P4SMA Series
www.vishay.com Vishay General Semiconductor
Revision: 10-Jan-14 1Document Number: 88367
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Surface Mount TRANSZORB® Transient Voltage Suppressors
DEVICES FOR BI-DIRECTION APPLICATIONS
For bi-directional devices use CA suffix (e.g. P4SMA10CA).
Electrical characteristics apply in both directions.
FEATURES
Low profile package
Ideal for automated placement
Glass passivated chip junction
Available in uni-directional and bi-directional
400 W peak pulse power capability with a
10/1000 μs waveform, repetitive rate
(duty cycle): 0.01 % (300 W above 91 V)
Excellent clamping capability
Very fast response time
Low incremental surge resistance
Meets MSL level 1, per J-STD-020, LF maximum peak of
260 °C
AEC-Q101 qualified
Material categorization: For definitions of compliance
please see www.vishay.com/doc?99912
TYPICAL APPLICATIONS
Use in sensitive electronics protection against voltage
transients induced by inductive load switching and lighting
on ICs, MOSFET, signal lines of sensor units for consumer,
computer, industrial, and telecommunication.
MECHANICAL DATA
Case: DO-214AC (SMA)
Molding compound meets UL 94 V-0 flammability rating
Base P/N-E3 - RoHS compliant and commercial grade
Base P/NHE3 - RoHS compliant and AEC-Q101 qualified
Base P/NHE3_X - RoHS-compliant and AEC-Q101 qualified
(“_X” denotes revision code e.g. A, B, .....)
Terminals: Matte tin plated leads, solderable per
J-STD-002 and JESD 22-B102
E3 suffix meets JESD 201 class 2 whisker test, HE3 suffix
meets JESD 201 class 2 whisker test
Polarity: For uni-directional types the band denotes
cathode end, no marking on bi-directional types
Notes
(1) Non-repetitive current pulse, per fig. 3 and derated above TA = 25 °C per fig. 2. Rating is 300 W above 91 V
(2) Mounted on 0.2" x 0.2" (5.0 mm x 5.0 mm) copper pads to each terminal
PRIMARY CHARACTERISTICS
VWM 6.4 V to 459 V
VBR (uni-directional) 6.8 V to 540 V
VBR (bi-directional) 6.8 V to 220 V
PPPM 400 W, 300 W
PD3.3 W
IFSM (uni-directional only) 40 A
TJ max. 150 °C
Polarity Uni-directional, bi-directional
Package DO-214AC (SMA)
DO-214AC (SMA)
MAXIMUM RATINGS (TA = 25 °C unless otherwise noted)
PARAMETER SYMBOL VALUE UNIT
Peak power dissipation with a 10/1000 μs waveform (1)(2) (fig. 1) PPPM 400 W
Peak pulse current with a 10/1000 μs waveform (1) (fig. 3) IPPM See next table A
Power dissipation on infinite heatsink at TA = 50 °C PD3.3 W
Peak forward surge current 8.3 ms single half sine-wave uni-directional only (2) IFSM 40 A
Operating junction and storage temperature range TJ, TSTG - 65 to + 150 °C
P4SMA Series
www.vishay.com Vishay General Semiconductor
Revision: 10-Jan-14 2Document Number: 88367
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Notes
(1) Pulse test: tp 50 ms
(2) Surge current waveform per fig. 3 and derate per fig. 2
(3) All terms and symbols are consistent with ANSI/IEEE CA62.35
(4) For bi-directional types with VR of 10 V and less, the ID limit is doubled
(5) VF = 3.5 V at IF = 25 A (uni-directional only)
ELECTRICAL CHARACTERISTICS (TA = 25 °C unless otherwise noted)
PART
NUMBER
DEVICE
MARKING
CODE
BREAKDOWN
VOLTAGE
VBR AT IT (1)
(V)
TEST
CURRENT
IT
(mA)
STAND-OFF
VOLTAGE
VWM
(V)
MAXIMUM
REVERSE
LEAKAGE
AT VWM
ID (4)
(μA)
MAXIMUM
PEAK
PULSE
CURRENT
IPPM (2)
(A)
MAXIMUM
CLAMPING
VOLTAGE
AT IPPM
VC (V)
MAXIMUM
TEMPERATURE
COEFFICIENT
OF VBR
(%/°C)
UNI BI MIN. MAX.
