability bit in PmnPFS register
VCC = AVCC0 = 2.7 to 5.5 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
Parameter Symbol Min Max Unit Test conditions
Address delay tAD -55nsFigure 2.39
to Figure 2.42
Byte control delay tBCD -55ns
CS delay tCSD -55ns
RD delay tRSD -55ns
Read data setup time tRDS 37 - ns
Read data hold time tRDH 0- ns
WR delay tWRD -55ns
Write data delay tWDD -55ns
Write data hold time tWDH 0- ns
WAIT setup time tWTS 37 - ns Figure 2.43
WAIT hold time tWTH 0- ns
Table 2.32 Bus timing (2)
Conditions: Low drive output is selected in the Port Drive Capability bit in the PmnPFS register
VCC = AVCC0 = 2.4 to 2.7 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
Parameter Symbol Min Max Unit Test conditions
Address delay tAD -55nsFigure 2.39
to Figure 2.42
Byte control delay tBCD -55ns
CS delay tCSD -55ns
RD delay tRSD -55ns
Read data setup time tRDS 45 - ns
Read data hold time tRDH 0- ns
WR delay tWRD -55ns
Write data delay tWDD -55ns
Write data hold time tWDH 0- ns
WAIT setup time tWTS 45 - ns Figure 2.43
WAIT hold time tWTH 0- ns
Table 2.33 Bus timing (3) (1 of 2)
Conditions: Low drive output is selected in the Port Drive Capability bit in the PmnPFS register
VCC = AVCC0 = 1.8 to 2.4 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
Parameter Symbol Min Max Unit Test conditions
Address delay tAD -90nsFigure 2.39
to Figure 2.42
Byte control delay tBCD -90ns
CS delay tCSD -90ns
RD delay tRSD -90ns
Read data setup time tRDS 70 - ns
Read data hold time tRDH 0- ns
WR delay tWRD -90ns
Write data delay tWDD -90ns
Write data hold time tWDH 0- ns
R01DS0263EU0140 Rev.1.40 Page 66 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
WAIT setup time tWTS 70 - ns Figure 2.43
WAIT hold time tWTH 0- ns
Table 2.34 Bus timing (4)
Conditions: Low drive output is selected in the Port Drive Capability bit in the PmnPFS register
VCC = AVCC0 = 1.6 to 1.8 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
Parameter Symbol Min Max Unit Test conditions
Address delay tAD - 120 ns Figure 2.39
to Figure 2.42
Byte control delay tBCD - 120 ns
CS delay tCSD - 120 ns
RD delay tRSD - 120 ns
Read data setup time tRDS 90 - ns
Read data hold time tRDH 0- ns
WR delay tWRD - 120 ns
Write data delay tWDD - 120 ns
Write data hold time tWDH 0- ns
WAIT setup time tWTS 90 - ns Figure 2.43
WAIT hold time tWTH 0- ns
Table 2.33 Bus timing (3) (2 of 2)
Conditions: Low drive output is selected in the Port Drive Capability bit in the PmnPFS register
VCC = AVCC0 = 1.8 to 2.4 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
Parameter Symbol Min Max Unit Test conditions
R01DS0263EU0140 Rev.1.40 Page 67 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.39 External bus timing/normal read cycle (bus clock synchronized)
A16 to A01
CS3 to CS0
tAD
EBCLK
A16 to A00
D15 to D00 (Read)
Byte strobe mode
1-write strobe mode
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
tBCD
tCSD tCSD
RD (Read)
tRSD tRSD
tAD
tRDH
tRDS
tAD
tAD
tBCD
TW1 TW2 Tend Tn1 Tn2
RDON:1
CSRWAIT: 2
CSROFF: 2
CSON: 0
R01DS0263EU0140 Rev.1.40 Page 68 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.40 External bus timing/normal write cycle (bus clock synchronized)
Note 1. Be sure to specify WDON and WDOFF as at least one cycle of EBCLK.
A16 to A01
CS3 to CS0
tAD
EBCLK
A16 to A00
Byte strobe mode
1-write strobe mode
BC1 to BC0
Common to both byte strobe mode
and 1-write strobe mode
tBCD
tCSD tCSD
tAD
tAD
tAD
tBCD
D15 to D00 (Write)
WR1, WR0, WR (Write)
tWRD tWRD
tWDH
tWDD
TW1 TW2 Tend Tn1 Tn2
WRON: 1
WDON: 1*1
CSWWAIT: 2
WDOFF: 1*1
CSON:0
CSWOFF: 2
R01DS0263EU0140 Rev.1.40 Page 69 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.41 External bus timing/page read cycle (bus clock synchronized)
Figure 2.42 External bus timing/page write cycle (bus clock synchronized)
A16 to A01
CS3 to CS0
tAD
EBCLK
A16 to A00
D15 to D00 (Read)
Byte strobe mode
1-write strobe mode
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
tBCD
tCSD tCSD
RD (Read)
tRSD tRSD
tRDH
tRDS
tAD
tBCD
TW1 TW2 Tend Tpw1 Tpw2
tAD tAD
tRSD tRSD
tRDH
tRDS
tRSD tRSD
tRDH
tRDS
Tend Tpw1 Tpw2 Tend Tn1 Tn2
tAD tAD tAD tAD
RDON:1
CSRWAIT:2
CSROFF:2
tRSD tRSD
tRDH
tRDS
tAD
tAD
CSPRWAIT:2
Tpw1 Tpw2 Tend
RDON:1
CSPRWAIT:2
RDON:1
CSPRWAIT:2
RDON:1
CSON:0
A16 to A01
CS3 to CS0
tAD
EBCLK
A16 to A00
Byte strobe mode
1-write strobe mode
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
tBCD
tCSD tCSD
tAD
tBCD
TW1
D15 to D00 (Write)
WR1, WR0, WR (Write)
tWRD tWRD
tWDH
tWDD
TW2 Tend Tpw1 Tpw2
tAD tAD
tWRD tWRD
tWDH
tWDD
tWRD tWRD
tWDH
tWDD
Tdw1 Tend Tpw1 Tpw2 Tend Tn1 Tn2
Tdw1
tAD tAD tAD tAD
WRON:1
WDON:1*1
CSWWAIT:2 CSPWWAIT:2
WDOFF:1*1
CSPWWAIT:2
WDOFF:1*1WDOFF:1*1
CSON:0
WRON:1
WDON:1*1
WRON:1
WDON:1*1
CSWOFF:2
Note 1. Be sure to specify WDON and WDOFF as at least one cycle of EBCLK.
R01DS0263EU0140 Rev.1.40 Page 70 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.43 External bus timing/external wait control
tWTS tWTH tWTS tWTH
CSRWAIT:3
CSWWAIT:3
EBCLK
A16 to A00
CS3 to CS0
RD (Read)
WR (Write)
WAIT
TW1 TW2 (Tend)T
end
TW3 Tn1 Tn2
External wait
R01DS0263EU0140 Rev.1.40 Page 71 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.3.7 I/O Ports, POEG, GPT, AGT, KINT, and ADC14 Trigger Timing
Note: tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle
Note 1. Constraints on AGTIO input: tPcyc × 2 (tPcyc: PCLKB cycle) < tACYC
Figure 2.44 I/O ports input timing
Figure 2.45 POEG input trigger timing
Figure 2.46 GPT input capture timing
Table 2.35 I/O Ports, POEG, GPT, AGT, KINT, and ADC14 trigger timing
Parameter Symbol Min Max Unit
Test
conditions
I/O Ports Input data pulse width tPRW 1.5 - tPcyc Figure 2.44
Input/Output data cycle (P002, P003, P004, P007) tPOcyc 10 - μs
POEG POEG input trigger pulse width tPOEW 3- t
Pcyc Figure 2.45
GPT Input capture pulse width Single edge tGTICW 1.5 - tPDcyc Figure 2.46
Dual edge 2.5 -
AGT AGTIO, AGTEE input cycle 2.7 V ≤ VCC ≤ 5.5 V tACYC*1250 - ns Figure 2.47
2.4 V ≤ VCC < 2.7 V 500 - ns
1.8 V ≤ VCC < 2.4 V 1000 - ns
1.6 V ≤ VCC < 1.8 V 2000 - ns
AGTIO, AGTEE input high level
width, low-level width
2.7 V ≤ VCC ≤ 5.5 V tACKWH,
tACKWL
100 - ns
2.4 V ≤ VCC < 2.7 V 200 - ns
1.8 V ≤ VCC < 2.4 V 400 - ns
1.6 V ≤ VCC < 1.8 V 800 - ns
AGTIO, AGTO, AGTOA, AGTOB
output cycle
2.7 V ≤ VCC ≤ 5.5 V tACYC2 62.5 - ns Figure 2.47
2.4 V ≤ VCC < 2.7 V 125 - ns
1.8 V ≤ VCC < 2.4 V 250 - ns
1.6 V ≤ VCC < 1.8 V 500 - ns
ADC14 14-bit A/D converter trigger input pulse width tTRGW 1.5 - tPcyc Figure 2.48
KINT KRn (n = 00 to 07) pulse width tKR 250 - ns Figure 2.49
Port
tPRW
POEG input trigger
tPOEW
Input capture
tGTICW
R01DS0263EU0140 Rev.1.40 Page 72 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.47 AGT I/O timing
Figure 2.48 ADC14 trigger input timing
Figure 2.49 Key interrupt input timing
2.3.8 CAC Timing
Note 1. tPBcyc: PCLKB cycle.
Note 2. tcac: CAC count clock source cycle.
Table 2.36 CAC timing
Parameter Symbol Min Typ Max Unit
Test
conditions
CAC CACREF input pulse width tPBcyc ≤ tcac*2tCACREF 4.5 × tcac + 3 × tPBcyc --ns-
tPBcyc > tcac*25 × tcac + 6.5 × tPBcyc --ns
tACYC2
AGTIO, AGTEE
(input)
tACYC
tACKWL tACKWH
AGTIO, AGTO,
AGTOA, AGTOB
(output)
ADTRG0
tTRGW
KR00 to KR07
tKR
R01DS0263EU0140 Rev.1.40 Page 73 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.3.9 SCI Timing
Note 1. tPcyc: PCLKA cycle.
