Tactical Grade,
Six Degrees of Freedom Inertial Sensor
Data Sheet ADIS16485
Rev. E Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2012−2015 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Triaxial, digital gyroscope, ±450°/sec dynamic range
±0.05° orthogonal alignment error
6°/hr in-run bias stability
0.3°/√hr angular random walk
0.01% nonlinearity
Triaxial, digital accelerometer, ±5 g
Triaxial, delta angle, and delta velocity outputs
Fast start-up time, ~500 ms
Factory calibrated sensitivity, bias, and axial alignment
Calibration temperature range: −40°C to +85°C
SPI-compatible serial interface
Embedded temperature sensor
Programmable operation and control
Automatic and manual bias correction controls
4 FIR filter banks, 120 configurable taps
Digital I/O: data-ready alarm indicator, external clock
Alarms for condition monitoring
Power-down/sleep mode for power management
Optional external sample clock input: up to 2.4 kHz
Single command self test
Single-supply operation: 3.0 V to 3.6 V
2000 g shock survivability
Operating temperature range: −40°C to +105°C
APPLICATIONS
Platform stabilization and control
Navigation
Personnel tracking
Instruments
Robotics
GENERAL DESCRIPTION
The ADIS16485 iSensor® device is a complete inertial system that
includes a triaxial gyroscope and a triaxial accelerometer. Each
inertial sensor in the ADIS16485 combines industry-leading
iMEMS® technology with signal conditioning that optimizes
dynamic performance. The factory calibration characterizes
each sensor for sensitivity, bias, alignment, and linear acceleration
(gyroscope bias). As a result, each sensor has its own dynamic
compensation formulas that provide accurate sensor measurements.
The ADIS16485 provides a simple, cost-effective method for
integrating accurate, multiaxis inertial sensing into industrial
systems, especially when compared with the complexity and
investment associated with discrete designs. All necessary motion
testing and calibration are part of the production process at the
factory, greatly reducing system integration time. Tight orthogonal
alignment simplifies inertial frame alignment in navigation systems.
The SPI and register structure provide a simple interface for
data collection and configuration control.
The ADIS16485 uses the same footprint and connector system
as the ADIS16375, ADIS16488, and ADIS16488A, which greatly
simplifies the upgrade process. It comes in a module that is
approximately 47 mm × 44 mm × 14 mm and has a standard
connector interface.
FUNCTIONAL BLOCK DIAGRAM
CONTROLLER
CLOCK
TRIAXIAL
GYRO
TRIAXIAL
ACCEL
POWER
MANAGEMENT
CS
SCLK
DIN
DOUT
GND
VDD
TEMP
VDD
DIO1 DIO2 DIO3 DIO4
VDDRTC
RST
SPI
SELF T EST I/O ALARMS
OUTPUT
DATA
REGISTERS
USER
CONTROL
REGISTERS
CALIBRATION
AND
FILTERS
ADIS16485
10666-001
Figure 1.
ADIS16485 Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 3
Specifications ..................................................................................... 4
Timing Specifications .................................................................. 6
Absolute Maximum Ratings ............................................................ 8
ESD Caution .................................................................................. 8
Pin Configuration and Function Descriptions ............................. 9
Typical Performance Characteristics ........................................... 10
Basic Operation............................................................................... 11
Register Structure ....................................................................... 11
SPI Communication ................................................................... 12
Device Configuration ................................................................ 12
Reading Sensor Data .................................................................. 12
User Registers .................................................................................. 13
Output Data Registers .................................................................... 16
Inertial Sensor Data Format ...................................................... 16
Rotation Rate (Gyroscope) ........................................................ 16
Acceleration ................................................................................. 17
Delta Angles ................................................................................ 17
Delta Velocity .............................................................................. 18
Internal Temperature ................................................................. 18
Status/Alarm Indicators ............................................................. 19
Firmware Revision...................................................................... 19
Product Identification ................................................................ 19
Digital Signal Processing ............................................................... 20
Gyroscopes/Accelerometers ..................................................... 20
Averaging/Decimation Filter .................................................... 20
FIR Filter Banks .......................................................................... 21
Calibration ....................................................................................... 23
Gyroscopes .................................................................................. 23
Accelerometers ........................................................................... 24
Restoring Factory Calibration .................................................. 25
Point of Percussion Alignment ................................................. 25
Alarms .............................................................................................. 26
Static Alarm Use ......................................................................... 26
Dynamic Alarm Use .................................................................. 26
System Controls .............................................................................. 27
Global Commands ..................................................................... 27
Memory Management ............................................................... 27
General-Purpose I/O ................................................................. 28
Power Management.................................................................... 28
Applications Information .............................................................. 30
Mounting Tips ............................................................................ 30
Evaluation Tools ......................................................................... 31
Power Supply Considerations ................................................... 31
Outline Dimensions ....................................................................... 32
Ordering Guide .......................................................................... 32
Rev. E | Page 2 of 32
Data Sheet ADIS16485
REVISION HISTORY
2/15Rev. D to Rev. E
Changes to Features Section ............................................................ 1
Changes to Table 1 ............................................................................ 4
Changes to Table 2 and Figure 2 ..................................................... 6
Added Table 3; Renumbered Sequentially ..................................... 6
Change to Figure 4 ............................................................................ 7
Change to Operating Temperature Range, Table 4 ....................... 8
Change to Dual Memory Structure Section ................................ 12
Changes to Ordering Guide ........................................................... 32
5/14Rev. C to Rev. D
Changes to Table 73, Table 74, and Table 75 ............................... 23
4/14Rev. B to Rev. C
Change to Features Section .............................................................. 1
Moved Revision History ................................................................... 3
Added Endnote 7; Renumbered Sequentially, and Changes to
Endnote 9, Table 1 ............................................................................. 5
Changes to Table 9 .......................................................................... 14
Changes to Delta Angles Section .................................................. 16
Changes to Delta Velocity Section ................................................ 17
Change to Figure 20 Caption ......................................................... 19
Changes to Linear Acceleration on Effect on Gyroscope Bias
Section and Manual Bias Correction ............................................ 23
Changes to Status Alarm Use Section and Dynamic Alarm
Use Section ....................................................................................... 25
Change to Software Reset Section ................................................. 26
Changes to General-Purpose I/O Section.................................... 27
12/13Rev. A to Rev. B
Change to t2 Parameter, Table 2 ....................................................... 5
Change to Figure 6 ............................................................................ 7
Changes to Delta Angles Section .................................................. 15
Changes to Delta Velocity Section ................................................ 16
Changes to Status/Alarm Indicators Section ............................... 17
Deleted Prototype Interface Board Section, PC Evaluation with
EVAL_ADIS Section, Mechanical Design Tips Section, Figure 26,
Figure 27, Figure 30, and Figure 31; Renumbered Sequentially ..... 27
Added Mounting Tips Section and Figure 26; Renumbered
Sequentially ...................................................................................... 27
Added Evaluation Tools Section, Power Supply Considerations
Section, Figure 29 and Figure 30; Renumbered Sequentially ... 28
Changes to Ordering Guide ........................................................... 29
12/12Rev. 0 to Rev. A
Changes to Table 1 ............................................................................ 3
Added tSFS Parameter, Table 2 .......................................................... 5
Changes to t2 Parameter, Table 2 and Figure 2 .............................. 5
Changes to Figure 8 .......................................................................... 8
Changes to Linear Acceleration on Effect on Gyroscope Bias
Section .............................................................................................. 21
Changes to Prototype Interface Board Section ........................... 27
Deleted Installation Tips Section, and Figure 28; Renumbered
Sequentially ...................................................................................... 27
Added Mechanical Design Tips Section, Connector Down
Mounting Tips Section, and Figure 28; Renumbered
Sequentially ...................................................................................... 27
Added Connector Up Mounting Tips Section, Figure 30, and
Figure 31 ........................................................................................... 28
Updated Outline Dimensions........................................................ 29
5/12Revision 0: Initial Version
Rev. E | Page 3 of 32
ADIS16485 Data Sheet
SPECIFICATIONS
TA = 25°C, VDD = 3.3 V, angular rate = 0°/sec, dynamic range = ±450°/sec ± 1 g, 300 mbar to 1100 mbar, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
GYROSCOPES
Dynamic Range ±450 ±480 °/sec
Sensitivity x_GYRO_OUT and x_GYRO_LOW (32-bit) 3.052 × 10−7 °/sec/LSB
Repeatability1 −40°C TA ≤ +85°C ±1 %
Sensitivity Temperature Coefficient −40°C TA ≤ +85°C, 1 σ ±35 ppm/°C
Misalignment Axis-to-axis ±0.05 Degrees
Axis-to-frame (package)
±1.0
Degrees
Nonlinearity Best fit straight line, FS = 450°/sec 0.01 % of FS
Bias Repeatability1, 2 −40°C ≤ TA ≤ +85°C, 1 σ ±0.2 °/sec
In-Run Bias Stability 1 σ 6.25 °/hr
Angular Random Walk 1 σ 0.3 °/√hr
Bias Temperature Coefficient −40°C TA ≤ +85°C, 1 σ ±0.0025 °/sec/°C
Linear Acceleration Effect on Bias Any axis, 1 σ (CONFIG[7] = 1) 0.009 °/sec/g
Output Noise No filtering 0.16 °/sec rms
Rate Noise Density f = 25 Hz, no filtering 0.0066 °/sec/√Hz rms
3 dB Bandwidth 330 Hz
Sensor Resonant Frequency 18 kHz
ACCELEROMETERS Each axis
Dynamic Range ±5 g
Sensitivity x_ACCL_OUT and x_ACCL_LOW (32-bit) 3.815 × 10−9 g/LSB
Repeatability
1
40°C ≤ T
A
≤ +85°C
±0.5
%
Sensitivity Temperature Coefficient −40°C TA ≤ +85C, 1 σ ±10 ppm/°C
Misalignment Axis-to-axis ±0.035 Degrees
Axis-to-frame (package) ±1.0 Degrees
Nonlinearity Best-fit straight line, ±5 g 0.1 % of FS
Bias Repeatability1, 2 −40°C ≤ TA ≤ +85°C, 1 σ ±3 mg
In-Run Bias Stability 1 σ 32 µg
Velocity Random Walk 1 σ 0.023 m/sec/√hr
Bias Temperature Coefficient −40°C TA ≤ +85°C ±0.03 mg/°C
Output Noise No filtering 1.25 mg rms
Noise Density f = 25 Hz, no filtering 0.055 mg/√Hz rms
3 dB Bandwidth
330
Hz
Sensor Resonant Frequency 5.5 kHz
TEMPERATURE SENSOR
Scale Factor
Output = 0x0000 at 25°C (±5°C)
0.00565
°C/LSB
LOGIC INPUTS3
Input High Voltage, VIH 2.0 V
Input Low Voltage, VIL 0.8 V
CS Wake-Up Pulse Width 20 µs
Logic 1 Input Current, IIH VIH = 3.3 V 10 µA
Logic 0 Input Current, IIL VIL = 0 V
All Pins Except RST 10 µA
RST Pin 0.33 mA
Input Capacitance, CIN 10 pF
DIGITAL OUTPUTS
Output High Voltage, V
OH
I
SOURCE
= 0.5 mA
2.4
V
Output Low Voltage, VOL ISINK = 2.0 mA 0.4 V
Rev. E | Page 4 of 32
Data Sheet ADIS16485
Parameter Test Conditions/Comments Min Typ Max Unit
FLASH MEMORY Endurance4 100,000 Cycles
Data Retention5 TJ = 85°C 20 Years
FUNCTIONAL TIMES6 Time until data is available
Power-On, Start-Up Time 400 ± 160 ms
Reset Recovery Time7 400 ± 160 ms
Sleep Mode Recovery Time 500 µs
Flash Memory Update Time 900 ms
Flash Memory Test Time 66 ms
Automatic Self Test Time Using internal clock, 100 SPS 12 ms
CONVERSION RATE 2.46 kSPS
Initial Clock Accuracy
0.02
%
Temperature Coefficient 40 ppm/°C
Sync Input Clock8 0.7 2.4 kHz
POWER SUPPLY, VDD Operating voltage range 3.0 3.6 V
Power Supply Current9 Normal mode, VDD = 3.3 V, µ ± σ 197 mA
Sleep mode, VDD = 3.3 V 12.2 mA
Power-down mode, VDD = 3.3 V 37 µA
POWER SUPPLY, VDDRTC Operating voltage range 3.0 3.6 V
Real-Time Clock Supply Current Normal mode, VDDRTC = 3.3 V 13 µA
1 The repeatability specifications represent analytical projections that are based off of the following drift contributions and conditions: temperature hysteresis (−40°C to
+85°C), electronics drift (high temperature operating life test: +110°C, 500 hours), drift from temperature cycling (JESD22, Method A104-C, Method N, 500 cycles,
−40°C to +85°C), rate random walk (10 year projection), and broadband noise
2 Bias repeatability describes a long-term behavior over a variety of conditions. Short-term repeatability is related to the in-run bias stability and noise density
specifications.
