
SEMICONDUCTOR TECHNICAL DATA
1REV 7
Motorola, Inc. 1995
10/95
  
 
High–Performance Silicon–Gate CMOS
The MC54/74HC4051, MC74HC4052 and MC54/74HC4053 utilize sili-
con–gate CMOS technology to achieve fast propagation delays, low ON
resistances, and low OFF leakage currents. These analog multiplexers/
demultiplexers control analog voltages that may vary across the complete
power supply range (from VCC to VEE).
The HC4051, HC4052 and HC4053 are identical in pinout to the
metal–gate MC14051B, MC14052B and MC14053B. The Channel–Select
inputs determine which one of the Analog Inputs/Outputs is to be connected,
by means of an analog switch, to the Common Output/Input. When the
Enable pin is HIGH, all analog switches are turned off.
The Channel–Select and Enable inputs are compatible with standard
CMOS outputs; with pullup resistors they are compatible with LSTTL
outputs.
These devices have been designed so that the ON resistance (Ron) is
more linear over input voltage than Ron of metal–gate CMOS analog
switches.
For multiplexers/demultiplexers with channel–select latches, see
HC4351, HC4352 and HC4353.
Fast Switching and Propagation Speeds
Low Crosstalk Between Switches
Diode Protection on All Inputs/Outputs
Analog Power Supply Range (VCC – VEE) = 2.0 to 12.0 V
Digital (Control) Power Supply Range (VCC – GND) = 2.0 to 6.0 V
Improved Linearity and Lower ON Resistance Than Metal–Gate
Counterparts
Low Noise
In Compliance With the Requirements of JEDEC Standard No. 7A
Chip Complexity: HC4051 — 184 FETs or 46 Equivalent Gates
HC4052 — 168 FETs or 42 Equivalent Gates
HC4053 — 156 FETs or 39 Equivalent Gates
LOGIC DIAGRAM
MC54/74HC4051
Single–Pole, 8–Position Plus Common Off
X0 13
X1 14
X2 15
X3 12
X4 1
X5 5
X6 2
X7 4
A11
B10
C9
ENABLE 6
MULTIPLEXER/
DEMULTIPLEXER X
3
ANALOG
INPUTS/
CHANNEL
INPUTS
PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
COMMON
OUTPUT/
INPUT
1516 14 13 12 11 10
21 34567
VCC 9
8
X2 X1 X0 X3 A B C
X4 X6 X X7 X5 Enable VEE GND
Pinout: MC54/74HC4051 (Top View)
OUTPUTS
SELECT
L
L
L
L
H
H
H
H
X
L
L
H
H
L
L
H
H
X
L
H
L
H
L
H
L
H
X



FUNCTION TABLE – MC54/74HC4051
Control Inputs
ON Channels
Enable Select
C B A
X0
X1
X2
X3
X4
X5
X6
X7
NONE
L
L
L
L
L
L
L
L
HX = Don’t Care
D SUFFIX
SOIC PACKAGE
CASE 751B–05
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
1
16
1
16
J SUFFIX
CERAMIC PACKAGE
CASE 620–10
1
16
ORDERING INFORMATION
MC54HCXXXXJ
MC74HCXXXXN
MC74HCXXXXD
MC74HCXXXXDW
MC74HCXXXXDT
Ceramic
Plastic
SOIC
SOIC Wide
TSSOP
1
16 DT SUFFIX
TSSOP PACKAGE
CASE 948F–01
DW SUFFIX
SOIC PACKAGE
CASE 751G–02
1
16
MC54/74HC4051 MC74HC4052 MC54/74HC4053
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
2
LOGIC DIAGRAM
MC74HC4052
Double–Pole, 4–Position Plus Common Off
X0 12
X1 14
X2 15
X3 11
Y0 1
Y1 5
Y2 2
Y3 4
A10
B9
ENABLE 6
X SWITCH
Y SWITCH
X
13
ANALOG
INPUTS/OUTPUTS
CHANNEL-SELECT
INPUTS PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
COMMON
OUTPUTS/INPUTS
L
L
H
H
X
L
H
L
H
X
FUNCTION TABLE – MC74HC4052
Control Inputs
ON ChannelsEnable Select
B A
X0
X1
X2
X3
L
L
L
L
H
X = Don’t Care
Pinout: MC74HC4052 (Top View)
1516 14 13 12 11 10
21 34567
VCC 9
8
X2 X1 X X0 X3 A B
Y0 Y2 Y Y3 Y1 Enable VEE GND
Y
3
Y0
Y1
Y2
Y3 NONE
LOGIC DIAGRAM
MC54/74HC4053
Triple Single–Pole, Double–Position Plus Common Off
X0 12
X1 13
A11
B10
C9
ENABLE 6
X SWITCH
Y SWITCH
X
14
ANALOG
INPUTS/OUTPUTS
CHANNEL-SELECT
INPUTS PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
COMMON
OUTPUTS/INPUTS
L
L
L
L
H
H
H
H
X
L
L
H
H
L
L
H
H
X
L
H
L
H
L
H
L
H
X
FUNCTION TABLE – MC54/74HC4053
Control Inputs
ON Channels
Enable Select
CBA
L
L
L
L
L
L
L
L
H
X = Don’t Care
Pinout: MC54/74HC4053 (Top View)
1516 14 13 12 11 10
21 3 4 5 6 7
VCC 9
8
Y X X1 X0 A B C
Y1 Y0 Z1 Z Z0 Enable VEE GND
Z0
Z0
Z0
Z0
Z1
Z1
Z1
Z1
Y0
Y0
Y1
Y1
Y0
Y0
Y1
Y1
X0
X1
X0
X1
X0
X1
X0
X1
NONE
Y0 2
Y1 1Y
15
Z0 5
Z1 3Z
4
Z SWITCH
NOTE: This device allows independent control of each switch.