Figure 2.50 SCK clock input timing
Table 2.37 SCI timing (1)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Min Max Unit*1
Test
conditions
SCI Input clock cycle Asynchronous tScyc 4- t
Pcyc Figure 2.50
Clock synchronous 6 -
Input clock pulse width tSCKW 0.4 0.6 tScyc
Input clock rise time tSCKr -20ns
Input clock fall time tSCKf -20ns
Output clock cycle Asynchronous tScyc 6- t
Pcyc
Clock synchronous 4 -
Output clock pulse width tSCKW 0.4 0.6 tScyc
Output clock rise time 1.8 V or above tSCKr -20ns
1.6 V or above - 30
Output clock fall time 1.8 V or above tSCKf -20ns
1.6 V or above - 30
Transmit data delay
(master)
Clock
synchronous
1.8 V or above tTXD -40nsFigure 2.51
1.6 V or above - 45
Transmit data delay
(slave)
Clock
synchronous
2.7 V or above - 55 ns
2.4 V or above - 60
1.8 V or above - 100
1.6 V or above - 125
Receive data setup
time (master)
Clock
synchronous
2.7 V or above tRXS 45 - ns
2.4 V or above 55 -
1.8 V or above 90 -
1.6 V or above 105 -
Receive data setup
time (slave)
Clock
synchronous
2.7 V or above 40 - ns
1.6 V or above 45 -
Receive data hold
time (master)
Clock synchronous tRXH 5- ns
Receive data hold
time (slave)
Clock synchronous tRXH 40 - ns
tSCKW tSCKr tSCKf
tScyc
SCKn
(n = 0 to 4, 9)
R01DS0263EU0140 Rev.1.40 Page 74 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.51 SCI input/output timing in clock synchronous mode
tTXD
tRXS tRXH
TXDn
RXDn
SCKn
n = 0 to 4, 9
R01DS0263EU0140 Rev.1.40 Page 75 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Table 2.38 SCI timing (2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Min Max Unit Test conditions
Simple
SPI
SCK clock cycle output (master) tSPcyc 4 65536 tPcyc Figure 2.52
SCK clock cycle input (slave) 6 65536
SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc
SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc
SCK clock rise and fall time 1.8 V or above tSPCKr,
tSPCKf
-20ns
1.6 V or above - 30
Data input setup
time
Master 2.7 V or above tSU 45 - ns Figure 2.53 to
Figure 2.56
2.4 V or above 55 -
1.8 V or above 80 -
1.6 V or above 105-
Slave 2.7 V or above 40 -
1.6 V or above 45 -
Data input hold time Master tH33.3 - ns
Slave 40 -
SS input setup time tLEAD 1- t
SPcyc
SS input hold time tLAG 1- t
SPcyc
Data output delay Master 1.8 V or above tOD -40ns
1.6 V or above - 50
Slave 2.4 V or above - 65
1.8 V or above - 100
1.6 V or above - 125
Data output hold
time
Master 2.7 V or above tOH –10 - ns
2.4 V or above –20 -
1.8 V or above –30 -
1.6 V or above –40 -
Slave –10 -
Data rise and fall
time
Master 1.8 V or above tDr, tDf -20ns
1.6 V or above - 30
Slave 1.8 V or above - 20
1.6 V or above - 30
Slave access time tSA - 10 (PCLKA >
32 MHz),
6 (PCLKA ≤
32 MHz)
tPcyc Figure 2.55 and
Figure 2.56
PCLKB =
PCLKA
Slave output release time tREL - 10 (PCLKA >
32 MHz),
6 (PCLKA ≤
32 MHz)
tPcyc
R01DS0263EU0140 Rev.1.40 Page 76 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.52 SCI simple SPI mode clock timing
Figure 2.53 SCI simple SPI mode timing (master, CKPH = 1)
tSPCKWH
VOH VOH
VOL VOL
VOH VOH
tSPCKWL
tSPCKr tSPCKf
VOL
tSPcyc
tSPCKWH
VIH VIH
VIL VIL
VIH VIH
tSPCKWL
tSPCKr tSPCKf
VIL
tSPcyc
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC
(n = 0 to 4, 9)
SCKn
master select
output
SCKn
slave select input
tDr, tDf
tSU tH
tOH tOD
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
SCKn
CKPOL = 0
output
SCKn
CKPOL = 1
output
MISOn
input
MOSIn
output
(n = 0 to 4, 9)
R01DS0263EU0140 Rev.1.40 Page 77 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.54 SCI simple SPI mode timing (master, CKPH = 0)
Figure 2.55 SCI simple SPI mode timing (slave, CKPH = 1)
tSU tH
tOH tOD
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
SCKn
CKPOL = 1
output
SCKn
CKPOL = 0
output
MISOn
input
MOSIn
output
(n = 0 to 4, 9)
tDr, tDf
tDr, tDf
tSU tH
tLEAD
tTD
tLAG
tSA
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT MSB IN MSB OUT
tOH tOD tREL
SSn
input
SCKn
CKPOL = 0
input
SCKn
CKPOL = 1
input
MISOn
output
MOSIn
input
(n = 0 to 4, 9)
R01DS0263EU0140 Rev.1.40 Page 78 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.56 SCI simple SPI mode timing (slave, CKPH = 0)
Note 1. tIICcyc: Clock cycle selected in the SMR.CKS[1:0] bits.
Note 2. Cb indicates the total capacity of the bus line.
Note 3. Middle drive output is selected in the Port Drive Capability in the PmnPFS register
Table 2.39 SCI timing (3)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V
Parameter Symbol Min Max Unit Test conditions
Simple IIC
(Standard mode)
SDA input rise time tSr - 1000 ns Figure 2.57
SDA input fall time tSf - 300 ns
SDA input spike pulse removal time tSP 0 4 × tIICcyc ns
Data input setup time tSDAS 250 - ns
Data input hold time tSDAH 0- ns
SCL, SDA capacitive load Cb*2- 400 pF
Simple IIC
(Fast mode)*3
SDA input rise time tSr - 300 ns Figure 2.57
SDA input fall time tSf - 300 ns
SDA input spike pulse removal time tSP 0 4 × tIICcyc ns
Data input setup time tSDAS 100 - ns
Data input hold time tSDAH 0- ns
SCL, SDA capacitive load Cb*2- 400 pF
tDr, tDf
tSA tOH
tLEAD
tTD
tLAG
tH
LSB OUT
(Last data) DATA MSB OUT
MSB IN DATA LSB IN MSB IN
LSB OUT
tSU
tOD tREL
MSB OUT
SSn
input
SCKn
CKPOL = 1
input
SCKn
CKPOL = 0
input
MISOn
output
MOSIn
input
(n = 0 to 4, 9)
R01DS0263EU0140 Rev.1.40 Page 79 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.57 SCI simple IIC mode timing
SDAn
SCLn
VIH
VIL
P*1S*1
tSf
tSr
tSDAH tSDAS
tSP
P*1
Test conditions:
VIH = VCC × 0.7, VIL = VCC × 0.3
VOL = 0.6 V, IOL = 6 mA
Sr*1
Note 1. S, P, and Sr indicate the following:
S: Start condition
P: Stop condition
Sr: Restart condition
(n = 0 to 4, 9)
R01DS0263EU0140 Rev.1.40 Page 80 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.3.10 SPI Timing
Table 2.40 SPI timing (1 of 2)
Conditions: Middle drive output is selected in the Port Drive Capability in the PmnPFS register
Parameter Symbol Min Max Unit*1 Test conditions
SPI RSPCK clock cycle Master tSPcyc 2*44096 tPcyc Figure 2.58
C = 30PF
Slave 6 4096
RSPCK clock high
pulse width
Master tSPCKWH (tSPcyc tSPCKr
tSPCKf) / 2 3
-ns
Slave 3 × tPcyc -
RSPCK clock low
pulse width
Master tSPCKWL (tSPcyc tSPCKr
tSPCKf) / 2 3
-ns
Slave 3 × tPcyc -
RSPCK clock rise
and fall time
Output 2.7 V or above tSPCKr,
tSPCKf
-10ns
2.4 V or above - 15
1.8 V or above - 20
1.6 V or above - 30
Input - 1 µs
Data input setup
time
Master tSU 10 - ns Figure 2.59 to
Figure 2.64
C = 30PF
Slave 2.4 V or above 10 -
1.8 V or above 15 -
1.6 V or above 20 -
Data input hold time Master
(RSPCK is PCLKA/2)
tHF 0-ns
Master
(RSPCK is other than
above.)
tHtPcyc -
Slave tH20 -
SSL setup time Master tLEAD -30 + N × tSpcyc*2-ns
Slave 6 × tPcyc -ns
SSL hold time Master tLAG -30 + N × tSpcyc*3-ns
Slave 6 × tPcyc -ns
R01DS0263EU0140 Rev.1.40 Page 81 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. tPcyc: PCLKA cycle.
Note 2. N is set as an integer from 1 to 8 by the SPCKD register.
Note 3. N is set as an integer from 1 to 8 by the SSLND register.
Note 4. The upper limit of RSPCK is 16 MHz.
SPI Data output delay Master 2.7 V or above tOD -14nsFigure 2.59 to
Figure 2.64
C = 30PF
2.4 V or above - 20
1.8 V or above - 25
1.6 V or above - 30
Slave 2.7 V or above - 50
2.4 V or above - 60
1.8 V or above - 85
1.6 V or above - 110
Data output hold
time
Master tOH 0-ns
Slave 0 -
Successive
transmission delay
Master tTD tSPcyc + 2 × tPcyc 8 × tSPcyc
+ 2 × tPcyc
ns
Slave 6 × tPcyc -
MOSI and MISO
rise and fall time
Output 2.7 V or above tDr, tDf -10ns
2.4 V or above - 15
1.8 V or above - 20
1.6 V or above - 30
Input - 1 µs
SSL rise and fall
time
Output 2.7 V or above tSSLr,
tSSLf
-10ns
2.4 V or above - 15
1.8 V or above - 20
1.6 V or above - 30
Input - 1 µs
Slave access time 2.4 V or above tSA -2 × t
Pcyc + 100 ns Figure 2.63 and
Figure 2.64
C = 30PF
1.8 V or above - 2 × tPcyc + 140
1.6 V or above - 2 × tPcyc + 180
Slave output release time 2.4 V or above tREL -2 × t
Pcyc + 100 ns
1.8 V or above - 2 × tPcyc + 140
1.6 V or above - 2 × tPcyc + 180
Table 2.40 SPI timing (2 of 2)
Conditions: Middle drive output is selected in the Port Drive Capability in the PmnPFS register
Parameter Symbol Min Max Unit*1 Test conditions
R01DS0263EU0140 Rev.1.40 Page 82 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.58 SPI clock timing
Figure 2.59 SPI timing (master, CPHA = 0) (bit rate: PCLKA division ratio is set to any value other than 1/2)
RSPCKn
master select
output
RSPCKn
slave select input
tSPCKWH
VOH VOH
VOL VOL
VOH VOH
tSPCKWL
tSPCKr tSPCKf
VOL
tSPcyc
tSPCKWH
VIH VIH
VIL VIL
VIH VIH
tSPCKWL
tSPCKr tSPCKf
VIL
tSPcyc
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC
(n = A or B)
tDr, tDf
tSU tH
tLEAD
tTD
tLAG
tSSLr, tSSLf
tOH tOD
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
SSLn0 to
SSLn3
output
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
MISOn
input
MOSIn
output
(n = A or B)
R01DS0263EU0140 Rev.1.40 Page 83 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.60 SPI timing (master, CPHA = 0) (bit rate: PCLKA division ratio is set to 1/2)
Figure 2.61 SPI timing (master, CPHA = 1) (bit rate: PCLKA division ratio is set to any value other than 1/2)
SSLn0 to
SSLn3
output
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
MISOn
input
MOSIn
output
LSB IN
tDr, tDf
tSU tHF
tLEAD
tTD
tLAG
tSSLr, tSSLf
tOH tOD
MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
MSB IN DATA
tHF
(n = A or B)
tSU tH
tLEAD
tTD
tLAG
tSSLr, tSSLf
tOH tOD
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
SSLn0 to
SSLn3
output
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
MISOn
input
MOSIn
output
tDr, tDf
(n = A or B)
R01DS0263EU0140 Rev.1.40 Page 84 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.62 SPI timing (master, CPHA = 1) (bit rate: PCLKA division ratio is set to 1/2)
Figure 2.63 SPI timing (slave, CPHA = 0)
tSU tHF
tLEAD
tTD
tLAG
tSSLr, tSSLf
tOH tOD
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
SSLn0 to
SSLn3
output
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
MISOn
input
MOSIn
output
tDr, tDf
tH
(n = A or B)
tDr, tDf
tSU tH
tLEAD
tTD
tLAG
tSA
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT MSB IN MSB OUT
tOH tOD tREL
SSLn0
input
RSPCKn
CPOL = 0
input
RSPCKn
CPOL = 1
input
MISOn
output
MOSIn
input
(n = A or B)
R01DS0263EU0140 Rev.1.40 Page 85 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.64 SPI timing (slave, CPHA = 1)
2.3.11 QSPI Timing
Note 1. tPcyc: PCLKA cycle.
