[AK4452]
015002211-E-03 2017/07
- 1 -
1. General Description
The AK4452 is a 32-bit 2ch Premium DAC, which achieves industry’s best low distortion characteristics by a
newly developed low distortion technology. It corresponds to a 768kHz PCM input and an 11.2MHz DSD
input at maximum, suitable for play backing high resolution audio sources that are becoming widespread in
network audios, USB-DACs and Car Audio Systems. In addition, “OSR-Doubler” technology is newly
adopted, making the AK4452 capable of supporting wide range signals and achieving low out-of-band noise
while realizing low power consumption. Moreover, the AK4452 has five types of 32-bit digital filters,
realizing simple and flexible sound making in wide range of applications.
Application: AV Receivers, CD/SACD Players, Network Audios, USB DACs, USB Headphones, Sound
Plate/Bars, Car Audios, Automotive External Amplifiers, Measuring Instruments and Control
Systems.
2. Features
(1) DR, S/N: 115dB
(2) THD+N: -107dB
(3) 256x Over sampling
(4) Sampling Rate: 8kHz 768kHz
(5) 32Bit 8x Digital Filter
- Ripple: 0.0032dB, Attenuation: 80dB (Sharp Roll-Off Filter Setting)
- Five Types of High Quality Sound Filter Option
- Sharp Roll-Off Filter
- Slow Roll-Off Filter
- Short Delay Sharp Roll-Off Filter (GD=5.8/fs)
- Short Delay Slow Roll-Off Filter (GD=4.8/fs)
- Super Slow Roll-Off Filter
(6) High Tolerance to Clock Jitter
(7) Low Distortion Differential Output
(8) DSD data input
(9) Daisy Chain
(10) Digital De-emphasis for 32, 44.1, 48kHz sampling
(11) Soft Mute
(12) Digital Attenuator (255 levels and 0.5dB step)
(13) I/F Format:
- 24/32bit MSB justified
- 16/20/24/32bit
- LSB justified
- I2S
- DSD
- TDM
(14) 3-wire Serial and I2C μP I/F
(15) Master Clock:
- 30kHz ~ 32kHz: 1152fs
- 30kHz ~ 54kHz: 512fs or 768fs
- 30kHz ~ 108kHz: 256fs or 384fs
- 108kHz ~ 216kHz: 128fs or 192fs
~ 384kHz: 64fs or 128fs
~ 768kHz: 64fs
AK4452
115dB 768kHz 32-bit 2ch Premium DAC
[AK4452]
015002211-E-03 2017/07
- 2 -
(16) Digital Input Level: CMOS
(17) Power Supply:
- TVDD= 1.7 3.6V
- AVDD=3.0 5.5V
(18) Supporting 105°C Temperature (Exposed pad is connected to ground)
(19) Package: 32-pin QFN
[AK4452]
015002211-E-03 2017/07
- 3 -
3. Table of Contents
1. General Description ................................................................................................................................... 1
2. Features ...................................................................................................................................................... 1
3. Table of Contents ....................................................................................................................................... 3
4. Block Diagram and Functions ................................................................................................................... 5
Block Diagram .......................................................................................................................................... 5
Functions .................................................................................................................................................. 6
5. Pin Configurations and Functions .............................................................................................................. 7
Ordering Guide ......................................................................................................................................... 7
Pin Configurations .................................................................................................................................... 7
Pin Functions ............................................................................................................................................ 8
Handling of Unused Pin ........................................................................................................................... 9
6. Absolute Maximum Ratings .................................................................................................................... 10
7. Recommended Operation Conditions ...................................................................................................... 10
8. Electrical Characteristics ......................................................................................................................... 11
Analog Characteristics ............................................................................................................................ 11
Sharp Roll-Off Filter Characteristics ...................................................................................................... 13
Slow Roll-Off Filter Characteristics ....................................................................................................... 15
Short Delay Sharp Roll-Off Filter Characteristics.................................................................................. 17
Short Delay Slow Roll-Off Filter Characteristics ................................................................................... 19
DSD Mode Characteristics ..................................................................................................................... 21
DC Characteristics .................................................................................................................................. 21
Switching Characteristics ....................................................................................................................... 22
Timing Diagram ..................................................................................................................................... 26
9. Functional Descriptions ........................................................................................................................... 30
D/A Conversion Mode (PCM mode, DSD mode) .................................................................................. 30
System Clock .......................................................................................................................................... 30
Audio Interface Format .......................................................................................................................... 34
D/A Conversion Mode (PCM Mode, DSD Mode) Switching Timing ................................................... 46
Digital Filter (PCM mode) ..................................................................................................................... 47
De-emphasis Filter (PCM mode) ............................................................................................................ 47
Output Volume (PCM mode, DSD mode) ............................................................................................. 48
Out of Band Noise Reduction Filter (PCM mode, DSD mode) ............................................................. 49
Zero Detection (PCM mode, DSD mode) .............................................................................................. 56
LR Channel Output Signal Select (PCM mode, DSD mode) ................................................................. 56
Sound Quality Adjustment (PCM mode, DSD mode)............................................................................ 57
DSD Full Scale (FS) Signal Detection Function .................................................................................... 58
Soft Mute Operation (PCM mode, DSD mode) ..................................................................................... 59
Error Detection ....................................................................................................................................... 60
System Reset .......................................................................................................................................... 60
Power Down Function ............................................................................................................................ 61
Power Off and Reset Functions .............................................................................................................. 62
Clock Synchronization and BICK Edge Detection Functions ................................................................ 65
Parallel Mode .......................................................................................................................................... 66
Serial Control Interface .......................................................................................................................... 66
Function List ........................................................................................................................................... 71
Register Map .......................................................................................................................................... 72
Register Definitions ................................................................................................................................ 73
10. Recommended External Circuits.......................................................................................................... 80
[AK4452]
015002211-E-03 2017/07
- 4 -
Typical Connection Diagram.................................................................................................................. 80
11. Package ................................................................................................................................................ 84
Outline Dimensions ................................................................................................................................ 84
Material & Lead finish ........................................................................................................................... 84
Marking .................................................................................................................................................. 85
12. Revision History .................................................................................................................................. 85
IMPORTANT NOTICE ................................................................................................................................ 87
[AK4452]
015002211-E-03 2017/07
- 5 -
4. Block Diagram and Functions
Block Diagram
MCLK
SDTI1/DSDR1
LRCK/DSDL1
CAD0_I2C/CSN/DIF
BICK/DCLK
SDA/CDTI/TDM0
PDN
AVDD
Clock
Divider
DVSS
TVDD
PS/CAD0_SPI
AOUTR1N
VREFH1
AVSS
AOUTR1P
PCM
Data
Interface
De-empha
sis
DSD
Data
Interface
8X
Interpolator
Control
Register
SCF
SCF
Vref
Bias
I2C
TDMO1
VDD18
LDO
DZF/SMUTE
CAD1/DCHAIN
LDOE
DATT
Soft Mute
DSD Filter
DATT
Soft Mute

Modulator
Noise
Rejection
Filter
VREFL1
AOUTL1P
AOUTL1N
TST6
TST7
TST3
TST4
TST5
TST1
TST2
Figure 1. Block Diagram
[AK4452]
015002211-E-03 2017/07
- 6 -
Functions
Block
Functions
PCM Data Interface
This block executes serial/parallel conversion of SDTI input audio data by
synchronizing with LRCK and BICK.
DSD Data Interface
1-bit data that is input from DSDL1 and DSDR1 pins is received by synchronizing
with DCLK.
DATTSoft Mute
Apply DATT and Soft Mute process to input data.
De-emphasis
Apply De-emphasis process to input data.
8x Interpolator
FIR filters that over sample 1fs rate data to 8fs rate.
ΔΣ Modulator
Output multi-bit data to SCF. This block consists of a third-order digital delta-sigma
modulator.
Noise Rejection Filter
Attenuate out of band noise to prevent degradation of analog characteristics.
SCF
A primary switched capacitor filter that converts a multi-bit output of delta-sigma
modulator to an analog signal.
LDO
Generate power for internal digital circuit (1.8V typ.).
Control Register
Keep register settings for each mode.
Clock Divider
Divide Master Clock
In PCM mode, master clock is divided automatically by fs rate auto detection
function. In DSD mode, the master clock frequency is set by DCKS bit.
[AK4452]
015002211-E-03 2017/07
- 7 -
5. Pin Configurations and Functions
Ordering Guide
AK4452VN 40 +105°C (Exposed pad is connected to ground)
40 +85°C (Exposed pad is open)
32-pin QFN
AKD4452 Evaluation Board for AK4452
Pin Configurations
VDD18
25
26
TST7
27
LDOE
28
29
TVDD
30
DVSS
PDN
24
23
22
21
20
19
1
LRCK/DSDL1
2
SDTI1/DSDR1
3
TST1
4
TDMO1
5
6
14
13
12
11
10
9
SCL/CCLK/TDM1
CAD0_I2C/CSN/DIF
I2C
PS/CAD0_SPI
AOUTL1N
AOUTL1P
SDA/CDTI/TDM0
Top View
TST5
TST6
VREFL1
31
32
7
8
16
15
18
17
DZF/SMUTE
CAD1/DCHAIN
MCLK
BICK/DCLK
TST4
TST3
TST2
AVDD
AVSS
AOUTR1P
AOUTR1N
VREFH1
Back Tab:Note1
Note 1. The exposed pad at back face of the package must be open or connected to the ground.
[AK4452]
015002211-E-03 2017/07
- 8 -
Pin Functions
No
.
Pin Name
I/O
Function
PD Status
1
MCLK
I
External Master Clock Input Pin
Hi-Z
2
BICK
I
Audio Serial Data Clock Pin in PCM mode
Hi-Z
DCLK
I
DSD Clock Pin in DSD mode
3
LRCK
I
Input Channel Clock Pin in PCM mode
Hi-Z
DSDL1
I
Audio Serial Data Input in DSD mode
4
SDTI1
I
Audio Serial Data Input in PCM mode
Hi-Z
DSDR1
I
Audio Serial Data Input in DSD mode
5
TST1
I
Test Pin. This pin must be connected to DVSS
Hi-Z
6
TDMO1
O
Audio Serial Data Output in Daisy Chain mode
100kΩ
Pull down
7
DZF
O
Zero Input Detect in I2C Bus or 3-wire serial control mode
100kΩ
Pull down
SMUTE
I
Soft Mute Pin in Parallel control mode.
When this pin is changed to H, soft mute cycle is initiated.
When returning L, the output mute releases.
8
CAD1
I
Chip Address 0 Pin in I2C Bus or 3-wire serial control mode
Hi-Z
DCHAIN
I
Daisy Chain Mode select pin in Parallel control mode.
9
SDA
I/O
Control Data Input Pin in I2C Bus serial control mode
Hi-Z
CDTI
I
Control Data Input Pin in 3-wire serial control mode
TDM0
I
TDM Mode select pin in Parallel control mode.
10
SCL
I
Control Data Clock Pin in I2C Bus serial control mode
Hi-Z
CCLK
I
Control Data Clock Pin in 3-wire serial control mode
TDM1
I
TDM Mode select pin in Parallel control mode.
11
CAD0_I2C
I
Chip Address 0 Pin in I2C Bus serial control mode
Hi-Z
CSN
I
Chip Select Pin in 3-wire serial control mode
DIF
I
Audio Data Format Select in Parallel control mode.
L32-bit MSB, H32-bit I2S
12
PS
I
(I2C pin = H)
Control Mode Select Pin
L”: I2C Bus serial control mode ,H”: Parallel control mode.
Hi-Z
CAD0_SPI
I
(I2C pin = L)
Chip Address 0 Pin in 3-wire serial control mode
13
I2C
I
Control Mode Select Pin
“L”: 3-wire serial control mode
“H”: I2C Bus serial control mode or Parallel control mode.
Hi-Z
14
AOUTL1P
O
L ch Positive Analog Output 1 Pin
Hi-Z
15
AOUTL1N
O
L ch Negative Analog Output 1 Pin
Hi-Z
16
VREFL1
I
Negative Voltage Reference Input Pin, AVSS
Hi-Z
17
VREFH1
I
Positive Voltage Reference Input Pin, AVDD
Hi-Z
18
AOUTR1N
O
R ch Negative Analog Output 1 Pin
Hi-Z
19
AOUTR1P
O
R ch Positive Analog Output 1 Pin
Hi-Z
20
AVSS
-
Analog Ground Pin
21
AVDD
-
Analog Power Supply Pin, 3.0V5.5V
22
TST2
I
Test Pin. This pin must be connected to AVSS.