Channel–Select Input A controls the X–Switch, Input B controls
the Y–Switch and Input C controls the Z–Switch
MC54/74HC4051 MC74HC4052 MC54/74HC4053
High–Speed CMOS Logic Data
DL129 — Rev 6 3 MOTOROLA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS*
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Parameter
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Value
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
VCC
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Positive DC Supply Voltage (Referenced to GND)
(Referenced to VEE)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
– 0.5 to + 7.0
– 0.5 to + 14.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
V
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
VEE
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Negative DC Supply Voltage (Referenced to GND)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
– 7.0 to + 5.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
V
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
VIS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Analog Input Voltage
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VEE – 0.5 to
VCC + 0.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
V
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vin
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Digital Input Voltage (Referenced to GND)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
– 0.5 to VCC + 0.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
V
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
I
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current, Into or Out of Any Pin
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
± 25
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mA
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
PD
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Power Dissipation in Still Air,Plastic or Ceramic DIP†
SOIC Package†
TSSOP Package†
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
750
500
450
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mW
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Tstg
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Storage Temperature Range
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
– 65 to + 150
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
_
C
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
TL
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Lead Temperature, 1 mm from Case for 10 Seconds
Plastic DIP, SOIC or TSSOP Package
Ceramic DIP
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
260
300
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
Derating Plastic DIP: – 10 mW/
_
C from 65
_
to 125
_
C
Ceramic DIP: – 10 mW/
_
C from 100
_
to 125
_
C
SOIC Package: – 7 mW/
_
C from 65
_
to 125
_
C
TSSOP Package: – 6.1 mW/
_
C from 65
_
to 125
_
C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Parameter
Min
Max
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCC
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Positive DC Supply Voltage (Referenced to GND)
(Referenced to VEE)
2.0
2.0
6.0
12.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VEE
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Negative DC Supply Voltage, Output (Referenced to
GND)
– 6.0
GND
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VIS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Analog Input Voltage
VEE
VCC
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
Vin
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Digital Input Voltage (Referenced to GND)
GND
VCC
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VIO*
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Static or Dynamic Voltage Across Switch
1.2
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
V
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
TA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating Temperature Range, All Package Types
