GS431B/TL431A/TL431 Vishay Preliminary formerly General Semiconductor Adjustable Precision Shunt Regulators SO-8 8 SOT-23 7 SOT-89 TO-92 3 6 5 1 1 1 2 2 3 2 4 S Suffix U Suffix 3 X Suffix 1 LP Suffix 2 3 Features Description * Programmable Output Voltage to 30V The GS431B/TL431A/TL431 are 3-terminal adjustable precision shunt regulators with guaranteed temperature stability over the applicable extended commercial temperature range. The output voltage may be set at any level greater than 2.495V (VREF) up to 30V merely by selecting two external resistors that act as a voltage divider network. These devices have a typical output impedance of 0.08. Active output circuitry provides very sharp turn-on characteristics, making these devices excellent improved replacements for zener diodes in many applications. * Precision GS431B: TL431A: TL431: Reference Voltage 2.495V 0.5% 2.495V 1.0% 2.495V 1.6% * Sink Current Capability: 200mA. * Minimum Cathode Current for Regulation: 250A * Equivalent Full-Range Temperature Coefficient: 50 ppm/C * Fast Turn-On Response * Low Dynamic Output Impedance: 0.08 * Low Output Noise Symbol The precise 0.5% reference voltage tolerance of the GS431B makes it possible in many applications to avoid the use of a variable resistor, consequently saving cost and eliminating drift and reliability problems associated with it. Applications CATHODE (C) * Voltage Monitor * Delay Timer * Constant-Current Source/Sink * High-Current Shunt Regulator REF (R) * Crow Bar * Over-Voltage/Under-Voltage Protection Mechanical Data ANODE (A) Case: SO-8, SOT-23, SOT-89, TO-92 Block Diagram High temperature soldering guaranteed: 260C/10 seconds at terminals REF (R) + CATHODE (C) Case outlines are on the back pages 2.495V ANODE (A) Document Number 74806 1-Jul-02 www.vishay.com 1 GS431B/TL431A/TL431 Vishay formerly General Semiconductor Ordering Information Top View U-2: Pin 1, Vref Pin 2, Cathode Pin 3, Anode TL431xIxx Tolerance Default: 1.6% A: 1.0% Package SO-8: TO-92: SOT-89: SOT-23: code S LP X U-1/U-2 Marking Information SOT-23 (U-1) U-1: Pin 1, Cathode Pin 2, Vref Pin 3, Anode 8 Ref Anode 2 7 Anode Anode 3 6 Anode 5 NC NC 4 3 Top View 1. Cathode 2. Vref 3. Anode 2 1 SOT-23 (U-2) code S LP X U-1/U-2 3 Top View 1. Vref 2. Cathode 3. Anode 2 1 SOT-89 Package SO-8: TO-92: SOT-89: SOT-23: Top View 1. Vref 2. Anode (tab) 3. Cathode 1 TO-92 GS431BIxx SO-8 Cathode 1 Top View 1. Vref 2. Anode 3. Cathode 2 3 1 2 3 SOT-23 GS431B, (U-1) DAxxxx* TL431A, (U-1) DBxxxx TL431, (U-1) DCxxxx GS431B, (U-2) DDxxxx TL431A, (U-2) DExxxx TL431, (U-2) DGxxxx * Last two digits denote datecode www.vishay.com 2 Document Number 74806 1-Jul-02 GS431B/TL431A/TL431 Vishay formerly General Semiconductor Absolute Maximum Ratings T A = 25C unless otherwise noted. Parameter Symbol Value Unit Cathode voltage VZ 30 V Continuous cathode current IZ -10 to 250 mA Reference Input Current Range IREF -0.05 to10 mA Operating Temperature Range Toper -40 to 85 C Junction Temperature TJ 150 C Lead Temperature TL 260 C Tstg -65 to 150 C RJA 115 310 163 120 C/W Storage Temperature Thermal Resistance TO-92 Package SOT-23 Package SO-8 Package SOT-89 Package Electrical Characteristics T A Parameter Reference Voltage = 25C unless otherwise noted. Symbol VREF Test Conditions Min Typ Max GS431B 2.482 2.495 2.508 TL431A 2.470 2.495 2.520 TL431 2.455 2.495 2.535 GS431B 2.475 - 2.520 TL431A 2.445 - 2.545 TL431 2.43 - 2.56 TA = 0C to 70C VZ = VREF IL = 10mA TA = -40C to +85C (Fig. 1) - 9.0 20 - 15.0 50 IZ = 10mA VZ = VREF ~ 10V - 0.5 2.0 (Fig. 2) VZ = 10V ~ 30V - 0.35 1.5 - 0.8 3.5 - - 4.5 - 0.3 1.2 A - 0.25 0.5 mA - 0.1 1.0 A - 0.08 0.3 VZ = VREF IL = 10mA (Fig. 1) TA = 25C VZ = VREF IL = 10mA (Fig. 1) TA = -40C to +85C Deviation of reference Input voltage over temperature (1) VREF Ratio of the change in reference voltage to the change in cathode voltage VREF VZ IREF TA = 25C R1 = 10K, R2 = IL = 10mA (Fig. 2) TA = -40C to +85C