3 The digital I/O signals use a 3.3 V system.
4 Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at −40°C, +25°C, +85°C, and +125°C.
5 The data retention specification assumes a junction temperature (TJ) of 85°C as per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ.
6 These times do not include thermal settling and internal filter response times, which may affect overall accuracy.
7 The RST line must be in a low state for at least 10 μs to assure a proper reset initiation and recovery.
8 The device functions at clock rates below 0.7 kHz but at reduced performance levels.
9 Supply current transients can reach 600 mA during start-up and reset recovery.
Rev. E | Page 5 of 32
ADIS16485 Data Sheet
TIMING SPECIFICATIONS
TA = 25°C, VDD = 3.3 V, unless otherwise noted.
Table 2.
Normal Mode
Parameter Description Min1 Typ Max1 Unit
fSCLK Serial clock 0.01 15 MHz
tSTALL2 Stall period between data communication cycles 2 µs
tCLS Serial clock low period 31 ns
tCHS Serial clock high period 31 ns
tCS Chip select to clock edge 32 ns
tDAV DOUT valid after SCLK edge 10 ns
tDSU DIN setup time before SCLK rising edge 2 ns
tDHD DIN hold time after SCLK rising edge 2 ns
tDR, tDF DOUT rise/fall times, ≤100 pF loading 3 8 ns
tDSOE CS assertion to data out active 0 11 ns
tHD SCLK edge to data out invalid 0 ns
tSFS Last SCLK edge to CS deassertion 32 ns
tDSHI CS deassertion to data out high impedance 0 9 ns
t1 Input sync pulse width 5 µs
t2 Input sync to data invalid 510 µs
t3 Input sync period 417 µs
1 Guaranteed by design and characterization, but not tested in production.
2 See Table 3 for exceptions to the stall time rating.
Table 3. Register Specific Stall Times
Register Function Minimum Stall Time (μs)
FNCTIO_CTRL Configure DIOx functions 60
FLTR_BNK0 Enable/select FIR filter banks 320
FLTR_BNK1 Enable/select FIR filter banks 320
NULL_CFG Configure autonull bias function 10
GLOB_CMD[1] Self test 12000
GLOB_CMD[2] Memory test 50000
GLOB_CMD[3] Flash memory update 375000
GLOB_CMD[6] Flash memory test 75000
GLOB_CMD[7] Software reset 12000
Timing Diagrams
CS
SCLK
DOUT
DIN
1 2 3 4 5 6 15 16
R/W A5A6 A4 A3 A2 D2
MSB DB14
D1 LSB
DB13 DB12 DB10DB11 DB2 LSBDB1
tCS
tDSHI
tDR
tSFS
tDF
tDAV tHD
tCHS tCLS
tDSOE
tDHD
tDSU
10666-002
Figure 2. SPI Timing and Sequence
Rev. E | Page 6 of 32
Data Sheet ADIS16485
Rev. E | Page 7 of 32
CS
SCLK
t
STALL
10666-003
Figure 3. Stall Time and Data Rate
t
3
t
2
t
1
SYNC
CLOCK (CLKI N)
DATA
READY
OUTPUT
REGISTERS DAT A V ALID DAT A V ALI D
10666-004
Figure 4. Input Clock Timing Diagram
ADIS16485 Data Sheet
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Rating
Acceleration
Any Axis, Unpowered
g
Any Axis, Powered 2000 g
VDD to GND 0.3 V to +3.6 V
Digital Input Voltage to GND −0.3 V to VDD + 0.2 V
Digital Output Voltage to GND −0.3 V to VDD + 0.2 V
Operating Temperature Range −40°C to +105°C
Storage Temperature Range −65°C to +150°C1
1 Extended exposure to temperatures that are lower than −40°C or higher
than +105°C can adversely affect the accuracy of the factory calibration.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Table 5. Package Characteristics
Package Type θJA θJC
Device
Weight
24-Lead Module (ML-24-6) 22.8°C/W 10.1°C/W 48 g
ESD CAUTION
Rev. E | Page 8 of 32
Data Sheet ADIS16485
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
DIO3
SCLK
DIN
DIO1
DIO2
VDD
GND
GND
DNC
DNC
DNC
VDDRTC
DIO4
DOUT
CS
RST
VDD
VDD
GND
DNC
DNC
DNC
DNC
DNC
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
ADIS16485
TOP VIEW
(No t t o Scal e)
NOTES
1. THIS REPRESENTATION DISPLAYS THE TOP VI EW PI NOUT
FO R THE M ATI NG SO CKE T CONNE CTO R.
2. T HE ACTUAL CONNECT OR PINS ARE NOT V ISI BLE FROM
THE TOP VIEW.
3. M ATING CO NNECTO R: S AM TEC CLM-112- 02 OR EQUIV ALENT.
4. DNC = DO NO T CONNE CT.
10666-005
Figure 5. Mating Connector Pin Assignments
PIN 1
PIN 23
PIN 1 PIN 2
10666-106
Figure 6. Axial Orientation (Top Side Facing Up)
Table 6. Pin Function Descriptions
Pin No. Mnemonic Type Description
1 DIO3 Input/output Configurable Digital Input/Output.
2 DIO4 Input/output Configurable Digital Input/Output.
3 SCLK Input SPI Serial Clock.
4 DOUT Output SPI Data Output. Clocks output on SCLK falling edge.
5 DIN Input SPI Data Input. Clocks input on SCLK rising edge.
6 CS Input SPI Chip Select.
7 DIO1 Input/output Configurable Digital Input/Output.
8 RST Input Reset.
9 DIO2 Input/output Configurable Digital Input/Output.
10, 11, 12 VDD Supply Power Supply.
13, 14, 15
GND
Supply
Power Ground.
16 to 22, 24 DNC Not applicable Do Not Connect to These Pins.
23 VDDRTC Supply Real-Time Clock Power Supply.
Rev. E | Page 9 of 32
ADIS16485 Data Sheet
Rev. E | Page 10 of 32
TYPICAL PERFORMANCE CHARACTERISTICS
1000
1
10
100
0.01 0.1 1 10 100 1000 10000
ROOT ALLAN VA
R
IANCE (°/Hour)
INTEGRATION PERIOD (Seconds)
+1σ
–1σ
AVERAGE
10666-007
Figure 7. Gyroscope Allan Variance, 25°C
0.01
0.1
1
0.01 0.1 1 10 100 1000 10000
δ
+δ
ROOT ALLAN VARIANCE (mg)
INTEGRATION PERIOD (Seconds)
10666-008
AVERAGE
Figure 8. Accelerometer Allan Variance, 25°C
0.8
–0.8
–0.6
–0.4
–0.2
0
0.2
0.4
0.6
–40 –30 –20 –10 0 10 20 30 40 50 60 70 80
GYRO SC
A
LE ERROR (
%
FS)
TEMPERATURE C)
INITIAL ERROR = ±0.5%
TEMPCO = 35ppmC
10666-009
Figure 9. Gyroscope Scale (Sensitivity) Error and Hysteresis vs. Temperature
0.6
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
0.3
0.4
0.5
–40 –30 –20 –10 0 10 20 30 40 50 60 70 80
GYRO BIAS ER
R
OR /sec)
TEMPERATURE (°C)
INITIAL ERROR = ±0.2°/sec
TEMPCO = 0.0025°/sec/°C
10666-010
Figure 10. Gyroscope Bias Error and Hysteresis vs. Temperature
Data Sheet ADIS16485
Rev. E | Page 11 of 32
BASIC OPERATION
The ADIS16485 is an autonomous sensor system that starts up
on its own when it has a valid power supply. After running through
its initialization process, it begins sampling, processing, and
loading calibrated sensor data into the output registers, which
are accessible using the SPI port. The SPI port typically connects to
a compatible port on an embedded processor, using the connection
diagram in Figure 11. The four SPI signals facilitate synchronous,
serial data communication. Connect RST (Pin 8, see Table 6) to
VDD or leave RST open for normal operation. The factory default
configuration provides users with a data-ready signal on the DIO2
pin, which pulses high when new data is available in the output
data registers.
SYSTEM
PROCESSOR
SPI MAST ER SCLK
CS
DIN
DOUT
SCLK
SS
MOSI
MISO
+3.3V
IRQ DIO2
VDD
I/ O L INES ARE COMPAT IBL E WI TH
3.3V LOGIC LEV E LS
10
6
3
5
4
9
11 12 23
13 14 15
ADIS16485
10666-011
Figure 11. Electrical Connection Diagram
Table 7. Generic Master Processor Pin Names and Functions
Mnemonic Function
SS Slave select
IRQ Interrupt request
MOSI Master output, slave input
MISO Master input, slave output
SCLK Serial clock
Embedded processors typically use control registers to configure
their serial ports for communicating with SPI slave devices such
as the ADIS16485. Table 8 provides a list of settings, which describe
the SPI protocol of the ADIS16485. The initialization routine of
the master processor typically establishes these settings using
firmware commands to write them into its serial control registers.
Table 8. Generic Master Processor SPI Settings
Processor Setting Description
Master ADIS16485 operates as slave
SCLK ≤ 15 MHz Maximum serial clock rate
SPI Mode 3 CPOL = 1 (polarity), and CPHA = 1 (phase)
MSB-First Mode Bit sequence
16-Bit Mode Shift register/data length
REGISTER STRUCTURE
The register structure and SPI port provide a bridge between
the sensor processing system and an external, master processor.
It contains both output data and control registers. The output
data registers include the latest sensor data, a real-time clock, error
flags, alarm flags, and identification data. The control registers
include sample rate, filtering, input/output, alarms, calibration,
and diagnostic configuration options. All communication between
the ADIS16485 and an external processor involves either reading
or writing to one of the user registers.
TRIAXIS
GYRO
TEMP
SENSOR
TRIAXIS
ACCEL
DSP OUTPUT
REGISTERS
CONTROL
REGISTERS
CONTROLLER
SPI
10666-012
Figure 12. Basic Operation
The register structure uses a paged addressing scheme that is
composed of 13 pages, with each one containing 64 register
locations. Each register is 16 bits wide, with each byte having its
own unique address within the memory map of that page. The SPI
port has access to one page at a time, using the bit sequence in
Figure 17. Select the page to activate for SPI access by writing its
code to the PAGE_ID register. Read the PAGE_ID register to
determine which page is currently active. Table 9 displays the
PAGE_ID contents for each page, together with their basic functions.
The PAGE_ID register is located at Address 0x00 on every page.
Table 9. User Register Page Assignments
Page PAGE_ID Function
0 0x00 Output data, clock, identification
1 0x01 Reserved
2 0x02 Calibration
3 0x03 Control: sample rate, filtering, I/O, alarms
4 0x04 Serial number
5 0x05 FIR Filter Bank A Coefficient 0 to Coefficient 59
6 0x06 FIR Filter Bank A, Coefficient 60 to Coefficient 119
7 0x07 FIR Filter Bank B, Coefficient 0 to Coefficient 59
8 0x08 FIR Filter Bank B, Coefficient 60 to Coefficient 119
9 0x09 FIR Filter Bank C, Coefficient 0 to Coefficient 59
10 0x0A FIR Filter Bank C, Coefficient 60 to Coefficient 119
11 0x0B FIR Filter Bank D, Coefficient 0 to Coefficient 59
12 0x0C FIR Filter Bank D, Coefficient 60 to Coefficient 119
ADIS16485 Data Sheet
Rev. E | Page 12 of 32
SPI COMMUNICATION
The SPI port supports full duplex communication, as shown in
Figure 17, which enables external processors to write to DIN
while reading DOUT, when the previous command was a read
request. Figure 17 provides a guideline for the bit coding on
both DIN and DOUT.
DEVICE CONFIGURATION
The SPI provides write access to the control registers, one byte
at a time, using the bit assignments shown in Figure 17. Each
register has 16 bits, where Bits[7:0] represent the lower address
(listed in Table 10) and Bits[15:8] represent the upper address.
Write to the lower byte of a register first, followed by a write to
its upper byte. The only register that changes with a single write to
its lower byte is the PAGE_ID register. For a write command,
the first bit in the DIN sequence is set to 1. Address Bits[A6:A0]
represent the target address, and Data Command Bits[DC7:DC0]
represent the data being written to the location. Figure 13 provides
an example of writing 0x03 to Address 0x00 (PAGE_ID [7:0]),
using DIN = 0x8003. This write command activates the control
page for SPI access.
SCLK
CS
DIN
DIN = 1000 0000 0000 0011 = 0x8003, WRITES 0x03 TO ADDRESS 0x00
10666-013
Figure 13. SPI Sequence for Activating the Control Page (DIN = 0x8003)
Dual Memory Structure
Writing configuration data to a control register updates its SRAM
contents, which are volatile. After optimizing each relevant control
register setting in a system, use the manual flash update command,
which is located in GLOB_CMD[3] on Page 3 of the register map.