Hi-Z
23
TST3
I
Test Pin. This pin must be connected to AVSS.
Hi-Z
24
TST4
I
Test Pin. This pin must be connected to AVSS.
Hi-Z
25
TST5
I
Test Pin. This pin must be connected to AVSS.
Hi-Z
[AK4452]
015002211-E-03 2017/07
- 9 -
No
.
Pin Name
I/O
Function
PD Status
26
TST6
I
Test Pin. This pin must be connected to AVSS.
Hi-Z
27
TST7
I
Test Pin. This pin must be connected to AVSS.
Hi-Z
28
LDOE
I
Internal LDO Enable Pin.
“L”: Disable, “H”: Enable
Hi-Z
29
TVDD
-
Digital Power Supply Pin, 3.0V3.6V
30
DVSS
-
Digital Ground Pin
31
VDD18
O
(LDOE pin = “H”)
LDO Output Pin
This pin should be connected to DVSS with 1.0µF.
(Note 4)
I
(LDOE pin = “L”)
1.8V Power Input Pin
32
PDN
I
Power-Down & Reset Pin
When “L”, the AK4452 is powered-down and the control
registers are reset to default state.
Hi-Z
Note 2. All input pins except internal pull-up/down pins must not be allowed to float.
Note 3. PCM mode and DSD mode are controlled by registers. Daisy Chain mode is controlled by both
registers and pins.
Note 4. This pin outputs DVSS when the LDOE pin = H and Hi-z when the LDOE pin = L.
Handling of Unused Pin
The unused I/O pins must be connected appropriately.
Classification
Pin Name
Setting
Analog
AOUTL1P/N, AOUTR1P/N
These pins must be open.
Digital
TDMO1, DZF
This pin must be open.
[AK4452]
015002211-E-03 2017/07
- 10 -
6. Absolute Maximum Ratings
(AVSS =DVSS =0V; Note 5)
Parameter
Symbol
Min.
Max.
Unit
Power Supplies:
Analog
Digital
|AVSS DVSS|
AVDD
TVDD
GND
0.3
0.3
-
6.0
4.0
0.3
V
V
V
Input Current, Any Pin Except Supplies
IIN
-
10
mA
Digital Input Voltage
VIND
0.3
TVDD+0.3
V
Ambient Temperature (Power applied)
When the back tab is connected to VSS
When the back tab is open
Ta
Ta
40
40
105
85
C
C
Storage Temperature
Tstg
65
150
C
Note 5. All voltages with respect to ground.
Note 6. AVSS and DVSS must be connected to the same analog ground plane.
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
7. Recommended Operation Conditions
(AVSS =DVSS =0V; Note 5)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Power Supplies
Analog
(LDOE pin= L”) (Note 7)
I/O buffer
Digital
(LDOE pin = H)(Note 8)
I/O buffer
AVDD
TVDD
VDD18
TVDD
3.0
VDD18
1.7
3.0
5.0
1.8
1.8
3.3
5.5
3.6
1.98
3.6
V
V
V
V
Voltage Reference
H voltage reference “L
voltage reference
VREFH1
VREFL1
AVDD0.5
-
-
AVSS
AVDD
-
V
V
Note 7. When the LDOE pin = “L” VDD18 must be powered up either at the same time or after TVDD is
powered up. The power up sequence between AVDD and TVDD or AVDD and VDD18 is not critical.
Note 8. When LDOE pin = H, the internal LDO supplies 1.8V (typ). The power up sequences between
AVDD and TVDD, AVDD and VDD18 are not critical.
* AKM assumes no responsibility for the usage beyond the conditions in this data sheet.
[AK4452]
015002211-E-03 2017/07
- 11 -
8. Electrical Characteristics
Analog Characteristics
(1) AVDD = 5.0V
(Ta=25C: TVDD=3.3V, AVDD=5.0V: AVSS= DVSS=0V: VREFH1=AVDD, VREFL1= AVSS:
fs=44.1kHz: BICK=64fs: Signal Frequency=1kHz: 24-bit Input Data: RL 2k: measurement bandwidth =
20Hz ~ 20kHz: External Circuit: (Figure 80), unless otherwise specified.)
Parameter
Min.
Typ.
Max.
Unit
Resolution
-
-
32
bit
Dynamic Characteristics (Note 9)
THD+N
fs=44.1kHz
BW=20kHz
0dBFS
60dBFS
-
-
-107
-52
-100
-
dB
dB
fs=96kHz
BW=40kHz
0dBFS
60dBFS
-
-
-104
-48
-
-
dB
dB
fs=192kHz
BW=40kHz
BW=80kHz
0dBFS
60dBFS
60dBFS
-104
-48
-44
-
-
-
dB
dB
dB
Dynamic Range (60dBFS with A-weighted) (Note 10)
110
115
-
dB
S/N (A-weighted) (Note 11)
110
115
-
dB
Interchannel Isolation (1kHz)
100
110
-
dB
DC Accuracy
Interchannel Gain Mismatch
-
0
0.3
dB
Gain Drift (Note 12)
-
20
-
ppm/C
Output Voltage (Note 13)
2.65
2.8
2.95
Vpp
Load Resistance (Note 14)
2
-
-
k
Load Capacitance (Note 14)
-
-
30
pF
Power Supplies
Power Supply Current
Normal operation (PDN pin = H)
AVDD
TVDD (fs = 44.1kHz)
TVDD (fs = 96kHz)
TVDD (fs = 192kHz)
-
-
-
-
8
3
5
7
11
4
7
10
mA
mA
mA
mA
Power down (PDN pin = L) (Note 15)
AVDD+TVDD
-
1
100
A
[AK4452]
015002211-E-03 2017/07
- 12 -
(2) AVDD = 3.3V
(Ta=25°C: TVDD=3.3V, AVDD=3.3V: AVSS= DVSS=0V: VREFH1=AVDD, VREFL1= AVSS:
fs=44.1kHz: BICK=64fs: Signal Frequency=1kHz: 24-bit Input Data: RL 2k: measurement bandwidth =
20Hz ~ 20kHz: External Circuit: (Figure 80), unless otherwise specified.)
Parameter
Min.
Typ.
Max.
Unit
Resolution
32
bit
Dynamic Characteristics (Note 9)
THD+N
fs=44.1kHz
BW=20kHz
0dBFS
60dBFS
-
-
-93
-48
-86
-
dB
dB
fs=96kHz
BW=40kHz
0dBFS
60dBFS
-
-
-92
-45
-
-
dB
dB
fs=192kHz
BW=40kHz
BW=80kHz
0dBFS
60dBFS
60dBFS
-92
-45
-41
-
-
-
dB
dB
dB
Dynamic Range(60dBFS with A-weighted) (Note 10)
106
111
-
dB
S/N (A-weighted) (Note 11)
106
111
-
dB
Inter channel Isolation (1kHz)
100
110
-
dB
DC Accuracy
Inter channel Gain Mismatch
0
0.3
dB
Gain Drift (Note 12)
-
20
-
ppm/°C
Output Voltage (Note 13)
1.66
1.85
2.04
Vpp
Load Resistance (Note 14)
2
k
Load Capacitance (Note 14)
30
pF
Power Supplies
Power Supply Current
Normal operation
(PDN pin = “H”)
AVDD
TVDD (fs = 44.1kHz)
TVDD (fs = 96kHz)
TVDD (fs = 192kHz)
-
-
-
-
6
3
5
7
-
-
-
-
mA
mA
mA
mA
Power down (PDN pin = “L”) (Note 15)
AVDD+TVDD
1
100
A
Note 9. Measured by Audio Precision, System Two. Averaging mode.
Note 10. Figure 80 External LPF Circuit Example 1. 100dB for 16-bit data.
Note 11. Figure 80 External LPF Circuit Example 1. S/N does not depend on input data size.
Note 12. The voltage on (VREFH1 VREFL1) is held +5V externally.
Note 13. The full scale voltage when applying a 1kHz sine wave (0dB) in PCM mode, or when applying a
1kHz sine wave (25~75% duty) in DSD mode. Output voltage scales with the voltage of (VREFH1
VREFL1).
DAC: AOUT (typ.@0dB) = (AOUT+) (AOUT) = 2.8Vpp (VREFH1 VREFL1)/5
Note 14. Regarding Load Resistance, AC load is 2k (min) with a DC cut capacitor (Figure 80). DC load is 2
k (min) without a DC cut capacitor (Figure 80). The load resistance value is with respect to ground.
Analog characteristics are sensitive to capacitive load that is connected to the output pin. Therefore
the capacitive load must be minimized.
Note 15. In the power down mode. All other digital input pins including clock pins (MCLK, BICK and LRCK)
are held DVSS.
[AK4452]
015002211-E-03 2017/07
- 13 -
Sharp Roll-Off Filter Characteristics
Sharp Roll-Off Filter Characteristics (fs= 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF,
SLOW bit = 0, SD bit=0)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 16)
0.05dB
PB
0
20.0
kHz
3.0dB
PB
21.5
kHz
Pass band Ripple
PR
-0.0032
0.0032
dB
Stop band (Note 16)
SB
24.1
kHz
Stop band Attenuation (Note 18)
SA
80
dB
Group Delay (Note 17)
GD
-
26.8
-
1/fs
Frequency Response (Note 18)
0.07dB
-
0
20.0
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 20.0kHz
-0.2
0.1
dB
Sharp Roll-Off Filter Characteristics (fs= 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF, SLOW bit = 0,
SD bit=0)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 16)
0.05dB
PB
0
43.5
kHz
3.0dB
PB
46.8
kHz
Pass band Ripple
PR
-0.0032
0.0032
dB
Stop band (Note 16)
SB
52.5
kHz
Stop band Attenuation (Note 18)
SA
80
dB
Group Delay (Note 17)
GD
-
26.8
-
1/fs
Frequency Response (Note 18)
0.07dB
-
0
43.5
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 40.0kHz
-0.3
0.1
dB
Sharp Roll-Off Filter Characteristics (fs= 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF, SLOW bit = 0,
SD bit=0)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 16)
0.05dB
PB
0
87.0
kHz
3.0dB
PB
93.6
kHz
Pass band Ripple
PR
-0.0032
0.0032
dB
Stop band (Note 16)
SB
105
kHz
Stop band Attenuation (Note 18)
SA
80
dB
Group Delay (Note 17)
GD
-
26.8
-
1/fs
Frequency Response (Note 18)
0.07dB
-
0
87.0
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 80.0kHz
-1
0.1
dB
Note 16. The pass band and stop band frequencies scale with fs. For example, PB=0.4535×fs, SB=0.546×fs.
Note 17. The calculating delay time which occurred by digital filtering. This time is from setting the
16/20/24/32bit data of both channels to input register to the output of analog signal.
Note 18. The output level is assumed as 0dB when inputting a 1kHz 0dB sine wave.
*Digital filter characteristics are based on simulation results.