Note 2. N is set to 0 or 1 in SFMSLD.
Note 3. N is set to 0 or 1 in SFMSHD.
Note 4. The upper limit of QSPCLK is 16 MHz.
Table 2.41 QSPI timing
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register
Parameter Symbol Min Max Unit*1Test conditions
QSPI QSPCLK clock cycle tQScyc 2*448 tPcyc Figure 2.65
QSPCLK clock high-level pulse width tQSWH tQScyc × 0.4 - ns
QSPCLK clock low-level pulse width tQSWL tQScyc × 0.4 - ns
Data input setup time 2.7 V or above tSU 40 - ns Figure 2.66
2.4 V or above 40 - ns
1.8 V or above 80 - ns
Data input hold time tIH 0- ns
SSL setup time tLEAD (N + 0.5) ×
tQscyc - 15*2
(N + 0.5) ×
tQscyc + 100*2
ns
SSL hold time tLAG (N + 0.5) ×
tQscyc - 15*3
(N + 0.5) ×
tQscyc + 100*3
ns
Data output delay 2.7 V or above tOD -14ns
2.4 V or above - 20
1.8 V or above - 30
Data output hold time 2.7 V or above tOH –3.3 - ns
1.8 V or above –10 -
Successive transmission delay tTD 116t
Qscyc
SSLn0
input
RSPCKn
CPOL = 0
input
RSPCKn
CPOL = 1
input
MISOn
output
MOSIn
input
tDr, tDf
tSA tOH
tLEAD
tTD
tLAG
tH
LSB OUT
(Last data) DATA MSB OUT
MSB IN DATA LSB IN MSB IN
LSB OUT
tSU
tOD tREL
MSB OUT
(n = A or B)
R01DS0263EU0140 Rev.1.40 Page 86 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.65 QSPI clock timing
Figure 2.66 Transfer/receive timing
tQScyc
QSPCLK output
tQSWH tQSWL
tSU tH
tLEAD
tTD
tLAG
tOH tOD
MSB IN DATA LSB IN
MSB OUT DATA LSB OUT IDLE
QSSL
output
QSPCLK
output
QIO0 to 3
input
QIO0 to 3
output
R01DS0263EU0140 Rev.1.40 Page 87 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.3.12 IIC Timing
Note: tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle
Note 1. The value in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.
Note 2. Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.
Table 2.42 IIC timing
Conditions: VCC = AVCC0 = 2.7 to 5.5 V
Parameter Symbol Min*1Max Unit
Test
conditions
IIC
(standard mode,
SMBus)
SCL input cycle time tSCL 6 (12) × tIICcyc + 1300 - ns Figure 2.67
SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - ns
SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns
SCL, SDA input rise time tSr - 1000 ns
SCL, SDA input fall time tSf - 300 ns
SCL, SDA input spike pulse removal
time
tSP 0 1 (4) × tIICcyc ns
SDA input bus free time
(When wakeup function is disabled)
tBUF 3 (6) × tIICcyc + 300 - ns
SDA input bus free time
(When wakeup function is enabled)
tBUF 3 (6) × tIICcyc + 4 × tPcyc
+ 300
-ns
START condition input hold time
(When wakeup function is disabled)
tSTAH tIICcyc + 300 - ns
START condition input hold time
(When wakeup function is enabled)
tSTAH 1 (5) × tIICcyc + tPcyc +
300
-ns
Repeated START condition input
setup time
tSTAS 1000 - ns
STOP condition input setup time tSTOS 1000 - ns
Data input setup time tSDAS tIICcyc + 50 - ns
Data input hold time tSDAH 0-ns
SCL, SDA capacitive load Cb- 400 pF
IIC
(Fast mode)*2
SCL input cycle time tSCL 6 (12) × tIICcyc + 600 - ns Figure 2.67
SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - ns
SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns
SCL, SDA input rise time tSr - 300 ns
SCL, SDA input fall time tSf - 300 ns
SCL, SDA input spike pulse removal
time
tSP 0 1 (4) × tIICcyc ns
SDA input bus free time
(When wakeup function is disabled)
tBUF 3 (6) × tIICcyc + 300 - ns
SDA input bus free time
(When wakeup function is enabled)
tBUF 3 (6) × tIICcyc + 4 × tPcyc
+ 300
-ns
START condition input hold time
(When wakeup function is disabled)
tSTAH tIICcyc + 300 - ns
START condition input hold time
(When wakeup function is enabled)
tSTAH 1(5) × tIICcyc + tPcyc +
300
-ns
Repeated START condition input
setup time
tSTAS 300 - ns
STOP condition input setup time tSTOS 300 - ns
Data input setup time tSDAS tIICcyc + 50 - ns
Data input hold time tSDAH 0-ns
SCL, SDA capacitive load Cb- 400 pF
R01DS0263EU0140 Rev.1.40 Page 88 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.67 I2C bus interface input/output timing
SDA0 to SDA2
SCL0 to SCL2
VIH
VIL
tSTAH
tSCLH
tSCLL
P*1S*1
tSf tSr
tSCL tSDAH
tSDAS
tSTAS tSP tSTOS
P*1
tBUF
Sr*1
Note 1. S, P, and Sr indicate the following conditions.
S: Start condition
P: Stop condition
Sr: Restart condition
R01DS0263EU0140 Rev.1.40 Page 89 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.3.13 SSI Timing
Figure 2.68 SSI clock input/output timing
Table 2.43 SSI timing
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Min Max Unit Test conditions
SSI AUDIO_CLK input
frequency
2.7 V or above tAUDIO -25MHz-
1.6 V or above - 4
Output clock period tO250 - ns Figure 2.68
Input clock period tI250 - ns
Clock high pulse
width
1.8 V or above tHC 100 - ns
1.6 V or above 200 -
Clock low pulse
width
1.8 V or above tLC 100 - ns
1.6 V or above 200 -
Clock rise time tRC -25ns
Data delay 2.7 V or above tDTR -65nsFigure 2.69,
Figure 2.70
1.8 V or above - 105
1.6 V or above - 140
Set-up time 2.7 V or above tSR 65 - ns
1.8 V or above 90 -
1.6 V or above 140 -
Hold time tHTR 40 - ns
SSIDATA output
delay from WS
change time
1.8 V or above TDTRW - 105 ns Figure 2.71
1.6 V or above - 140
SSISCKn
tHC
tLC
tRC
tI, tO
R01DS0263EU0140 Rev.1.40 Page 90 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.69 SSI data transmit/receive timing (SSICR.SCKP = 0)
Figure 2.70 SSI data transmit/receive timing (SSICR.SCKP = 1)
Figure 2.71 SSI data output delay from SSIWSn change time
tSR tHTR
tDTR
SSISCKn
(Input or Output)
SSIWSn, SSIDATAn
(Input)
SSIWSn, SSIDATAn
(Output)
tSR tHTR
tDTR
SSISCKn
(Input or Output)
SSIWSn, SSIDATAn
(Input)
SSIWSn, SSIDATAn
(Output)
tDTRW
SSIWSn (Input)
SSIDATAn (Output)
MSB bit output delay from SSIWSn change time for Slave
transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0]
R01DS0263EU0140 Rev.1.40 Page 91 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.3.14 SD/MMC Host Interface Timing
Figure 2.72 SD/MMC host interface signal timing
2.3.15 CLKOUT Timing
Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and
the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to
55%.
Note 2. When the MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division
ratio selection to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).
Table 2.44 SD/MMC host interface signal timing
Conditions: VCC = AVCC0 = 2.7 to 5.5 V
Conditions: Middle drive output is selected in the Port Drive Capability in PmnPFS register
Parameter Symbol Min Max Unit
Test
conditions
SDCLK clock cycle tSDCYC 62.5 - ns Figure 2.72
SDCLK clock high-level pulse width tSDWH 18.25 - ns
SDCLK clock low-level pulse width tSDWL 18.25 - ns
SDCLK clock rising time tSDLH -10ns
SDCLK clock falling time tSDHL -10ns
SDCMD/SDDAT output data delay tSDODLY –18.25 18.25 ns
SDCMD/SDDAT input data setup tSDIS 9.25 - ns
SDCMD/SDDAT input data hold tSDIH 23.25 - ns
Table 2.45 CLKOUT timing
Parameter Symbol Min Max Unit*1Test conditions
CLKOUT CLKOUT pin output cycle*1 VCC = 2.7 V or above tCcyc 62.5 - ns Figure 2.73
VCC = 1.8 V or above 125 -
VCC = 1.6 V or above 250 -
CLKOUT pin high pulse width*2 VCC = 2.7 V or above tCH 15 - ns
VCC = 1.8 V or above 30 -
VCC = 1.6 V or above 150 -
CLKOUT pin low pulse width*2 VCC = 2.7 V or above tCL 15 - ns
VCC = 1.8 V or above 30 -
VCC = 1.6 V or above 150 -
CLKOUT pin output rise time VCC = 2.7 V or above tCr -12ns
VCC = 1.8 V or above - 25
VCC = 1.6 V or above - 50
CLKOUT pin output fall time VCC = 2.7 V or above tCf -12ns
VCC = 1.8 V or above - 25
VCC = 1.6 V or above - 50
SD0CLK
(output)
SD0CMD/SD0DATm
(input)
SD0CMD/SD0DATm
(output)
tSDODLY(max)
tSDIS tSDIH
tSDLH
tSDHL
tSDCYC
tSDWH
tSDWL
tSDODLY(min)
(m = 0 to 7)
R01DS0263EU0140 Rev.1.40 Page 92 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.73 CLKOUT output timing
2.4 USB Characteristics
2.4.1 USBFS Timing
Table 2.46 USB characteristics
Conditions: VCC = AVCC0 = VCC_USB = 3.0 to 3.6 V
Parameter Symbol Min Max Unit Test conditions
Input
characteristics
Input high level voltage VIH 2.0 - V -
Input low level voltage VIL -0.8V-
Differential input sensitivity VDI 0.2 - V | USB_DP - USB_DM |
Differential common mode
range
VCM 0.8 2.5 V -
Output
characteristics
Output high level voltage VOH 2.8 VCC_USB V IOH = –200 μA
Output low level voltage VOL 0.0 0.3 V IOL= 2 mA
Cross-over voltage VCRS 1.3 2.0 V Figure 2.74,
Figure 2.75,
Figure 2.76
Rise time FS tr420ns
LS 75 300
Fall time FS tf420ns
LS 75 300
Rise/fall time ratio FS tr/tf90 111.11 %
LS 80 125
Output resistance ZDRV 28 44 Ω (Adjusting the resistance
of external elements is not
necessary.)