Activate the manual flash update command by turning to Page 3
(DIN = 0x8003) and setting GLOB_CMD[3] = 1 (DIN = 0x8208,
then DIN = 0x8300). Make sure that the power supply is within
specification for the entire 375 ms processing time for a flash
memory update. Table 10 provides a memory map for all of the
user registers, which includes a column of flash backup
information. A yes in this column indicates that a register has a
mirror location in flash and, when backed up properly,
automatically restores itself during startup or after a reset.
Figure 14 provides a diagram of the dual memory structure
used to manage operation and store critical user settings.
NONVOLATILE
FLASH MEMORY
(NO SPI ACCESS)
MANUAL
FLASH
BACKUP
START-UP
RESET
VOLATILE
SRAM
SPI ACCESS
10666-014
Figure 14. SRAM and Flash Memory Diagram
READING SENSOR DATA
The ADIS16485 automatically starts up and activates Page 0 for
data register access. Write 0x00 to the PAGE_ID register (DIN =
0x8000) to activate Page 0 for data access after accessing any other
page. A single register read requires two 16-bit SPI cycles. The
first cycle requests the contents of a register using the bit assignments
in Figure 17, and then the register contents follow DOUT during
the second sequence. The first bit in a DIN command is zero,
followed by either the upper or the lower address for the register.
The last eight bits are don’t care, but the SPI requires the full set
of 16 SCLKs to receive the request. Figure 15 includes two register
reads in succession, which starts with DIN = 0x1A00 to request
the contents of the Z_GYRO_OUT register and follows with
0x1800 to request the contents of the Z_GYRO_LOW register.
DIN
DOUT
0x1A00 0x1800 NEXT
ADDRESS
Z_GYRO_OUT Z_GYRO_LOW
10666-015
Figure 15. SPI Read Example
Figure 16 provides an example of the four SPI signals when reading
PROD_ID in a repeating pattern. This is a good pattern to use
for troubleshooting the SPI interface setup and communications
because the contents of PROD_ID are predefined and stable.
SCLK
CS
DIN
DOUT
DOUT = 0100 0000 0110 0101 = 0x4065 = 16,485 (PROD_ID)
DIN = 0111 1110 0000 0000 = 0x7E00
10666-016
Figure 16. SPI Read Example, Second 16-Bit Sequence
R/W
R/W
A6 A5 A4 A3 A2 A1 A0 DC7 DC6 DC5 DC4 DC3 DC2 DC1 DC0
D0D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15
CS
SCLK
DIN
DOUT
A6 A5
D13D14D15
NOTES
1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0.
2. WHEN CS IS HI GH, DOUT IS IN A THRE E - S TATE , HI GH IM P E DANCE M ODE, WHICH ALLOW S MULT IF UNCTIONAL USE O F THE L INE
FO R OTHER DEVI CES.
10666-017
Figure 17. SPI Communication Bit Sequence
Data Sheet ADIS16485
USER REGISTERS
Table 10. User Register Memory Map (N/A Means Not Applicable)
Name
R/W
Flash
PAGE_ID
Address
Default
Register Description
Format
PAGE_ID R/W No 0x00 0x00 0x00 Page identifier N/A
Reserved
N/A
N/A
0x00
0x02 to 0x06
N/A
Reserved
N/A
SYS_E_FLAG R No 0x00 0x08 0x0000 Output, system error flags Table 41
DIAG_STS R No 0x00 0x0A 0x0000 Output, self test error flags Table 42
ALM_STS R No 0x00 0x0C 0x0000 Output, alarm error flags Table 43
TEMP_OUT R No 0x00 0x0E N/A Output, temperature Table 39
X_GYRO_LOW R No 0x00 0x10 N/A Output, x-axis gyroscope, low word Table 15
X_GYRO_OUT R No 0x00 0x12 N/A Output, x-axis gyroscope, high word Table 11
Y_GYRO_LOW R No 0x00 0x14 N/A Output, y-axis gyroscope, low word Table 16
Y_GYRO_OUT R No 0x00 0x16 N/A Output, y-axis gyroscope, high word Table 12
Z_GYRO_LOW R No 0x00 0x18 N/A Output, z-axis gyroscope, low word Table 17
Z_GYRO_OUT R No 0x00 0x1A N/A Output, z-axis gyroscope, high word Table 13
X_ACCL_LOW R No 0x00 0x1C N/A Output, x-axis accelerometer, low word Table 22
X_ACCL_OUT R No 0x00 0x1E N/A Output, x-axis accelerometer, high word Table 18
Y_ACCL_LOW R No 0x00 0x20 N/A Output, y-axis accelerometer, low word Table 23
Y_ACCL_OUT R No 0x00 0x22 N/A Output, y-axis accelerometer, high word Table 19
Z_ACCL_LOW R No 0x00 0x24 N/A Output, z-axis accelerometer, low word Table 24
Z_ACCL_OUT
R
No
0x00
0x26
N/A
Output, z-axis accelerometer, high word
Table 20
Reserved
N/A
N/A
0x00
0x28 to 0x3E
N/A
Reserved
N/A
X_DELTANG_LOW R No 0x00 0x40 N/A Output, x-axis delta angle, low word Table 29
X_DELTANG_OUT R No 0x00 0x42 N/A Output, x-axis delta angle, high word Table 25
Y_DELTANG_LOW R No 0x00 0x44 N/A Output, y-axis delta angle, low word Table 30
Y_DELTANG_OUT R No 0x00 0x46 N/A Output, y-axis delta angle, high word Table 26
Z_DELTANG_LOW R No 0x00 0x48 N/A Output, z-axis delta angle, low word Table 31
Z_DELTANG_OUT R No 0x00 0x4A N/A Output, z-axis delta angle, high word Table 27
X_DELTVEL_LOW R No 0x00 0x4C N/A Output, x-axis delta velocity, low word Table 36
X_DELTVEL_OUT R No 0x00 0x4E N/A Output, x-axis delta velocity, high word Table 32
Y_DELTVEL_LOW R No 0x00 0x50 N/A Output, y-axis delta velocity, low word Table 37
Y_DELTVEL_OUT R No 0x00 0x52 N/A Output, y-axis delta velocity, high word Table 33
Z_DELTVEL_LOW
R
No
0x00
0x54
N/A
Output, z-axis delta velocity, low word
Table 38
Z_DELTVEL_OUT R No 0x00 0x56 N/A Output, z-axis delta velocity, high word Table 34
Reserved N/A N/A 0x00 0x58 to 0x76 N/A Reserved N/A
TIME_MS_OUT R Yes 0x00 0x78 N/A Factory configuration time: minutes/seconds Table 96
TIME_DH_OUT R Yes 0x00 0x7A N/A Factory configuration date/time: day/hour Table 97
TIME_YM_OUT R Yes 0x00 0x7C N/A Factory configuration date: year/month Table 98
PROD_ID R Yes 0x00 0x7E 0x4065 Output, product identification (16,485) Table 47
Reserved N/A N/A 0x01 0x00 to 0x7E N/A Reserved N/A
PAGE_ID R/W No 0x02 0x00 0x00 Page identifier N/A
Reserved N/A N/A 0x02 0x02 N/A Reserved N/A
X_GYRO_SCALE R/W Yes 0x02 0x04 0x0000 Calibration, scale, x-axis gyroscope Table 64
Y_GYRO_SCALE R/W Yes 0x02 0x06 0x0000 Calibration, scale, y-axis gyroscope Table 65
Z_GYRO_SCALE R/W Yes 0x02 0x08 0x0000 Calibration, scale, z-axis gyroscope Table 66
X_ACCL_SCALE R/W Yes 0x02 0x0A 0x0000 Calibration, scale, x-axis accelerometer Table 74
Y_ACCL_SCALE R/W Yes 0x02 0x0C 0x0000 Calibration, scale, y-axis accelerometer Table 75
Z_ACCL_SCALE R/W Yes 0x02 0x0E 0x0000 Calibration, scale, z-axis accelerometer Table 76
Rev. E | Page 13 of 32
ADIS16485 Data Sheet
Name
R/W
Flash
PAGE_ID
Address
Default
Register Description
Format
XG_BIAS_LOW R/W Yes 0x02 0x10 0x0000 Calibration, offset, gyroscope, x-axis, low word Table 60
XG_BIAS_HIGH R/W Yes 0x02 0x12 0x0000 Calibration, offset, gyroscope, x-axis, high word Table 57
YG_BIAS_LOW R/W Yes 0x02 0x14 0x0000 Calibration, offset, gyroscope, y-axis, low word Table 61
YG_BIAS_HIGH R/W Yes 0x02 0x16 0x0000 Calibration, offset, gyroscope, y-axis, high word Table 58
ZG_BIAS_LOW R/W Yes 0x02 0x18 0x0000 Calibration, offset, gyroscope, z-axis, low word Table 62
ZG_BIAS_HIGH R/W Yes 0x02 0x1A 0x0000 Calibration, offset, gyroscope, z-axis, high word Table 59
XA_BIAS_LOW R/W Yes 0x02 0x1C 0x0000 Calibration, offset, accelerometer, x-axis, low word Table 71
XA_BIAS_HIGH R/W Yes 0x02 0x1E 0x0000 Calibration, offset, accelerometer, x-axis, high word Table 68
YA_BIAS_LOW R/W Yes 0x02 0x20 0x0000 Calibration, offset, accelerometer, y-axis, low word Table 72
YA_BIAS_HIGH R/W Yes 0x02 0x22 0x0000 Calibration, offset, accelerometer, y-axis, high word Table 69
ZA_BIAS_LOW
R/W
Yes
0x02
0x24
0x0000
Calibration, offset, accelerometer, z-axis, low word
Table 73
ZA_BIAS_HIGH R/W Yes 0x02 0x26 0x0000 Calibration, offset, accelerometer, z-axis, high word Table 70
Reserved N/A N/A 0x02 0x28 to 0x72 N/A Reserved N/A
USER_SCR_1 R/W Yes 0x02 0x74 0x0000 User Scratch Register 1 Table 92
USER_SCR_2 R/W Yes 0x02 0x76 0x0000 User Scratch Register 2 Table 93
USER_SCR_3 R/W Yes 0x02 0x78 0x0000 User Scratch Register 3 Table 94
USER_SCR_4 R/W Yes 0x02 0x7A 0x0000 User Scratch Register 4 Table 95
FLSHCNT_LOW R Yes 0x02 0x7C N/A Diagnostic, flash memory count, low word Table 87
FLSHCNT_HIGH R Yes 0x02 0x7E N/A Diagnostic, flash memory count, high word Table 88
PAGE_ID R/W No 0x03 0x00 0x0000 Page identifier N/A
GLOB_CMD W No 0x03 0x02 N/A Control, global commands Table 86
Reserved N/A N/A 0x03 0x04 N/A Reserved N/A
FNCTIO_CTRL R/W Yes 0x03 0x06 0x000D Control, I/O pins, functional definitions Table 89
GPIO_CTRL R/W Yes 0x03 0x08 0x00X01 Control, I/O pins, general purpose Table 90
CONFIG R/W Yes 0x03 0x0A 0x00C0 Control, clock, and miscellaneous correction Table 67
DEC_RATE R/W Yes 0x03 0x0C 0x0000 Control, output sample rate decimation Table 49
NULL_CNFG R/W Yes 0x03 0x0E 0x070A Control, automatic bias correction configuration Table 63
SLP_CNT R/W No 0x03 0x10 N/A Control, power-down/sleep mode Table 91
Reserved N/A N/A 0x03 0x12 to 0x14 N/A Reserved N/A
FILTR_BNK_0 R/W Yes 0x03 0x16 0x0000 Filter selection Table 50
FILTR_BNK_1 R/W Yes 0x03 0x18 0x0000 Filter selection Table 51
Reserved N/A N/A 0x03 0x1A to 0x1E N/A Reserved N/A
ALM_CNFG_0 R/W Yes 0x03 0x20 0x0000 Alarm configuration Table 83
ALM_CNFG_1 R/W Yes 0x03 0x22 0x0000 Alarm configuration Table 84
Reserved N/A N/A 0x03 0x24 to 0x26 N/A Reserved N/A
XG_ALM_MAGN R/W Yes 0x03 0x28 0x0000 Alarm, x-axis gyroscope threshold setting Table 77
YG_ALM_MAGN R/W Yes 0x03 0x2A 0x0000 Alarm, y-axis gyroscope threshold setting Table 78
ZG_ALM_MAGN R/W Yes 0x03 0x2C 0x0000 Alarm, z-axis gyroscope threshold setting Table 79
XA_ALM_MAGN R/W Yes 0x03 0x2E 0x0000 Alarm, x-axis accelerometer threshold Table 80
YA_ALM_MAGN R/W Yes 0x03 0x30 0x0000 Alarm, y-axis accelerometer threshold Table 81
ZA_ALM_MAGN R/W Yes 0x03 0x32 0x0000 Alarm, z-axis accelerometer threshold Table 82
Reserved N/A N/A 0x03 0x34 to 0x76 N/A Reserved N/A
FIRM_REV R Yes 0x03 0x78 N/A Firmware revision Table 44
FIRM_DM R Yes 0x03 0x7A N/A Firmware programming date: day/month Table 45
FIRM_Y R Yes 0x03 0x7C N/A Firmware programming date: year Table 46
Reserved N/A N/A 0x03 0x7E N/A Reserved N/A
Reserved N/A N/A 0x04 0x00 to 0x18 N/A Reserved N/A
SERIAL_NUM R Yes 0x04 0x20 N/A Serial number Table 48
Reserved
N/A
N/A
0x04
0x22 to 0x7F
N/A
Reserved
N/A
Rev. E | Page 14 of 32
Data Sheet ADIS16485
Name
R/W
Flash
PAGE_ID
Address
Default
Register Description
Format
PAGE_ID R/W No 0x05 0x00 0x0000 Page identifier N/A
FIR_COEF_Axxx R/W Yes 0x05 0x02 to 0x7E N/A FIR Filter Bank A, Coefficients 0 through 59 Table 52
PAGE_ID R/W No 0x06 0x00 0x0000 Page identifier N/A
FIR_COEF_Axxx R/W Yes 0x06 0x02 to 0x7E N/A FIR Filter Bank A, Coefficients 60 through 119 Table 52
PAGE_ID R/W No 0x07 0x00 0x0000 Page identifier N/A
FIR_COEF_Bxxx R/W Yes 0x07 0x02 to 0x7E N/A FIR Filter Bank B, Coefficients 0 through 59 Table 53
PAGE_ID R/W No 0x08 0x00 0x0000 Page identifier N/A
FIR_COEF_Bxxx R/W Yes 0x08 0x02 to 0x7E N/A FIR Filter Bank B, Coefficients 60 through 119 Table 53
PAGE_ID R/W No 0x09 0x00 0x0000 Page identifier N/A
FIR_COEF_Cxxx R/W Yes 0x09 0x02 to 0x7E N/A FIR Filter Bank C, Coefficients 0 through 59 Table 54
PAGE_ID
R/W
No
0x0A
0x00
0x0000
Page identifier
N/A
FIR_COEF_Cxxx R/W Yes 0x0A 0x02 to 0x7E N/A FIR Filter Bank C, Coefficients 60 through 119 Table 54
PAGE_ID R/W No 0x0B 0x00 0x0000 Page identifier N/A
FIR_COEF_Dxxx R/W Yes 0x0B 0x02 to 0x7E N/A FIR Filter Bank D, Coefficients 0 through 59 Table 55
PAGE_ID R/W No 0x0C 0x00 0x0000 Page identifier N/A
FIR_COEF_Dxxx R/W Yes 0x0C 0x02 to 0x7E N/A FIR Filter Bank D, Coefficients 60 through 119 Table 55