[AK4452]
015002211-E-03 2017/07
- 14 -
Figure 2. Sharp Roll-off Filter Frequency Response
Figure 3. Sharp Roll-off Filter Passband Ripple
[AK4452]
015002211-E-03 2017/07
- 15 -
Slow Roll-Off Filter Characteristics
Slow Roll-Off Filter Characteristics (fs = 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF;
SLOW bit = 1, SD bit=0)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 19)
0.05dB
PB
0
8.1
kHz
3.0dB
PB
18.2
kHz
Pass band Ripple
PR
-0.043
0.043
dB
Stop band (Note 19)
SB
39.2
kHz
Stop band Attenuation (Note 18)
SA
73
dB
Group Delay (Note 17)
GD
-
6.3
-
1/fs
Frequency Response (Note 18)
0.05dB
-
0
8.1
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 20.0kHz
-5
0.1
dB
Slow Roll-Off Filter Characteristics (fs = 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF; SLOW bit = 1,
SD bit=0)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 19)
0.05dB
PB
0
17.7
kHz
3.0dB
PB
39.5
kHz
Pass band Ripple
PR
-0.043
0.043
dB
Stop band (Note 19)
SB
85.3
kHz
Stop band Attenuation (Note 18)
SA
73
dB
Group Delay (Note 17)
GD
-
6.3
-
1/fs
Frequency Response (Note 18)
0.05dB
PB
0
17.7
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 40.0kHz
-5
0.1
dB
Slow Roll-Off Filter Characteristics (fs = 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF; SLOW bit = 1,
SD bit=0)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 19)
0.05dB
PB
0
35.5
kHz
3.0dB
PB
79.0
kHz
Pass band Ripple
PR
-0.043
0.043
dB
Stop band (Note 19)
SB
171
kHz
Stop band Attenuation (Note 18)
SA
73
dB
Group Delay (Note 17)
GD
-
6.3
-
1/fs
Frequency Response (Note 18)
0.05dB
PB
0
35.5
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 80.0kHz
-5
0.1
dB
Note 19. The pass band and stop band frequencies scale with fs. For example, PB=0.185×fs, SB=0.888×fs.
[AK4452]
015002211-E-03 2017/07
- 16 -
Figure 4. Slow Roll-off Filter Frequency Response
Figure 5. Slow Roll-off Filter Passband Ripple
[AK4452]
015002211-E-03 2017/07
- 17 -
Short Delay Sharp Roll-Off Filter Characteristics
Short Delay Sharp Roll-Off Filter Characteristics (fs= 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF;
SLOW bit = 0, SD bit=1)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 16)
0.05dB
PB
0
20.0
kHz
3.0dB
PB
21.5
kHz
Pass band Ripple
PR
-0.0031
0.0031
dB
Stop band (Note 16)
SB
24.1
kHz
Stop band Attenuation (Note 18)
SA
80
dB
Group Delay (Note 17)
GD
-
5.8
-
1/fs
Frequency Response (Note 18)
0.07dB
-
0
20.0
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 20.0kHz
-0.2
0.1
dB
Short Delay Sharp Roll-Off Filter Characteristics (fs= 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF; SLOW bit = 0,
SD bit=1)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 16)
0.05dB
PB
0
43.5
kHz
3.0dB
PB
46.8
kHz
Pass band Ripple
PR
-0.0031
0.0031
dB
Stop band (Note 16)
SB
52.5
kHz
Stop band Attenuation (Note 18)
SA
80
dB
Group Delay (Note 17)
GD
-
5.8
-
1/fs
Frequency Response (Note 18)
0.07dB
-
0
43.5
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 40.0kHz
-0.3
0.1
dB
Short Delay Sharp Roll-Off Filter Characteristics (fs= 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF; SLOW bit = 0,
SD bit=1)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 16)
0.05dB
PB
0
87.0
kHz
3.0dB
PB
93.6
kHz
Pass band Ripple
PR
-0.0031
0.0031
dB
Stop band (Note 16)
SB
105
kHz
Stop band Attenuation (Note 18)
SA
80
dB
Group Delay (Note 17)
GD
-
5.8
-
1/fs
Frequency Response (Note 18)
0.07dB
-
0
87.0
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 80.0kHz
-1
0.1
dB
[AK4452]
015002211-E-03 2017/07
- 18 -
Figure 6. Short delay Sharp Roll-off Filter Frequency Response
Figure 7. Short delay Sharp Roll-off Filter Passband Ripple
[AK4452]
015002211-E-03 2017/07
- 19 -
Short Delay Slow Roll-Off Filter Characteristics
Short Delay Slow Roll-Off Filter Characteristics (fs= 44.1kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Normal Speed Mode; DEM=OFF;
SLOW bit = 1, SD bit=1)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 20)
0.05dB
PB
0
11.1
kHz
3.0dB
PB
19.4
kHz
Pass band Ripple
PR
-0.05
0.05
dB
Stop band (Note 20)
SB
38.1
kHz
Stop band Attenuation (Note 18)
SA
82
dB
Group Delay (Note 17)
GD
-
4.8
-
1/fs
Frequency Response (Note 18)
0.05dB
-
0
11.1
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 20.0kHz
-5
0.1
dB
Short Delay Slow Roll-Off Filter Characteristics (fs= 96kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Double Speed Mode; DEM=OFF; SLOW bit = 1,
SD bit=1)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 20)
0.05dB
PB
0
24.2
kHz
3.0dB
PB
42.1
kHz
Pass band Ripple
PR
-0.05
0.05
dB
Stop band (Note 20)
SB
83.0
kHz
Stop band Attenuation (Note 18)
SA
82
dB
Group Delay (Note 17)
GD
-
4.8
-
1/fs
Frequency Response (Note 18)
0.05dB
-
0
24.2
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 40.0kHz
-5
0.1
dB
Short Delay Slow Roll-Off Filter Characteristics (fs= 192kHz)
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V; Quad Speed Mode; DEM=OFF; SLOW bit = 1,
SD bit=1)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Digital Filter
Pass band (Note 20)
0.05dB
PB
0
48.4
kHz
3.0dB
PB
84.3
kHz
Pass band Ripple
PR
-0.05
0.05
dB
Stop band (Note 20)
SB
165.9
kHz
Stop band Attenuation (Note 18)
SA
82
dB
Group Delay (Note 17)
GD
-
4.8
-
1/fs
Frequency Response (Note 18)
0.05dB
-
0
48.4
kHz
Digital Filter + SCF (Note 18)
Frequency Response: 0 80.0kHz
-5
0.1
dB
Note 20. The pass band and stop band frequencies scale with fs. For example, PB=0.252×fs, SB=0.864×fs.
[AK4452]
015002211-E-03 2017/07
- 20 -
Figure 8. Short Delay Slow Roll-off Filter Frequency Response
Figure 9. Short Delay Slow Roll-off Filter Passband Ripple
[AK4452]
015002211-E-03 2017/07
- 21 -
DSD Mode Characteristics
(1) DSDF bit= “0”
(Ta=-40 105°C: AVDD=3.0 5.5V, TVDD=1.7 3.6V: fs=44.1kHz: D/P bit= “1”, DSDF bit= 0)
Parameter
Min.
Typ.
Max.
Unit
Digital Filter Response
Frequency
Response
(Note 21)
DSDSEL[1:0]
“00”
20kHz
50kHz
100kHz
-0.8
-5.5
-19.9
dB
“01””
40kHz
200kHz
400kHz
-0.8
-5.5
-19.9
dB
10
80kHz
400kHz
800kHz
-0.8
-5.5
-19.9
dB
(2) DSDF bit= “1”
(Ta=-40 105C: AVDD=3.0 5.5V, TVDD=1.7 3.6V: fs=44.1kHz: D/P bit=“1”, DSDF bit= 1”)
Parameter
Min.
Typ.
Max.
Unit
Digital Filter Response
Frequency
Response
(Note 21)
DSDSEL[1:0]
“00”
20kHz
100kHz
200kHz
-0.2
-6.3
-23.7
dB
“01””
40kHz
200kHz
400kHz
-0.2
-6.3
-23.7
dB
10
80kHz
400kHz
800kHz
-0.2
-6.3
-23.7
dB
Note 21. In DSD mode, the signal level is ranging from 25% to 75%. Peak levels of DSD signal above this duty
are not recommended by SACD format book (Scarlet Book).
Note 22. It is assumed that the output level is 0dB when the input signal is 1kHz and the duty range is between
25 ~ 75%.The output level is assumed as 0dB when applying a 1kHz sine wave in 25~ 75% duty.
*Digital filter characteristics are based on simulation results.
DC Characteristics
(Ta=-40 105C; AVDD=3.0 5.5V, TVDD=1.7 3.6V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
TVDD=1.7 3.0V
High-Level Input Voltage
Low-Level Input Voltage
VIH
VIL
80%TVDD
-
-
-
-
20%TVDD
V
V
TVDD=3.0V 3.6V
High-Level Input Voltage
Low-Level Input Voltage
VIH
VIL
70%TVDD
-
-
-
-
30%TVDD
V
V
High-Level Output Voltage
(TDMO1, DZF pins: Iout=-100µA)
Low-Level Output Voltage
(excpt SDA pin : Iout= 100µA)
(SDA pin, 2.0V TVDD 3.6V: Iout= 3mA)
(SDA pin, 1.7V TVDD 2.0V: Iout= 3mA)
VOH
VOL
VOL
VOL
TVDD0.5
-
-
-
-
-
-
-
0.5
0.4
20%TVDD
V
V
V
V
Input Leakage Current
Iin
-
-
10
A
[AK4452]
015002211-E-03 2017/07
- 22 -
Switching Characteristics
(Ta=-40 105°C: AVDD=3.0 5.5V, TVDD=1.7 3.6V, CL=20pF)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Master Clock Timing
Frequency
Duty Cycle
Minimum Pulse Width
fCLK
dCLK
tCLKH
tCLKL
2.048
45
9.155
9.155
49.152
55
MHz
%
ns
ns
LRCK Frequency (Note 23)
Normal Mode (TDM1-0 bits = 00)
Normal Speed Mode
Double Speed Mode
Quad Speed Mode
Oct speed mode
Hex speed mode
Duty Cycle
fsn
fsd
fsq
fso
fsh
Duty
8
54
108
45
384
768
54
108
216
55
kHz
kHz
kHz
kHz
kHz
%
TDM128 mode (TDM1-0 bits = 01)
Normal Speed Mode
Double Speed Mode
Quad Speed Mode
High time
Low time
fsn
fsd
fsq
tLRH
tLRL
8
54
108
1/128fs
1/128fs
54
108
216
kHz
kHz
kHz
nsec
ns
TDM256 mode (TDM1-0 bits = 10)
Normal Speed Mode High time
Double Speed Mode
High time
Low time
fsn
fsd
tLRH
tLRL
8
54
1/256fs
1/256fs
54
108
kHz
kHz
nsec
nsec
TDM512 mode (TDM1-0 bits = 11)
Normal Speed Mode
High time
Low time
fsn
tLRH
tLRL
8
1/512fs
1/512fs
54
kHz
nsec
nsec
PCM Audio Interface Timing
Normal Mode (TDM1-0 bits = 00)
BICK Period
Normal Speed Mode
Double Speed Mode
Quad Speed Mode
Oct speed mode
Hex speed mode
BICK Pulse Width Low
BICK Pulse Width High
BICK to LRCK Edge (Note 24)
LRCK Edge to BICK (Note 24)
SDTI1 Hold Time
SDTI1 Setup Time
tBCK
tBCK
tBCK
tBCK
tBCK
tBCKL
tBCKH
tBLR
tLRB
tSDH
tSDS
1/256fsn
1/128fsd
1/64fsq
1/64fso
1/64fsh
9
9
5
5
5
5
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
[AK4452]
015002211-E-03 2017/07
- 23 -
Parameter
Symbol
Min.
Typ.
Max.
Unit
TDM128 mode (TDM1-0 bits = 01)
BICK Period
Normal Speed Mode
Double Speed Mode
Quad Speed Mode
BICK Pulse Width Low
BICK Pulse Width High
BICK to LRCK Edge (Note 24)
LRCK Edge to BICK (Note 24)
SDTI1 Hold Time
SDTI1 Setup Time
tBCK
tBCK
tBCK
tBCKL
tBCKH
tBLR
tLRB
tSDH
tSDS
1/128fsn
1/128fsd
1/128fsq
14
14
14
14
5
5
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
TDM256 mode (TDM1-0 bits = 10)
BICK Period
Normal Speed Mode
Double Speed Mode (Note 25)
BICK Pulse Width Low
BICK Pulse Width High
BICK to LRCK Edge (Note 24)
LRCK Edge to BICK (Note 24)
TDMO1 Setup time BICK
TDMO1 Hold time BICK (Note 27)
SDTI1 Hold Time
SDTI1 Setup Time
tBCK
tBCK
tBCKL
tBCKH
tBLR
tLRB
tBSS
tBSH
tSDH
tSDS
1/256fsn
1/256fsd
14
14
14
14
5
5
5
5
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
TDM512 mode (TDM1-0 bits = 11)
BICK Period
Normal Speed Mode (Note 26)
BICK Pulse Width Low
BICK Pulse Width High
BICK to LRCK Edge (Note 24)
LRCK Edge to BICK (Note 24)
TDMO1 Setup time BICK
TDMO1 Hold time BICK (Note 27)
SDTI1 Hold Time
SDTI1 Setup Time
tBCK
tBCKL
tBCKH
tBLR
tLRB
tBSS
tBSH
tSDH
tSDS
1/512fsn
14
14
14
14
5
5
5
5
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
[AK4452]
015002211-E-03 2017/07
- 24 -
Parameter
Symbol
Min.