P4SMA6.8A 6V8A 6V8C 6.45 7.14 10 5.80 1000 38.1 10.5 0.057
P4SMA7.5A 7V5A 7V5C 7.13 7.88 10 6.40 500 35.4 11.3 0.061
P4SMA8.2A 8V2A 8V2C 7.79 8.61 10 7.02 200 33.1 12.1 0.065
P4SMA9.1A 9V1A 9V1C 8.65 9.55 1.0 7.78 50 29.9 13.4 0.068
P4SMA10A 10A 10C 9.5 10.5 1.0 8.55 10 27.6 14.5 0.073
P4SMA11A 11A 11C 10.5 11.6 1.0 9.40 5.0 25.6 15.6 0.075
P4SMA12A 12A 12C 11.4 12.6 1.0 10.2 1.0 24.0 16.7 0.078
P4SMA13A 13A 13C 12.4 13.7 1.0 11.1 1.0 22.0 18.2 0.081
P4SMA15A 15A 15C 14.3 15.8 1.0 12.8 1.0 18.9 21.2 0.084
P4SMA16A 16A 16C 15.2 16.8 1.0 13.6 1.0 17.8 22.5 0.086
P4SMA18A 18A 18C 17.1 18.9 1.0 15.3 1.0 15.9 25.2 0.089
P4SMA20A 20A 20C 19.0 21.0 1.0 17.1 1.0 14.4 27.7 0.090
P4SMA22A 22A 22C 20.9 23.1 1.0 18.8 1.0 13.1 30.6 0.092
P4SMA24A 24A 24C 22.8 25.2 1.0 20.5 1.0 12.0 33.2 0.090
P4SMA27A 27A 27C 25.7 28.4 1.0 23.1 1.0 10.7 37.5 0.096
P4SMA30A 30A 30C 28.5 31.5 1.0 25.6 1.0 9.7 41.4 0.097
P4SMA33A 33A 33C 31.4 34.7 1.0 28.2 1.0 8.8 45.7 0.098
P4SMA36A 36A 36C 34.2 37.8 1.0 30.8 1.0 8.0 49.9 0.099
P4SMA39A 39A 39C 37.1 41.0 1.0 33.3 1.0 7.4 53.9 0.100
P4SMA43A 43A 43C 40.9 45.2 1.0 36.8 1.0 6.7 59.3 0.101
P4SMA47A 47A 47C 44.7 49.4 1.0 40.2 1.0 6.2 64.8 0.101
P4SMA51A 51A 51C 48.5 53.6 1.0 43.6 1.0 5.7 70.1 0.102
P4SMA56A 56A 56C 53.2 58.8 1.0 47.8 1.0 5.2 77.0 0.103
P4SMA62A 62A 62C 58.9 65.1 1.0 53.0 1.0 4.7 85.0 0.104
P4SMA68A 68A 68C 64.6 71.4 1.0 58.1 1.0 4.3 92.0 0.104
P4SMA75A 75A 75C 71.3 78.8 1.0 64.1 1.0 3.9 104 0.105
P4SMA82A 82A 82C 77.9 86.1 1.0 70.1 1.0 3.5 113 0.105
P4SMA91A 91A 91C 86.5 95.5 1.0 77.8 1.0 3.2 125 0.106
P4SMA100A 100A 100C 95.0 105 1.0 85.5 1.0 2.2 137 0.106
P4SMA110A 110A 110C 105 116 1.0 94.0 1.0 2.0 152 0.107
P4SMA120A 120A 120C 114 126 1.0 102 1.0 1.8 165 0.107
P4SMA130A 130A 130C 124 137 1.0 111 1.0 1.7 179 0.107
P4SMA150A 150A 150C 143 158 1.0 128 1.0 1.4 207 0.106
P4SMA160A 160A 160C 152 168 1.0 136 1.0 1.4 219 0.108
P4SMA170A 170A 170C 162 179 1.0 145 1.0 1.3 234 0.108
P4SMA180A 180A 180C 171 189 1.0 154 1.0 1.2 246 0.108
P4SMA200A 200A 200C 190 210 1.0 171 1.0 1.1 274 0.108
P4SMA220A 220A 220C 209 231 1.0 185 1.0 0.9 328 0.108
P4SMA250A 250A - 237 263 1.0 214 1.0 0.87 344 0.110
P4SMA300A 300A - 285 315 1.0 256 1.0 0.73 414 0.110
P4SMA350A 350A - 333 368 1.0 300 1.0 0.62 482 0.110
P4SMA400A 400A - 380 420 1.0 342 1.0 0.55 548 0.110
P4SMA440A 440A - 418 462 1.0 376 1.0 0.50 602 0.110
P4SMA480A 480A - 456 504 1.0 408 1.0 0.46 658 0.110
P4SMA510A 510A - 485 535 1.0 434 1.0 0.43 698 0.110
P4SMA540A 540A - 513 567 1.0 459 1.0 0.41 740 0.110
P4SMA Series
www.vishay.com Vishay General Semiconductor
Revision: 10-Jan-14 3Document Number: 88367
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Note
(1) Mounted on minimum recommended pad layout
Note
(1) AEC-Q101 qualified
RATINGS AND CHARACTERISTICS CURVES (TA = 25 °C unless otherwise noted)
Fig. 1 - Peak Pulse Power Rating Curve Fig. 2 - Pulse Power or Current vs. Initial Junction Temperature