1 The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting.
Rev. E | Page 15 of 32
ADIS16485 Data Sheet
Rev. E | Page 16 of 32
OUTPUT DATA REGISTERS
After the ADIS16485 completes its start-up process, the PAGE_ID
register contains 0x0000, which sets Page 0 as the active page
for SPI access. Page 0 contains the output data, real-time clock,
status, and product identification registers.
INERTIAL SENSOR DATA FORMAT
The gyroscope, accelerometer, delta angle, and delta velocity output
data registers use a 32-bit, twos complement format. Each output
uses two registers to support this resolution. Figure 18 provides
an example of how each register contributes to each inertial
measurement. In this case, X_GYRO_OUT is the most significant
word (upper 16 bits), and X_GYRO_LOW is the least significant
word (lower 16 bits). In many cases, using the most significant
word registers alone provide sufficient resolution for preserving
key performance metrics.
10666-021
X-AXIS GYROSCOPE DATA
01515 0
X_GYRO_OUT X_GYRO_LOW
Figure 18. Gyroscope Output Format Example, DEC_RATE > 0
The arrows in Figure 19 describe the direction of the motion,
which produces a positive output response in each sensor’s
output register. The accelerometers respond to both dynamic
and static forces associated with acceleration, including gravity.
When lying perfectly flat, as shown in Figure 19, the z-axis
accelerometer output is 1 g, and the x and y accelerometers are 0 g.
ROTATION RATE (GYROSCOPE)
The registers that use the x_GYRO_OUT format are the primary
registers for the gyroscope measurements (see Table 11, Table 12,
and Table 13). When processing data from these registers, use
a 16-bit, twos complement data format. Table 14 provides
x_GYRO_OUT digital coding examples.
Table 11. X_GYRO_OUT (Page 0, Base Address = 0x12)
Bits Description
[15:0] X-axis gyroscope data; twos complement,
±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 12. Y_GYRO_OUT (Page 0, Base Address = 0x16)
Bits Description
[15:0] Y-axis gyroscope data; twos complement,
±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 13. Z_GYRO_OUT (Page 0, Base Address = 0x1A)
Bits Description
[15:0] Z-axis gyroscope data; twos complement,
±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 14. x_GYRO_OUT Data Format Examples
Rotation Rate Decimal Hex Binary
+450°/sec +22,500 0x57E4 0101 0111 1110 0100
+0.04/sec +2 0x0002 0000 0000 0000 0010
+0.02°/sec +1 0x0001 0000 0000 0000 0001
0°/sec 0 0x0000 0000 0000 0000 0000
−0.02°/sec −1 0xFFFF 1111 1111 1111 1111
−0.04°/sec −2 0xFFFE 1111 1111 1111 1110
−450°/sec −22,500 0xA81C 1010 1000 0001 1100
The registers that use the x_GYRO_LOW naming format provide
additional resolution for the gyroscope measurements (see
Table 15, Table 16, and Table 17). The MSB has a weight of
0.01°/sec, and each subsequent bit has ½ the weight of the
previous one.
Table 15. X_GYRO_LOW (Page 0, Base Address = 0x10)
Bits Description
[15:0] X-axis gyroscope data; additional resolution bits
Table 16. Y_GYRO_LOW (Page 0, Base Address = 0x14)
Bits Description
[15:0] Y-axis gyroscope data; additional resolution bits
Table 17. Z_GYRO_LOW (Page 0, Base Address = 0x18)
Bits Description
[15:0] Z-axis gyroscope data; additional resolution bits
PIN 1
PIN 23
a
Y
g
Y
Y-AXIS
g
X
X-AXIS
a
X
Z-AXIS
a
Z
g
Z
10666-119
Figure 19. Inertial Sensor Direction Reference Diagram
Data Sheet ADIS16485
ACCELERATION
The registers that use the x_ACCL_OUT format are the primary
registers for the accelerometer measurements (see Table 18,
Table 19, and Table 20). When processing data from these
registers, use a 16-bit, twos complement data format. Table 21
provides x_ACCL_OUT digital coding examples.
Table 18. X_ACCL_OUT (Page 0, Base Address = 0x1E)
Bits Description
[15:0] X-axis accelerometer data; twos complement,
±5 g range, 0 g = 0x0000, 1 LSB = 0.25 mg
Table 19. Y_ACCL_OUT (Page 0, Base Address = 0x22)
Bits Description
[15:0]
Y-axis accelerometer data; twos complement,
±5 g range, 0 g = 0x0000, 1 LSB = 0.25 mg
Table 20. Z_ACCL_OUT (Page 0, Base Address = 0x26)
Bits Description
[15:0] Z-axis accelerometer data; twos complement,
±5 g range, 0 g = 0x0000, 1 LSB = 0.25 mg
Table 21. x_ACCL_OUT Data Format Examples
Acceleration Decimal Hex Binary
+5 g +20,000 0x4E20 0100 1110 0010 0000
+0.5 mg +2 0x0002 0000 0000 0000 0010
+0.25 m
g
+1
0x0001
0000 0000 0000 0001
0 mg 0 0x0000 0000 0000 0000 0000
−0.25 mg −1 0xFFFF 1111 1111 1111 1111
0.5 mg −2 0xFFFE 1111 1111 1111 1110
−5 g −20,000 0xB1E0 1011 0001 1110 0000
The registers that use the x_ACCL_LOW naming format
provide additional resolution for the accelerometer
measurements (see Table 22, Table 23, and Table 24). The
MSB has a weight of 0.125 mg, and each subsequent bit has ½
the weight of the previous one.
Table 22. X_ACCL_LOW (Page 0, Base Address = 0x1C)
Bits Description
[15:0] X-axis accelerometer data; additional resolution bits
Table 23. Y_ACCL_LOW (Page 0, Base Address = 0x20)
Bits Description
[15:0] Y-axis accelerometer data; additional resolution bits
Table 24. Z_ACCL_LOW (Page 0, Base Address = 0x24)
Bits Description
[15:0] Z-axis accelerometer data; additional resolution bits
DELTA ANGLES
The x_DELTANG_OUT registers are the primary output
registers for the delta angle calculations. When processing data
from these registers, use a 16-bit, twos complement data format
(see Table 25, Table 26, and Table 27). Table 28 shows
x_DELTANG_OUT digital coding examples.
The delta angle outputs represent an integration of the gyro-
scope measurements and use the following formula for all
three axes (x-axis displayed):
( )
=
++
+×=
1
0
1,,
,
2
1
D
d
dDnxdDnx
S
Dnx
f
ωωθ
where:
D is the decimation rate = DEC_RATE + 1.
fS is the sample rate.
d is the incremental variable in the summation formula.
ωx is the x-axis rate of rotation (gyroscope).
n is the sample time, prior to the decimation filter.
When using the internal sample clock, fS is equal to 2460 SPS.
When using the external clock option, fS is equal to the frequency
of the external clock, which is limited to a minimum of 2 kHz,
to prevent overflow in the x_DELTANG_xxx registers at high
rotation rates. See Table 49 and Figure 20 for more information
on the DEC_RATE register (decimation filter).
The x_DELTANG_LOW registers (see Table 29, Table 30, and
Table 31) provide additional resolution bits for the delta angle and
combine with the x_DELTANG_OUT registers to provide a 32-bit,
twos complement number. The MSB in the x_DELTANG_LOW
registers have a weight of ~0.011° (720°/216), and each subsequent
bit carries a weight of ½ of the previous one.
Table 25. X_DELTANG_OUT (Page 0, Base Address = 0x42)
Bits Description
[15:0] X-axis delta angle data; twos complement,
±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.02
Table 26. Y_DELTANG_OUT (Page 0, Base Address = 0x46)
Bits
Description
[15:0] Y-axis delta angle data; twos complement,
±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.02
Table 27. Z_DELTANG_OUT (Page 0, Base Address = 0x4A)
Bits Description
[15:0] Z-axis delta angle data; twos complement,
±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.02
Table 28. x_DELTANG_OUT Data Format Examples
Angle ) Decimal Hex Binary
+720 × (215 − 1)/215 +32,767 0x7FFF 0111 1111 1111 1111
+1440/215 +2 0x0002 0000 0000 0000 0010
+720/215 +1 0x0001 0000 0000 0000 0001
0
0
0x0000
0000 0000 0000 0000
720/215 −1 0xFFFF 1111 1111 1111 1111
1440/215 −2 0xFFFE 1111 1111 1111 1110
720 32,768 0x8000 1000 0000 0000 0000
Rev. E | Page 17 of 32
ADIS16485 Data Sheet
Rev. E | Page 18 of 32
The x_DELTANG_LOW registers (see Table 29, Table 30, and
Table 31) provide additional resolution for the angle measurement
and combine with the x_DELTANT_OUT registers to provide a
32-bit, twos complement number. The MSBs in the x_DELTANG_
LOW registers have a weight of ~0.011° (720°/216), and each
subsequent bit carries a weight of ½ of the previous one.
Table 29. X_DELTANG_LOW (Page 0, Base Address = 0x40)
Bits Description
[15:0] X-axis delta angle data; additional resolution bits
Table 30. Y_DELTANG_LOW (Page 0, Base Address = 0x44)
Bits Description
[15:0] Y-axis delta angle data; additional resolution bits
Table 31. Z_DELTANG_LOW (Page 0, Base Address = 0x48)
Bits Description
[15:0] Z-axis delta angle data; additional resolution bits
DELTA VELOCITY
The registers that use the x_DELTVEL_OUT format are the
primary registers for the delta velocity calculations. When
processing data from these registers, use a 16-bit, twos complement
data format (see Table 32, Table 33, and Table 34). Table 35
provides x_DELTVEL_OUT digital coding examples.