VBUS
characteristics
VBUS input voltage VIH VCC × 0.8 - V -
VIL - VCC × 0.2 V -
Pull-up,
pull-down
Pull-down resistor RPD 14.25 24.80 -
Pull-up resistor RPUI 0.9 1.575 During idle state
RPUA 1.425 3.09 During reception
Battery Charging
Specification
version 1.2
D + sink current IDP_SINK 25 175 μA -
D – sink current IDM_SINK 25 175 μA -
DCD source current IDP_SRC 713μA-
Data detection voltage VDAT_REF 0.25 0.4 V -
D + source voltage VDP_SRC 0.5 0.7 V Output current = 250 μA
D – source voltage VDM_SRC 0.5 0.7 V Output current = 250 μA
tCf
tCH
tCcyc
tCr
tCL
CLKOUT pin output
Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF
R01DS0263EU0140 Rev.1.40 Page 93 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.74 USB_DP and USB_DM output timing
Figure 2.75 Test circuit for Full-Speed (FS) connection
Figure 2.76 Test circuit for Low-Speed (LS) connection
2.4.2 USB External Supply
Table 2.47 USB regulator
Parameter Min Typ Max Unit Test conditions
VCC_USB supply current VCC_USB_LDO ≥ 3.8V - - 50 mA -
VCC_USB_LDO ≥ 4.5V - - 100 mA -
VCC_USB supply voltage 3.0 - 3.6 V -
USB_DP,
USB_DM
tf
tr
90%
10%10%
90%
VCRS
Observation
point
50 pF
DP
DM
50 pF
Observation
point
200 pF to
600 pF
DP
DM
200 pF to
600 pF
1.5 K
3.6 V
Observation
point
R01DS0263EU0140 Rev.1.40 Page 94 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.5 ADC14 Characteristics
Figure 2.77 AVCC0 to VREFH0 voltage range
Table 2.48 A/D conversion characteristics (1) in High-speed A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 64 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 2.5 (reference data) High-precision channel
- - 6.7 (reference data) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Conversion time*1
(Operation at
PCLKC = 64 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
0.70 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.13 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±0.5 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Full-scale error - ±0.75 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel
±8.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution - - 14 Bit -
VREFH0
5.0
4.0
3.0
2.0
1.0
1.0 2.0 3.0 4.0 5.0
A/D Conversion
Characteristics (2)
ADCSR.ADHSC = 0
5.5
2.7
2.4
2.4 2.7 5.5 AVCC0
VREFH0
5.0
4.0
3.0
2.0
1.0
1.0 2.0 3.0 4.0 5.0
ADCSR.ADHSC = 1
5.5
2.7
2.4
2.4 2.7 5.5 AVCC0
1.8
1.8
A/D Conversion
Characteristics (1)
A/D Conversion
Characteristics (3)
A/D Conversion
Characteristics (4)
A/D Conversion
Characteristics (5)
A/D Conversion
Characteristics (6)
A/D Conversion
Characteristics (7)
1.6
1.6
R01DS0263EU0140 Rev.1.40 Page 95 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Conversion time*1
(Operation at
PCLKC = 64 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
0.80 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.22 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±2.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Full-scale error - ±3.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±5.0 ±20 LSB High-precision channel
±32.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.49 A/D conversion characteristics (2) in High-speed A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 48 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 2.5 (reference
data)
High-precision channel
- - 6.7 (reference
data)
Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Conversion time*1
(Operation at
PCLKC = 48 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
0.94 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.50 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±0.5 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Full-scale error - ±0.75 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel
±8.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
Table 2.48 A/D conversion characteristics (1) in High-speed A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0263EU0140 Rev.1.40 Page 96 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution - - 14 Bit -
Conversion time*1
(Operation at
PCLKC = 48 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
1.06 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.63 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±2.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Full-scale error - ±3.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±5.0 ±20 LSB High-precision channel
±32.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.50 A/D conversion characteristics (3) in High-speed A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 32 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 2.5 (reference data) High-precision channel
- - 6.7 (reference data) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Conversion time*1
(Operation at
PCLKC = 32 MHz)
Permissible signal
source impedance
Max. = 1.3 kΩ
1.41 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
2.25 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±0.5 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Full-scale error - ±0.75 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel
±8.0 LSB Other than above
Table 2.49 A/D conversion characteristics (2) in High-speed A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0263EU0140 Rev.1.40 Page 97 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution - - 14 Bit -
Conversion time*1
(Operation at
PCLKC = 32 MHz)
Permissible signal
source impedance
Max. = 1.3 kΩ
1.59 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
2.44 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±2.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Full-scale error - ±3.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±5.0 ±20 LSB High-precision channel
±32.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.51 A/D conversion characteristics (4) in Low-power A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 24 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 2.5 (reference data) High-precision channel
- - 6.7 (reference data) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Conversion time*1
(Operation at
PCLKC = 24 MHz)
Permissible signal
source
impedance Max.
= 1.1 kΩ
2.25 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
3.38 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±0.5 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Full-scale error - ±0.75 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Table 2.50 A/D conversion characteristics (3) in High-speed A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0263EU0140 Rev.1.40 Page 98 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel
±8.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution - - 14 Bit -
Conversion time*1
(Operation at
PCLKC = 24 MHz)
Permissible signal
source
impedance Max.
= 1.1 kΩ
2.50 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
3.63 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±2.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Full-scale error - ±3.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±5.0 ±20 LSB High-precision channel
±32.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.52 A/D conversion characteristics (5) in Low-power A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 16 MHz -
Analog input capacitance*2Cs - - 8 (reference) pF High-precision channel
- - 9 (reference) pF Normal-precision channel
Analog input resistance Rs - - 2.5 (reference) High-precision channel
- - 6.7 (reference) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Conversion time*1
(Operation at
PCLKC = 16 MHz)
Permissible signal
source impedance
Max. = 2.2 kΩ
3.38 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
5.06 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±0.5 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Full-scale error - ±0.75 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Table 2.51 A/D conversion characteristics (4) in Low-power A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0263EU0140 Rev.1.40 Page 99 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel
±8.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution - - 14 Bit -
Conversion time*1
(Operation at
PCLKC = 16 MHz)
Permissible signal
source impedance
Max. = 2.2 kΩ
3.75 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
5.44 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±2.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Full-scale error - ±3.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±5.0 ±20 LSB High-precision channel
±32.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.53 A/D conversion characteristics (6) in Low-power A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 8 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 3.8 (reference data) High-precision channel
- - 8.2 (reference data) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Conversion time*1
(Operation at
PCLKC = 8 MHz)
Permissible signal
source impedance
Max. = 5 kΩ
6.75 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
10.13 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±1.0 ±7.5 LSB High-precision channel
±10.0 LSB Other than above
Table 2.52 A/D conversion characteristics (5) in Low-power A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0263EU0140 Rev.1.40 Page 100 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Full-scale error - ±1.5 ±7.5 LSB High-precision channel
±10.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±3.0 ±8.0 LSB High-precision channel
±12.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution - - 14 Bit -
Conversion time*1
(Operation at
PCLKC = 8 MHz)
Permissible signal
source impedance
Max. = 5 kΩ
7.50 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
10.88 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±4.0 ±30.0 LSB High-precision channel
±40.0 LSB Other than above
Full-scale error - ±6.0 ±30.0 LSB High-precision channel
±40.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±12.0 ±32.0 LSB High-precision channel
±48.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.54 A/D conversion characteristics (7) in Low-power A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 4 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 13.1 (reference data) High-precision channel
- - 14.3 (reference data) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Conversion time*1
(Operation at
PCLKC = 4 MHz)
Permissible signal
source impedance
Max. = 9.9 kΩ
13.5 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
20.25 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Table 2.53 A/D conversion characteristics (6) in Low-power A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0263EU0140 Rev.1.40 Page 101 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Figure 2.78 Equivalent circuit for analog input
Offset error - ±1.0 ±7.5 LSB High-precision channel
±10.0 LSB Other than above
Full-scale error - ±1.5 ±7.5 LSB High-precision channel
±10.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±3.0 ±8.0 LSB High-precision channel
±12.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution - - 14 Bit -
Conversion time*1
(Operation at
PCLKC = 4 MHz)
Permissible signal
source impedance
Max. = 9.9 kΩ
15.0 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
21.75 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±4.0 ±30.0 LSB High-precision channel
±40.0 LSB Other than above
Full-scale error - ±6.0 ±30.0 LSB High-precision channel
±40.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±12.0 ±32.0 LSB High-precision channel
±48.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.54 A/D conversion characteristics (7) in Low-power A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Rs
Cin
Rs
Cin
Cs
ADC
MCU
Analoginput
Analoginput
Sensor ANn
ANn
R01DS0263EU0140 Rev.1.40 Page 102 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.
Note 2. The 14-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 14-bit A/D
converter.
Note 3. This is a parameter for ADC14 when the internal reference voltage is used as the high-potential reference voltage.
Note 4. This is a parameter for ADC14 when the internal reference voltage is selected for an analog input channel in ADC14.
Table 2.55 14-Bit A/D converter channel classification
Classification Channel Conditions Remarks
High-precision channel AN000 to AN015 AVCC0 = 1.6 to 5.5 V Pins AN000 to AN015 cannot be used
as general I/O, IRQ8, IRQ9 inputs,
and TS transmission, when the A/D
converter is in use
Normal-precision channel AN016 to AN027
Internal reference voltage
input channel
Internal reference voltage AVCC0 = 2.0 to 5.5 V -
Temperature sensor input
channel
Temperature sensor output AVCC0 = 2.0 to 5.5 V -
Table 2.56 A/D internal reference voltage characteristics
Conditions: VCC = AVCC0 = VREFH0 = 2.0 to 5.5 V*1
Parameter Min Typ Max Unit Test conditions
Internal reference voltage input
channel*2
1.36 1.43 1.50 V -
Frequency*31- 2MHz-
Sampling time*45.0--µs-
R01DS0263EU0140 Rev.1.40 Page 103 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.79 Illustration of 14-bit A/D converter characteristic terms
Absolute accuracy
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D
conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference
voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV are used as the analog
input voltages. If analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion
result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D
conversion characteristics.