Typ.
Max.
Unit
DSD Audio Interface Timing
(64 mode, DSDSEL 1-0 bits = 00)
DCLK Period
DCLK Pulse Width Low
DCLK Pulse Width High
DCLK Edge to DSDL/R (Note 28)
tDCK
tDCKL
tDCKH
tDDD
144
144
20
1/64fs
20
nsec
nsec
nsec
nsec
(128 mode, DSDSEL 1-0 bits = 01)
DCLK Period
DCLK Pulse Width Low
DCLK Pulse Width High
DCLK Edge to DSDL/R (Note 28)
tDCK
tDCKL
tDCKH
tDDD
72
72
10
1/128fs
10
nsec
nsec
nsec
nsec
(256 mode, DSDSEL 1-0 bits = 10)
DCLK Period
DCLK Pulse Width Low
DCLK Pulse Width High
DCLK Edge to DSDL/R (Note 28)
tDCK
tDCKL
tDCKH
tDDD
36
36
5
1/256fs
5
nsec
nsec
nsec
nsec
Note 23. When the 1152fs, 512fs or 768fs /256fs or 384fs /128fs or 192fs are switched, the AK4452 should be
reset by the PDN pin or RSTN bit.
Note 24. BICK rising edge must not occur at the same time as LRCK edge.
Note 25. fsd (max) = 96kHz when TVDD < 3.0V in Daisy Chain mode.
Note 26. fsn (max) = 48kHz when TVDD < 3.0V in Daisy Chain mode.
Note 27. tBSH (min) = 4 nsec when TVDD > 2.6V and the LDOE pin = L.
Note 28. DSD data transmitting device must meet this time.
tDDD is defined from a falling edge of DCLK “↓” to a DSDL/R edge when DCKB bit = “0” and it
is defined from a rising edge of DCLK “↑” to a DSDL/R edge when DCKB bit = 1
[AK4452]
015002211-E-03 2017/07
- 25 -
(Ta=-40 105°C: AVDD=3.0 5.5V, TVDD=1.7 3.6V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Control Interface Timing (3-wire Serial mode):
CCLK Period
CCLK Pulse Width Low
Pulse Width High
CDTI Setup Time
CDTI Hold Time
CSN H Time
CSN to CCLK
CCLK to CSN
tCCK
tCCKL
tCCKH
tCDS
tCDH
tCSW
tCSS
tCSH
200
80
80
40
40
150
50
50
nsec
nsec
nsec
nsec
nsec
nsec
nsec
nsec
Control Interface Timing (I2C Bus mode):
SCL Clock Frequency
Bus Free Time Between Transmissions
Start Condition Hold Time (prior to first clock pulse)
Clock Low Time
Clock High Time
Setup Time for Repeated Start Condition
SDA Hold Time from SCL Falling (Note 29)
SDA Setup Time from SCL Rising
Rise Time of Both SDA and SCL Lines
Fall Time of Both SDA and SCL Lines
Setup Time for Stop Condition
Pulse Width of Spike Noise Suppressed by Input Filter
Capacitive load on bus
fSCL
tBUF
tHD:STA
tLOW
tHIGH
tSU:STA
tHD:DAT
tSU:DAT
tR
tF
tSU:STO
tSP
Cb
-
1.3
0.6
1.3
0.6
0.6
0
0.1
-
-
0.6
0
-
400
-
-
-
-
-
-
-
1.0
0.3
-
50
400
kHz
sec
sec
sec
sec
sec
sec
sec
sec
sec
nsec
pF
Power-down & Reset Timing (Note 30)
PDN Accept Pulse Width
PDN Reject Pulse Width
tAPD
tRPD
150
30
nsec
nsec
Note 29. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.
Note 30.The AK4452 can be reset by bringing the PDN pin to “L”.
Note 31. I2C is a trademark of NXP B.V.
[AK4452]
015002211-E-03 2017/07
- 26 -
Timing Diagram
Figure 10. Clock Timing
tLRB
LRCK
VIH
BICK
VIL
TDMO
50%TVDD
tBSS
VIH
VIL
tBLR
tSDS
SDTI
VIH
VIL
tSDH
tBSH
Figure 11. Audio Interface Timing (PCM Mode)
1/fCLK
tCLKL
VIH
tCLKH
MCLK
VIL
dCLK=tCLKH x fCLK, tCLKL x fCLK
1/fs
VIH
LRCK
VIL
tLRL
tLRH
Duty=tLRH x fs, tLRL x fs
tBCK
tBCKL
VIH
tBCKH
BICK
VIL
[AK4452]
015002211-E-03 2017/07
- 27 -
VIH
DCLK
VIL
tDDD
VIH
DSDL1
DSDR1
VIL
tDCKH
tDCKL
tDCK
tDDD
VIH
DSDL1
DSDR1
VIL
Figure 12. Audio Serial Interface Timing (DSD Normal Mode, DCKB bit = 0)
VIH
DCLK
VIL
tDDD
VIH
DSDL1
DSDR1
VIL
tDCKH
tDCKL
tDCK
tDDD
tDDD
VIH
DSDL1
DSDR1
VIL
tDDD
Figure 13. Audio Serial Interface Timing (DSD Phase Modulation Mode, DCKB bit = 0)
[AK4452]
015002211-E-03 2017/07
- 28 -
tCSS
CSN
VIH
CCLK
VIL
VIH
CDTI
VIL
VIH
VIL
C1
C0
R/W
A4
tCCKL
tCCKH
tCDS
tCDH
Figure 14. WRITE Command Input Timing (3-wire Serial Mode)
CSN
VIH
CCLK
VIL
VIH
CDTI
VIL
VIH
VIL
D3
D2
D1
D0
tCSW
tCSH
Figure 15. WRITE Data Input Timing (3-wire Serial Mode)
[AK4452]
015002211-E-03 2017/07
- 29 -
tHIGH
SCL
SDA
VIH
tLOW
tBUF
tHD:STA
tR
tF
tHD:DAT
tSU:DAT
tSU:STA
Stop
Start
Start
Stop
tSU:STO
VIL
VIH
VIL
tSP
Figure 16. I2C Bus mode Timing
tAPD
PDN VIL
tRPD
Figure 17. Power-down & Reset Timing
[AK4452]
015002211-E-03 2017/07
- 30 -
9. Functional Descriptions
D/A Conversion Mode (PCM mode, DSD mode)
The AK4452 can perform D/A conversion for either PCM data or DSD data. The DP bit controls PCM/DSD
mode. When DSD mode, DSD data can be input from DCLK, DSDL and DSDR pins. When PCM mode, PCM
data can be input from BICK, LRCK and SDTI pins. When PCM/DSD mode is changed by DP bit, the
AK4452 should be reset by RSTN bit. It takes about 2/fs to 3/fs to change the mode. Only PCM data is
supported in parallel mode.
DP bit
Interface
0
PCM
1
DSD
Table 1. PCM/DSD Mode Control
System Clock
[1] PCM Mode
The external clocks, which are required to operate the AK4452, are MCLK, BICK and LRCK. MCLK should
be synchronized with LRCK but the phase is not critical. The MCLK is used to operate the digital interpolation
filter and the delta - sigma modulator.
There are two methods to set MCLK frequency. In Manual Setting Mode (ACKS bit= “0”: Default), the
sampling speed is set by the DFS0, DFS1 (Table 2) bits. The frequency of MCLK at each sampling speed is set
automatically. When reset is released (PDN pin = “↑”), the AK4452 is in Manual Setting Mode. In Auto
Setting Mode (ACKS bit= “1”), as MCLK frequency is detected automatically (Table 5) and the internal
master clock attains the appropriate frequency (Table 6, Table 7), so it is not necessary to set DFS bits.
[AK4452]
015002211-E-03 2017/07
- 31 -
1. Manual Setting Mode (ACKS bit = 0)
MCLK frequency is detected automatically and the sampling rate is set by DFS2-0 bits (Table 2). The MCLK
frequency corresponding to each sampling speed should be provided externally (Table 3, Table 4).
The AK4452 is set to Manual Setting Mode at power-up (PDN pin = “L” →“H”). When DFS2-0 bits are
changed, the AK4452 should be reset by RSTN bit.
DFS2
DFS1
DFS0
Sampling Rate (fs)
(default)
0
0
0
Normal Speed Mode
8kHz 54kHz
0
0
1
Double Speed Mode
54kHz 108kHz
0
1
0
Quad Speed Mode
120kHz 216kHz
0
1
1
Reserved
(*)
1
0
0
Oct Speed Mode
384kHz
1
0
1
Hex Speed Mode
768kHz
1
1
0
Reserved
(* Shift to 384kHz)
1
1
1
Reserved
(* Shift to 768kHz)
Table 2. Sampling Speed (Manual Setting Mode)
LRCK
MCLK(MHz)
Sampling
Speed
Fs
16fs
32fs
48fs
64fs
96fs
128fs
32.0kHz
N/A
N/A
N/A
N/A
N/A
N/A
Normal
44.1kHz
N/A
N/A
N/A
N/A
N/A
N/A
48.0kHz
N/A
N/A
N/A
N/A
N/A
N/A
88.2kHz
N/A
N/A
N/A
N/A
N/A
N/A
Double
96.0kHz
N/A
N/A
N/A
N/A
N/A
N/A
176.4kHz
N/A
N/A
N/A
N/A
N/A
22.5792
Quad
192.0kHz
N/A
N/A
N/A
N/A
N/A
24.5760
Quad
384kHz
N/A
12.288
18.432
24.576
36.864
49.152
Oct
768kHz
12.288
24.576
36.864
49.152
N/A
N/A
Hex
Table 3. System Clock Example (Manual Setting Mode)
LRCK
MCLK(MHz)
Sampling
Speed
fs
192fs
256fs
384fs
512fs
768fs
1024fs
1152fs
32.0kHz
N/A
8.1920
12.2880
16.3840
24.5760
36.8640
36.8640
Normal
44.1kHz
N/A
11.2896
16.9344
22.5792
33.8688
N/A
N/A
48.0kHz
N/A
12.2880
18.4320
24.5760
36.8640
N/A
N/A
88.2kHz
N/A
22.5792
33.8688
45.1584
N/A
N/A
N/A
Double
96.0kHz
N/A
24.5760
36.8640
49.152
N/A
N/A
N/A
176.4kHz
33.8688
45.1584
N/A
N/A
N/A
N/A
N/A
Quad
192.0kHz
36.8640
49.152
N/A
N/A
N/A
N/A
N/A
Quad
384kHz
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Oct
768kHz
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Hex
Table 4. System Clock Example (Manual Setting Mode)
[AK4452]
015002211-E-03 2017/07
- 32 -
2. Auto Setting Mode (ACKS bit = 1)
MCLK frequency and the sampling speed are detected automatically (Table 5) and DFS2-0 bits are ignored.
The MCLK frequency corresponding to each sampling speed should be provided externally (Table 6, Table 7).