The delta velocity outputs represent an integration of the
accelerometer measurements and use the following formula
for all three axes (x-axis displayed):

1
01,,
,2
1D
ddDnxdDnx
S
Dnx aa
f
V
where:
ax is the x-axis linear acceleration.
fS is the sample rate.
n is the sample time, prior to the decimation filter.
D is the decimation rate = DEC_RATE + 1.
d is the incremental variable in the summation formula.
When using the internal sample clock, fS is equal to 2460 SPS.
When using the external clock option, fS is equal to the frequency
of the external clock, which is limited to a minimum of 2 kHz,
to prevent overflow in the x_DELTVEL_xxx registers at high
rotation rates. See Table 49 and Figure 20 for more information
on the DEC_RATE register (decimation filter).
Table 32. X_DELTVEL_OUT (Page 0, Base Address = 0x4E)
Bits Description
[15:0] X-axis delta velocity data; twos complement,
±50 m/sec range, 0 m/sec = 0x0000,
1 LSB = 50 m/sec ÷ (215 – 1) = ~1.526 mm/sec
Table 33. Y_DELTVEL_OUT (Page 0, Base Address = 0x52)
Bits Description
[15:0] Y-axis delta velocity data; twos complement,
±50 m/sec range, 0 m/sec = 0x0000,
1 LSB = 50 m/sec ÷ (215 – 1) = ~1.526 mm/sec
Table 34. Z_DELTVEL_OUT (Page 0, Base Address = 0x56)
Bits Description
[15:0] Z-axis delta velocity data; twos complement,
±50 m/sec range, 0 m/sec = 0x0000,
1 LSB = 50 m/sec ÷ (215 – 1) = ~1.526 mm/sec
Table 35. x_DELTVEL_OUT, Data Format Examples
Velocity (m/sec) Decimal Hex Binary
+50 × (215 − 1)/215 +32,767 0x7FFF 0111 1111 1111 1111
+100/215 +2 0x0002 0000 0000 0000 0010
+50/215 +1 0x0001 0000 0000 0000 0001
0 0 0x0000 0000 0000 0000 0000
−50/215 −1 0xFFFF 1111 1111 1111 1111
−100/215 −2 0xFFFE 1111 1111 1111 1110
−50 −32,768 0x8000 1000 0000 0000 0000
The x_DELTVEL_LOW registers (see Table 36, Table 37, and
Table 38) provide additional resolution bits for the delta-velocity
measurement and combine with the x_DELTVEL_OUT
registers to provide a 32-bit, twos complement number. The
MSBs in the x_DELTVEL_LOW registers have a weight of
~0.7629 mm/sec (50 m/sec ÷ 216), and each subsequent bit
carries a weight of ½ of the previous one.
Table 36. X_DELTVEL_LOW (Page 0, Base Address = 0x4C)
Bits Description
[15:0] X-axis delta velocity data; additional resolution bits
Table 37. Y_DELTVEL_LOW (Page 0, Base Address = 0x50)
Bits Description
[15:0] Y-axis delta velocity data; additional resolution bits
Table 38. Z_DELTVEL_LOW (Page 0, Base Address = 0x54)
Bits Description
[15:0] Z-axis delta velocity data; additional resolution bits
INTERNAL TEMPERATURE
The TEMP_OUT register provides an internal temperature
measurement that can be useful for observing relative temperature
changes inside of the ADIS16485 (see Table 39). Table 40 provides
TEMP_OUT digital coding examples. Note that this temperature
reflects a higher temperature than ambient, due to self heating.
Table 39. TEMP_OUT (Page 0, Base Address = 0x0E)
Bits Description
[15:0] Temperature data; twos complement,
0.00565°C per LSB, 25°C = 0x0000
Table 40. TEMP_OUT Data Format Examples
Temperature (°C) Decimal Hex Binary
+85 +10,619 0x297B 0010 1001 0111 1011
+25 + 0.0113 +2 0x0002 0000 0000 0000 0010
+25 + 0.00565 +1 0x0001 0000 0000 0000 0001
+25 0 0x0000 0000 0000 0000 0000
+25 − 0.00565 −1 0xFFFF 1111 1111 1111 1111
+25 − 0.0113 −2 0xFFFE 1111 1111 1111 1110
−40 −11,504 0xD310 1101 0011 0001 0000
Data Sheet ADIS16485
STATUS/ALARM INDICATORS
The SYS_E_FLAG register in Table 41 provides the system error
flags for a variety of conditions (see Table 41). Reading the
SYS_E_FLAG register clears all of its error flags and returns each
bit to a zero value, with the exception of Bit[7]. If SYS_E_FLAG[7]
is high, use the software reset (GLOB_CMD[7], see Table 86) to
clear this condition and restore normal operation. If any bit in
the SYS_E_FLAG register is associated with an error condition
that remains after reading this register, this bit automatically
returns to an alarm value as 1.
Table 41. SYS_E_FLAG (Page 0, Base Address = 0x08)
Bits Description (Default = 0x0000)
15 Watch dog timer flag (1 = timed out)
[14:8] Not used
7 Processing overrun (1 = error)
6 Flash memory update, result of GLOB_CMD[3] = 1
(1 = failed update, 0 = update successful)
5
Inertial self test failure (1 = DIAG_STS ≠ 0x0000)
4 Sensor overrange (1 = at least one sensor overranged)
3 SPI communication error (1 = error condition, when the
number of SCLK pulses is not equal to a multiple of 16)
[2:1] Not used
0 Alarm status flag (1 = ALM_STS 0x0000)
The DIAG_STS register in Table 42 provides the flags for the
internal self test function, which is from GLOB_CMD[1] (see
Table 86). Note that reading DIAG_STS also resets it to 0x0000.
Table 42. DIAG_STS (Page 0, Base Address = 0x0A)
Bits Description (Default = 0x0000)
[15:6]
Not used
5 Self test failure, z-axis accelerometer (1 = failure)
4 Self test failure, y-axis accelerometer (1 = failure)
3 Self test failure, x-axis accelerometer (1 = failure)
2 Self test failure, z-axis gyroscope (1 = failure)
1 Self test failure, y-axis gyroscope (1 = failure)
0 Self test failure, x-axis gyroscope (1 = failure)
The ALM_STS register in Table 43 provides the alarm bits for
the programmable alarm levels of each sensor. Note that
reading ALM_STS also resets its value to 0x0000.
Table 43. ALM_STS (Page 0, Base Address = 0x0C)
Bits Description (Default = 0x0000)
[15:6] Not used
5 Z-axis accelerometer alarm flag (1 = alarm is active)
4 Y-axis accelerometer alarm flag (1 = alarm is active)
3 X-axis accelerometer alarm flag (1 = alarm is active)
2 Z-axis gyroscope alarm flag (1 = alarm is active)
1 Y-axis gyroscope alarm flag (1 = alarm is active)
0 X-axis gyroscope alarm flag (1 = alarm is active)
FIRMWARE REVISION
The FIRM_REV register (see Table 44) provides the firmware
revision for the internal processor. Each nibble represents a digit
in this revision code. For example, if FIRM_REV = 0x0102, the
firmware revision is 1.02.
Table 44. FIRM_REV (Page 3, Base Address = 0x78)
Bits Description
[15:12] Binary, revision, 10s digit
[11:8] Binary, revision, 1s digit
[7:4] Binary, revision, tenths digit
[3:0] Binary, revision, hundredths digit
The FIRM_DM register (see Table 45) contains the month and
day of the factory configuration date. FIRM_DM[15:12] and
FIRM_DM[11:8] contain digits that represent the month
of factory configuration. For example, November is the 11th
month in a year and represented by FIRM_DM[15:8] = 0x11.
FIRM_DM[7:4] and FIRM_DM[3:0] contain digits that represent
the day of factory configuration. For example, the 27th day of
the month is represented by FIRM_DM[7:0] = 0x27.
Table 45. FIRM_DM (Page 3, Base Address = 0x7A)
Bits Description
[15:12] Binary, month 10s digit, range: 0 to 1
[11:8] Binary, month 1s digit, range: 0 to 9
[7:4] Binary, day 10s digit, range: 0 to 3
[3:0] Binary, day 1s digit, range: 0 to 9
The FIRM_Y register (see Table 46) contains the year of the
factory configuration date. For example, the year of 2013 is
represented by FIRM_Y = 0x2013.
Table 46. FIRM_Y (Page 3, Base Address = 0x7C)
Bits Description
[15:12] Binary, year 1000s digit, range: 0 to 9
[11:8] Binary, year 100s digit, range: 0 to 9
[7:4] Binary, year 10s digit, range: 0 to 9
[3:0] Binary, year 1s digit, range: 0 to 9
PRODUCT IDENTIFICATION
The PROD_ID register (see Table 47) contains the binary
equivalent of the part number (16,485 = 0x4065), and the
SERIAL_NUM register (see Table 48) contains a lot-specific
serial number.
Table 47. PROD_ID (Page 0, Base Address = 0x7E)
Bits Description (Default = 0x4065)
[15:0] Product identification = 0x4065 (16,485)
Table 48. SERIAL_NUM (Page 4, Base Address = 0x20)
Bits Description
[15:0] Lot specific serial number
Rev. E | Page 19 of 32
ADIS16485 Data Sheet
DIGITAL SIGNAL PROCESSING
GYROSCOPES/ACCELEROMETERS
Figure 20 provides a signal flow diagram for all the components
and settings that influence the frequency response for the
accelerometers and gyroscopes. The sample rate for each
accelerometer and gyroscope is 9.84 kHz. Each sensor has its
own averaging/decimation filter stage that reduces the update
rate to 2.46 kSPS. When using the external sync clock option
(FNCTIO_CTRL[7:4], see Table 89), the input clock drives a
4-sample burst at a sample rate of 9.84 kSPS, which feeds into
the 4× averaging/decimation filter. This results in a data rate
that is equal to the input clock frequency.
AVERAGING/DECIMATION FILTER
The DEC_RATE register (see Table 49) provides user control for
the final filter stage (see Figure 20), which averages and decimates
the accelerometers, gyroscopes, delta angle, and delta velocity data.
The output sample rate is equal to 2460/(DEC_RATE + 1). When
using the external sync clock option (FNCTIO_CTRL[7:4], see
Table 89), replace the 2460 number in this relationship with the
input clock frequency. For example, turn to Page 3 (DIN = 0x8003),
and set DEC_RATE = 0x18 (DIN = 0x8C18, then DIN = 0x8D00)
to reduce the output sample rate to 98.4 SPS (2460 ÷ 25).
Table 49. DEC_RATE (Page 3, Base Address = 0x0C)
Bits Description (Default = 0x0000)
[15:11] Don’t care
[10:0] Decimation rate, binary format, maximum = 2047,
see Figure 20 for impact on sample rate
MEMS
SENSOR 330Hz÷4
2.46kHz, f
s
GYROSCOPE
2-POLE: 404Hz, 757Hz
ACCELEROMETER
1-POLE: 330Hz
AVERAGE
DECIMATION
FILTER
SELECTABLE
FIR FILTER BANK
FILTR_BNK_0
FILTR_BNK_1
AVERAGE/DECIMATION FILTER
D = DEC_RATE[10:0] + 1
1
4
4
÷D
1
D
D
FIR
FILTER
BANK
f
s
INTERNAL
CLOCK
9.84kHz
DIOx
OPTIONAL I NPUT CLOCK
FNCTIO_CTRL[7] = 1
f
s
<2400Hz
NOTES
1. WHEN FNCTIO_CTRL[7] = 1, EACH CLOCK PULSE ON THE DESIGNATED DIOx LINE (FNCTIO_CTRL[5:4]) STARTS A 4-SAMPLE BURST,
AT A SAMPLE RATE OF 9.84kHz. THESE FOUR SAMPLES FEED INTO THE 4x AVERAGE/DECIMATION FILTER, WHICH PRODUCES A
DATA RATE THAT IS EQUAL TO THE INPUT CLOCK FREQUENCY.
10666-019
Figure 20. Sampling and Frequency Response Signal Flow
Rev. E | Page 20 of 32
Data Sheet ADIS16485
FIR FILTER BANKS
The ADIS16485 provides four configurable, 120-tap FIR filter
banks. Each coefficient is 16 bits wide and occupies its own
register location with each page. When designing a FIR filter for
these banks, use a sample rate of 2.46 kHz and scale the coefficients
so that their sum equals 32,768. For filter designs that have less
than 120 taps, load the coefficients into the lower portion of the
filter and start with Coefficient 1. Make sure that all unused taps
are equal to zero, so that they do not add phase delay to the
response. The FILTR_BNK_x registers provide three bits per
sensor, which configure the filter bank (A, B, C, D) and turn
filtering on and off. For example, turn to Page 3 (DIN = 0x8003),
then write 0x002F to FILTR_BNK_0 (DIN = 0x962F, DIN =
0x9700) to set the x-axis gyroscope to use the FIR filter in Bank D,
to set the y-axis gyroscope to use the FIR filter in Bank B, and
to enable these FIR filters in both x- and y-axis gyroscopes.