Integral nonlinearity error (INL)
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale
errors are zeroed, and the actual output code.
Differential nonlinearity error (DNL)
Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics
and the width of the actually output code.
Offset error
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.
Full-scale error
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.
Integral nonlinearity
error (INL)
Actual A/D conversion
characteristic
Ideal A/D conversion
characteristic
Analog input voltage
Offset error
Absolute accuracy
Differential nonlinearity error (DNL)
Full-scale error
3FFFh
0000h
0
Ideal line of actual A/D
conversion characteristic
1-LSB width for ideal A/D
conversion characteristic
Differential nonlinearity error (DNL)
1-LSB width for ideal A/D
conversion characteristic
VREFH0
(full-scale)
A/D converter
output code
R01DS0263EU0140 Rev.1.40 Page 104 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.6 DAC12 Characteristics
Table 2.57 D/A conversion characteristics (1)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Reference voltage = VREFH or VREFL selected
Parameter Min Typ Max Unit Test conditions
Resolution - - 12 bit -
Resistive load 30 - - -
Capacitive load - - 50 pF -
Output voltage range 0.35 - AVCC0 – 0.47 V
DNL differential nonlinearity error - ±0.5 ±1.0 LSB -
INL integral nonlinearity error - ±2.0 ±8.0 LSB -
Offset error - - ±20 mV -
Full-scale error - - ±20 mV -
Output impedance - 5 - Ω -
Conversion time - - 30 μs -
Table 2.58 D/A conversion characteristics (2)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Reference voltage = AVCC0 or AVSS0 selected
Parameter Min Typ Max Unit Test conditions
Resolution - - 12 bit -
Resistive load 30 - - -
Capacitive load - - 50 pF -
Output voltage range 0.35 - AVCC0 – 0.47 V -
DNL differential nonlinearity error - ±0.5 ±2.0 LSB -
INL integral nonlinearity error - ±2.0 ±8.0 LSB -
Offset error - - ±30 mV -
Full-scale error - - ±30 mV -
Output impedance - 5 - Ω -
Conversion time - - 30 μs -
Table 2.59 D/A conversioncharacteristics (3)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Reference voltage = internal reference voltage selected
Parameter Min Typ Max Unit Test conditions
Resolution - - 12 bit -
Internal reference voltage (Vbgr) 1.36 1.43 1.50 V -
Resistive load 30 - - -
Capacitive load - - 50 pF -
Output voltage range 0.35 - Vbgr V -
DNL differential nonlinearity error - ±2.0 ±16.0 LSB -
INL integral nonlinearity error - ±8.0 ±16.0 LSB -
Offset error - - ±30 mV -
Output impedance - 5 - Ω -
Conversion time - - 30 μs -
R01DS0263EU0140 Rev.1.40 Page 105 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.80 Illustration of D/A converter characteristic terms
Integral nonlinearity error (INL)
Integral nonlinearity error is the maximum deviation between the ideal output voltage based on the ideal conversion
characteristic when the measured offset and full-scale errors are zeroed, and the actual output voltage.
Differential nonlinearity error (DNL)
Differential nonlinearity error is the difference between 1-LSB voltage width based on the ideal D/A conversion
characteristics and the width of the actual output voltage.
Offset error
Offset error is the difference between the highest actual output voltage that falls below the lower output limit and the
ideal output voltage based on the input code.
Full-scale error
Full-scale error is the difference between the lowest actual output voltage that exceeds the upper output limit and the
ideal output voltage based on the input code.
000h D/A converter input code FFFh
Output analog voltage
Upper output limit
Lower output limit
Offset error
Ideal output voltage
1-LSB width for ideal D/A conversion
characteristic
Differential nonlinearity error
(DNL)
Actual D/A conversion characteristic
*1
Integral nonlinearity error (INL)
Full-scale error Gain error
Offset error
Ideal output voltage
Note 1. Ideal D/A conversion output voltage that is adjusted so that offset and full scale errors are zeroed.
R01DS0263EU0140 Rev.1.40 Page 106 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.7 TSN Characteristics
2.8 OSC Stop Detect Characteristics
Figure 2.81 Oscillation stop detection timing
Table 2.60 TSN characteristics
Conditions: VCC = AVCC0 = 2.0 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
Relative accuracy - - ±1.5 - °C 2.4 V or above
- - ±2.0 - °C Below 2.4 V
Temperature slope - - –3.65 - mV/°C -
Output voltage (at 25°C) - - 1.05 - V VCC = 3.3 V
Temperature sensor start time tSTART --5μs-
Sampling time - 5 - - μs -
Table 2.61 Oscillation stop detection circuit characteristics
Parameter Symbol Min Typ Max Unit Test conditions
Detection time tdr --1msFigure 2.81
td
r
Main clock
OSTDSR.OSTDF
MOCO clock
ICLK
PLL clock
td
r
Main clock
OSTDSR.OSTDF
MOCO
clock
ICLK
When the main clock is
selected When the PLL clock is
selected
R01DS0263EU0140 Rev.1.40 Page 107 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.9 POR and LVD Characteristics
Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection
level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage
detection.
Note 2. # in the symbol Vdet0_# denotes the value of the OFS1.VDSEL1[2:0] bits.
Note 3. # in the symbol Vdet1_# denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.
Note 4. # in the symbol Vdet2_# denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.
Table 2.62 Power-on reset circuit and voltage detection circuit characteristics (1)
Parameter Symbol Min Typ Max Unit Test conditions
Voltage detection
level*1
Power-on reset (POR) VPOR 1.27 1.42 1.57 V Figure 2.82,
Figure 2.83
Voltage detection circuit (LVD0)*2Vdet0_0 3.68 3.85 4.00 V Figure 2.84
At falling edge
VCC
Vdet0_1 2.68 2.85 2.96
Vdet0_2 2.38 2.53 2.64
Vdet0_3 1.78 1.90 2.02
Vdet0_4 1.60 1.69 1.82
Voltage detection circuit (LVD1)*3Vdet1_0 4.13 4.29 4.45 V Figure 2.85
At falling edge
VCC
Vdet1_1 3.98 4.16 4.30
Vdet1_2 3.86 4.03 4.18
Vdet1_3 3.68 3.86 4.00
Vdet1_4 2.98 3.10 3.22
Vdet1_5 2.89 3.00 3.11
Vdet1_6 2.79 2.90 3.01
Vdet1_7 2.68 2.79 2.90
Vdet1_8 2.58 2.68 2.78
Vdet1_9 2.48 2.58 2.68
Vdet1_A 2.38 2.48 2.58
Vdet1_B 2.10 2.20 2.30
Vdet1_C 1.84 1.96 2.05
Vdet1_D 1.74 1.86 1.95
Vdet1_E 1.63 1.75 1.84
Vdet1_F 1.60 1.65 1.73
Voltage detection circuit (LVD2)*4Vdet2_0 4.11 4.31 4.48 V Figure 2.86
At falling edge
VCC
Vdet2_1 3.97 4.17 4.34
Vdet2_2 3.83 4.03 4.20
Vdet2_3 3.64 3.84 4.01
R01DS0263EU0140 Rev.1.40 Page 108 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. When OFS1.LVDAS = 0.
Note 2. When OFS1.LVDAS = 1.
Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR,
Vdet0, Vdet1, and Vdet2 for the POR/LVD.
Figure 2.82 Voltage detection reset timing
Table 2.63 Power-on reset circuit and voltage detection circuit characteristics (2)
Parameter Symbol Min Typ Max Unit Test conditions
Wait time after power-on
reset cancellation
LVD0:enable tPOR -1.7-ms-
LVD0:disable tPOR -1.3-ms-
Wait time after voltage
monitor 0,1,2 reset
cancellation
LVD0:enable*1tLVD0,1,2 -0.6-ms-
LVD0:disable*2tLVD1,2 -0.2-ms-
Response delay*3tdet - - 350 μs Figure 2.82,
Figure 2.83
Minimum VCC down time tVOFF 450 - - μs Figure 2.82,
VCC = 1.0 V or above
Power-on reset enable time tW (POR) 1- - msFigure 2.83,
VCC = below 1.0 V
LVD operation stabilization time (after LVD is
enabled)
Td (E-A) - - 300 μs Figure 2.85,
Figure 2.86
Hysteresis width (POR) VPORH -110-mV-
Hysteresis width (LVD0, LVD1 and LVD2) VLVH - 60 - mV LVD0 selected
- 100 - mV Vdet1_0 to Vdet1_2 selected.
-60- V
det1_3 to Vdet1_9 selected.
-50- V
det1_A or Vdet1_B selected.
-40- V
det1_C or Vdet1_F selected.
- 60 - LVD2 selected
Internal reset signal
(active-low)
VCC
tVOFF
tPOR
tdet
VPOR
tdet
1.0 V
R01DS0263EU0140 Rev.1.40 Page 109 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.83 Power-on reset timing
Figure 2.84 Voltage detection circuit timing (Vdet0)
Note: tW(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held
below the valid voltage (1.0 V).
When VCC turns on, maintain tW(POR) for 1.0 ms or more.
Internal reset signal
(active-low)
VCC
tPOR
VPOR
1.0 V
tW(POR)
*1
tdet
tVOFF
tLVD0
tdet
Vdet0
VCC
Internal reset signal
(active-low)
tdet
VLVH
R01DS0263EU0140 Rev.1.40 Page 110 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.85 Voltage detection circuit timing (Vdet1)
Figure 2.86 Voltage detection circuit timing (Vdet2)
tVOFF
Vdet1
VCC
tdet
tdet
tLVD1
Td(E-A)
LVCMPCR.LVD1E
LVD1
Comparator output
LVD1CR0.CMPE
LVD1SR.MON
Internal reset signal
(active-low)
When LVD1CR0.RN = 0
When LVD1CR0.RN = 1
VLVH
tLVD1
tVOFF
Vdet2
VCC
tdet
tdet
tLVD2
Td(E-A)
LVCMPCR.LVD2E
LVD2
Comparator output
LVD2CR0.CMPE
LVD2SR.MON
Internal reset signal
(active-low)
When LVD2CR0.RN = 0
When LVD2CR0.RN = 1
VLVH
tLVD2
R01DS0263EU0140 Rev.1.40 Page 111 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.10 Battery Backup Function Characteristics
Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the
voltage level for switching to battery backup (VDETBATT).