MCLK
Sampling Speed
1152fs
Normal (fs32kHz)
512fs/256fs
768fs/384fs
Normal
256fs
384fs
Double
128fs
192fs
Quad
64fs
96fs
Oct
32fs
48fs
Hex
Table 5. Sampling Speed (Auto Setting Mode)
LRCK
MCLK (MHz)
Sampling
Speed
fs
32fs
48fs
64fs
96fs
128fs
32.0kHz
N/A
N/A
N/A
N/A
N/A
Normal
44.1kHz
N/A
N/A
N/A
N/A
N/A
48.0kHz
N/A
N/A
N/A
N/A
N/A
88.2kHz
N/A
N/A
N/A
N/A
N/A
Double
96.0kHz
N/A
N/A
N/A
N/A
N/A
176.4kHz
N/A
N/A
N/A
N/A
22.5792
Quad
192.0kHz
N/A
N/A
N/A
N/A
24.5760
Quad
384kHz
N/A
N/A
24.576
36.864
N/A
Oct
768kHz
24.576
36.864
N/A
N/A
N/A
Hex
Table 6. System Clock Example (Auto Setting Mode)
LRCK
MCLK(MHz)
Sampling
Speed
fs
192fs
256fs
384fs
512fs
768fs
1152fs
32.0kHz
N/A
(8.1920*)
(12.2880*)
16.3840
24.5760
36.8640
Normal
(Double*)
44.1kHz
N/A
(11.2896*)
(16.9344*)
22.5792
33.8688
N/A
48.0kHz
N/A
(12.2880*)
(18.4320*)
24.5760
36.8640
N/A
88.2kHz
N/A
22.5792
33.8688
N/A
N/A
N/A
Double
96.0kHz
N/A
24.5760
36.8640
N/A
N/A
N/A
176.4kHz
33.8688
N/A
N/A
N/A
N/A
N/A
Quad
192.0kHz
36.8640
N/A
N/A
N/A
N/A
N/A
Quad
384kHz
N/A
N/A
N/A
N/A
N/A
N/A
Oct
768kHz
N/A
N/A
N/A
N/A
N/A
N/A
Hex
Table 7. System Clock Example (Auto Setting Mode)
MCLK= 256fs/384fs supports sampling rate of 8kHz~96kHz (Table 8). However, when the sampling rate is
8kHz~48kHz, DR and S/N will degrade by approximately 3dB as compared to when MCLK= 512fs/768fs.
ACKS bit
MCLK
DR,S/N
0
256fs/384fs/512fs/768fs
115dB
1
256fs/384fs
112dB
1
512fs/768fs
115dB
Table 8. Relationship of DR, S/N and MCLK frequency (fs = 44.1kHz)
[AK4452]
015002211-E-03 2017/07
- 33 -
[2] DSD mode (Serial Control mode only)
The AK4452 is capable to playback DSD data. The external clocks, which are required to operate the AK4452,
are MCLK and DCLK. MCLK should be synchronized with DCLK but the phase is not critical. The frequency
of MCLK is set by DCKS bit. (Table 9)
After exiting reset (PDN pin = “L” “H”, RSTN bit= 0 1) upon power-up, the AK4452 is in
power-down state until MCLK and DCLK are input.
DCKS bit
MCLK Frequency
DCLK Frequency
0
512fs
64fs/128fs/256fs
(default)
1
768fs
64fs/128fs/256fs
Table 9. System Clock (DSD Mode)
The AK4452 supports 64fs, 128fs and 256fs data stream (fs= 32kHz, 44.1kHz, 48kHz). DSDSEL1-0 bits
control this setting. (Table 10)
DSDSEL1
DSDSEL0
DSD data stream
fs=32kHz
fs=44.1kHz
fs=48kHz
0
0
2.048MHz
2.8224MHz
3.072MHz
(default)
0
1
4.096MHz
5.6448MHz
6.144MHz
1
0
8.192MHz
11.2896MHz
12.288MHz
1
1
Reserved
(8.192MHz)
Reserved
(11.2896MHz)
Reserved
(12.288MHz)
Table 10. DSD Data Stream Select
DSDD bit selects DSD playback mode (Table 11). When DSDD bit= 1, the output volume control is not
available and the cut off filter value is fixed to 100kHz.
DSDD bit
Mode
0
Full function
(default)
1
Volume pass
Table 11. DSD Playback Mode Select
The cut off filter characteristic in DSD mode can be selected by DSDF bit. (Table 12)
DSDF bit
Cut Off Filter
0
50kHz
(default)
1
100kHz
Table 12. DSD Filter Select
[AK4452]
015002211-E-03 2017/07
- 34 -
Audio Interface Format
The AK4452 supports both PCM and DSD formats for digital input signal. Mode settings are available by the
pins (TDM1-0 pins, DIF pin and DCHAIN pin) and registers (TDM1-0 bits, DIF2-0 bits, SDS2-0 bits and
DCHAIN bit). The RSTN bit should be toggled in case these format setting bits are changed during operation.
[1] PCM Mode
Normal Mode (TDM1-0 bits=00)
Two channels audio data is shifted in via the SDTI1 pin using BICK and LRCK inputs. Eight data formats are
supported and selected by the DIF2-0 bits as shown in Table 13. In all formats the serial data is MSB first, 2's
compliment format and is latched on the rising edge of BICK. Mode 2 can be used in 16-bit and 20-bit MSB
justified and Mode 6 can be used in 16-bit, 20-bit and 24-bit MSB justified formats by zeroing the unused
LSBs.
TDM128 Mode (TDM1-0 bits=01)
Four channels audio data is shifted in via the SDTI1 pin using BICK and LRCK inputs. Data is selected by
SDS2-0 bits. BICK is fixed to 128fs. Six data formats are supported and selected by the DIF2-0 bits as shown
in Table 13. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge
of BICK.
TDM256 Mode (TDM1-0 bits=10)
Eight channels audio data is shifted in via the SDTI1 pin using BICK and LRCK inputs. Data is selected by
SDS2-0 bits. BICK is fixed to 256fs. Six data formats are supported and selected by the DIF2-0 bits as shown
in Table 13. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge
of BICK.
TDM512 Mode (TDM1-0 bits=11)
Sixteen channels audio data is shifted in via the SDTI1 pin using BICK and LRCK inputs. Data is selected by
SDS2-0 bits. BICK is fixed to 512fs. Six data formats are supported and selected by the DIF2-0 bits as shown
in Table 13. In all formats the serial data is MSB first, 2's compliment format and is latched on the rising edge
of BICK.
[AK4452]
015002211-E-03 2017/07
- 35 -
Mode
TDM1
TDM0
DIF2
DIF1
DIF0
SDTI Format
LRCK
BICK
Normal
(Note 32)
0
0
0
0
0
0
16-bit LSB justified
H/L
32fs
1
0
0
1
20-bit LSB justified
H/L
40fs
2
0
1
0
24-bit MSB justified
H/L
48fs
3
0
1
1
24-bit I2S compatible
L/H
48fs
4
1
0
0
24-bit LSB justified
H/L
48fs
5
1
0
1
32-bit LSB justified
H/L
64fs
6
1
1
0
32-bit MSB justified
H/L
64fs
7
1
1
1
32-bit I2S compatible
L/H
64fs
TDM128
0
1
0
0
0
N/A
128fs
0
0
1
N/A
128fs
8
0
1
0
24-bit MSB justified
128fs
9
0
1
1
24-bit I2S compatible
128fs
10
1
0
0
24-bit LSB justified
128fs
11
1
0
1
32-bit LSB justified
128fs
12
1
1
0
32-bit MSB justified
128fs
13
1
1
1
32-bit I2S compatible
128fs
TDM256
1
0
0
0
0
N/A
256fs
0
0
1
N/A
256fs
14
0
1
0
24-bit MSB justified
256fs
15
0
1
1
24-bit I2S compatible
256fs
16
1
0
0
24-bit LSB justified
256fs
17
1
0
1
32-bit LSB justified
256fs
18
1
1
0
32-bit MSB justified
256fs
19
1
1
1
32-bit I2S compatible
256fs
TDM512
1
1
0
0
0
N/A
512fs
0
0
1
N/A
512fs
20
0
1
0
24-bit MSB justified
512fs
21
0
1
1
24-bit I2S compatible
512fs
22
1
0
0
24-bit LSB justified
512fs
23
1
0
1
32-bit LSB justified
512fs
24
1
1
0
32-bit MSB justified
512fs
25
1
1
1
32-bit I2S compatible
512fs
(Shaded settings are not available)
Table 13. Audio Interface Format
Note 32. BICK that is input to each channel must be longer than the bit length of setting format.
[AK4452]
015002211-E-03 2017/07
- 36 -
SDTI1
BICK
LRCK
SDTI1
15
14
6
5
4
BICK
0
1
10
11
12
13
14
15
0
1
10
11
12
13
14
15
0
1
3
2
1
0
15
14
(32fs)
(64fs)
0
14
1
15
16
17
31
0
1
14
15
16
17
31
0
1
15
14
0
15
14
0
Mode 0
Dont care
Dont care
15:MSB, 0:LSB
Mode 0
15
14
6
5
4
3
2
1
0
Lch Data
Rch Data
Figure 18. Mode 0 Timing
SDTI1
LRCK
BICK
(64fs)
0
9
1
10
11
12
31
0
1
9
10
11
12
31
0
1
19
0
19
0
Mode 1
Dont care
Dont care
19:MSB, 0:LSB
SDTI1
Mode 4
23:MSB, 0:LSB
20
19
0
20
19
0
Dont care
Dont care
22
21
22
21
Lch Data
Rch Data
8
23
23
8
Figure 19. Mode 1/4 Timing
LRCK
BICK
(64fs)
SDTI1
0
22
1
2
24
31
0
1
31
0
1
23:MSB, 0:LSB
22
1
0
Dont care
23
Lch Data
Rch Data
23
30
22
2
24
23
30
22
1
0
Dont care
23
22
23
Figure 20. Mode 2 Timing
[AK4452]
015002211-E-03 2017/07
- 37 -
LRCK
BICK
(64fs)
SDTI1
0
3
1
2
24
31
0
1
31
0
1
23:MSB, 0:LSB
22
1
0
Dont care
23
Lch Data
Rch Data
23
25
3
2
24
23
25
22
1
0
Dont care
23
23
Figure 21. Mode 3 Timing
LRCK
BICK
(64fs)
SDTI1
0
22
1
2
24
31
0
1
31
0
1
32:MSB, 0:LSB
30
1
0
31
Lch Data
Rch Data
23
30
22
2
24
23
30
30
1
0
31
30
31
Mode 5,6
Figure 22. Mode 5/6 Timing
LRCK
BICK
(64fs)
SDTI1
0
3
1
2
24
31
0
1
31
0
1
32:MSB, 0:LSB
30
1
0
31
Lch Data
Rch Data
23
25
3
2
24
23
25
30
1
0
31
30
31
Figure 23. Mode 7 Timing
[AK4452]
015002211-E-03 2017/07
- 38 -
LRCK
BICK(128fs)
128 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
SDTI1
22
0
22
0
22
0
22
0
23
23
23
23
22
23
Mode8
SDTI1
30
0
30
0
30
2
0
30
0
31
31
31
31
30
31
Mode11,12
Figure 24. Mode 8/11/12 Timing
LRCK
BICK(128fs)
128 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
SDTI1
22
0
22
0
22
0
22
0
23
23
23
23
23
SDTI1
Mode9
Mode13
30
0
30
0
30
2
0
30
0
31
31
31
31
30
31
Figure 25. Mode 9/13 Timing
LRCK
BICK(128fs)
128 BICK
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
SDTI1
22
0
22
0
22
0
22
0
23
23
23
23
23
Figure 26. Mode 10 Timing
[AK4452]
015002211-E-03 2017/07
- 39 -
23
LRCK
BICK (256fs)
22
0
L1
32 BICK
256 BICK
22
0
R1
32 BICK
22
23
23
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
SDTI1
31
30
0
30
31
31
30
0
31
30
0
31
30
0
SDTI1
Mode14
Mode17,18
23
22
0
L3
32 BICK
22
0
R3
32 BICK
23
22
0
L4
32 BICK
22
0
R4
32 BICK
23
23
31
30
0
31
30
0
31
30
0
31
30
0
Figure 27. Mode 14/17/18 Timing
LRCK
BICK (256fs)
23
0
L1
32 BICK
256 BICK
23
0
R1
32 BICK
23
23
0
L2
32 BICK
23
0
R2
32 BICK
SDTI1
Mode15
31
0
31
30
31
0
30
31
0
30
31
0
30
SDTI1
Mode19
23
0
L3
32 BICK
23
0
R3
32 BICK
23
0
L4
32 BICK
23
0
R4
32 BICK
31
0
30
31
0
30
31
0
30
31
0
30
Figure 28. Mode 15/19 Timing
LRCK
BICK(256fs)
SDTI1
256 BICK
22
0
L1
32 BICK
22
0
R1
32 BICK
22
0
L2
32 BICK
22
0
R2
32 BICK
23
23
23
23
23
22
0
L3
32 BICK
22
0
R3
32 BICK
22
0
L4
32 BICK
22
0
R4
32 BICK
23
23
23
23
Figure 29. Mode 16 Timing
[AK4452]
015002211-E-03 2017/07
- 40 -
BICK(512fs)
SDTI1
Mode8
LRCK
512BICK
22
0
23
22
0
23
22
0
23
22
0
23
22
2
0
23
22
0
23
22
0
23
22
0
23
SDTI1
Mode11,12
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
22
0
31
23
22
0
31
22
0
31
22
0
31
22
0
31
22
0
31
22
0
31
22
0
31
31
Figure 30. Mode 20/23/24 Timing
BICK(512fs)
SDTI1
Mode21
LRCK
512BICK
22
0
23
22
0
23
22
0
23
22
0
23
22
2
0
23
22
0
23
22
0
23
22
0
23
SDTI1
Mode25
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
22
0
31
23
22
0
31
22
0
31
22
0
31
22
0
31
22
0
31
22
0
31
22
0
31
31
Figure 31. Mode 21/25 Timing
BICK(512fs)
SDTI1
Mode22
LRCK
512BICK
22
0
23
22
0
23
22
0
23
22
0
23
22
2
0
23
22
0
23
22
0
23
22
0
23
L1
32 BICK
R1
32 BICK
L2
32 BICK
R2
32 BICK
L3
32 BICK
R3
32 BICK
L4
32 BICK
R4
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
32 BICK
23
Figure 32. Mode 22 Timing
[AK4452]
015002211-E-03 2017/07
- 41 -
[1]-1. Data Select
One data cycle of SDTI1 for each format are defined as below. SDS2-0 bits control playback channel of each
DAC.