Note that the filter settings update after writing to the upper
byte; therefore, always configure the lower byte first. In cases
that require configuration to only the lower byte of either
FILTR_BNK_0 or FILTR_BNK_1, complete the process by
writing 0x00 to the upper byte.
Table 50. FILTR_BNK_0 (Page 3, Base Address = 0x16)
Bits Description (Default = 0x0000)
15 Don’t care
14
Y-axis accelerometer filter enable (1 = enabled)
[13:12]
Y-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
11 X-axis accelerometer filter enable (1 = enabled)
[10:9] X-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
8 Z-axis gyroscope filter enable (1 = enabled)
[7:6] Z-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
5 Y-axis gyroscope filter enable (1 = enabled)
[4:3] Y-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
2
X-axis gyroscope filter enable (1 = enabled)
[1:0] X-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
Table 51. FILTR_BNK_1 (Page 3, Base Address = 0x18)
Bits Description (Default = 0x0000)
[15:3] Don’t care
2 Z-axis accelerometer filter enable (1 = enabled)
[1:0] Z-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
Filter Memory Organization
Each filter bank uses two pages of the user register structure.
See Table 52, Table 53, Table 54, and Table 55 for the register
addresses in each filter bank.
Table 52. Filter Bank A Memory Map, FIR_COEF_Axxx
Page PAGE_ID Address Register
5 0x05 0x00 PAGE_ID
5 0x05 0x02 to 0x07 Not used
5 0x05 0x08 FIR_COEF_A000
5 0x05 0x0A FIR_COEF_A001
5 0x05 0x0C to 0x7C FIR_COEF_A002 to
FIR_COEF_A058
5 0x05 0x7E FIR_COEF_A059
6 0x06 0x00 PAGE_ID
6 0x06 0x02 to 0x07 Not used
6
0x06
0x08
FIR_COEF_A060
6 0x06 0x0A FIR_COEF_A061
6 0x06 0x0C to 0x7C FIR_COEF_A062 to
FIR_COEF_A118
6 0x06 0x7E FIR_COEF_A119
Table 53. Filter Bank B Memory Map, FIR_COEF_Bxxx
Page PAGE_ID Address Register
7 0x07 0x00 PAGE_ID
7
0x07
0x02 to 0x07
Not used
7 0x07 0x08 FIR_COEF_B000
7 0x07 0x0A FIR_COEF_B001
7 0x07 0x0C to 0x7C FIR_COEF_B002 to
FIR_COEF_B058
7 0x07 0x7E FIR_COEF_B059
8 0x08 0x00 PAGE_ID
8 0x08 0x02 to 0x07 Not used
8 0x08 0x08 FIR_COEF_B060
8 0x08 0x0A FIR_COEF_B061
8 0x08 0x0C to 0x7C FIR_COEF_B062 to
FIR_COEF_B118
8 0x08 0x7E FIR_COEF_B119
Table 54. Filter Bank C Memory Map, FIR_COEF_Cxxx
Page PAGE_ID Address Register
9 0x09 0x00 PAGE_ID
9 0x09 0x02 to 0x07 Not used
9 0x09 0x08 FIR_COEF_C000
9 0x09 0x0A FIR_COEF_C001
9
0x09
0x0C to 0x7C
FIR_COEF_C002 to
FIR_COEF_C058
9 0x09 0x7E FIR_COEF_C059
10 0x0A 0x00 PAGE_ID
10 0x0A 0x02 to 0x07 Not used
10 0x0A 0x08 FIR_COEF_C060
10 0x0A 0x0A FIR_COEF_C061
10 0x0A 0x0C to 0x7C FIR_COEF_C062 to
FIR_COEF_C118
10 0x0A 0x7E FIR_COEF_C119
Rev. E | Page 21 of 32
ADIS16485 Data Sheet
Table 55. Filter Bank D Memory Map, FIR_COEF_Dxxx
Page PAGE_ID Address Register
11 0x0B 0x00 PAGE_ID
11 0x0B 0x02 to 0x07 Not used
11 0x0B 0x08 FIR_COEF_D000
11 0x0B 0x0A FIR_COEF_D001
11 0x0B 0x0C to 0x7C FIR_COEF_D002 to
FIR_COEF_D058
11 0x0B 0x7E FIR_COEF_D059
12 0x0C 0x00 PAGE_ID
12 0x0C 0x02 to 0x07 Not used
12
0x0C
0x08
FIR_COEF_D060
12 0x0C 0x0A FIR_COEF_D061
12 0x0C 0x0C to 0x7C FIR_COEF_D062 to
FIR_COEF_D118
12 0x0C 0x7E FIR_COEF_D119
Default Filter Performance
The FIR filter banks have factory programmed filter designs. They
are all low-pass filters that have unity dc gain. Table 56 provides
a summary of each filter design, and Figure 21 shows the frequency
response characteristics. The phase delay is equal to ½ of the total
number of taps.
Table 56. FIR Filter Descriptions, Default Configuration
FIR Filter Bank Taps −3 dB Frequency (Hz)
A 120 310
B 120 55
C 32 275
D 32 63
NO FIR
FILTERING
0
–10
–20
MAGNITUDE (dB)
–30
–40
–50
–60
–70
–80
–90
–100020040060080010001200
FREQUENCY (Hz)
AD CB
10666-020
Figure 21. FIR Filter Frequency Response Curves
Rev. E | Page 22 of 32
Data Sheet ADIS16485
CALIBRATION
The ADIS16485 factory calibration produces correction formulas
for the gyroscopes and the accelerometers and then programs
them into the flash memory. In addition, there are a series of
user-configurable calibration registers for in-system tuning.
GYROSCOPES
The user calibration for the gyroscopes includes registers for
adjusting bias and sensitivity, as shown in Figure 22.
X-AXIS
GYRO
FACTORY
CALIBRATION
AND
FILTERINGX_GYRO_OUTX_GYRO_LOW
XG_BIAS_HIGHXG_BIAS_LOW
1 + X_GYRO_SCALE
10666-021
Figure 22. User Calibration Signal Path, Gyroscopes
Manual Bias Correction
The xG_BIAS_HIGH registers (see Table 57, Table 58, and
Table 59) and xG_BIAS_LOW registers (see Table 60, Table 61,
and Table 62) provide a bias adjustment function for the output
of each gyroscope sensor.
Table 57. XG_BIAS_HIGH (Page 2, Base Address = 0x12)
Bits Description (Default = 0x0000)
[15:0] X-axis gyroscope offset correction, upper word;
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 58. YG_BIAS_HIGH (Page 2, Base Address = 0x16)
Bits Description (Default = 0x0000)
[15:0] Y-axis gyroscope offset correction, upper word;
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 59. ZG_BIAS_HIGH (Page 2, Base Address = 0x1A)
Bits Description (Default = 0x0000)
[15:0] Z-axis gyroscope offset correction, upper word;
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 60. XG_BIAS_LOW (Page 2, Base Address = 0x10)
Bits Description (Default = 0x0000)
[15:0] X-axis gyroscope offset correction, lower word;
twos complement, 0°/sec = 0x0000,
1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec
Table 61. YG_BIAS_LOW (Page 2, Base Address = 0x14)
Bits Description (Default = 0x0000)
[15:0] Y-axis gyroscope offset correction, lower word;
twos complement, 0°/sec = 0x0000,
1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec
Table 62. ZG_BIAS_LOW (Page 2, Base Address = 0x18)
Bits Description (Default = 0x0000)
[15:0] Z-axis gyroscope offset correction, lower word;
twos complement, 0°/sec = 0x0000,
1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec
Bias Null Command
The continuous bias estimator (CBE) accumulates and
averages data in a 64-sample FIFO. The average time (tA)
for the bias estimates relies on the sample time base setting in
NULL_CNFG[3:0] (see Table 63). Users can load the correction
factors of the CBE into the gyroscope offset correction registers
(see Table 57, Table 58, Table 59, Table 60, Table 61, and Table 62)
using the bias null command in GLOB_CMD[0] (see Table 86).
NULL_CNFG[13:8] provide on/off controls for the sensors that
update when issuing a bias null command. The factory default
configuration for NULL_CNFG enables the bias null command
for the gyroscopes, disables the bias null command for the accel-
erometers, and establishes the average time to ~26.64 seconds.
For best results, make sure the ADIS16485 is stationary for this
entire time.
Table 63. NULL_CNFG (Page 3, Base Address = 0x0E)
Bits Description (Default = 0x070A)
[15:14]
Not used
13 Z-axis acceleration bias correction enable (1 = enabled)
12 Y-axis acceleration bias correction enable (1 = enabled)
11 X-axis acceleration bias correction enable (1 = enabled)
10 Z-axis gyroscope bias correction enable (1 = enabled)
9 Y-axis gyroscope bias correction enable (1 = enabled)
8 X-axis gyroscope bias correction enable (1 = enabled)
[7:4] Not used
[3:0] Time base control (TBC), range: 0 to 13 (default = 10);
tB = 2TBC/2460, time base, tA = 64 × tB, average time
Turn to Page 3 (DIN = 0x8003) and set GLOB_CMD[0] = 1
(DIN = 0x8201, then DIN = 0x8300) to update the user offset
registers with the correction factors of the CBE.
Manual Sensitivity Correction
The x_GYRO_SCALE registers enable sensitivity adjustment
(see Table 64, Table 65, and Table 66).
Table 64. X_GYRO_SCALE (Page 2, Base Address = 0x04)
Bits
Description (Default = 0x0000)
[15:0] X-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Table 65. Y_GYRO_SCALE (Page 2, Base Address = 0x06)
Bits Description (Default = 0x0000)
[15:0] Y-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Table 66. Z_GYRO_SCALE (Page 2, Base Address = 0x08)
Bits Description (Default = 0x0000)
[15:0] Z-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Rev. E | Page 23 of 32
ADIS16485 Data Sheet
Linear Acceleration on Effect on Gyroscope Bias
MEMS gyroscopes typically have a bias response to linear accel-
eration that is normal to their axes of rotation. The ADIS16485
offers an optional compensation function for this effect; the factory
default setting (0x00C0) for the CONFIG register enables this
function. To turn it off, turn to Page 3 (DIN = 0x8003) and set
CONFIG[7] = 0 (DIN = 0x8A20, DIN = 0x8B00). Note that this
also keeps the point of percussion alignment function enabled.
Table 67. CONFIG (Page 3, Base Address = 0x0A)
Bits Description (Default = 0x00C0)
[15:8] Not used
7 Linear-g compensation for gyroscopes (1 = enabled)
6 Point of percussion alignment (1 = enabled)
[5:2] Not used
1 Real-time clock, daylight savings time (1: enabled,
0: disabled)
0 Real-time clock control (1: relative/elapsed timer mode,
0: calendar mode)
ACCELEROMETERS
The user calibration for the accelerometers includes registers for
adjusting bias and sensitivity, as shown in Figure 23.
X-AXIS
ACCL
FACTORY
CALIBRATION
AND
FILTERING X_ACCL_OUT X_ACCL_LOW
XA_BIAS_HIGH XA_BIAS_LOW
1+ X_ACCL_SCALE
10666-022
Figure 23. User Calibration Signal Path, Gyroscopes
Manual Bias Correction
The xA_BIAS_HIGH (see Table 68, Table 69, and Table 70) and
xA_BIAS_LOW (see Table 71, Tabl e 72, and Table 73) registers
provide a bias adjustment function for the output of each accel-
erometer sensor. The xA_BIAS_HIGH registers use the same
format as x_ACCL_OUT registers. The xA_BIAS_LOW
registers use the same format as x_ACCL_LOW registers.
Table 68. XA_BIAS_HIGH (Page 2, Base Address = 0x1E)
Bits
Description (Default = 0x0000)
[15:0] X-axis accelerometer offset correction, high word;
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg
Table 69. YA_BIAS_HIGH (Page 2, Base Address = 0x22)
Bits Description (Default = 0x0000)
[15:0] Y-axis accelerometer offset correction, high word;
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg
Table 70. ZA_BIAS_HIGH (Page 2, Base Address = 0x26)
Bits Description (Default = 0x0000)
[15:0] Z-axis accelerometer offset correction, high word;
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg
Table 71. XA_BIAS_LOW (Page 2, Base Address = 0x1C)
Bits Description (Default = 0x0000)
[15:0] X-axis accelerometer offset correction, low word;
twos complement, 0 g = 0x0000,
1 LSB = 0.25 mg ÷ 216 = ~0.000003815 mg
Table 72. YA_BIAS_LOW (Page 2, Base Address = 0x20)
Bits Description (Default = 0x0000)
[15:0] Y-axis accelerometer offset correction, low word;
twos complement, 0 g = 0x0000,
1 LSB = 0.25 mg ÷ 216 = ~0.000003815 mg
Table 73. ZA_BIAS_LOW (Page 2, Base Address = 0x24)
Bits Description (Default = 0x0000)
[15:0] Z-axis accelerometer offset correction, low word;
twos complement, 0 g = 0x0000,
1 LSB = 0.25 mg ÷ 216 = ~0.000003815 mg
Manual Sensitivity Correction
The x_ACCL_SCALE registers enable sensitivity adjustment
(see Table 74, Table 75, Table 76).