Figure 2.87 Power supply switching and LVD0 reset Timing
Table 2.64 Battery Backup Function Characteristics
Conditions: VCC = AVCC0 = 1.6V to 5.5V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0V
Parameter Symbol Min Typ Max Unit Test conditions
Voltage level for switching to battery backup (falling) VDETBATT 1.99 2.09 2.19 V Figure 2.87,
Figure 2.88
Hysteresis width for switching to battery back up VVBATTH -100-mV
VCC-off period for starting power supply switching tVOFFBATT 300 - - μs -
Voltage detection level
VBATT_Power-on reset (VBATT_POR)
VVBATPOR 1.30 1.40 1.50 V Figure 2.87,
Figure 2.88
Wait time after VBATT_POR reset time cancellation tVBATPOR - - 3 mS-
Level for detection of voltage drop on
the VBATT pin (falling)
VBTLVDLVL[1:0] = 10b VDETBATLVD 2.11 2.2 2.29 V Figure 2.89
VBTLVDLVL[1:0] = 11b 1.92 2 2.08 V
Hysteresis width for VBATT pin LVD VVBATLVDTH -50-mV
VBATT pin LVD operation stabilization time td_vbat - - 300 μs Figure 2.89
VBATT pin LVD response delay time tdet_vbat --350μs
Allowable voltage change rising/falling gradient dt/dVCC 1.0 - - ms/V-
VCC voltage level for access to the VBATT backup registers V_BKBATT 1.8 - - V -
VDETBATT
VVBATH
VCC supplied
VBATT
VCC
VVBATPOR
VBATT supplied VCC supplied
Backup power area
Internal reset signal
(active-low)
tLVD0
Vdet0 VLVH
tdet
tdet
VPOR
R01DS0263EU0140 Rev.1.40 Page 112 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.88 VBATT_POR reset timing
Figure 2.89 VBATT pin voltage detection circuit timing
VDETBATT VVBATH
VCC supplied
VBATT
VCC
VVBATPOR
VBATT supplied VCC supplied
Backup power area
not supplied
VBATT_POR
(active-low)
tVBATPOR
VDETBATLVD
VBATT
Td_vbat
VBTCR2.VBTLVDEN
VBATT pin LVD
Comparator output
VBTCMPCR.VBTCMPE
VBTSR.VBTBLDF
VVBATLVDTH
tdet_vbat tdet_vbat
R01DS0263EU0140 Rev.1.40 Page 113 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.11 CTSU Characteristics
2.12 Segment LCD Controller/Driver Characteristics
2.12.1 Resistance Division Method
[Static Display Mode]
[1/2 Bias Method, 1/4 Bias Method]
[1/3 Bias Method]
Table 2.65 VBATT-I/O characteristics
Parameter Symbol Min Typ Max Unit Test conditions
VBATWIOn I/O
output
characteristics
(n = 0 to 2)
VCC > VDETBATT VCC = 4.0 to 5.5 V VOH VCC - 0.8 - - V IOH = -200 µA
VOL --0.8 I
OL = 200 µA
VCC = 2.7 to 4.0 V VOH VCC - 0.5 - - IOH = -100 µA
VOL --0.5 I
OL = 100 µA
VCC = VDETBATT to 2.7 V VOH VCC - 0.3 - - IOH = -50 µA
VOL --0.3 I
OL = 50 µA
VCC < VDETBATT VBATT = 2.7 to 3.6 V VOH VBATT - 0.5 - - IOH = -100 µA
VOL --0.5 I
OL = 100 µA
VBATT = 1.6 to 2.7 V VOH VBATT - 0.3 - - IOH = -50 µA
VOL --0.3 I
OL = 50 µA
Table 2.66 CTSU characteristics
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
External capacitance connected to TSCAP pin Ctscap 91011nF-
TS pin capacitive load Cbase --50pF-
Permissible output high current ΣIoH - - -24 mA When the mutual
capacitance method
is applied
Table 2.67 Resistance division method LCD characteristics (1)
Conditions: VL4 ≤ VCC ≤ 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
LCD drive voltage VL4 2.0 - VCC V -
Table 2.68 Resistance division method LCD characteristics (2)
Conditions: VL4 ≤ VCC ≤ 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
LCD drive voltage VL4 2.7 - VCC V -
Table 2.69 Resistance division method LCD characteristics (3)
Conditions: VL4 ≤ VCC ≤ 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
LCD drive voltage VL4 2.5 - VCC V -
R01DS0263EU0140 Rev.1.40 Page 114 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.12.2 Internal Voltage Boosting Method
[1/3 Bias Method]
Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
C1 = C2 = C3 = C4 = 0.47 μF ±30%
Note 2. This is the time required to wait from when the reference voltage is specified using the VLCD register (or when the internal
voltage boosting method is selected (by setting the MDSET[1:0] bits in the LCDM0 register to 01b) if the default value reference
voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
Table 2.70 Internal voltage boosting method LCD characteristics
Conditions: VCC = AVCC0 = 1.8 V to 5.5 V
Parameter Symbol Conditions Min Typ Max Unit
Test
conditions
LCD output voltage
variation range
VL1 C1 to C4*1 = 0.47 μF VLCD = 04h 0.90 1.0 1.08 V -
VLCD = 05h 0.95 1.05 1.13 V -
VLCD = 06h 1.00 1.10 1.18 V -
VLCD = 07h 1.05 1.15 1.23 V -
VLCD = 08h 1.10 1.20 1.28 V -
VLCD = 09h 1.15 1.25 1.33 V -
VLCD = 0Ah 1.20 1.30 1.38 V -
VLCD = 0Bh 1.25 1.35 1.43 V -
VLCD = 0Ch 1.30 1.40 1.48 V -
VLCD = 0Dh 1.35 1.45 1.53 V -
VLCD = 0Eh 1.40 1.50 1.58 V -
VLCD = 0Fh 1.45 1.55 1.63 V -
VLCD = 10h 1.50 1.60 1.68 V -
VLCD = 11h 1.55 1.65 1.73 V -
VLCD = 12h 1.60 1.70 1.78 V -
VLCD = 13h 1.65 1.75 1.83 V -
Doubler output voltage VL2 C1 to C4*1 = 0.47 μF 2 × VL1 - 0.1 2 × VL1 2 × VL1 V-
Tripler output voltage VL4 C1 to C4*1 = 0.47 μF 3 × VL1 - 0.15 3 × VL1 3 × VL1 V-
Reference voltage
setup time*2
tVL1S 5 --msFigure 2.90
LCD output voltage
variation range*3
tVLWT C1 to C4*1 = 0.47 μF 500 - - ms
R01DS0263EU0140 Rev.1.40 Page 115 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
[1/4 Bias Method]
Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL3 and GND
C5: A capacitor connected between VL4 and GND
C1 = C2 = C3 = C4 = C5 = 0.47 μF ± 30%
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal
voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits in the LCDM0 register to 01b) if the default
value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
Note 4. VL4 must be 5.5 V or lower.
Table 2.71 Internal voltage boosting method LCD characteristics
Conditions: VCC = AVCC0 = 1.8 V to 5.5 V
Parameter Symbol Conditions Min Typ Max Unit
Test
conditions
LCD output voltage
variation range
VL1 C1 to C5*1 = 0.47 μF VLCD = 04h 0.90 1.0 1.08 V -
VLCD = 05h 0.95 1.05 1.13 V -
VLCD = 06h 1.00 1.10 1.18 V -
VLCD = 07h 1.05 1.15 1.23 V -
VLCD = 08h 1.10 1.20 1.28 V -
VLCD = 09h 1.15 1.25 1.33 V -
VLCD = 0Ah 1.20 1.30 1.38 V -
VLCD = 0Bh 1.25 1.35 1.43 V -
VLCD = 0Ch 1.30 1.40 1.48 V -
Doubler output voltage VL2 C1 to C5*1 = 0.47 μF 2VL1 - 0.08 2VL1 2VL1 V-
Tripler output voltage VL3 C1 to C5*1 = 0.47 μF 3VL1 - 0.12 3VL1 3VL1 V-
Quadruply output
voltage
VL4*4C1 to C5*1 = 0.47 μF 4VL1 - 0.16 4VL1 4VL1 V-
Reference voltage
setup time*2
tVL1S 5 --msFigure 2.90
LCD output voltage
variation range*3
tVLWT C1 to C5*1 = 0.47 μF 500 - - ms
R01DS0263EU0140 Rev.1.40 Page 116 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.12.3 Capacitor Split Method
[1/3 Bias Method]
Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
C1 = C2 = C3 = C4 = 0.47 μF ± 30%
Figure 2.90 LCD reference voltage setup time, voltage boosting wait time, and capacitor split wait time
Table 2.72 Internal voltage boostingmethod LCD characteristics
Conditions: VCC = AVCC0 = 2.2 V to 5.5 V
Parameter Symbol Conditions Min Typ Max Unit
Test
conditions
VL4 voltage*1VL4 C1 to C4 = 0.47 μF*2-VCC- V-
VL2 voltage*1VL2 C1 to C4 = 0.47 μF*22/3 × VL4 - 0.07 2/3 × VL4 2/3 × VL4 + 0.07 V -
VL1 voltage*1VL1 C1 to C4 = 0.47 μF*21/3 × VL4 - 0.08 1/3 × VL4 1/3 × VL4 + 0.08 V -
Capacitor split wait time*1tWAIT 100 - - ms Figure 2.90
MDSET0,
MDSET1
VLCON
LCDON
01b or 10b00b
tVL1S
tVLWT, tWAIT
R01DS0263EU0140 Rev.1.40 Page 117 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.13 Comparator Characteristics
Note 1. Period of time from when the comparator input channel is switched until the comparator is switched to output.
Note 2. Period of time from when the comparator operation is enabled (CMPCTL.HCMPON = 1) until the comparator satisfies the
DC/AC characteristics.
Table 2.73 ACMPHS characteristics
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VSS = AVSS0 = 0 V
Parameter Symbol Min Typ Max Unit Test conditions
Input offset voltage VIOCMP 5±40mV-
Input voltage range VICMP 0- AVCC0V-
Internal reference voltage - 1.36 1.44 1.50 V -
Input signal cycle tPCMP 10 - - μs -
Output delay time td- 50 100 ns Input amplitude ± 100 mV
Stabilization wait time during input channel
switching*1
tWAIT 300 - - ns Input amplitude ± 100 mV
Operation stabilization wait time*2tCMP 1 - - μs 3.3 V ≤ AVCC0 ≤ 5.5 V
3 - - μs 2.7 V ≤ AVCC0 < 3.3 V
Table 2.74 ACMPLP characteristics
Conditions: VCC = AVCC0 = 1.8 to 5.5 V, VSS = AVSS0 = 0 V
Parameter Symbol Min Typ Max Unit Test conditions
Reference voltage range VREF 0 - VCC
–1.4
V-
Input voltage range VI 0 - VCC V -
Internal reference voltage - 1.36 1.44 1.50 V -
Output delay High-speed mode Td - - 1.2 μs VCC = 3.0
Slew rate of input
signal > 50 mV/μs
Low-speed mode - - 5 μs
Window mode - - 2 μs
Offset voltage High-speed mode - - - 50 mV -
Low-speed mode - - - 40 mV -
Window mode - - - 60 mV -
Internal reference voltage for window mode VRFH - 0.76 × VCC - V -
VRFL - 0.24 × VCC - V -
Operation stabilization wait time Tcmp 100 - - μs -
R01DS0263EU0140 Rev.1.40 Page 118 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.14 OPAMP Characteristics
Note 1. When the operational amplifier reference current circuit is activated in advance.
