www.irf.com 1
09/19/06
IRF7904UPbF
HEXFET® Power MOSFET
Benefits
lVery Low RDS(on) at 4.5V VGS
lLow Gate Charge
lFully Characterized Avalanche Voltage
and Current
l20V VGS Max. Gate Rating
lImproved Body Diode Reverse Recovery
l100% Tested for RG
lLead-Free
Applications
lDual SO-8 MOSFET for POL
Converters in Notebook Computers, Servers,
Graphics Cards, Game Consoles
and Set-Top Box
VDSS ID
30V Q1 16.2m
:
@VGS = 10V 7.6A
Q2 10.8m
:
@VGS = 10V 11A
RDS(on) max
Absolute Maximum Ratings
Parameter Q1 Max. Q2 Max. Units
VDS Drain-to-Source Voltage V
VGS Gate-to-Source Voltage
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 7.6 11
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 6.1 8.9 A
IDM Pulsed Drain Current
c
61 89
PD @TA = 25°C Power Dissipation 1.4 2.0 W
PD @TA = 70°C Power Dissipation 0.9 1.3
Linear Derating Factor 0.011 0.016 W/°C
TJ Operating Junction and °C
TSTG Storage Temperature Range
Thermal Resistance
Parameter Q1 Max. Q2 Max. Units
RθJL Junction-to-Drain Lead
g
20 20 °C/W
RθJA Junction-to-Ambient
fg
90 62.5
± 20
30
-55 to + 150
SO-8
S1 / D2
S1 / D2
D1
G1
G2
S2
S1 / D2
S2
1
2
3
4
8
7
6
5
PD - 96084A
IRF7904UPbF
2www.irf.com
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BVDSS Drain-to-Source Breakdown Voltage Q1&Q2 30 ––– ––– V
∆ΒVDSS/TJ Breakdown Voltage Temp. Coefficient Q1 ––– 0.024 –– V/°C
Q2 ––– 0.024 ––
Q1 ––– 11.4 16.2
RDS
(
on
)
Static Drain-to-Source On-Resistance ––– 14.5 20.5 m
Q2 ––– 8.6 10.8
––– 10 13
VGS
(
th
)
Gate Threshold Voltage Q1&Q2 1.35 –– 2.25 V
VGS
(
th
)
/TJGate Threshold Voltage Coefficient Q1 ––– -5.0 ––– mVC
Q2 ––– -5.0 ––
IDSS Drain-to-Source Leakage Current Q1&Q2 ––– ––– 1.0 µA
Q1&Q2 ––– –– 150
IGSS Gate-to-Source Forward Leakage Q1&Q2 ––– –– 100 nA
Gate-to-Source Reverse Leakage Q1&Q2 ––– ––– -100
gfs Forward Transconductance Q1 17 ––– –– S
Q2 23 –– –––
Q
g
Total Gate Charge Q1 ––– 7.5 11
Q2 –– 14 21
Q
g
s1 Pre-Vth Gate-to-Source Charge Q1 ––– 2.2 –– Q1
Q2 –– 3.7 –– VDS = 15V
Q
g
s2 Post-Vth Gate-to-Source Char
g
e Q1 ––– 0.6 –– nC VGS = 4.5V, ID = 6.1A
Q2 –– 1.1 ––
Q
g
dGate-to-Drain Charge Q1 ––– 2.5 –– Q2
Q2 –– 4.8 –– VDS = 15V
Q
g
odr Gate Charge Overdrive Q1 ––– 2.2 –– VGS = 4.5V, ID = 8.8A
Q2 –– 4.4 ––
Qsw Switch Charge (Q
g
s2 + Q
g
d) Q1 ––– 3.1 ––
Q2 –– 5.9 ––
Qoss Output Charge Q1 ––– 4.5 –– nC
Q2 –– 9.1 ––
RGGate Resistance Q1 –– 3.2 4.8
Q2 ––– 2.9 4.4
td
(
on
)
Turn-On Delay Time Q1 ––– 6.9 –––
Q2 –– 7.8 ––
trRise Time Q1 ––– 7.3 –– ID = 6.1A
Q2 –– 10 –– ns
td
(
off
)
Turn-Off Dela
Time Q1 ––– 10 –––
Q2 –– 15 ––
tfFall Time Q1 ––– 3.2 ––– ID = 8.8A
Q2 –– 4.6 ––
Ciss Input Capacitance Q1 ––– 910 ––
Q2 –– 1780 ––
Coss Output Capacitance Q1 ––– 190 –– pF
Q2 ––– 390 –––
Crss Reverse Transfer Capacitance Q1 ––– 94 –––
Q2 ––– 180 –––
Avalanche Characteristics
Parameter Q1 Max. Q2 Max. Units
EAS Single Pulse Avalanche Energy
d
140 250 mJ
IAR Avalanche Current
c
6.1 8.8 A
Diode Characteristics
Parameter Min. Typ. Max. Units
ISContinuous Source Current Q1 ––– ––– 1.8 A
(Body Diode) Q2 ––– ––– 2.5
ISM Pulsed Source Current Q1 ––– –– 61 A
(Body Diode)
c
Q2 ––– –– 88
VSD Diode Forward Voltage Q1 ––– –– 1.0 V
Q2 ––– –– 1.0
tr
r
Reverse Recovery Time Q1 ––– 11 17 ns
Q2 –– 16 24
Qrr Reverse Recovery Charge Q1 ––– 2.6 3.9 nC
Q2 –– 6.9 10
VGS = 4.5V, ID = 6.1A
e
VGS = 4.5V, ID = 8.8A
e
VDS = 15V, ID = 8.8A
VDD = 15V, VGS = 4.5V
VGS = 10V, ID = 11A
e
Q1: VDS = VGS, ID = 25µA
VDS = 15V, ID = 6.1A
VDS = 24V, VGS = 0V, TJ = 125°C
VDD = 15V, VGS = 4.5V
–––
VDS = 15V
Clamped Inductive Load
VGS = 0V
ƒ = 1.0MHz
Typ.