Table 74. X_ACCL_SCALE (Page 2, Base Address = 0x0A)
Bits
Description (Default = 0x0000)
[15:0] X-axis accelerometer scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Table 75. Y_ACCL_SCALE (Page 2, Base Address = 0x0C)
Bits
Description (Default = 0x0000)
[15:0] Y-axis accelerometer scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Table 76. Z_ACCL_SCALE (Page 2, Base Address = 0x0E)
Bits Description (Default = 0x0000)
[15:0] Z-axis accelerometer scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.003052%
Rev. E | Page 24 of 32
Data Sheet ADIS16485
RESTORING FACTORY CALIBRATION
Turn to Page 3 (DIN = 0x8003) and set GLOB_CMD[6] = 1
(DIN = 0x8240, DIN = 0x8300) to execute the factory
calibration restore function. This function resets each user
calibration register to zero, resets all sensor data to 0, and
automatically updates the flash memory within 900 ms. See
Table 86 for more information on GLOB_CMD.
POINT OF PERCUSSION ALIGNMENT
CONFIG[6] offers a point of percussion alignment function
that maps the accelerometer sensors to the corner of the package
identified in Figure 24. To activate this feature, turn to Page 3
(DIN = 0x8003), then set CONFIG[6] = 1 (DIN = 0x8A40,
DIN = 0x8B00). See Table 67 for more information on the
CONFIG register.
PIN 1
PIN 23
POINT OF PERCUSSION
ALIGNMENT REFERENCE POINT.
SEE CONFIG[6].
10666-023
Figure 24. Point of Percussion Reference Point
Rev. E | Page 25 of 32
ADIS16485 Data Sheet
ALARMS
Each sensor has an independent alarm function that provides
controls for alarm magnitude, polarity, and enabling a dynamic
rate-of-change option. The ALM_STS register (see Table 43)
contains the alarm output flags and the FNCTIO_CTRL register
(see Table 89) provides an option for configuring one of the
digital I/O lines as an alarm indicator.
STATIC ALARM USE
The static alarm setting compares the output of each sensor
with the trigger settings in the xx_ALM_MAGN registers (see
Table 77, Table 78, Table 79, Table 80, Table 81, and Table 82)
of that sensor. The polarity controls for each alarm are in the
ALM_CNFG_x registers (see Table 83 and Table 84) and establish
the relationship for the condition that causes the corresponding
alarm flag to be active. For example, when ALM_CNFG_0[13]
= 1, the alarm flag for the x-axis accelerometer (ALM_STS[3],
see Table 43) becomes active (equal to 1) when X_ACCL_OUT
is greater than XA_ALM_MAGN.
DYNAMIC ALARM USE
The dynamic alarm setting provides the option to compare the
change in each sensor’s output over a period of 48.7 ms with that
sensors xx_ALM_MAGN register.
Table 77. XG_ALM_MAGN (Page 3, Base Address = 0x28)
Bits Description (Default = 0x0000)
[15:0] X-axis gyroscope alarm threshold settings;
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 78. YG_ALM_MAGN (Page 3, Base Address = 0x2A)
Bits Description (Default = 0x0000)
[15:0] Y-axis gyroscope alarm threshold settings;
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 79. ZG_ALM_MAGN (Page 3, Base Address = 0x2C)
Bits Description (Default = 0x0000)
[15:0] Z-axis gyroscope alarm threshold settings;
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 80. XA_ALM_MAGN (Page 3, Base Address = 0x2E)
Bits Description (Default = 0x0000)
[15:0] X-axis accelerometer alarm threshold settings;
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg
Table 81. YA_ALM_MAGN (Page 3, Base Address = 0x30)
Bits Description (Default = 0x0000)
[15:0] Y-axis accelerometer alarm threshold settings;
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg
Table 82. ZA_ALM_MAGN (Page 3, Base Address = 0x32)
Bits Description (Default = 0x0000)
[15:0]
Z-axis accelerometer alarm threshold settings;
twos complement, 0 g = 0x0000, 1 LSB = 0.25 mg
Table 83. ALM_CNFG_0 (Page 3, Base Address = 0x20)
Bits Description (Default = 0x0000)
15 X-axis accelerometer alarm (1 = enabled)
14 Not used
13 X-axis accelerometer alarm polarity
1 = active when X_ACCL_OUT > XA_ALM_MAGN
0 = active when X_ACCL_OUT > XA_ALM_MAGN
12 X-axis accelerometer dynamic enable (1 = enabled)
11 Z-axis gyroscope alarm (1 = enabled)
10
Not used
9 Z-axis gyroscope alarm polarity
1 = active when Z_GYRO_OUT > ZG_ALM_MAGN
0 = active when Z_GYRO_OUT > ZG_ALM_MAGN
8 Z-axis gyroscope dynamic enable (1 = enabled)
7
Y-axis gyroscope alarm (1 = enabled)
6 Not used
5 Y-axis gyroscope alarm polarity
1 = active when Y_GYRO_OUT > YG_ALM_MAGN
0 = active when Y_GYRO_OUT > YG_ALM_MAGN
4 Y-axis gyroscope dynamic enable (1 = enabled)
3 X-axis gyroscope alarm (1 = enabled)
2 Not used
1 X-axis gyroscope alarm polarity
1 = active when X_GYRO_OUT > XG_ALM_MAGN
0 = active when X_GYRO_OUT > XG_ALM_MAGN
0 X-axis gyroscope dynamic enable (1 = enabled)
Table 84. ALM_CNFG_1 (Page 3, Base Address = 0x22)
Bits Description (Default = 0x0000)
[15:8] Don’t care
7 Z-axis accelerometer alarm (1 = enabled)
6 Not used
5 Z-axis accelerometer alarm polarity
1 = active when Z_ACCL_OUT > ZA_ALM_MAGN
0 = active when Z_ACCL_OUT > ZA_ALM_MAGN
4 Z-axis accelerometer dynamic enable (1 = enabled)
3 Y-axis accelerometer alarm (1 = enabled)
2 Not used
1 Y-axis accelerometer alarm polarity
1 = active when Y_ACCL_OUT > YA_ALM_MAGN
0 = active when Y_ACCL_OUT > YA_ALM_MAGN
0 Y-axis accelerometer dynamic enable (1 = enabled)
Alarm Example
Table 85 offers an alarm configuration example, which sets the
z-axis gyroscope alarm to trip when Z_GYRO_OUT > 131.1°/sec
(0x199B).
Table 85. Alarm Configuration Example
DIN Description
0xAC9B, 0xAD19 Set ZG_ALM_MAGN = 0x199B
0xA000, 0xA10A Set ALM_CNFG_0 = 0x0A00
Rev. E | Page 26 of 32
Data Sheet ADIS16485
SYSTEM CONTROLS
The ADIS16485 provides a number of system level controls for
managing its operation, which include reset, self test, calibration,
memory management, and I/O configuration.
GLOBAL COMMANDS
The GLOB_CMD register (see Table 86) provides trigger bits for
several operations. Write 1 to the appropriate bit in GLOB_CMD to
start a function. After the function completes, the bit restores to 0.
Table 86. GLOB_CMD (Page 3, Base Address = 0x02)
Bits Description Execution Time
[15:8] Not used Not applicable
7 Software reset 120 ms
6 Factory calibration restore 75 ms
[5:4] Not used Not applicable
3 Flash memory update 375 ms
2 Flash memory test 50 ms
1 Self test 12 ms
0 Bias null See Table 63
Software Reset
Turn t o Page 3 (DIN = 0x8003) and then set GLOB_CMD[7] = 1
(DIN = 0x8280, DIN = 0x8300) to reset the operation, which
removes all data, initializes all registers from their flash settings,
and starts data collection. This function provides a firmware
alternative to the RST pin (see Table 6, Pin 8).
Automatic Self Test
Turn t o Page 3 (DIN = 0x8003) and then set GLOB_CMD[1] = 1
(DIN = 0x8202, then DIN = 0x8300) to run an automatic, self
test routine, which executes the following steps:
1. Measure the output on each sensor.
2. Activate the self test on each sensor.
3. Measure the output on each sensor.
4. Deactivate the self test on each sensor.
5. Calculate the difference with the self test on and off.
6. Compare the difference with the internal pass/fail criteria.
7. Report the pass/fail results for each sensor in DIAG_STS.
After waiting 12 ms for this test to complete, turn to Page 0
(DIN = 0x8000) and read DIAG_STS using DIN = 0x0A00.
Note that using an external clock can extend this time. When
using an external clock of 100 Hz, this time extends to 35 ms.
Note that 100 Hz is too slow for optimal sensor performance.
MEMORY MANAGEMENT
The data retention of the flash memory depends on the temperature
and the number of write cycles. Figure 25 characterizes the
dependence on temperature, and the FLSHCNT_LOW and
FLSHCNT_HIGH registers (see Table 87 and Table 88) provide a
running count of flash write cycles. The flash updates every time
GLOB_CMD[6], GLOB_CMD[3], or GLOB_CMD[0] is set to 1.
Table 87. FLSHCNT_LOW (Page 2, Base Address = 0x7C)
Bits Description
[15:0] Binary counter; number of flash updates, lower word
Table 88. FLSHCNT_HIGH (Page 2, Base Address = 0x7E)
Bits Description
[15:0] Binary counter; number of flash updates, upper word
600
450
300
150
030 40
RETENTION (Years)
JUNCTIONTEMPERATURE (°C)
55 7085100125135150
10666-024
Figure 25. Flash Memory Retention
Flash Memory Test
Turn t o Page 3 (DIN = 0x8003), and then set GLOB_CMD[2] = 1
(DIN = 0x8204, DIN = 0x8300) to run a checksum test of the
internal flash memory, which compares a factory programmed
value with the current sum of the same memory locations. The
result of this test loads into SYS_E_FLAG[6]. Turn to Page 0
(DIN = 0x8000) and use DIN = 0x0800 to read SYS_E_FLAG.
Rev. E | Page 27 of 32
ADIS16485 Data Sheet
GENERAL-PURPOSE I/O
There are four general-purpose I/O pins: DIO1, DIO2, DIO3, and
DIO4. The FNCTIO_CTRL register controls the basic function
of each I/O pin. Each I/O pin only supports one function at a
time. In cases where a single pin has two different assignments,
the enable bit for the lower priority function automatically resets to
zero and is disabled. The priority is (1) data-ready, (2) sync clock
input, (3) alarm indicator, and (4) general-purpose, where 1
identifies the highest priority and 4 indicates the lowest priority.
Table 89. FNCTIO_CTRL (Page 3, Base Address = 0x06)
Bits Description (Default = 0x000D)
[15:12] Not used
11 Alarm indicator: 1 = enabled, 0 = disabled
10 Alarm indicator polarity: 1 = positive, 0 = negative
[9:8] Alarm indicator line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
7
Sync clock input enable: 1 = enabled, 0 = disabled
6 Sync clock input polarity: 1 = rising edge, 0 = falling edge
[5:4] Sync clock input line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
3 Data-ready enable: 1 = enabled, 0 = disabled
2 Data-ready polarity: 1 = positive, 0 = negative
[1:0]
Data-ready line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
Data-Ready Indicator
FNCTIO_CTRL[3:0] provide some configuration options for
using one of the DIOx lines as a data-ready indicator signal,
which can drive the interrupt control line of a processor. The
factory default assigns DIO2 as a positive polarity, data-ready
signal. Use the following sequence to change this assignment to
DIO1 with a negative polarity: turn to Page 3 (DIN = 0x8003)
and set FNCTIO_CTRL[3:0] = 1000 (DIN = 0x8608, then DIN =
0x8700). The timing jitter on the data-ready signal is ±1.4 µs.
Input Sync/Clock Control
FNCTIO_CTRL[7:4] provide some configuration options for
using one of the DIOx lines as an input synchronization signal
for sampling inertial sensor data. For example, use the following
sequence to establish DIO4 as a positive polarity, input clock pin
and keep the factory default setting for the data-ready function: turn
to Page 3 (DIN = 0x8003) and set FNCTIO_CTRL[7:0] = 0xFD
(DIN = 0x86FD, then DIN = 0x8700). Note that this command
also disables the internal sampling clock, and no data sampling
takes place without the input clock signal. When selecting a
clock input frequency, consider the 330 Hz sensor bandwidth,
because under sampling the sensors can degrade noise and
stability performance.