– 55
+ 125
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
_
C
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
tr, tf
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Input Rise/Fall Time VCC = 2.0 V
(Channel Select or Enable Inputs) VCC = 4.5 V
VCC = 6.0 V
0
0
0
1000
500
400
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ns
*For voltage drops across switch greater than 1.2V (switch on), excessive VCC current may be
drawn; i.e., the current out of the switch may contain both VCC and switch input components. The
reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance cir-
cuit. For proper operation, Vin and
Vout should be constrained to the
range GND
v
(Vin or V out)
v
VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
MC54/74HC4051 MC74HC4052 MC54/74HC4053
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
4
DC CHARACTERISTICS Digital Section (Voltages Referenced to GND) VEE = GND, Except Where Noted
Symbol
Parameter
Condition
VCC
V
Guaranteed Limit
Unit
Symbol
Parameter
Condition
VCC
V
–55 to 25°C85°C125°C
Unit
VIH Minimum High–Level Input Voltage,
Channel–Select or Enable Inputs Ron = Per Spec 2.0
4.5
6.0
1.50
3.15
4.20
1.50
3.15
4.20
1.50
3.15
4.20
V
VIL Maximum Low–Level Input Voltage,
Channel–Select or Enable Inputs Ron = Per Spec 2.0
4.5
6.0
0.3
0.9
1.2
0.3
0.9
1.2
0.3
0.9
1.2
V
Iin Maximum Input Leakage Current,
Channel–Select or Enable Inputs Vin = VCC or GND,
VEE = – 6.0 V 6.0 ± 0.1 ± 1.0 ± 1.0 µA
ICC Maximum Quiescent Supply
Current (per Package) Channel Select, Enable and
VIS = VCC or GND; VEE = GND
VIO = 0 V VEE = – 6.0 6.0
6.0 2
820
80 40
160
µA
NOTE:Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
DC CHARACTERISTICS — Analog Section
Symbol
Parameter
Condition
VCC
VEE
Guaranteed Limit
Unit
Symbol
Parameter
Condition
VCC
VEE
–55 to 25°C85°C125°C
Unit
Ron Maximum “ON” Resistance Vin = VIL or VIH; VIS = VCC to
VEE; IS 2.0 mA
(Figures 1, 2)
4.5
4.5
6.0
0.0
– 4.5
– 6.0
190
120
100
240
150
125
280
170
140
Vin = VIL or VIH; VIS = VCC or
VEE (Endpoints); IS 2.0 mA
(Figures 1, 2)
4.5
4.5
6.0
0.0
– 4.5
– 6.0
150
100
80
190
125
100
230
140
115
Ron Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
Vin = VIL or VIH;
VIS = 1/2 (VCC – VEE);
IS 2.0 mA
4.5
4.5
6.0
0.0
– 4.5
– 6.0
30
12
10
35
15
12
40
18
14
Ioff Maximum Off–Channel Leakage
Current, Any One Channel Vin = VIL or VIH;
VIO = VCC – VEE;
Switch Off (Figure 3) 6.0 – 6.0 0.1 0.5 1.0 µA
Maximum Off–Channel HC4051
Leakage Current, HC4052
Common Channel HC4053
Vin = VIL or VIH;
VIO = VCC – VEE;
Switch Off (Figure 4)
6.0
6.0
6.0
– 6.0
– 6.0
– 6.0
0.2
0.1
0.1
2.0
1.0
1.0
4.0
2.0
2.0
Ion Maximum On–Channel HC4051
Leakage Current, HC4052
Channel–to–Channel HC4053
Vin = VIL or VIH;
Switch–to–Switch =
VCC – VEE; (Figure 5)
6.0
6.0
6.0
– 6.0
– 6.0
– 6.0
0.2
0.1
0.1
2.0
1.0
1.0
4.0
2.0
2.0
µA
MC54/74HC4051 MC74HC4052 MC54/74HC4053
High–Speed CMOS Logic Data
DL129 — Rev 6 5 MOTOROLA
AC CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns)
Symbol
Parameter
VCC
V
Guaranteed Limit
Unit
Symbol
Parameter
VCC
V
–55 to 25°C85°C125°C
Unit
tPLH,
tPHL Maximum Propagation Delay, Channel–Select to Analog Output
(Figure 9) 2.0
4.5
6.0
370
74
63
465
93
79
550
110
94
ns
tPLH,
tPHL Maximum Propagation Delay, Analog Input to Analog Output
(Figure 10) 2.0
4.5
6.0
60
12
10
75
15
13
90
18
15
ns
tPLZ,
tPHZ Maximum Propagation Delay, Enable to Analog Output
(Figure 11) 2.0
4.5
6.0
290
58
49
364
73
62
430
86
73
ns
tPZL,
tPZH Maximum Propagation Delay, Enable to Analog Output
(Figure 11) 2.0
4.5
6.0
345
69
59
435
87
74
515
103
87
ns
Cin Maximum Input Capacitance, Channel–Select or Enable Inputs 10 10 10 pF
CI/O Maximum Capacitance Analog I/O 35 35 35 pF
(All Switches Off) Common O/I: HC4051
HC4052
HC4053
130
80
50
130
80
50
130
80
50
Feedthrough 1.0 1.0 1.0
NOTE:For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High–
Speed CMOS Data Book (DL129/D).