Table 2.75 OPAMP characteristics
Conditions: 1.8 V ≤ AVCC0 = VCC ≤ 5.5 V, VSS = AVSS0 = 0 V
Parameter Symbol Conditions Min Typ Max Unit
Common mode input
range
Vicm1 Low power mode 0.2 - AVCC0 – 0.5 V
Vicm2 High-speed mode 0.3 - AVCC0 – 0.6 V
Output voltage range Vo1 Low power mode 0.1 - AVCC0 – 0.1 V
Vo2 High-speed mode 0.1 - AVCC0 – 0.1 V
Input offset voltage Vioff –10 - 10 mV
Open gain Av 60 120 - dB
Gain-bandwidth (GB)
product
GBW1 Low power mode - 0.04 - MHz
GBW2 High-speed mode - 1.7 - MHz
Phase margin PM CL = 20 pF 50 - - deg
Gain margin GM CL = 20 pF 10 - - dB
Equivalent input noise Vnoise1 f = 1 kHz Low power mode - 230 - nV/√Hz
Vnoise2 f = 10 kHz - 200 - nV/√Hz
Vnoise3 f = 1 kHz High-speed mode - 90 - nV/√Hz
Vnoise4 f = 2 kHz - 70 - nV/√Hz
Power supply
reduction ratio
PSRR -90- dB
Common mode signal
reduction ratio
CMRR - 90 - dB
Stabilization wait time Tstd1 CL = 20 pF
Only operational amplifier is
activated *1
Low power mode 650 - - μs
Tstd2 High-speed mode 13 - - μs
Tstd3 CL = 20 pF
Operational amplifier and
reference current circuit are
activated simultaneously
Low power mode 650 - - μs
Tstd4 High-speed mode 13 - - μs
Settling time Tset1 CL = 20 pF Low power mode - - 750 μs
Tset2 High-speed mode - - 13 μs
Slew rate Tslew1 CL = 20 pF Low power mode - 0.02 - V/μs
Tslew2 High-speed mode - 1.1 - V/μs
Load current Iload1 Low power mode –100 - 100 μA
Iload2 High-speed mode –100 - 100 μA
Load capacitance CL - - 20 pF
R01DS0263EU0140 Rev.1.40 Page 119 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.15 Flash Memory Characteristics
2.15.1 Code Flash Memory Characteristics
Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 1,000),
erasing can be performed n times for each block. For instance, when 8-byte programming is performed 256 times for different
addresses in 2-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address for several times as one erasure is not enabled. (overwriting is prohibited).
Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics.
Note 3. This result is obtained from reliability testing.
Note: Does not include the time until each operation of the flash memory is started after instructions are executed by the software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
Note: The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
Table 2.76 Code flash characteristics (1)
Parameter Symbol Min Typ Max Unit Test conditions
Reprogramming/erasure cycle*1NPEC 1000 - - Times -
Data hold time After 1000 times of NPEC tDRP 20*2, *3--YearT
a = +85°C
Table 2.77 Code flash characteristics (2)
High-speed operating mode
Conditions: VCC = AVCC0 = 2.7 to 5.5 V
Parameter Symbol
FCLK = 1 MHz FCLK = 32 MHz
UnitMin Typ Max Min Typ Max
Programming time 8-byte tP8 - 116 998 - 54 506 μs
Erasure time 2-KB tE2K - 9.03 287 - 5.67 222 ms
Blank check time 8-byte tBC8 - - 56.8 - - 16.6 μs
2-KB tBC2K - - 1899 - - 140 μs
Erase suspended time tSED - - 22.5 - - 10.7 μs
Startup area switching setting time tSAS - 21.7 585 - 12.1 447 ms
Access window time tAWS - 21.7 585 - 12.1 447 ms
OCD/serial programmer ID setting time tOSIS - 21.7 585 - 12.1 447 ms
Flash memory mode transition wait time 1 tDIS 2--2--μs
Flash memory mode transition wait time 2 tMS 5--5--μs
R01DS0263EU0140 Rev.1.40 Page 120 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note: Does not include the time until each operation of the flash memory is started after instructions are executed by the software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
Note: The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
2.15.2 Data Flash Memory Characteristics
Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000),
erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different
addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address for several times as one erasure is not enabled. (overwriting is prohibited).
Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.
Note 3. These results are obtained from reliability testing.
Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.
Note 2. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
Note 3. The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
Table 2.78 Code flash characteristics (3)
Middle-speed operating mode
Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = –40 to +85°C
Parameter Symbol
FCLK = 1 MHz FCLK = 8 MHz
UnitMin Typ Max Min Typ Max
Programming time 8-byte tP8 - 157 1411 - 101 966 μs
Erasure time 2-KB tE2K - 9.10 289 - 6.10 228 ms
Blank check time 8-byte tBC8 - - 87.7 - - 52.5 μs
2-KB tBC2K - - 1930 - - 414 μs
Erase suspended time tSED - - 32.7 - - 21.6 μs
Startup area switching setting time tSAS - 22.5 592 - 14.0 464 ms
Access window time tAWS - 22.5 592 - 14.0 464 ms
OCD/serial programmer ID setting time tOSIS - 22.5 592 - 14.0 464 ms
Flash memory mode transition wait time 1 tDIS 2--2--μs
Flash memory mode transition wait time 2 tMS 720 - - 720 - - ns
Table 2.79 Data flash characteristics (1)
Parameter Symbol Min Typ Max Unit Test conditions
Reprogramming/erasure cycle*1NDPEC 100,000 1,000,000 - Times -
Data hold time After 10000 times of NDPEC tDDRP 20*2, *3- - Year Ta = +85°C
After 100000 times of NDPEC 5*2, *3- - Year
After 1000000 times of NDPEC -1*
2, *3- Year Ta = +25°C
Table 2.80 Data flash characteristics (2)
High-speed operating mode
Conditions: VCC = AVCC0 = 2.7 to 5.5 V
Parameter Symbol
FCLK = 4 MHz FCLK = 32 MHz
UnitMin Typ Max Min Typ Max
Programming time 1-byte tDP1 - 52.4 463 - 42.1 387 μs
Erasure time 1-KB tDE1K - 8.98 286 - 6.42 237 ms
Blank check time 1-byte tDBC1 - - 24.3 - - 16.6 μs
1-KB tDBC1K - - 1872 - - 512 μs
Suspended time during erasing tDSED - - 13.0 - - 10.7 μs
Data flash STOP recovery time tDSTOP 5- - 5- - μs
R01DS0263EU0140 Rev.1.40 Page 121 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.
Note 2. The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
Note 3. The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
2.16 Boundary Scan
Note 1. Boundary scan does not function until Power-On-Reset becomes negative.
Figure 2.91 Boundary scan TCK timing
Table 2.81 Data flash characteristics (3)
Middle-speed operating mode
Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = –40 to +85°C
Parameter Symbol
FCLK = 4 MHz FCLK = 8 MHz
UnitMin Typ Max Min Typ Max
Programming time 1-byte tDP1 - 94.7 886 - 89.3 849 μs
Erasure time 1-KB tDE1K - 9.59 299 - 8.29 273 ms
Blank check time 1-byte tDBC1 - - 56.2 - - 52.5 μs
1-KB tDBC1K - - 2.17 - - 1.51 ms
Suspended time during erasing tDSED - - 23.0 - - 21.7 μs
Data flash STOP recovery time tDSTOP 720 - - 720 - - ns
Table 2.82 Boundary scan
Conditions: VCC = AVCC0 = 2.4 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
TCK clock cycle time tTCKcyc 100 - - ns Figure 2.91
TCK clock high pulse width tTCKH 45 - - ns
TCK clock low pulse width tTCKL 45 - - ns
TCK clock rise time tTCKr -- 5 ns
TCK clock fall time tTCKf -- 5 ns
TMS setup time tTMSS 20 - - ns Figure 2.92
TMS hold time tTMSH 20 - - ns
TDI setup time tTDIS 20 - - ns
TDI hold time tTDIH 20 - - ns
TDO data delay tTDOD - - 70 ns
Boundary Scan circuit start up time*1tBSSTUP tRESWP ---Figure 2.93
tTCKcyc
tTCKH
tTCKf
tTCKL
tTCKr
TCK
R01DS0263EU0140 Rev.1.40 Page 122 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.92 Boundary scan input/output timing
Figure 2.93 Boundary scan circuit start up timing
2.17 Joint Test Action Group (JTAG)
Table 2.83 JTAG (Debug) characteristics (1)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
TCK clock cycle time tTCKcyc 80 - - ns Figure 2.94
TCK clock high pulse width tTCKH 35 - - ns
TCK clock low pulse width tTCKL 35 - - ns
TCK clock rise time tTCKr -- 5 ns
TCK clock fall time tTCKf -- 5 ns
TMS setup time tTMSS 16 - - ns Figure 2.95
TMS hold time tTMSH 16 - - ns
TDI setup time tTDIS 16 - - ns
TDI hold time tTDIH 16 - - ns
TDO data delay time tTDOD - - 70 ns
t
TMSS
t
TMSH
t
TDIS
t
TDIH
t
TDOD
TCK
TMS
TDI
TDO
tBSSTUP
(= tRESWP)
VCC
RES
Boundary scan
execute
R01DS0263EU0140 Rev.1.40 Page 123 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.94 JTAG TCK timing
Figure 2.95 JTAG input/output timing
Table 2.84 JTAG (Debug) characteristics (2)
Conditions: VCC = AVCC0 = 1.6 to 2.4 V
Parameter Symbol Min Typ Max Unit Test conditions
TCK clock cycle time tTCKcyc 250 - - ns Figure 2.94
TCK clock high pulse width tTCKH 120 - - ns
TCK clock low pulse width tTCKL 120 - - ns
TCK clock rise time tTCKr -- 5 ns
TCK clock fall time tTCKf -- 5 ns
TMS setup time tTMSS 50 - - ns Figure 2.95
TMS hold time tTMSH 50 - - ns
TDI setup time tTDIS 50 - - ns
TDI hold time tTDIH 50 - - ns
TDO data delay time tTDOD - - 150 ns
TCK
tTCKcyc
tTCKH
tTCKf
tTCKL tTCKr
TCK
TMS
TDI
TDO
tTMSS tTMSH
tTDIH
tTDIS
tTDOD
R01DS0263EU0140 Rev.1.40 Page 124 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
2.17.1 Serial Wire Debug (SWD)
Figure 2.96 SWD SWCLK timing
Table 2.85 SWD characteristics (1)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
SWCLK clock cycle time tSWCKcyc 80 - - ns Figure 2.96
SWCLK clock high pulse width tSWCKH 35 - - ns
SWCLK clock low pulse width tSWCKL 35 - - ns
SWCLK clock rise time tSWCKr -- 5 ns
SWCLK clock fall time tSWCKf -- 5 ns
SWDIO setup time tSWDS 16 - - ns Figure 2.97
SWDIO hold time tSWDH 16 - - ns
SWDIO data delay time tSWDD 2 - 70 ns
Table 2.86 SWD characteristics (2)
Conditions: VCC = AVCC0 = 1.6 to 2.4 V
Parameter Symbol Min Typ Max Unit Test conditions
SWCLK clock cycle time tSWCKcyc 250 - - ns Figure 2.96
SWCLK clock high pulse width tSWCKH 120 - - ns
SWCLK clock low pulse width tSWCKL 120 - - ns
SWCLK clock rise time tSWCKr -- 5 ns
SWCLK clock fall time tSWCKf -- 5 ns
SWDIO setup time tSWDS 50 - - ns Figure 2.97
SWDIO hold time tSWDH 50 - - ns
SWDIO data delay time tSWDD 2 - 150 ns
SWCLK
tSWCKcyc
tSWCKH
tSWCKf
tSWCKr
tSWCKL
R01DS0263EU0140 Rev.1.40 Page 125 of 137
Oct 29, 2018
S3A7 Datasheet 2. Electrical Characteristics
Figure 2.97 SWD input/output timing
SWDIO
(Output)
SWDIO
(Output)
SWDIO
(Output)
tSWDD
tSWDD
tSWDD
SWCLK
SWDIO
(Input)
tSWDS tSWDH
R01DS0263EU0140 Rev.1.40 Page 126 of 137
Oct 29, 2018
S3A7 Datasheet Appendix 1. Package Dimensions
Appendix 1.Package Dimensions
Information on the latest version of the package dimensions or mountings is displayed in “Packages” on the Renesas
Electronics Corporation website.
