CREAT BY ART
Low profile package
Built-in strain relief
Glass passivated junction
Excellent clamping capability
Typical IR less than 1uA above 10V
GXX = Specific Device Code
G = Green Compound
Y = Year
M = Work Month
Maximum Ratings and Electrical Characteristics
Rating at 25 ambient temperature unless otherwise specified.
Single phase, half wave, 60 Hz, resistive or inductive load.
For capacitive load, derate current by 20%
Symbol Unit
PPK Watts
PDWatts
TJ, TSTG
Typical Thermal Resistance RθJC
RθJA
10
55 /W
1500 watts peak pulse power capability with a
10/1000 us waveform
Amps
Maximum Instantaneous Forward Voltage at 50 A for
Unidirectional Only (Note 3) VF3.5 / 5.0 Volts
Features
Polarity: Indicated by cathode band
Mechanical Data
For surface mounted application
Terminals: Pure tin plated, lead free
Case: Molded plastic
Fast response time: Typically less than 1.0ps from
0 volt to BV min
High temperature soldering guaranteed:
260 / 10 seconds at terminals
Plastic material used carried Underwriters
Laboratory Flammability Classification 94V-0
Weight: 0.26 gram
Type Number
Operating and Storage Temperature Range
Peak Power Dissipation at TA=25, Tp=1ms(Note 1)
1. For Bidrectional Use C or CA Suffix for Types SMCJ5.0 through Types SMCJ170
2. Electrical Characterstics Apply in Both Directions
Devices for Bipolar Applications
SMCJ SERIES
1500 Watts Suface Mount Transient Voltage Suppressor
Marking Diagram
SMC/DO-214AB
Dimensions in inches and (millimeters)
Green compound with suffix "G" on packing
code & prefix "G" on datecode
Peak Forward Surge Current, 8.3ms Single Half
Sine-wave Superimposed on Rated Load
(JEDEC method)(Note 2) - Unidirectional Only
IFSM
Version:H11
Note 3: VF=3.5V on SMCJ5.0 thru SMCJ90 Devices and VF=5.0V on SMCJ100 thru SMCJ170 Devices
Note 1: Non-repetitive Current Pulse Per Fig. 3 and Derated above T
A=25 Per Fig. 2
Note 2: Mounted on 16mm x 16mm Copper Pads to Each Terminal
-55 to +150
1500
Value
5
200
Steady State Power Dissipation
Standard packaging: 16mm tape per EIA Std RS-481
Pb
RoHS
COMPLIANCE
RoHS
COMPLIANCE
Version:H11
RATINGS AND CHARACTERISTIC CURVES (SMCJ SERIES)
FIG.2 PULSE DERATING CURVE
0
25
50
75
100
125
0 25 50 75 100 125 150 175 200
TA, AMBIENT TEMPERATURE (oC)
PEAK PULSE POWER (PPPM) OR CURRENT(IPP)
DERATING IN PERCENTAGE, %
FIG. 4 MAXIMUM NON-REPETITIVE FORWARD SURGE
CURRENT
10
100
1000
1 10 100
NUMBER OF CYCLES AT 60 Hz
IFSM, PEAK FORWARD SURGE A
CURRENT (A)
8.3mS Single Half Sine Wave
JEDEC Method
UNIDIRECTIONAL ONLY
FIG. 3 CLAMPING POWER PULSE WAVEFORM
0
20
40
60
80
100
120
140
0 0.5 1 1.5 2 2.5 3 3.5 4
t, TIME ms
PEAK PULSE CURRENT (%)
td
Peak Value
IPPM
tr=10usec
Half Value-IPPM/2
10/1000usec,
WAVEFORM
PULSE WIDTH(td) is DEFINED
as the POINT WHERE the PEAK
CURRENT DECAYS to 50% OF IPPM
FIG. 5 TYPICAL JUNCTION CAPACITANCE
10
100
1000
10000
100000
1 10 100
V(BR), BREAKDOWN VOLTAGE (V)
CJ, JUNCTION CAPACITANCE (pF) A
TA=25
f=1.0MHz
Vsig=50mVp-p
VR=0
VR-RATED
STAND-OFF
VOLTAGE
UNIDIRECTIONAL
BIDIRECTIONA
FIG. 1 PEAK PULSE POWER RATING CURVE
0.1
1
10
100