CPD
Power Dissipation Capacitance (Figure 13)* HC4051
HC4052
HC4053
Typical @ 25°C, VCC = 5.0 V, VEE = 0 V
pF
CPD Power Dissipation Capacitance (Figure 13)* HC4051
HC4052
HC4053
45
80
45
pF
*Used to determine the no–load dynamic power consumption: PD = CPD VCC2f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).
MC54/74HC4051 MC74HC4052 MC54/74HC4053
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
6
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)
Symbol
Parameter
Condition
VCC
V
VEE
V
Limit*
Unit
Symbol
Parameter
Condition
VCC
V
VEE
V
25°C
Unit
BW Maximum On–Channel Bandwidth
or Minimum Frequency Response
(Figure 6)
fin = 1MHz Sine Wave; Adjust fin Voltage to
Obtain 0dBm at VOS; Increase fin Frequency
Until dB Meter Reads –3dB;
RL = 50, CL = 10pF
2.25
4.50
6.00
‘51 ‘52 ‘53
MHz
or Minimum Frequency Response
(Figure 6)
Obtain 0dBm at VOS; Increase fin Frequency
Until dB Meter Reads –3dB;
RL = 50, CL = 10pF
2.25
4.50
6.00
–2.25
–4.50
–6.00
80
80
80
95
95
95
120
120
120
Off–Channel Feedthrough Isolation
(Figure 7) fin = Sine Wave; Adjust fin Voltage to Obtain
0dBm at VIS
fin = 10kHz, RL = 600, CL = 50pF
2.25
4.50
6.00
–2.25
–4.50
–6.00
–50
–50
–50
dB
fin = 1.0MHz, RL = 50, CL = 10pF
2.25
4.50
6.00
–2.25
–4.50
–6.00
–40
–40
–40
Feedthrough Noise.
Channel–Select Input to Common
I/O (Figure 8)
Vin 1MHz Square Wave (tr = tf = 6ns);
Adjust RL at Setup so that IS = 0A;
Enable = GND RL = 600, CL = 50pF
2.25
4.50
6.00
–2.25
–4.50
–6.00
25
105
135
mVPP
RL = 10k, CL = 10pF
2.25
4.50
6.00
–2.25
–4.50
–6.00
35
145
190
Crosstalk Between Any Two
Switches (Figure 12)
(Test does not apply to HC4051)
fin = Sine Wave; Adjust fin Voltage to Obtain
0dBm at VIS
fin = 10kHz, RL = 600, CL = 50pF
2.25
4.50
6.00
–2.25
–4.50
–6.00
–50
–50
–50
dB
fin = 1.0MHz, RL = 50, CL = 10pF
2.25
4.50
6.00
–2.25
–4.50
–6.00
–60
–60
–60
THD Total Harmonic Distortion
(Figure 14) fin = 1kHz, RL = 10k, CL = 50pF
THD = THDmeasured – THDsource
VIS = 4.0VPP sine wave
VIS = 8.0VPP sine wave
VIS = 11.0VPP sine wave
2.25
4.50
6.00
–2.25
–4.50
–6.00
0.10
0.08
0.05
%
*Limits not tested. Determined by design and verified by qualification.