LRCK
SDTI1
R1
L1
Figure 33. Data Slot in Normal Mode
SDTI1
R1
L1
LRCK
128 BICK
R2
L2
Figure 34. Data Slot in TDM128 Mode
SDTI1
R1
L1
LRCK
256 BICK
R2
L2
R3
L3
R4
L4
Figure 35. Data Slot in TDM256 Mode
SDTI1
R1
L1
LRCK
512 BICK
R2
L2
R3
L3
R4
L4
R5
R6
L6
R7
L7
R8
L8
L5
Figure 36. Data Slot in TDM512 Mode
[AK4452]
015002211-E-03 2017/07
- 42 -
SDS2
SDS1
SDS0
DAC
Lch
Rch
Normal
*
*
*
L1
R1
TDM128
*
0
0
L1
R1
*
0
1
L2
R2
TDM256
0
0
0
L1
R1
0
0
1
L2
R2
0
1
0
L3
R3
0
1
1
L4
R4
TDM512
0
0
0
L1
R1
0
0
1
L2
R2
0
1
0
L3
R3
0
1
1
L4
R4
1
0
0
L5
R5
1
0
1
L6
R6
1
1
0
L7
R7
1
1
1
L8
R8
(*: Do not care) Table 14. Data Select
[AK4452]
015002211-E-03 2017/07
- 43 -
[1]-2. Daisy Chain
AK4452 is available for Daisy Chain structure. Set DCHAIN bit to 1 or DCHAIN pin to H to enable Daisy
Chain mode. Daisy Chain supports TDM512/256 mode.
(1)TDM512 mode
Figure 37 shows example of TDM512 mode Daisy Chain structure (TDM1-0 bits= 11 ). 16ch data is input to
the second AK4452s SDTI1 pin from a DSP. Connect the second AK4452s TDMO1 pin to the first
AK4452s SDTI1 pin.
Figure 38 shows data I/O example of TDM512 mode. SDTI1 (L8, R8) data is the input for the DAC of the
second AK4452, and the second AK4452 outputs the data from TDMO1 by shifting 2ch. The first AK4452
accepts SDTI1 (L7, R7) data as input data of DAC. DIF2-0 bits setting of both first AK4452 and the second
AK4452 must be the same.
First
AK4452
Second
AK4452
DSP
SDTI1
TDMO1
SDTI1
TDMO1
Figure 37. Daisy Chain (TDM512/256 Mode)
SDTI1
R1
L1
LRCK
512 BICK
R2
L2
R3
L3
R4
L4
R5
R6
L6
R7
L7
R8
L8
L5
TDMO1
R4
R5
L5
R6
L6
R7
L7
L4
Second AK4452
First AK4452
R1
R2
L2
R3
L3
L1
Figure 38. Daisy Chain (TDM512 Mode)
[AK4452]
015002211-E-03 2017/07
- 44 -
(2)TDM256 mode
Figure 37 shows example of TDM256 mode Daisy Chain structure (TDM1-0 bits= 10 ). 8ch data is input to
the second AK4452s SDTI1 pin from a DSP. Connect the second AK4452s TDMO1 pin to the first
AK4452s SDTI1 pin.
Figure 39 shows data I/O example of TDM256 mode. SDTI1 (L4, R4) data is the input for the DAC of the
second AK4452, and the second AK4452 outputs the data from TDMO1 by shifting 2ch. The first AK4452
accepts SDTI1 (L3, R3) data as input data of DAC. DIF2-0 bits setting of both first AK4452 and the second
AK4452 must be the same.
SDTI1
R1
L1
LRCK
256 BICK
R2
L2
R3
L3
R4
L4
TDMO1
R2
L2
R3
L3
Second AK4452
First AK4452
R1
L1
Figure 39. Daisy Chain (TDM256 Mode)
[AK4452]
015002211-E-03 2017/07
- 45 -
[2] DSD Mode
2ch Data is shifted in via the DSDL1 and DSDR1 pins using DCLK inputs. DSD data is supported by both
Normal mode (Figure 40) and Phase Modulation mode (Figure 41). Input data is clocked in on a rising or
falling edge of DCLK that is set by DCKB bit.
The frequency of DCLK is variable at 64fs, 128fs and 256fs by setting DSDSEL1-0 bits.
DCLK
(DCKB bit=0)
DSDL,DSDR
D1
D0
D2
D3
Figure 40. DSD Mode Timing (Normal Mode)
DCLK
(DCKB bit=0)
D0
D1
D2
D1
D2
D3
DSDL,DSDR
Figure 41. DSD Mode Timing (Phase Modulation Mode)
[AK4452]
015002211-E-03 2017/07
- 46 -
D/A Conversion Mode (PCM Mode, DSD Mode) Switching Timing
RSTN bit
D/A Data
D/A Mode
5/fs
0
PCM Data
DSD Data
PCM Mode
DSD Mode
Figure 42. D/A Mode Switching Timing (PCM to DSD)
RSTN bit
D/A Data
D/A Mode
5/fs
DSD Data
PCM Data
DSD Mode
PCM Mode
Figure 43. D/A Mode Switching Timing (DSD to PCM)
Note 33. The signal range is defined as 25% ~ 75% duty ratios in DSD mode. DSD signal must not go beyond
this duty range at the SACD format book (Scarlet Book).
[AK4452]
015002211-E-03 2017/07
- 47 -
Digital Filter (PCM mode)
Four digital filters are available for playback, providing a choice of different sound colors. These digital filters
are selected by SD bit, SLOW bit and SSLOW bit.
SSLOW
SD bit
SLOW bit
Mode
0
0
0
Sharp roll-off filter
0
0
1
Slow roll-off filter
0
1
0
Short delay Sharp roll-off filter
(default)
0
1
1
Short delay Slow roll-off filter
1
*
*
Super Slow Roll-off Mode
Table 15. Digital Filter Setting (*: dont care)
The slowest frequency characteristics setting is when SSLOW bit = 1.
De-emphasis Filter (PCM mode)
A digital de-emphasis filter is available for 32kHz, 44.1kHz or 48kHz sampling rates (tc = 50/15µs) and is
enabled or disabled with DEM11-10 bits (DEM bits).
DEM11-10 bits control de-emphasis mode of DAC. DEM bits settings are invalid in DSD mode. This mode is
only valid in PCM Normal Speed Mode.
DEM11
DEM10
Mode
0
0
44.1kHz
0
1
OFF
(default)
1
0
48kHz
1
1
32kHz
Table 16. De-emphasis Control
[AK4452]
015002211-E-03 2017/07
- 48 -
Output Volume (PCM mode, DSD mode)
The AK4452 has a channel-independent digital attenuator (256 levels, 0.5dB steps). Attenuation level of each
DAC can be set by ATT7-0 bits (register 03-04H), respectively (Table 17). Input data is attenuated from 0dB
to -127dB including Mute. The transition between set values is a soft transition, thus no switching noise is
occurred.
ATT7-0bits
(register03-04H)
Attenuation Level
FFH
+0dB
(default)
FEH
-0.5dB
FDH
-1.0dB
:
:
:
:
02H
-126.5dB
01H
-127.0dB
00H
MUTE (-∞)
Table 17. Attenuation level of Digital Attenuator
Transition time between set values of ATL/R7-0 bits can be selected by the ATS1-0 bits (Table 18). The
transition between set values is a soft transition in Mode0/1/2/3 eliminating switching noise in the transition.
The register settings are maintained when switching the mode between PCM and DSD modes.
Mode
ATS1
ATS0
ATT speed
(default)
0
0
0
4080/fs
1
0
1
2040/fs
2
1
0
510/fs
3
1
1
255/fs
Table 18. Transition Time between Set Values of ATT7-0 bits
The transition between set values is a soft transition of 4080 levels in mode 0. It takes 4080/fs (92.5ms
@fs=44.1kHz) from FFH to 00H. If the PDN pin goes to “L”, ATT7-0 bits are initialized to FFH.
If the digital volume is changed during reset, the volume will be changed to the setting value after releasing the
reset. If the volume is changed in 5/fs after releasing a reset, the volume is changed immediately without soft
transition.
In DSD mode, the digital volume is set to MUTE by setting ATT7-0 bits = 02H or 01H.
[AK4452]
015002211-E-03 2017/07
- 49 -
Out of Band Noise Reduction Filter (PCM mode, DSD mode)
The AK4452 has an out of band noise reduction filter that can change frequency response. This FIR filter
attenuates out of band noise and may reduce degradation of the analog characteristics caused by a switching
regulator, etc. Best performance should be achieved by clean linear regulated AVDD/VREF power supplies
and the default setting of the FIR2-0 bits. These conditions are included in the Analog Characteristics specs.
FIR2-0 bits set the frequency for noise attenuation. The filter characteristics will differ in DSD direct mode
compared with other modes (Table 19).
FIR2-0
bits
FIR filter
Mode
FIR filter
Except DSD direct mode
DSD direct mode
000
0
1/4*[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0]
1/2*[1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
(default)
001
1
1/4*[1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1]
1/2*[0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
010
2
1/4*[1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1]
1/2*[0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0]
011
3
1/4*[1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1]
1/2*[0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0]
100
4
1/4*[1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1]
1/2*[0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0]
101
5
1/4*[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]
1/2*[0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0]
110
6
1/4*[1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1]
1/2*[0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0]
111
7
1/4*[1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1]
1/2*[0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0]
Table 19. FIR Filter Setting
[AK4452]
015002211-E-03 2017/07
- 50 -
Figure 44. Mode0 FIR Filter (Except DSD direct mode)
Figure 45. Mode1 FIR Filter (Except DSD direct mode)
[AK4452]
015002211-E-03 2017/07
- 51 -
Figure 46. Mode2 FIR Filter (Except DSD direct mode)
Figure 47. Mode3 FIR Filter (Except DSD direct mode)
Figure 48. Mode4 FIR Filter (Except DSD direct mode)
[AK4452]
015002211-E-03 2017/07
- 52 -
Figure 49. Mode5 FIR Filter (Except DSD direct mode)
Figure 50. Mode6 FIR Filter (Except DSD direct mode)
Figure 51. Mode7 FIR Filter (Except DSD direct mode)
[AK4452]
015002211-E-03 2017/07
- 53 -
Figure 52. Mode0 FIR Filter (DSD direct mode)
Figure 53. Mode1 FIR Filter (DSD direct mode)
Figure 54. Mode2 FIR Filter (DSD direct mode)
[AK4452]
015002211-E-03 2017/07
- 54 -
Figure 55. Mode3 FIR Filter (DSD direct mode)
Figure 56. Mode4 FIR Filter (DSD direct mode)
Figure 57. Mode5 FIR Filter (DSD direct mode)
[AK4452]
015002211-E-03 2017/07
- 55 -
Figure 58. Mode6 FIR Filter (DSD direct mode)
Figure 59. Mode7 FIR Filter (Except DSD direct mode)
[AK4452]
015002211-E-03 2017/07
- 56 -
Zero Detection (PCM mode, DSD mode)
When zero detection function is enabled, the DZF pin goes to H if the input data at each channel is
continuously zeros for 8192 LRCK cycles. Zero detection channels (AOUTL1N/P and AOUTR1N/P pins) can
be selected by 08H registers (L1 bit, R1 bit). The DZF pin immediately returns to L” if the input data of each
channel is not zero. If the RSTN bit is 0”, the DZF pins of both channels go to H”. The DZF pin of both
channels go to Lafter 4 ~ 5/fs when RSTN bit returns to 1”. The DZFB bit can invert the polarity of the
DZF pin. If all channels are disabled, the DZF pin outputs Not zero. Zero detection function is disabled when
DSDD bit = 1.