0.1 1 10 100 1000 10000
tp, PULSE WIDTH, (uS)
PPPM, PEAK PULSE POWER, KW
NON-REPETITIVE
PULSE WAVEFORM
SHOWN in FIG.3
TA = 25
Test Stand-Off Maximum
Current Voltage Reverse Leakage
IT VWM @ VWM
Min Max (mA) (V) ID (uA)(Note3)
SMCJ5.0 GDD 6.4 7.3 10 5 1000 164 9.6
SMCJ5.0A GDE 6.4 7 10 5 1000 171 9.2
SMCJ6.0 GDF 6.67 8.15 10 6 1000 138 11.4
SMCJ6.0A GDG 6.67 7.37 10 6 1000 152 10.3
SMCJ6.5 GDH 7.22 8.82 10 6.5 500 128 12.3
SMCJ6.5A GDK 7.22 7.98 10 6.5 500 140 11.2
SMCJ7.0 GDL 7.78 9.51 10 7 200 118 13.3
SMCJ7.0A GDM 7.78 8.6 10 7 200 131 12.0
SMCJ7.5 GDN 8.33 10.30 1 7.5 100 110 14.3
SMCJ7.5A GDP 8.33 9.21 1 7.5 100 122 12.9
SMCJ8.0 GDQ 8.89 10.9 1 8 50 105 15.0
SMCJ8.0A GDR 8.89 9.83 1 8 50 115 13.6
SMCJ8.5 GDS 9.44 11.5 1 8.5 20 99 15.9
SMCJ8.5A GDT 9.44 10.4 1 8.5 20 109 14.4
SMCJ9.0 GDU 10 12.2 1 9 10 93 16.9
SMCJ9.0A GDV 10 11.1 1 9 10 102 15.4
SMCJ10 GDW 11.1 13.6 1 10 5 83 18.8
SMCJ10A GDX 11.1 12.3 1 10 5 92 17.0
SMCJ11 GDY 12.2 14.9 1 11 5 78 20.1
SMCJ11A GDZ 12.2 13.5 1 11 5 86 18.2
SMCJ12 GED 13.3 16.3 1 12 5 71 22.0
SMCJ12A GEE 13.3 14.7 1 12 5 79 19.9
SMCJ13 GEF 14.4 17.6 1 13 5 66 23.8
SMCJ13A GEG 14.4 15.9 1 13 5 73 21.5
SMCJ14 GEH 15.6 19.1 1 14 5 61 25.8
SMCJ14A GEK 15.6 17.2 1 14 5 67 23.2
SMCJ15 GEL 16.7 20.4 1 15 5 58 26.9
SMCJ15A GEM 16.7 18.5 1 15 5 64 24.4
SMCJ16 GEN 17.8 21.8 1 16 5 54 28.8
SMCJ16A GEP 17.8 19.7 1 16 5 60 26.0
SMCJ17 GEQ 18.9 23.1 1 17 5 51 30.5
SMCJ17A GER 18.9 20.9 1 17 5 57 27.6
SMCJ18 GES 20 24.4 1 18 5 48 32.2
SMCJ18A GET 20 22.1 1 18 5 53 29.2
SMCJ20 GEU 22.2 27.1 1 20 5 43 35.8
SMCJ20A GEV 22.2 24.5 1 20 5 48 32.4
SMCJ22 GEW 24.4 29.8 1 22 5 39 39.4
SMCJ22A GEX 24.4 26.9 1 22 5 44 35.5
SMCJ24 GEY 26.7 32.6 1 24 5 36 43.0
SMCJ24A GEZ 26.7 29.5 1 24 5 40 38.9
SMCJ26 GFD 28.9 35.3 1 26 5 33 46.6
SMCJ26A GFE 28.9 31.9 1 26 5 37 42.1
SMCJ28 GFF 31.1 38 1 28 5 31 50.0
SMCJ28A GFG 31.1 34.4 1 28 5 34 45.4
SMCJ30 GFH 33.3 40.7 1 30 5 29 53.5
SMCJ30A GFK 33.3 36.8 1 30 5 32 48.4
SMCJ33 GFL 36.7 44.9 1 33 5 26 59.0
SMCJ33A GFM 36.7 40.6 1 33 5 29 53.3
SMCJ36 GFN 40 48.9 1 36 5 24 64.3
SMCJ36A GFP 40 44.2 1 36 5 27 58.1
SMCJ40 GFQ 44.4 54.3 1 40 5 22 71.4
SMCJ40A GFR 44.4 49.1 1 40 5 24 64.5
SMCJ43 GFS 47.8 58.4 1 43 5 20 76.7
SMCJ43A GFT 47.8 52.8 1 43 5 22 69.4
Version:H11
ELECTRICAL CHARACTERISTICS (TA=25 unless otherwise noted)
Breakdown Voltage
VBR (V)
at IT
Device
Device
Marking
Code
Maximum
Clamping
Voltage at IPPM
Vc(V)
Maximum
Peak Surge
Current
IPPM
(A)(Note2)
Test Stand-Off Maximum
Current Voltage Reverse Leakage
IT VWM @ VWM
Min Max (mA) (V) ID (uA)
SMCJ45 GFU 50 61.1 1 45 5 19 80.3
SMCJ45A GFV 50 55.3 1 45 5 21 72.7
SMCJ48 GFW 53.3 65.1 1 48 5 18 85.5
SMCJ48A GFX 53.3 58.9 1 48 5 20 77.4
SMCJ51 GFY 56.7 69.3 1 51 5 17 91.1
SMCJ51A GFZ 56.7 62.7 1 51 5 19 82.4
SMCJ54 GGD 60 73.3 1 54 5 16 96.3
SMCJ54A GGE 60 66.3 1 54 5 18 87.1
SMCJ58 GGF 64.4 78.7 1 58 5 15 103
SMCJ58A GGG 64.4 71.2 1 58 5 16 93.6
SMCJ60 GGH 66.7 81.5 1 60 5 14 107
SMCJ60A GGK 66.7 73.7 1 60 5 16 96.8
SMCJ64 GGL 71.1 86.9 1 64 5 13.8 114
SMCJ64A GGM 71.1 78.6 1 64 5 15 103
SMCJ70 GGN 77.8 95.1 1 70 5 12.6 125