MC54/74HC4051 MC74HC4052 MC54/74HC4053
High–Speed CMOS Logic Data
DL129 — Rev 6 7 MOTOROLA
Figure 1a. Typical On Resistance, VCC – VEE = 2.0 V Figure 1b. Typical On Resistance, VCC – VEE = 4.5 V
Figure 1c. Typical On Resistance, VCC – VEE = 6.0 V Figure 1d. Typical On Resistance, VCC – VEE = 9.0 V
Figure 1e. Typical On Resistance, VCC – VEE = 12.0 V Figure 2. On Resistance Test Set–Up
1.0 2.0
300
250
200
150
100
50
00 0.25 0.50 0.75 1.0 1.25 1.5 1.75 2.0 2.25
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Ron, ON RESISTANCE (OHMS)
120
100
80
60
40
20
00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Ron, ON RESISTANCE (OHMS)
120
105
90
75
60
45
00 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Ron, ON RESISTANCE (OHMS)
90
75
60
45
30
15
00 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Ron, ON RESISTANCE (OHMS)
80
70
60
50
40
30
00
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Ron, ON RESISTANCE (OHMS)
25
°
C
55
°
C
125
°
C25
°
C
55
°
C
125
°
C
30
15
5.0 5.5 6.0
25
°
C
55
°
C
125
°
C
25
°
C
55
°
C
125
°
C
20
10
3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
25
°
C
55
°
C
125
°
C
PLOTTER
MINI COMPUTER
PROGRAMMABLE
POWER
SUPPLY DC ANALYZER
VCC
DEVICE
UNDER TEST
+
ANALOG IN COMMON OUT
GND VEE
MC54/74HC4051 MC74HC4052 MC54/74HC4053
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
8
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test Set–Up Figure 4. Maximum Off Channel Leakage Current,
Common Channel, Test Set–Up
Figure 5. Maximum On Channel Leakage Current,
Channel to Channel, Test Set–Up Figure 6. Maximum On Channel Bandwidth,
Test Set–Up
Figure 7. Off Channel Feedthrough Isolation,
Test Set–Up Figure 8. Feedthrough Noise, Channel Select to
Common Out, Test Set–Up
OFF
OFF
6
7
8
16
COMMON O/I
VCC
VEE
VIH
NC
A
VCC
VEE
VCC
OFF
OFF
6
7
8
16
COMMON O/I
VCC
VEE
VIH
ANALOG I/O
VCC
VEE
VCC
ON
OFF
6
7
8
16
COMMON O/I
VCC
VEE
VIL
VCC
VEE
VCC
N/C
A
ANALOG I/O
ON
6
7
8
16
VCC
VEE
0.1
µ
F
CL*
fin RL
dB
METER
*Includes all probe and jig capacitance
OFF
6
7
8
16
VCC
VEE
0.1
µ
F
CL*
fin RL
dB
METER
*Includes all probe and jig capacitance
VOS
VOS
RL
VIS
VIL or VIH CHANNEL SELECT
ON/OFF
6
7
8
16
VCC
VEE
CL*
RL
*Includes all probe and jig capacitance
CHANNEL SELECT
TEST
POINT
COMMON O/I
11 VCC
OFF/ON
ANALOG I/O
RL
RL
VCC
GND
Vin
1 MHz
tr = tf = 6 ns
MC54/74HC4051 MC74HC4052 MC54/74HC4053
High–Speed CMOS Logic Data
DL129 — Rev 6 9 MOTOROLA
Figure 9a. Propagation Delays, Channel Select
to Analog Out Figure 9b. Propagation Delay, Test Set–Up Channel
Select to Analog Out
Figure 10a. Propagation Delays, Analog In
to Analog Out Figure 10b. Propagation Delay, Test Set–Up
Analog In to Analog Out
Figure 11a. Propagation Delays, Enable to
Analog Out Figure 11b. Propagation Delay, Test Set–Up
Enable to Analog Out
VCC
GND
CHANNEL
SELECT
ANALOG
OUT 50%
tPLH tPHL
50% ON/OFF
6
7
8
16
VCC
CL*
*Includes all probe and jig capacitance
CHANNEL SELECT
TEST
POINT
COMMON O/I
OFF/ON
ANALOG I/O
VCC
VCC
GND
ANALOG
IN
ANALOG
OUT 50%
tPLH tPHL
50% ON
6
7
8
16
VCC
CL*
*Includes all probe and jig capacitance
TEST
POINT
COMMON O/I
ANALOG I/O
ON/OFF
6
7
8
ENABLE
VCC
ENABLE 90%
50%
10%
tftrVCC
GND
ANALOG
OUT
tPZL
ANALOG
OUT
tPZH
HIGH
IMPEDANCE
VOL
VOH
HIGH
IMPEDANCE
10%
90%
tPLZ
tPHZ
50%
50%
ANALOG I/O
CL*
TEST
POINT
16
VCC 1k
1
2
1
2
POSITION 1 WHEN TESTING tPHZ AND tPZH
POSITION 2 WHEN TESTING tPLZ AND tPZL
MC54/74HC4051 MC74HC4052 MC54/74HC4053
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
10
RL
Figure 12. Crosstalk Between Any Two
Switches, Test Set–Up Figure 13. Power Dissipation Capacitance,
Test Set–Up
Figure 14a. Total Harmonic Distortion, Test Set–Up Figure 14b. Plot, Harmonic Distortion