THERMAL CHARACTERISTICS (TA = 25 °C unless otherwise noted)
PARAMETER SYMBOL VALUE UNIT
Typical thermal resistance, junction to ambient air (1) RJA 120 °C/ W
Typical thermal resistance, junction to lead RJL 30
ORDERING INFORMATION (Example)
PREFERRED P/N UNIT WEIGHT
(g)
VOLTAGE RANGE
(V) PACKAGE
CODE
BASE
QUANTITY DELIVERY MODE
UNI - BI -
P4SMA6.8A-E3/61 0.064 6.8 to 540 6.8 to 220 61 1800 7" diameter plastic tape and reel
P4SMA6.8A-E3/5A 0.064 6.8 to 540 6.8 to 220 5A 7500 13" diameter plastic tape and reel
P4SMA6.8AHE3/61 (1) 0.064 6.8 to 540 6.8 to 220 61 1800 7" diameter plastic tape and reel
P4SMA6.8AHE3/5A (1) 0.064 6.8 to 540 6.8 to 220 5A 7500 13" diameter plastic tape and reel
P4SMA250AHE3_A/H (1) 0.064 250 to 540 - H 1800 7" diameter plastic tape and reel
P4SMA250AHE3_A/I (1) 0.064 250 to 540 - I 7500 13" diameter plastic tape and reel
0.1
1
10
100
P4SMA6.8A -
P4SMA91A
P4SMA100A -
P4SMA220A
0.2 x 0.2" (5.0 x 5.0 mm)
Copper Pad Areas
Non-Repetitive Pulse
Waveform shown in Fig. 3
T
A
= 25 °C
P
PPM
- Peak Pulse Power (kW)
td - Pulse Width (s)
0.1 µs 1.0 µs 10 µs 100 µs 1.0 ms 10 ms
0 25 50 75 100
100
75
50
25
0
125 150 175 200
TJ - Initial Temperature (°C)
Peak Pulse Power (P
PP
) or Current (I
PP
)
Derating in Percentage, %
P4SMA Series
www.vishay.com Vishay General Semiconductor
Revision: 10-Jan-14 4Document Number: 88367
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 3 - Pulse Waveform
Fig. 4 - Typical Junction Capacitance
Fig. 5 - Typical Transient Thermal Impedance
Fig. 6 - Maximum Non-Repetitive Forward Surge Current
Uni-Directional Use Only
0
50
100
1
5
0
t
d
0 1.0 2.0 3.0 4.0
tr = 10 µs
Peak Value
IPPM
Half Value -
IPPM
IPP
2
10/1000 µs Waveform
as defined by R.E.A.
IPPM - Peak Pulse Current, % IRSM
t - Time (ms)
TJ = 25 °C
Pulse Width (td)
is defined as the Point
where the Peak Current
decays to 50 % of IPPM
10
100
1000
10 000
101 100 200
Uni-Directional
Bi-Directional
C
J
- Junction Capacitance (pF)
V
BR
- Breakdown Voltage (V)
T
J
= 25 °C
f = 1.0 MHz
V
sig
= 50 mVp-p
Measured at
Stand-Off
Voltage V
WM
1
10
100
1000
0.001 0.01 0.1 100 1 10 1000
tp - Pulse Duration (s)
Transient Thermal Impedance (°C/W)
1051 50 100
10
50
100
200
Number of Cycles at 60 Hz
Peak Forward Surge Current (A)
TJ = TJ max.
8.3 ms Single Half Sine-Wave
P4SMA Series
www.vishay.com Vishay General Semiconductor
Revision: 10-Jan-14 5Document Number: 88367
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
PACKAGE OUTLINE DIMENSIONS in inches (millimeters)
0.008 (0.203)
0.194 (4.93)
0.208 (5.28)
0.157 (3.99)
0.177 (4.50)
0.100 (2.54)
0.110 (2.79)
0.078 (1.98)
0.090 (2.29)
0.006 (0.152)
0.012 (0.305)
0.049 (1.25)
0.065 (1.65)
Cathode Band
0 (0)
DO-214AC (SMA)
Mounting Pad Layout
0.074 (1.88)
MAX.
0.208 (5.28)
REF.
0.066 (1.68)
MIN.
0.060 (1.52)
MIN.
0.030 (0.76)
0.060 (1.52)
Legal Disclaimer Notice
www.vishay.com Vishay
Revision: 02-Oct-12 1Document Number: 91000
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.