–––
Q1 TJ = 25°C, IF = 6.1A,
VDD = 15V, di/dt = 100A/µs
e
TJ = 25°C, IS = 6.1A, VGS = 0V
e
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 8.8A, VGS = 0V
e
Q2 TJ = 25°C, IF = 8.8A,
VDD = 15V, di/dt = 100A/µs
e
MOSFET symbol
Q2: VDS = VGS, ID = 50µA
VDS = 16V, VGS = 0V
Q1
VGS = 20V
VGS = -20V
VDS = 24V, VGS = 0V
Conditions
Q2
Conditions
VGS = 0V, ID = 25A
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 7.6A
e
IRF7904UPbF
www.irf.com 3
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Q1 - Control FET Q2 - Synchronous FET
Typical Characteristics
Fig 3. Typical Output Characteristics Fig 4. Typical Output Characteristics
Fig 5. Typical Transfer Characteristics Fig 6. Typical Transfer Characteristics
1.0 2.0 3.0 4.0 5.0
VGS, Gate-to-Source Voltage (V)
0.1
1.0
10.0
100.0
ID, Drain-to-Source Current
(Α)
VDS = 15V
60µs PULSE WIDTH
TJ = 25°C
TJ = 150°C
1.0 2.0 3.0 4.0 5.0
VGS, Gate-to-Source Voltage (V)
0.1
1.0
10.0
100.0
ID, Drain-to-Source Current
(Α)
VDS = 15V
60µs PULSE WIDTH
TJ = 25°C
TJ = 150°C
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 25°C
2.5V
VGS
TOP 10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
BOTTOM 2.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 150°C
2.5V
VGS
TOP 10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
BOTTOM 2.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 25°C
2.5V
VGS
TOP 10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
BOTTOM 2.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 150°C
2.5V
VGS
TOP 10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
BOTTOM 2.5V
IRF7904UPbF
4www.irf.com
Q1 - Control FET Q2 - Synchronous FET
Typical Characteristics
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Capacitance vs. Drain-to-Source Voltage
Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage Fig 10. Typical Gate Charge vs. Gate-to-Source
Voltage
Fig 11. Maximum Safe Operating Area Fig 12. Maximum Safe Operating Area
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0 5 10 15 20
QG Total Gate Charge (nC)
0
2
4
6
8
10
12
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
ID= 6.1A
0 5 10 15 20 25 30 35
QG Total Gate Charge (nC)
0
2
4
6
8
10
12
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
ID= 8.8A
0.01 0.10 1.00 10.00 100.00
VDS , Drain-toSource Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TA = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
100msec
0.01 0.10 1.00 10.00 100.00
VDS , Drain-toSource Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TA = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
100msec
IRF7904UPbF
www.irf.com 5
Fig 17. Typical On-Resistance vs.Gate Voltage
Q1 - Control FET Q2 - Synchronous FET
Typical Characteristics
Fig 13. Normalized On-Resistance vs. Temperature Fig 14. Normalized On-Resistance vs. Temperature
Fig 15. Typical Source-Drain Diode Forward Voltage Fig 16. Typical Source-Drain Diode Forward Voltage
Fig 18. Typical On-Resistance vs.Gate Voltage
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 7.6A
VGS = 10V
0.2 0.4 0.6 0.8 1.0 1.2 1.4
VSD, Source-to-Drain Voltage (V)
0.1
1.0
10.0
100.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
2.0 4.0 6.0 8.0 10.0
VGS, Gate-to-Source Voltage (V)
10
15
20
25
30
35
40
RDS(on), Drain-to -Source On Resistance (
m)
TJ = 25°C
TJ = 125°C
ID = 7.6A
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 11A
VGS = 10V
2.0 4.0 6.0 8.0 10.0
VGS, Gate-to-Source Voltage (V)
5
10
15
20
25
RDS(on), Drain-to -Source On Resistance (
m)
TJ = 25°C
TJ = 125°C
ID = 11A
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
VSD, Source-to-Drain Voltage (V)
0.1
1.0
10.0
100.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
IRF7904UPbF
6www.irf.com
Q1 - Control FET Q2 - Synchronous FET
Typical Characteristics
Fig 19. Maximum Drain Current vs. Ambient Temp. Fig 20. Maximum Drain Current vs. Ambient Temp.