0
10
20
30
40
50
100 1.0 2.0 3.125
FREQUENCY (kHz)
dB
60
70
80
90
FUNDAMENTAL FREQUENCY
DEVICE
SOURCE
ON
6
7
8
16
VEE CL*
*Includes all probe and jig capacitance
OFF
RL
RL
VIS
RLCL*
VOS
fin 0.1
µ
F
ON/OFF
6
7
8
16
VCC
CHANNEL SELECT
NC
COMMON O/I
OFF/ON
ANALOG I/O
VCC A
11
VCC
VEE
ON
6
7
8
16
VCC
VEE
0.1
µ
F
CL*
fin RL
TO
DISTORTION
METER
*Includes all probe and jig capacitance
VOS
VIS
APPLICATIONS INFORMATION
The Channel Select and Enable control pins should be at
VCC or GND logic levels. VCC being recognized as a logic
high and GND being recognized as a logic low. In this exam-
ple: VCC = +5V = logic high
GND = 0V = logic low
The maximum analog voltage swings are determined by
the supply voltages VCC and VEE. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below VEE. In this example, the
difference between VCC and VEE is ten volts. Therefore,
using the configuration of Figure 15, a maximum analog sig-
nal of ten volts peak–to–peak can be controlled. Unused
analog inputs/outputs may be left floating (i.e., not con-
nected). However, tying unused analog inputs and outputs to
VCC or GND through a low value resistor helps minimize
crosstalk and feedthrough noise that may be picked up by an
unused switch.
Although used here, balanced supplies are not a require-
ment. The only constraints on the power supplies are that:
VCC – GND = 2 to 6 volts
VEE – GND = 0 to –6 volts
VCC – VEE = 2 to 12 volts
and VEE GND
When voltage transients above VCC and/or below VEE are
anticipated on the analog channels, external Germanium or
Schottky diodes (Dx) are recommended as shown in Figure
16. These diodes should be able to absorb the maximum
anticipated current surges during clipping.
MC54/74HC4051 MC74HC4052 MC54/74HC4053
High–Speed CMOS Logic Data
DL129 — Rev 6 11 MOTOROLA
ANALOG
SIGNAL
Figure 15. Application Example Figure 16. External Germanium or
Schottky Clipping Diodes
a. Using Pull–Up Resistors b. Using HCT Interface
Figure 17. Interfacing LSTTL/NMOS to CMOS Inputs
ON
6
7
8
16
+5V
–5V
ANALOG
SIGNAL
+5V
–5V
+5V
–5V
11
10
9
TO EXTERNAL CMOS
CIRCUITRY 0 to 5V
DIGITAL SIGNALS
ON/OFF
7
8
16
VCC
VEE
VEE
Dx
VCC
Dx
VEE
Dx
VCC
Dx
ANALOG
SIGNAL
ON/OFF
6
7
8
16
+5V
VEE
ANALOG
SIGNAL
+5V
VEE
+5V
VEE
11
10
9
R
*R R
LSTTL/NMOS
CIRCUITRY
+5V
* 2K
R
10K
ANALOG
SIGNAL
ON/OFF
6
7
8
16
+5V
VEE
ANALOG
SIGNAL
+5V
VEE
+5V
VEE
11
10
9LSTTL/NMOS
CIRCUITRY
+5V
HCT
BUFFER
Figure 18. Function Diagram, HC4051
13 X0
14 X1
15 X2
12 X3
1X4
5X5
2X6
4X7
3X
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
11
A
10
B
9
C
6
ENABLE
MC54/74HC4051 MC74HC4052 MC54/74HC4053
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
12
Figure 20. Function Diagram, HC4053
Figure 19. Function Diagram, HC4052
13 X1
12 X0
1Y1
2Y0
3Z1
5Z0
14 X
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
11
A
10
B
9
C
6
ENABLE
12 X0
14 X1
15 X2
11 X3
1Y0
5Y1
2Y2
4Y3
3Y
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
10
A
9
B
6
ENABLE
13 X
15 Y
4Z
MC54/74HC4051 MC74HC4052 MC54/74HC4053
High–Speed CMOS Logic Data
DL129 — Rev 6 13 MOTOROLA
OUTLINE DIMENSIONS
J SUFFIX
CERAMIC PACKAGE
CASE 620–10
ISSUE V
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ISSUE R
19.05
6.10
0.39
1.40
0.21
3.18
19.93
7.49
5.08
0.50
1.65
0.38
4.31
0
°
0.51 15
°
1.01
1.27 BSC
2.54 BSC
7.62 BSC
MIN MINMAX MAX
INCHES MILLIMETERS
DIM 0.750
0.240
0.015
0.055
0.008
0.125
0.785
0.295
0.200
0.020
0.065
0.015
0.170
0.050 BSC
0.100 BSC
0.300 BSC
A
B
C
D
E
F
G
J
K
L
M
N0
°
0.020 15
°
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4. DIM F MAY NARROW TO 0.76 (0.030) WHERE
THE LEAD ENTERS THE CERAMIC BODY.