DZFB bit
Data
DZF pin
0
Not zero
L
Zero detect
H
1
Not zero
H
Zero detect
L
Not zero: One of the zero detection channels set by L1 bit and R1 bit does not detect zero.
Zero detect: All zero detection channels set by L1 bit and R1 bit detect zero.
Table 20. DZF Pin Function
LR Channel Output Signal Select (PCM mode, DSD mode)
Select output signal combination of L and R channels by this function.
Input and output signal combination of the AK4452 can be set by MONO1 bit and SELLR1 bit. The output
signal phase of DAC is controlled by INVL and INVR bits. With these settings, sixteen output signal
combinations are available. These settings are available for any audio format.
MONO1 bit
SELLR1 bit
INVL1 bit
INVR1 bit
L1ch Out
R1ch Out
0
0
0
0
L1ch In
R1ch In
1
0
L1ch In Invert
R1ch In
0
1
L1ch In
R1ch In Invert
1
1
L1ch In Invert
R1ch In Invert
0
1
0
0
R1ch In
L1ch In
1
0
R1ch In Invert
L1ch In
0
1
R1ch In
L1ch In Invert
1
1
R1ch In Invert
L1ch In Invert
1
0
0
0
L1ch In
L1ch In
1
0
L1ch In Invert
L1ch In
0
1
L1ch In
L1ch In Invert
1
1
L1ch In Invert
L1ch In Invert
1
1
0
0
R1ch In
R1ch In
1
0
R1ch In Invert
R1ch In
0
1
R1ch In
R1ch In Invert
1
1
R1ch In Invert
R1ch In Invert
Table 21. Output Select for DAC
[AK4452]
015002211-E-03 2017/07
- 57 -
Sound Quality Adjustment (PCM mode, DSD mode)
The sound quality of the AK4452 can be controlled by SC1-0 bits. The analog characteristics are guaranteed
when Setting 1. However, they are not guaranteed in Setting 2 and 3.
SC1
SC0
Sound Mode
0
0
Analog internal current, normal (Setting1)
(default)
0
1
Analog internal current, maximum (Setting2)
1
0
Analog internal current, minimum (Setting3)
1
1
Reserved
Table 22. Sound Quality Select Mode
[AK4452]
015002211-E-03 2017/07
- 58 -
DSD Full Scale (FS) Signal Detection Function
The AK4452 has a full scale signal detection function for each channel in DSD mode. When the input data of
each channel (DSDL1, DSDR1) is continuously 0 (-FS) or 1 (+FS) for 2048 cycles, the AK4452 detects a
full scale signal and outputs 1 on the DML1 and DMR1 bits. The output data is muted if a full scale signal is
detected. When DSDD bit = 0, the output data is changed in soft transition, and the output data is changed
without soft transition when DSDD bit = 1. A recovering condition to normal operation mode from full scale
detection status is selected by DMC bit if DDM bit = 1.
When DMC bit = 0, the AK4452 will return to normal operation automatically by inputting a normal signal.
When DMC bit = 1, the AK4452 will return to normal operation mode by writing 1 to DMRE bit.
DSDD bit
Mode
Status after Detection
0
Normal path
DSD Mute
(default)
1
Volume pass
PD
Table 23. DSD Mode and The Device Status after Full Scale Detection (DDM bit= 0)
DSD Error
(DDR or DDLbit)
DSD Data
DSD Data
DSD Data (FS or -FS )
DSD Data
2048fs
AOUT
Figure 60. Analog Output Waveform when DSD FS is Detected (DSDD bit= 1)
DSD Error
(DDR or DDLbit)
DSD Data
DSD Data
DSD Data (FS or -FS )
DSD Data
2048fs
AOUT
Figure 61. Analog Output Waveform when DSD FS is Detected (DSDD bit= 0)
[AK4452]
015002211-E-03 2017/07
- 59 -
Soft Mute Operation (PCM mode, DSD mode)
The soft mute operation is performed at digital domain. When the SMUTE pin goes to “H or set SMUTE bit
to 1”, the output signal is attenuated by  during ATT_DATA ATT transition time from the current ATT
level. When the SMUTE pin is returned to “L or the SMUTE bit is returned to 0”, the mute is cancelled and
the output attenuation gradually changes to the ATT level during ATT_DATA ATT transition time. If the
soft mute is cancelled before attenuating , the attenuation is discontinued and returned to ATT level by the
same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission.
SMUTE pin or
SMUTE bit
Attenuation
DZF pin
ATT_Level
-
AOUT
8192/fs
GD
GD
(1)
(2)
(3)
(4)
(1)
(2)
Notes:
(1) ATT_DATA ATT transition time. For example, this time is 4080LRCK cycles (1020/fs) at
ATT_DATA=255 in Normal Speed Mode.
(2) The analog output corresponding to the digital input has group delay (GD).
(3) If the soft mute is cancelled before attenuating after starting the operation, the attenuation is
discontinued and returned to ATT level by the same cycle.
(4) When the input data for a zero detection channel is continuously zeros for 8192 LRCK cycles, the DZF
pin goes to “H. The DZF pin immediately returns to L” if input data are not zero.
Figure 62. Soft Mute Function
[AK4452]
015002211-E-03 2017/07
- 60 -
Error Detection
Three types of error can be detected in I2C mode when the LDOE pin = H. (Table 24) When the error is
detected, all circuits are powered-down and the analog outputs become floating (Hi-Z) state. In I2C mode, the
AK4452 does not generate acknowledge (ACK) in error status. Once the error is detected the AK4452 does not
return to normal operation automatically even if the error condition is removed so restart the AK4452 by the
PDN pin.
No
Error
Error Condition
1
Internal Reference Voltage Error
Internal reference voltage is not powered up.
2
LDO Over Voltage Detection
LDO voltage > 2.2 ~ 2.5V
3
LDO Over Current Detection
LDO current < 40 ~ 110mA
Table 24. Error Detection
In I2C mode, the AK4452 does not generate acknowledge (ACK) in error status.
System Reset
The AK4452should be reset once by bringing the PDN pin = “L” upon power-up. In PCM (DSD) mode, the
AK4452 exits this system reset (power-down mode) by MCLK and LRCK (DCLK) after the PDN pin = H.
The AK4452 detects a rising edge of MCLK first, and then the analog block exits power-down mode by a
rising edge of LRCK (DCLK). The digital block exits power-down mode after the internal counter counts
MCLK for 4/fs.
[AK4452]
015002211-E-03 2017/07
- 61 -
Power Down Function
The AK4452 is placed in power-down mode by bringing the PDN pin “L” and the analog outputs become
floating (Hi-Z) state. Power-up and power-down timings are shown in Figure 63.
PDN pin
Power
Reset
Normal Operation (register write and DAC input are available)
Clock In
MCLK,LRCK,BICK
DAC In
(Digital)
DAC Out
(Analog)
External
Mute
Mute ON
(6)
DZF
0data
GD
(3)
(5)
(7)
GD
(5)
Mute ON
0data
Dont care
Internal
State
(4)
(4)
(1)
Internal PDN
(2)
VDD18 pin
Notes:
(1) After AVDD and TVDD are powered-up, the PDN pin should be “L” for 150ns.
(2) After PDN pin = “H”, the internal LDO power-up if the LDOE pin = H”. The internal circuits will be
powered up after shutdown switch is ON in the end of a counter by the internal oscillator
(10ms(max)). If the LDOE pin = L, the shutdown switch is activated after the AK4452 is powered
up. The internal circuits will be powered up in 1msec (max) after the activation of the shutdown
switch.
During this period, digital output and digital in/output pins may output an instantaneous pulse (max.
1us). Therefore, referring the output of digital pins and data transmission with a device on the same
3-wire serial/I2C bus as the AK4452 should be avoided in this period to prevent system errors.
(3) The analog output corresponding to digital input has group delay (GD).
(4) Analog outputs are floating (Hi-Z) in power down mode.
(5) Click noise occurs at the edge of PDN signal. This noise is output even if “0” data is input.
(6) Mute the analog output externally if click noise (5) adversely affect system performance
The timing example is shown in this figure.
(7) The DZF pin is “L” in the internal power-down mode.
Figure 63. Power down/up Sequence Example
[AK4452]
015002211-E-03 2017/07
- 62 -
Power Off and Reset Functions
RSTN
PW1
DAC
Register
Digital
Analog Output
DAC
1
0
OFF
Hold
Off
Hi-Z
1
1
ON
Hold
On
normal
0
0
OFF
Hold
Off
Hi-Z
0
1
ON
Hold
Off
VREFH/2
Table 25. Power Off and Reset Function
(1) Power OFF Function 1 (PW1 bit)
The DAC can be powered down immediately by setting PW1 bit to 0. In this time, all circuits except
registers are powered down and the analog output goes to floating state (Hi-z). Figure 64 shows a timing
example of power-on and power-down.
Normal Operation
Internal
State
PW1 bit
Power-off
Normal Operation
GD
GD
0 data
D/A Out
(Analog)
D/A In
(Digital)
Clock In
MCLK, BICK, LRCK
(1)
(3)
(5)
DZF
External
MUTE
(4)
(3)
(1)
Mute ON
(2)
Dont care
Notes:
(1) The analog output corresponding to digital input has group delay (GD).
(2) Analog outputs are floating (Hi-Z) in power down mode.
(3) Small pop noise occurs at the edges( ) of the internal timing of PW1 bit. This noise is output even
if “0” data is input.
(4) Mute the analog output externally if click noise (3) adversely affect system performance.
(5) The DZF pin outputs “L”, in power down mode (PW1 bit = 0).
Figure 64. Power-off/on Sequence Example
[AK4452]
015002211-E-03 2017/07
- 63 -
(2) Reset Function (RSTN bit)
The DAC can be reset by setting RSTN bit to “0” but the internal registers are not initialized. In this time, the
corresponding analog outputs go to VREFH/2 and the DZF pin outputs “H” if clocks (MCLK, BICK and
LRCK) are input. Figure 65 shows an example of reset sequence by RSTN bit.
Internal
State
RSTN bit
Digital Block Power-down
Normal Operation
GD
GD
0 data
D/A Out
(Analog)
D/A In
(Digital)
Clock In
BICK
(1)
(3)
DZF
(3)
(1)
(2)
Normal Operation
2/fs(4)
Internal
RSTN bit
2~3/fs (5)
3~4/fs (6)
Dont care
Notes:
(1) The analog output corresponding to digital input has group delay (GD).
(2) Analog outputs are floating (Hi-Z) in power down mode.
(3) Small pop noise occurs at the edges( ) of the internal timing of RSTN bit. This noise is output
even if “0” data is input.
(4) The DZF pin goes to H on the falling edge of RSTN bit and goes to L in 2/fs after a rising edge of
the internal RSTN.
(5) There is a delay, 3~4/fs from RSTN bit “0” to the internal RSTN bit 0, and 2~3/fs from RSTN bit 1
to the internal RSTN bit 1.
Figure 65. Reset Sequence Example 1
Note: When using both reset (RSTN bit = 0) and DAC power-off bits (PW1 bit), power-off bits should be set
to 0 before RSTN bit.