General-Purpose I/O Control
When FNCTIO_CTRL does not configure a DIOx pin,
GPIO_CTRL provides register controls for general-purpose use
of the pin. GPIO_CTRL[3:0] provides input/output assignment
controls for each pin. When the DIOx pins are inputs, monitor
their levels by reading GPIO_CTRL[7:4]. When the DIOx pins are
used as outputs, set their levels by writing to GPIO_CTRL[7:4]. For
example, use the following sequence to set DIO1 and DIO3 as high
and low output pins, respectively, and set DIO2 and DIO4 as input
pins. Turn to Page 3 (DIN = 0x8003) and set GPIO_CTRL[7:0] =
0x15 (DIN = 0x8815, then DIN = 0x8900).
Table 90. GPIO_CTRL (Page 3, Base Address = 0x08)
Bits Description (Default = 0x00X0)1
[15:8] Don’t care
7 General-Purpose I/O Line 4 (DIO4) data level
6 General-Purpose I/O Line 3 (DIO3) data level
5 General-Purpose I/O Line 2 (DIO2) data level
4 General-Purpose I/O Line 1 (DIO1) data level
3 General-Purpose I/O Line 4 (DIO4) direction control
(1 = output, 0 = input)
2 General-Purpose I/O Line 3 (DIO3) direction control
(1 = output, 0 = input)
1 General-Purpose I/O Line 2 (DIO2) direction control
(1 = output, 0 = input)
0
General-Purpose I/O Line 1 (DIO1) direction control
(1 = output, 0 = input)
1 The GPIO_CTRL register, Bits[7:4], reflect the levels on the DIOx pins and do
not have a default setting.
POWER MANAGEMENT
The SLP_CNT register (see Table 91) provides controls for both
power-down mode and sleep mode. The trade-off between power-
down mode and sleep mode is between idle power and recovery
time. Power-down mode offers the best idle power consumption
but requires the most time to recover. Also, all volatile settings
are lost during power-down but are preserved during sleep mode.
For timed sleep mode, turn to Page 3 (DIN = 0x8003), write
the amount of sleep time to SLP_CNT[7:0] and then, set
SLP_CNT[8] = 1 (DIN = 0x9101) to start the sleep period. For
a timed power-down period, change the last command to set
SLP_CNT[9] = 1 (DIN = 0x9102). To power down or sleep for
an indefinite period, set SLP_CNT[7:0] = 0x00 first, then set
either SLP_CNT[8] or SLP_CNT[9] to 1. Note that the command
takes effect when the CS line goes high. To awaken the device
from sleep or power-down mode, use one of the following
options to restore normal operation:
Assert CS from high to low.
Pulse RST low, then high again.
Cycle the power.
For example, set SLP_CNT[7:0] = 0x64 (DIN = 0x9064), then
set SLP_CNT[8] = 1 (DIN = 0x9101) to start a sleep period of
100 seconds.
Rev. E | Page 28 of 32
Data Sheet ADIS16485
Table 91. SLP_CNT (Page 3, Base Address = 0x10)
Bits Description
[15:10] Not used
9 Power-down mode
8 Normal sleep mode
[7:0] Programmable time bits; 1 sec/LSB; 0x00 = indefinite
If the sleep mode and power-down mode bits are both set high,
the normal sleep mode (SLP_CNT[8]) bit takes precedence.
General-Purpose Registers
The USER_SCR_x registers (see Table 92, Table 93, Table 94,
and Table 95) provide four 16-bit registers for storing data.
Table 92. USER_SCR_1 (Page 2, Base Address = 0x74)
Bits Description
[15:0] User-defined
Table 93. USER_SCR_2 (Page 2, Base Address = 0x76)
Bits Description
[15:0] User-defined
Table 94. USER_SCR_3 (Page 2, Base Address = 0x78)
Bits Description
[15:0] User-defined
Table 95. USER_SCR_4 (Page 2, Base Address = 0x7A)
Bits Description
[15:0] User-defined
Real-Time Clock Configuration/Data
The VDDRTC power supply pin (see Table 6, Pin 23) provides
a separate supply for the real-time clock (RTC) function. This
enables the RTC to keep track of time, even when the main supply
(VDD) is off. Configure the RTC function by selecting one of
two modes in CONFIG[0] (see Table 67). The real-time clock
data is available in the TIME_MS_OUT register (see Table 96),
TIME_DH_OUT register (see Table 97), and TIME_YM_OUT
register (see Table 98). When using the elapsed timer mode, the
time data registers start at 0x0000 when the device starts up (or
resets) and begin keeping time in a manner that is similar to a
stopwatch. When using the clock/calendar mode, write the current
time to the real-time registers in the following sequence: seconds
(TIME_MS_OUT[5:0]), minutes (TIME_ MS_OUT[13:8]), hours
(TIME_DH_OUT[5:0]), day (TIME_DH_OUT[12:8]), month
(TIME_YM_OUT[3:0]), and year (TIME_YM_OUT[14:8]).
The updates to the timer do not become active until there is a
successful write to the TIME_ YM_OUT[14:8] byte. The real-
time clock registers reflect the newly updated values only after
the next seconds tick of the clock that follows the write to
TIME_YM_OUT[14:8] (year). Writing to TIME_YM_OUT[14:8]
activates all timing values; therefore, always write to this location
last when updating the timer, even if the year information does
not require updating.
Write the current time to each time data register after setting
CONFIG[0] = 1 (DIN = 0x8003, DIN = 0x8A01). Note that
CONFIG[1] provides a bit for managing daylight savings time.
After the CONFIG and TIME_xx_OUT registers are configured,
set GLOB_CMD[3] = 1 (DIN = 0x8003, DIN = 0x8208, DIN =
0x8300) to back up these settings up in flash, and use a separate
3.3 V source to supply power to the VDDRTC function. Note that
access to time data in the TIME_xx_OUT registers requires
normal operation (VDD = 3.3 V and full startup), but the timer
function only requires that VDDRTC = 3.3 V when the rest of
the ADIS16485 is turned off.
Table 96. TIME_MS_OUT (Page 0, Base Address = 0x78)
Bits Description
[15:14] Not used
[13:8] Minutes, binary data, range = 0 to 59
[7:6] Not used
[5:0] Seconds, binary data, range = 0 to 59
Table 97. TIME_DH_OUT (Page 0, Base Address = 0x7A)
Bits Description
[15:13] Not used
[12:8] Day, binary data, range = 1 to 31
[7:6] Not used
[5:0] Hours, binary data, range = 0 to 23
Table 98. TIME_YM_OUT (Page 0, Base Address = 0x7C)
Bits Description
[15] Not used
[14:8] Year, binary data, range = 0 to 99, relative to 2000 A.D.
[7:4] Not used
[3:0] Month, binary data, range = 1 to 12
Rev. E | Page 29 of 32
ADIS16485 Data Sheet
Rev. E | Page 30 of 32
APPLICATIONS INFORMATION
MOUNTING TIPS
For best performance, follow these simple rules when installing
the ADIS16485 into a system.
1. Eliminate opportunity for translational force (x-axis and
y-axis direction; see Figure 6.
2. Isolate mounting force to the four corners, on the part of
the package surface that surrounds the mounting holes.
3. Use uniform mounting forces on all four corners. The
suggested torque setting is 40 inch-ounces (0.285 N-m).
These three rules help prevent nonuniform force profiles, which
can warp the package and introduce bias errors in the sensors.
Figure 26 provides an example that leverages washers to set the
package off the mounting surface and uses 2.85 mm pass-through
holes and backside washers/nuts for attachment. Figure 27 and
Figure 28 provide some details from mounting hole and connector
alignment pin drill locations. For more information on mounting
the ADIS16485, see the AN-1295 Application Note, Mechanical
Design Tips for ADIS16375, ADIS16480, ADIS16485, and
ADIS16488.
MOUNTING SCREWS
M2 × 0.4mm, 4×
WASHERS (OPTIONAL)
M2, 4×
ADIS16488A
WASHERS (OPTIONAL)
M2, 4×
NUTS
M2 × 0.4mm, 4×
MATING CONNECTOR
CLM-112-02
PCB
PASS-THROUGH HOLES
DIAMETER 2.85mm
SPACERS/WASHERS
SUGGESTED, 4×
10666-133
Figure 26. Mounting Example
0.560 BSC
ALIGNMENT HOLES
FOR MATING SOCKET
PASS-THROUGH HOLE
FOR MOUNTING SCREWS
DIAMETER OF THE HOLE
MUST ACCOMMODATE
DIMENSIONAL TOLERANCE
BETWEEN THE CONNECTO
R
AND HOLES.
19.800 BSC
39.600 BSC
42.600
21.300 BSC
5BSC5BSC
1.642 BSC
NOTES
1. ALL DIMENSIONS IN mm UNITS.
2. THE CONNECTOR FACES DOWN AND ARE NOT VISIBLE FROM THIS VIEW.
10666-027
ADIS16485AMLZ
OUTLINE
Figure 27. Suggested PCB Layout Pattern, Connector Down
0.4334 [11.0]
0.0240 [0.610]
0.019685
[0.5000]
(TYP)
0.054 [1.37]
0.0394 [1.00]
0.0394 [1.00] 0.1800
[4.57]
NONPLATED
THROUGH HOLE 2×
0.022± DIA (TYP)
0.022 DIA THROUGH HOLE (TYP)
NONPLATED THROUGH HOLE
10666-028
Figure 28. Suggested Layout and Mechanical Design when Using Samtec
P/N CLM-112-02-G-D-A for the Mating Connector
Data Sheet ADIS16485
EVALUATION TOOLS
Breakout Board, ADIS16IMU/PCBZ
The ADIS16IMU1/PCBZ (sold separately) provides a breakout
board function for the ADIS16485, which means that it provides
access to the ADIS16485 through larger connectors that support
standard 1 mm ribbon cabling. It also provides four mounting
holes for attachment of the ADIS16485 to the breakout board.
For more information on the ADIS16IMU1/PCBZ, see
http://www.analog.com/en/evaluation/eval-adis16imu1/eb.html.
PC-Based Evaluation, EVAL-ADIS
The E VA L -ADIS system support PC-based evaluation of the
ADIS16485. For more information on the E VA L-ADIS system,
see http://www.analog.com/EVAL-ADIS.
POWER SUPPLY CONSIDERATIONS
The ADIS16485 has approximately ~24 µF of capacitance across
the VDD and GND pins. While this capacitor bank provides a
large amount of localized filtering, it also presents an opportunity
for excessive charging current when the VDD voltage ramps too
quickly. Use the following relationship to help determine the
appropriate VDD voltage profile, with respect to any current
limit functions that can cause the power supply to lose regulation
and potentially introduce unsafe conditions for the ADIS16485.
( )
dt
dV
Cti =
In addition to managing the initial voltage ramp, take note of the
transient current demand that the ADIS16485 requires during
its start-up/self-initialization process. Once VDD reaches 2.85 V,
the ADIS16485 begins its start-up process. Figure 29 offers a
broad connection that communicates when to expect the spikes
in current, and Figure 30 provides more detail on the current/time
behavior during the peak transient condition, which typically
occurs approximately 350 ms after VDD reaches 2.85 V. I n
Figure 30 notice that the peak current approaches 600 mA and
the transient condition lasts for approximately 1.75 ms.
10666-129
CH1 2.00V
CH4 100mA Ω 1M POINTS
1.00ms 1.00MS/s CH1 2.72V
T 9.800%
1
4
T
VDD
CURRENT
Figure 29. Transient Current Demand, Start-Up
10666-128
CH4 100mA Ω 1M POINTS
1.00ms 1.00MS/s CH1 2.72V
T 9.800%
4
T
CURRENT
Figure 30. Transient Current Demand, Peak Demand
Rev. E | Page 31 of 32
ADIS16485 Data Sheet
Rev. E | Page 32 of 32
OUTLINE DIMENSIONS
12-07-2012-E
BOTTO M VIEW
FRONT VIEW
44.254
44.000
43.746
42.854
42.600
42.346
1.942
1.642
1.342
47.254
47.000
46.746
14.254
14.000
13.746
39.854
39.600
39.346 20.10
19.80
19.50
Ø 2.40 BSC
(4 PLACES)
15.00
BSC
8.25
BSC
2.20 BSC
(8 PLACES)
DETAIL A
PIN 1
DET AI L B
5.50
BSC
5.50
BSC
1.00 BS C
2.84 BS C
6.50 BSC
DETAIL A
DETAIL B
1.00 BS C
PITCH 0.3 0 S Q BS C
3.454
3.200
2.946
Figure 31. 24-Lead Module with Connector Interface [MODULE]
(ML-24-6)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
ADIS16485BMLZ −40°C to +105°C 24-Lead Module with Connector Interface [MODULE] ML-24-6
1 Z = RoHS Compliant Part.
©2012−2015 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D10666-0-2/15(E)
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Analog Devices Inc.:
ADIS16485BMLZ