Fig 21. Threshold Voltage vs. Temperature Fig 22. Threshold Voltage vs. Temperature
Fig 23. Maximum Avalanche Energy vs. Drain Current Fig 24. Maximum Avalanche Energy vs. Drain Current
25 50 75 100 125 150
TJ , Ambient Temperature (°C)
0
2
4
6
8
ID , Drain Current (A)
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
1.0
1.4
1.8
2.2
2.6
VGS(th) Gate threshold Voltage (V)
ID = 250µA
25 50 75 100 125 150
Starting TJ, Junction Temperature (°C)
0
100
200
300
400
500
600
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 0.34A
0.48A
BOTTOM 6.1A
25 50 75 100 125 150
TJ , Ambient Temperature (°C)
0
2
4
6
8
10
12
ID , Drain Current (A)
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
1.0
1.4
1.8
2.2
VGS(th) Gate threshold Voltage (V)
ID = 250µA
25 50 75 100 125 150
Starting TJ, Junction Temperature (°C)
0
200
400
600
800
1000
1200
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 0.57A
0.77A
BOTTOM 8.8A
IRF7904UPbF
www.irf.com 7
Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1)
Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2)
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
100
Thermal Response ( Z
thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
Ri (°C/W) τi (sec)
10.908 0.02108
34.35 1.1482
17.15 39.7
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
100
Thermal Response ( Z
thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
Ri (°C/W) τi (sec)
17.122 0.018925
53.325 0.74555
19.551 39.2
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
Fig 27. Layout Diagram
IRF7904UPbF
8www.irf.com
Fig 30a. Switching Time Test Circuit Fig 30b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
VDD
VDS
LD
D.U.T
+
-
Fig 29b. Unclamped Inductive Waveforms
Fig 29a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 31a. Gate Charge Test Circuit Fig 31b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T. V
DS
I
D
I
G
-3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
IRF7904UPbF
www.irf.com 9
SO-8 Package Outline
Dimensions are shown in millimeters (inches)
SO-8 Part Marking
e1
D
E
y
b
A
A1
H
K
L
.189
.1497
.013
.050 BASIC
.0532
.0040
.2284
.0099
.016
.1968
.1574
.020
.0688
.0098
.2440
.0196
.050
4.80
3.80
0.33
1.35
0.10
5.80
0.25
0.40
1.27 BASIC
5.00
4.00
0.51
1.75
0.25
6.20
0.50
1.27
MIN MAX
MILLIMETERSINCHES
MI N MAX
DIM
e
c .0075 .0098 0.19 0.25
.025 BAS IC 0.635 BASIC
87
5
65
D B
E
A
e
6X
H
0.25 [.010] A
6
7
K x 4
8X L 8X c
y
0.25 [.010] C A B
e1 A
A1
8X b
C
0.10 [.004]
4312
F OOT P R I NT
8X 0.72 [.028]
6.46 [.255]
3X 1.27 [.050]
4. OU T L I NE CONF OR MS T O JE DE C OU T L I NE MS -012AA.
NOT E S:
1. DIMENSIONING & T OLERANCING PER AS ME Y14.5M-1994.
2. CONT R OL LING DIMENS ION: MIL LIMET ER
3. DIMENS IONS ARE S HOWN IN MILL IMET ERS [INCHES ].
5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROTRUS IONS NOT T O EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A S U B S T R AT E .
MOLD PROTRUS IONS NOT T O EXCEED 0.15 [.006].
8X 1.78 [.070]
IRF7904UPbF
10 www.irf.com
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/2006
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
FEED DIRECTION
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
SO-8 Tape and Reel
Dimensions are shown in millimeters (inches)
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Starting TJ = 25°C, Q1: L = 7.7mH
RG = 25, IAS = 6.1A; Q2: L = 6.5mH
RG = 25, IAS = 8.8A.
Pulse width 400µs; duty cycle 2%.
When mounted on 1 inch square copper board.
Rθ is measured at TJ approximately 90°C.