SMCJ70A GGP 77.8 86 1 70 5 13.9 113
SMCJ75 GGQ 83.3 102 1 75 5 11.7 134
SMCJ75A GGR 83.3 92.1 1 75 5 13 121
SMCJ78 GGS 86.7 106 1 78 5 11.3 139
SMCJ78A GGT 86.7 95.8 1 78 5 12.5 126
SMCJ85 GGU 94.4 115 1 85 5 10.4 151
SMCJ85A GGV 94.4 104 1 85 5 11.5 137
SMCJ90 GGW 100 122 1 90 5 9.8 160
SMCJ90A GGX 100 111 1 90 5 10.7 146
SMCJ100 GGY 111 136 1 100 5 8.8 179
SMCJ100A GGZ 111 123 1 100 5 9.7 162
SMCJ110 GHD 122 149 1 110 5 8 196
SMCJ110A GHE 122 135 1 110 5 8.9 177
SMCJ120 GHF 133 163 1 120 5 7.3 214
SMCJ120A GHG 133 147 1 120 5 8.1 193
SMCJ130 GHH 144 176 1 130 5 6.8 231
SMCJ130A GHK 144 159 1 130 5 7.5 209
SMCJ150 GHL 167 204 1 150 5 5.8 266
SMCJ150A GHM 167 185 1 150 5 6.4 243
SMCJ160 GHN 178 218 1 160 5 5.4 287
SMCJ160A GHP 178 197 1 160 5 6 259
SMCJ170 GHQ 189 231 1 170 5 5.1 304
SMCJ170A GHR 189 209 1 170 5 5.7 275
Notes:
1. VBR measure after IT applied for 300us, IT=square wave pulse or equivalent.
2. Surge current waveform per Figure. 3 and derate per Figure. 2.
3. For bipolar types having VWM of 10 volts and less, the ID limit is doubled.
4. All terms and symbols are consistent with ANSI/IEEE C62.35.
Version:H11
Maximum
Clamping
Voltage at IPPM
Vc(V)
(Note5)
Maximum
Peak Pulse
Surge Current
IPPM
(A)(Note5)
ELECTRICAL CHARACTERISTICS (TA=25 unless otherwise noted)
Device
Device
Marking
Code
Breakdown Voltage
VBR (V)
at IT
TVS APPLICATION NOTES:
Version : H11
Any combination of this three, or any one of these applivations, will prevent damage to the load. This would
require varying trade-offs in power supply protection versus maintenance(changing the time fuse).
An additional method is to utilize the Trans
RECOMMENDED PAD SIZES
The pad dimensions should be 0.010"(0.25mm) longer than the contact size, in the lead axis.
This allows a solder filler to form, see figure below. Contact factort for soldering methods.
Transient Voltage Suppressors may be used at various points in a circuit to provide various degrees of
protection. The following is a typical linear power supply with transient voltage suppressor units plaved at
different points. All provide protection
Transient Voltage Suppressor 1 provides maximum protection. However, the system will probably require
replacement of the line fuse(F) since it provides a dominant portion of the series impedance when a surge is
encountered.
Hower, we do not recommend to use the TVS diode here, unless we can know the electric circuit
impedance and the magnitude of surge rushed into the circuit. Otherwise the TVS diode is easy to be
destroyed by voltage surge.
Transient Voltage Suppressor 2 provides execllent protection of circuitry excluding the transformer(T).
However, since the transformer is a large part of the series impedance, the chance of the line fuse opening
during the surge condition is reduced.
Transient Voltage Suppressor 3 provides the load with complete protection. It uses a unidirectional
Transient Voltage Suppressor, which is a cost advantage. The series impedance now includes the line fuse,
transformer, and bridge rectifier(B) so failure