Deviation of reference input current over temperature IREF R1 = 10K, R2 = IL = 10mA TA = -40C to +85C (Fig. 2) Minimum cathode current for regulation IZ(MIN) VZ = VREF Off-state current IZ(OFF) VZ = 30V, VREF = 0V Reference input current Dynamic output impedance (2) Document Number 74806 1-Jul-02 RZ (Fig. 1) (Fig 3) VZ = VREF, f = 1.0KHZ IZ = 1.0mA to 50mA Unit V mV mV/V A www.vishay.com 3 GS431B/TL431A/TL431 Vishay formerly General Semiconductor IN IL IN IN VZ IL R1 IREF VZ IREF VZ IZ IZ R2 VREF VREF IZ(OFF) Note: VZ=VREF(1+R1/R2)+IREFxR1 Fig. 1 Test Circuit for VZ=VREF f Fig. 2 Test Circuit for VZ>VREF Note 1. Deviation of reference input voltage, VREF, is defined as the maximum variation of the reference input voltage over the full temperature range. ff C Fig. 3 Test Circuit for off-state current Where: T2 - T1 = full temperature change. The slope can be positive or negative depending on whether VMAX or VMIN occurs at the lower ambient temperature. VMAX Example: VREF = 9.0mV, VREF = 2495mV, T2 - T1 = 70C, slope is positive. VDEV = VMAX -VMIN VMIN VREF = T1 TEMPERATURE VREF ppm = C VMAX - VMIN VDEV 106 106 VREF(at 25C) VREF(at 25C) = T2 - T1 T2 -T1 Note 2. The dynamic output impedance, RZ , is defined as: VZ RZ = IZ When the device is programmed with two external resistors, R1 and R2, (see Fig. 2), the dynamic output impedance of the overall circuit, is defined as: rz = www.vishay.com 4 = 50ppm/C T2 The average temperature coefficient of the reference input voltage, VREF is defined as: 9.0mV 106 2495mV 70C Vz Rz Iz 1+ R1 R2 Document Number 74806 1-Jul-02 GS431B/TL431A/TL431 Vishay formerly General Semiconductor Typical Performance Characteristics Fig. 5 - Reference Voltage vs. Temperature Fig. 4 - Cathode Current vs. Cathode Voltage 1000 2.58 VZ = VREF TA = 25C 600 IZ(MIN) 400 200 0 -200 -400 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 VREF max 2.52 VREF typ 2.50 2.48 2.46 VREF min 2.44 2.40 -40 3.0 -20 0 20 40 60 80 100 Cathode Voltage (V) Temperature (C) Fig. 6 - Reference Input Current vs. Temperature Fig. 7 - Dynamic Impedance vs. Temperature 1.20 120 0.28 R1=10K R2= IZ=10mA 1.10 0.24 Dynamic Impedance () 1.15 Reference Input Current (A) 2.54 2.42 -800 -1.0 1.05 1.00 0.95 0.90 0.85 0.80 VZ = VREF IZ = 1mA to 100mA F 1KHZ 0.20 0.16 0.12 0.08 0.04 0.75 0.70 -40 -20 0 20 40 60 80 100 0.00 --40 120 --20 0 20 40 60 80 100 Temperature (C) Temperature (C) Fig. 8 - Change in Reference Voltage vs. Cathode Voltage Fig. 9 - Off-State Cathode Current vs. Temperature 0 120 2.5 Off-State Cathode Current (A) Change In Reference Voltage (mV) TL431 VZ = VREF IZ = 10mA 2.56 Reference Voltage (V) Cathode Current (A) 800 --2 IZ=10mA TA=25C --4 --6 --8 --10 --12 0 5 10 15 20 25 Cathode Voltage (V) Document Number 74806 1-Jul-02 30 35 40 2.0 VZ=VREF VZ=30V 1.5 1.0 0.5 0.0 --40 -20 0 20 40 60 80 100 120 Temperature (C) www.vishay.com 5 GS431B/TL431A/TL431 Vishay formerly General Semiconductor Fig. 10 - Small Signal Voltage Amplification vs. Frequency Fig. 11 - Test Circuit Frequency Response Small-Signal Voltage Amplification 80 70 Output IZ=10mA TA=25C 60 R1 10K 47F 50 40 + AV 30 R 250 431 CIN VIN V1 20 10 0 -- 10 10 100 1k 10k 100k 1M 10M Frequency (Hz) Fig. 12 - Pulse Response Fig. 13 - Test Circuit For Pulse 6 RB Input 4 220 Output 2 Pulse Generator f=100kHz (V) 0 3 2 RA 431 50 Output 1 0 1S/div Fig. 14 - Dynamic Impedance vs. Fig. 15 - Test Circuit for Dynamic 10 R1 Dynamic Impedance () IZ=10mA TA=25C Output 50 431 + 1 AC R2 50 1V GND 0.1 1K 10K 100K 1M Frequency (Hz) www.vishay.com 6 Document Number 74806 1-Jul-02 GS431B/TL431A/TL431 Vishay formerly General Semiconductor Application Examples Fig. 16 - Typical Application Circuit Fig. 17 - Delay Timer VIN VIN VOUT R + + R1 431 ON R2 + C OFF VOUT = (1+R1/R2) x VREF Delay=R x C x n ( Precision Regulator Fig. 18 - Voltage Monitor VIN ) VIN VREF Fig. 19 - Constant-Current Sink VIN VIN IOUT R1B R1A R2A R2B R1 LED on when Low Limit