Figure 1.1 LGA 145-pin
0.5ZE
ZD0.5
0.290.250.21b
b1
y 0.08
e 0.5
x
A 1.05
E7.0
D7.0
Reference
Symbol
Dimension in Millimeters
Min Nom Max
0.29 0.34 0.39
0.08
w 0.20
v 0.15
PTLG0145KA-A 145F0GP-TFLGA145-7x7-0.50 0.1g
MASS[Typ.]RENESAS CodeJEITA Package Code Previous Code
131211109
N
M
L
K
J
Index mark
(Laser mark)
x4
v
AB
A
B
S
AB
S
S
y
S
87654321
B
C
D
E
F
G
H
A
S
A
wS
wB
ZE
ZD
A
e
e
E
D
φb1M
φb
φ
φM
R01DS0263EU0140 Rev.1.40 Page 127 of 137
Oct 29, 2018
S3A7 Datasheet Appendix 1. Package Dimensions
Figure 1.2 LQFP 144-pin
MASS (Typ) [g]
1.2
Unit: mm
Previous CodeRENESAS Code
PLQP0144KA-B
JEITA Package Code
P-LFQFP144-20x20-0.50
D
E
A
2
H
D
H
E
A
A
1
b
p
c
T
e
x
y
L
p
L
1
19.9
19.9
21.8
21.8
0.05
0.17
0.09
0q
0.45
Min Nom
Dimensions in millimeters
Reference
Symbol
Max
20.0
20.0
1.4
22.0
22.0
0.20
3.5q
0.5
0.6
1.0
20.1
20.1
22.2
22.2
1.7
0.15
0.27
0.20
8q
0.08
0.10
0.75
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
H
D
A
2
A
1
L
p
L
1
Detail F
A
c
0.25
H
E
D
E
108 73
72
37
109
144
136
F
NOTE 4
NOTE 3
Index area
*1
*2
*3
bp
T
eyS
S
M
R01DS0263EU0140 Rev.1.40 Page 128 of 137
Oct 29, 2018
S3A7 Datasheet Appendix 1. Package Dimensions
Figure 1.3 BGA 121-pin
MASS (Typ) [g]
0.15
Unit: m
Previous CodeRENESAS Code
PLBG0121JA-A
JEITA Package Code
P-LFBGA121-8x8-0.65
D
E
w
A
A1
A2
7.90
7.90
1.11
0.25
Min Nom
Dimensions in millimet
Reference
Symbol M
8.00
8.00
0.20
1.21
0.30
0.91
06
8.
8.
1.3
0.3
S
e
y1S
A
A1
A2
S
y
SxIbIA B
M
SwB
SwA ZD
ZE
INDEX MARK
B
A
1
2
3
4
5
6
7
8
9
10
11
A
BC
DEFG
H
J
KL
D
E
INDEX MARK
R01DS0263EU0140 Rev.1.40 Page 129 of 137
Oct 29, 2018
S3A7 Datasheet Appendix 1. Package Dimensions
Figure 1.4 LGA 100-pin
P-TFLGA100-7x7-0.65 0.1g
MASS[Typ.]
100F0GPTLG0100JA-A
RENESAS CodeJEITA Package Code Previous Code
0.15v
0.20w
0.08
0.4850.4350.385
MaxNomMin
Dimension in Millimeters
Symbol
Reference
7.0D
7.0E
1.05A
x
0.65
e
0.10y
b1
b 0.31 0.35 0.39
0.575ZD
ZE0.575
Index mark
B
w
S
wA
S
A
H
G
F
E
D
C
B
12345678
yS
S
A
v
×4
(Laser mark)
Index mark
J
K
910
D
E
e
e
AZD
ZE
B
φ b
φ b1
φ×MS AB
φ×MS AB
R01DS0263EU0140 Rev.1.40 Page 130 of 137
Oct 29, 2018
S3A7 Datasheet Appendix 1. Package Dimensions
Figure 1.5 LQFP 100-pin
MASS (Typ) [g]
0.6
Unit: mm
Previous CodeRENESAS Code
PLQP0100KB-B
JEITA Package Code
P-LFQFP100-14x14-0.50
© 2015 Renesas Electronics Corporation. All rights reserved.
D
E
A2
HD
HE
A
A1
bp
c
T
e
x
y
Lp
L1
13.9
13.9
15.8
15.8
0.05
0.15
0.09
0q
0.45
Min Nom
Dimensions in millimeters
Reference
Symbol
Max
14.0
14.0
1.4
16.0
16.0
0.20
3.5q
0.5
0.6
1.0
14.1
14.1
16.2
16.2
1.7
0.15
0.27
0.20
8q
0.08
0.08
0.75
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
T
H
D
A
2
A
1
L
p
L
1
Detail F
A
c
0.25
D
75
76
100 26
251
50
51
F
NOTE 4
NOTE 3
Index area
*1
H
E
E
*2
*3bp
e
yS
S
M
R01DS0263EU0140 Rev.1.40 Page 131 of 137
Oct 29, 2018
S3A7 Datasheet Appendix 1. Package Dimensions
Figure 1.6 LQFP 64-pin
MASS (Typ) [g]
0.3
Unit: mm
Previous CodeRENESAS Code
PLQP0064KB-C
JEITA Package Code
P-LFQFP64-10x10-0.50
© 2015 Renesas Electronics Corporation. All rights reserved.
D
E
A2
HD
HE
A
A1
bp
c
T
e
x
y
Lp
L1
9.9
9.9
11.8
11.8
0.05
0.15
0.09
0q
0.45
Min Nom
Dimensions in millimeters
Reference
Symbol Max
10.0
10.0
1.4
12.0
12.0
0.20
3.5q
0.5
0.6
1.0
10.1
10.1
12.2
12.2
1.7
0.15
0.27
0.20
8q
0.08
0.08
0.75
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
HD
A2
A1
Lp
L1
Detail F
A
c
0.25
D
48 33
3249
17
161
64
F
NOTE 4
NOTE 3
Index area
*1
HE
E
*2
*3bp
e
yS
S
M
T
R01DS0263EU0140 Rev.1.40 Page 132 of 137
Oct 29, 2018
S3A7 Datasheet Appendix 1. Package Dimensions
Figure 1.7 QFN 64-pin
2013 Renesas Electronics Corporation. All rights reserved.
S
y
e
Lp
SxbA B
M
A
D
E
48
32
33
16
17
1
64
A
S
B
A
D
E
49
DETAIL OF A PART
EXPOSED DIE PAD
JEITA Package code RENESAS code Previous code MASS(TYP.)[g]
P-HWQFN64-8x8-0.40 PWQN0064LA-A 0.16
16
1
17
32
49
64
INDEX AREA
2
2
D
A
Lp
0.20
6.50
0.40
8.00
8.00
6.50
Referance
Symbol Min Nom Max
Dimension in Millimeters
0.23
0.30 0.50
b0.17
x
A0.80
y0.05
0.00
0.20
e
Z
Z
c
D
E
1
D
E
2
2
2
E
0.40
0.05
1.00
1.00
0.15 0.25
A1c2
8.05
7.95
8.05
7.95
Z
Z
D
E
33
48
P64K8-40-9B5-3
S3A7 Microcontroller Group Datasheet
Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components and related
documentation, and get support.
Proprietary Notice
All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in
this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and
trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no
part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated,
transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior
written consent from Renesas.
Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.
CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.
Magic Packet™ is a trademark of Advanced Micro Devices, Inc.
SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States
and Japan.
Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective
holders.
Rev. Date Summary
1.00 Feb 23, 2016 1st release
1.30 Feb 7, 2018 2nd release
1.40 Oct 29, 2018 3rd release
Synergy Software renesassynergy.com/software
Synergy Software Package renesassynergy.com/ssp
Software add-ons renesassynergy.com/addons
Software glossary renesassynergy.com/softwareglossary
Development tools renesassynergy.com/tools
Synergy Hardware renesassynergy.com/hardware
Microcontrollers renesassynergy.com/mcus
MCU glossary renesassynergy.com/mcuglossary
Parametric search renesassynergy.com/parametric
Kits renesassynergy.com/kits
Synergy Solutions Gallery renesassynergy.com/solutionsgallery
Partner projects renesassynergy.com/partnerprojects
Application projects renesassynergy.com/applicationprojects
Self-service support resources:
Documentation renesassynergy.com/docs
Knowledgebase renesassynergy.com/knowledgebase
Forums renesassynergy.com/forum
Training renesassynergy.com/training
Videos renesassynergy.com/videos
Chat and web ticket renesassynergy.com/support
Revision History
S3A7 Microcontroller Group Datasheet
Publication Date: Rev.1.40 Oct 29, 2018
Published by: Renesas Electronics Corporation
Colophon
Address List
General Precautions
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately
degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and
quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used.
This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be
stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit
boards with mounted semiconductor devices.
2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are
indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished
product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time
when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset
by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches
the level at which resetting is specified.
3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results
from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in
the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-
off state as described in your product documentation.
4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins
of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state,
extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally,
and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the
clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated
with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full
stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or
by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device
stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to
prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the
input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of
functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the
change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the
same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and
other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins,
immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.
http://www.renesas.com
SALES OFFICES
© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.2
(Rev.4.0-1 November 2017)
Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by
you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the
product’s quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or
other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third
party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note 1) Renesas Electronicsas used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338
Renesas Synergy™ Platform
S3A7 Microcontroller Group
R01DS0263EU0140
Back cover