1 8
916
–A
–B
C
K
N
G
E
F
D 16 PL
–T
SEATING
PLANE
M
L
J 16 PL
0.25 (0.010) T A
MS0.25 (0.010) T B
MS
MIN MINMAX MAX
INCHES MILLIMETERS
DIM
A
B
C
D
F
G
H
J
K
L
M
S
18.80
6.35
3.69
0.39
1.02
0.21
2.80
7.50
0
°
0.51
19.55
6.85
4.44
0.53
1.77
0.38
3.30
7.74
10
°
1.01
0.740
0.250
0.145
0.015
0.040
0.008
0.110
0.295
0
°
0.020
0.770
0.270
0.175
0.021
0.070
0.015
0.130
0.305
10
°
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
2.54 BSC
1.27 BSC
0.100 BSC
0.050 BSC
–A
B
1 8
916
F
HGD 16 PL
S
C
–T
SEATING
PLANE
KJM
L
T A0.25 (0.010) M M
0.25 (0.010) T B A
MS S
MIN MINMAX MAX
MILLIMETERS INCHES
DIM
A
B
C
D
F
G
J
K
M
P
R
9.80
3.80
1.35
0.35
0.40
0.19
0.10
0
°
5.80
0.25
10.00
4.00
1.75
0.49
1.25
0.25
0.25
7
°
6.20
0.50
0.386
0.150
0.054
0.014
0.016
0.008
0.004
0
°
0.229
0.010
0.393
0.157
0.068
0.019
0.049
0.009
0.009
7
°
0.244
0.019
1.27 BSC 0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
18
916
–A
–B
D16 PL
K
C
G
–T
SEATING
PLANE
R X 45°
MJ
F
P 8 PL
0.25 (0.010) B
M M
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J
MC54/74HC4051 MC74HC4052 MC54/74HC4053
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
14
OUTLINE DIMENSIONS
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948F–01
ISSUE O
ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇ
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A4.90 5.10 0.193 0.200
B4.30 4.50 0.169 0.177
C––– 1.20 ––– 0.047
D0.05 0.15 0.002 0.006
F0.50 0.75 0.020 0.030
G0.65 BSC 0.026 BSC
H0.18 0.28 0.007 0.011
J0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L6.40 BSC 0.252 BSC
M0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER
SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT
DATUM PLANE –W–.
_ _ _ _
SECTION N–N
SEATING
PLANE
IDENT.
PIN 1
18
16 9
DETAIL E
J
J1
B
C
D
A
K
K1
H
G
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
DETAIL E
F
M
L
2X L/2
–U–
S
U0.15 (0.006) T
S
U0.15 (0.006) T
S
U
M
0.10 (0.004) V S
T
0.10 (0.004)
–T–
–V–
–W–
0.25 (0.010)
16X REFK
N
N
DW SUFFIX
PLASTIC SOIC PACKAGE
CASE 751G–02
ISSUE A
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A10.15 10.45 0.400 0.411
B7.40 7.60 0.292 0.299
C2.35 2.65 0.093 0.104
D0.35 0.49 0.014 0.019
F0.50 0.90 0.020 0.035
G1.27 BSC 0.050 BSC
J0.25 0.32 0.010 0.012
K0.10 0.25 0.004 0.009
M0 7 0 7
P10.05 10.55 0.395 0.415
R0.25 0.75 0.010 0.029
M
B
M
0.010 (0.25)
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN
EXCESS OF D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
–A–
–B– P8X
G14X
D16X
SEATING
PLANE
–T–
S
A
M
0.010 (0.25) B S
T
16 9
81
F
J
RX 45
_
_ _ _ _
M
C
K
MC54/74HC4051 MC74HC4052 MC54/74HC4053
High–Speed CMOS Logic Data
DL129 — Rev 6 15 MOTOROLA
How to reach us:
USA/EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability , including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customers technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer .
MC54/74HC4051/D
*MC54/74HC4051/D*
CODELINE