[AK4452]
015002211-E-03 2017/07
- 64 -
(3) Reset Function (MCLK Stop)
When the MCLK stops for more than 10us during operation (PDN pin = H), the AK4452 is placed in reset
state and the analog output goes to floating state (Hi-Z). When the MCLK is restarted, reset state is released
and the AK4452 returns to normal operation mode. Zero detection function is disabled while the MCLK is
stopped. Figure 66 shows a reset sequence by stopping the MCLK.
Normal Operation
Internal
State
Digital Circuit Power-down
Normal Operation
GD
GD
D/A Out
(Analog)
D/A In
(Digital)
Clock In
MCLK
(2)
(3)
External
MUTE
(5)
(2)
MCLK Stop
RSTN bit
Power-down
Power-down
(4)
(4)
(4)
Hi-Z
(5)
(1)
PDN pin
(5)
Notes:
(1) After the AK4452 is powered-up, the PDN pin should be “L” for 150ns.
(2) The analog output corresponding to digital input has group delay (GD).
(3) The digital data input can be stopped. Click noise after MCLK is input again can be reduced by
inputting “0” data during this period.
(4) Click noise occurs within 3 ~ 4LRCK from the riding edge (“↑”) of the PDN pin or MCLK inputs. This
noise is output even if “0” data is input.
(5) Mute the analog output externally if click noise (4) adversely affect system performance.
Figure 66. Reset Sequence Example 2
[AK4452]
015002211-E-03 2017/07
- 65 -
Clock Synchronization and BICK Edge Detection Functions
Synchronization Function (Analog Output Phase Synchronization)
This function synchronizes analog output phase by suppressing the phase difference of the AK4452 and other
AKM devices with synchronization function to within 3/256fs. Analog output phase synchronization function
becomes valid when input data at all channels are continuously 0 for 8192 times if SYNCE bit is set to 1
during operation in PCM mode or when RSTN bit is set to 0.
Example) In the case of using the AK4452 with the AK4458 (Figure 67)
The AK4452 and the AK4458 have synchronization function. The output phase difference between the
AK4452s output (AOUT1LP/N_2, AOUT1RP/N_2) and the AK4458s output (AOUT1-4LP/N_8,
AOUT1-4RP/N_8) will be within 3/256fs.
AK4452
AK4458
DSP
MCLK
AOUT1LP/N
MCLK
LRCK
AOUT1RP/N
LRCK
MCLK
LRCK
AOUT1LP/N
AOUT1RP/N
AOUT4LP/N
AOUT4RP/N
AOUT1LP/N_2
AOUT1RP/N_2
AOUT1LP/N_8
AOUT1RP/N_8
AOUT4LP/N_8
AOUT4RP/N_8
Figure 67. System Example of Clock Synchronization Function
[AK4452]
015002211-E-03 2017/07
- 66 -
Parallel Mode
Parallel mode is available by setting the I2C pin = H, and the PS pin = H. Audio interface format of the
parallel mode is controlled by TDM1-0 pins and DIF pin (Table 26). Daisy Chain mode is also available by
setting the DCHAIN pin = H. In parallel mode, the clock setting mode is always in auto setting mode
(ACKS mode is enabled and fixed internally).
Zero detection function is not available in parallel mode. All functions controlled exclusively by Serial mode
are only available in their default register settings.
TDM1 pin
TDM0 pin
DIF pin
Mode
0
0
0
Mode6 (Table 13)
0
0
1
Mode7 (Table 13)
0
1
0
Mode12 (Table 13)
0
1
1
Mode13 (Table 13)
1
0
0
Mode18 (Table 13)
1
0
1
Mode19 (Table 13)
1
1
0
Mode24 (Table 13)
1
1
1
Mode25 (Table 13)
Table 26. Parallel Mode
Serial Control Interface
The AK4452s functions are controlled through registers. The registers may be written by two types of control
modes. The internal registers are controlled in 3-wire serial control mode when the I2C pin = L, and in I2C
bus control mode when the I2C pin = H and the PS pin = L.
[AK4452]
015002211-E-03 2017/07
- 67 -
(1) 3-wire Serial Control Mode (I2C pin = “L”)
The internal registers may be written through the 3-wire µP interface pins (CSN, CCLK and CDTI). The
data on this interface consists of a 2-bit Chip address, Read/Write (1bit, Fixed to “1”, Write only),
Register address (MSB first, 5bits) and Control data (MSB first, 8bits). Address and data are clocked in
on the rising edge of CCLK and data is clocked out on the falling edge. For write operations, data is
latched after a low-to-high transition of CSN. The clock speed of CCLK is 5MHz (max).
The internal registers are initialized by setting the PDN pin = L. In serial mode, an internal timing
circuit is reset by setting RSTN bit = 0 but register values are not initialized.
CDTI
CCLK
CSN
C1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
D4
D5
D6
D7
A1
A2
A3
A4
R/W
C0
A0
D0
D1
D2
D3
C1-C0: Chip Address (C1= CAD1 pin, C0= CAD0 pin)
R/W: Read/Write (Fixed to “1”, Write only)
A4-A0: Register Address
D7-D0: Control Data
Figure 68. 3-wire Serial Control I/F Timing
* The AK4452 does not support read commands in 3wire serial control mode.
* When the AK4452 is in power down mode (PDN pin = “L”), writing into the control registers is
prohibited.
* The control data cannot be written when the CCLK rising edge is 15 times or less or 17 times or more
during CSN is “L”.
[AK4452]
015002211-E-03 2017/07
- 68 -
(2) I2C-bus Control Mode (I2C pin = “H”)
The AK4452 supports the fast-mode I2C-bus (max: 400kHz, Ver1.0).
1. WRITE Operations
Figure 69 shows the data transfer sequence of the I2C-bus mode. All commands are preceded by a START
condition. A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition
(Figure 75). After the START condition, a slave address is sent. This address is 7 bits long followed by the
eighth bit that is a data direction bit (R/W). The most significant five bits of the slave address are fixed as
“00100”. The next bits are CAD1-0 (device address bits). This bits identifies the specific device on the bus.
The hard-wired input pins (CAD1-0 pins) set these device address bit (Figure 70). If the slave address matches
that of the AK4452, the AK4452 generates an acknowledge and the operation is executed. The master must
generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock
pulse (Figure 76). R/W bit = “1” indicates that the read operation is to be executed. “0” indicates that the write
operation is to be executed.
The second byte consists of the control register address of the AK4452. The format is MSB first, and those
most significant 3-bits are fixed to zeros (Figure 71). The data after the second byte contains control data. The
format is MSB first, 8bits (Figure 72). The AK4452 generates an acknowledge after each byte is received. Data
transfer is always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the
SDA line while SCL is HIGH defines STOP condition (Figure 75).
The AK4452 can perform more than one byte write operation per sequence. After receipt of the third byte the
AK4452 generates an acknowledge and awaits the next data. The master can transmit more than one byte
instead of terminating the write cycle after the first data byte is transferred. After receiving each data packet the
internal 6-bit address counter is incremented by one, and the next data is automatically taken into the next
address. If the address exceeds 14H prior to generating a stop condition, the address counter will “roll over” to
00H and the previous data will be overwritten.
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of
the data line can only change when the clock signal on the SCL line is LOW (Figure 77) except for the START
and STOP conditions.
SDA Slave
Address
S
S
T
A
R
T
R/W="0"
A
C
K
Sub
Address(n) A
C
K
Data(n)
A
C
K
Data(n+1)
A
C
K
A
C
K
Data(n+x)
A
C
K
P
S
T
O
P
Figure 69. Data Transfer Sequence at the I2C-Bus Mode
0
0
1
0
0
CAD1
CAD0
R/W
(These CAD1-0 should match with CAD1-0 pins)
Figure 70. The First Byte
0
0
0
A4
A3
A2
A1
A0
Figure 71. The Second Byte
D7
D6
D5
D4
D3
D2
D1
D0
Figure 72. Byte Structure After The Second Byte
[AK4452]
015002211-E-03 2017/07
- 69 -
2. READ Operations
Set the R/W bit = “1” for the READ operation of the AK4452. After transmission of data, the master can read
the next address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of
the first data word. After receiving each data packet the internal 6-bit address counter is incremented by one,
and the next data is automatically taken into the next address. If the address exceeds 14H prior to generating
stop condition, the address counter will “roll over” to 00H and the data of 00H will be read out.
The AK4452 supports two basic read operations: Current Address Read and Random Address Read.
2-1. Current Address Read
The AK4452 contains an internal address counter that maintains the address of the last word accessed,
incremented by one. Therefore, if the last access (either a read or write) was to address “n”, the next
CURRENT READ operation would access data from the address “n+1”. After receipt of the slave address with
R/W bit “1”, the AK4452 generates an acknowledge, transmits 1-byte of data to the address set by the internal
address counter and increments the internal address counter by 1. If the master does not generate an
acknowledge but generates a stop condition instead, the AK4452 ceases transmission.
SDA Slave
Address
S
S
T
A
R
T
R/W="1"
A
C
K
A
C
K
Data(n+1)
A
C
K
Data(n+2)
A
C
K
A
C
K
Data(n+x)
N
A
C
K
P
S
T
O
P
Data(n)
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
Figure 73. Current Address Read
2-2. Random Address Read
The random read operation allows the master to access any memory location at random. Prior to issuing a slave
address with the R/W bit =“1”, the master must execute a “dummy” write operation first. The master issues a
start request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is
acknowledged, the master immediately reissues the start request and the slave address with the R/W bit =“1”.
The AK4452 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1.
If the master does not generate an acknowledge but generates a stop condition instead, the AK4452 ceases
transmission.
SDA Slave
Address
S
S
T
A
R
T
R/W="0"
A
C
K
A
C
K
A
C
K
Data(n)
A
C
K
Data(n+x)
A
C
K
P
S
T
O
P
Sub
Address(n) SSlave
Address
R/W="1"
S
T
A
R
T
Data(n+1)
A
C
K
N
A
C
K
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
Figure 74. Random Address Read
[AK4452]
015002211-E-03 2017/07
- 70 -
SCL
SDA
stop condition
start condition
S
P
Figure 75. START and STOP Conditions
SCL FROM
MASTER
acknowledge
DATA
OUTPUT BY
TRANSMITTER
DATA
OUTPUT BY
RECEIVER
1
9
8
START
CONDITION
not acknowledge
clock pulse for
acknowledgement
S
2
Figure 76. Acknowledge on the I2C-Bus
SCL
SDA
data line
stable;
data valid
change
of data
allowed
Figure 77. Bit Transfer on the I2C-Bus
[AK4452]
015002211-E-03 2017/07
- 71 -
Function List
Available functions are different in PCM mode and in DSD mode.
Function
Default
Address
Bit
PCM
DSD
Attenuation Level
0dB
03-04H
ATT7-0
Y
Y
Audio Data Interface Modes
32bit MSB justified
00H
DIF2-0
Y
-
Data Zero Detect Enable
Disable
08H
L1/R1
Y
Y
Minimum delay Filter Enable
Sharp roll-off filter
01-02H
SD
SLOW
Y
-
Slow Roll-off Filter Enable
Y
-
Short delay Filter Enable
Y
-
De-emphasis Response
OFF
01H
DEM1-0
Y
-
Soft Mute Enable
Normal Operation
01H
SMUTE
Y
Y
DSD/PCM Mode Select
PCM mode
02H
D/P
Y
Y
Master Clock Frequency Select
at DSD mode
512fs
02H
DCKS
-
Y
MONO mode Stereo mode
select
Stereo
02H
MONO
Y
Y
Inverting Enable of DZF
H active
02H
DZFB
Y
Y
The data selection of L channel
and R channel
R channel
02H,05H
0DH
SELLR1
Y
Y
The data selection of DAC
Normal
0A-0BH
SDS1/2
Y
-
Data Invert Mode
OFF
05H
INVL1/R1
Y
Y
Clock Synchronization
Enable
07H
SYNCE
Y
-
Table 27. Function List (Y: Available, -: Not available)
[AK4452]
015002211-E-03 2017/07
- 72 -
Register Map
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
00H
Control 1
ACKS
0
0
0
DIF2
DIF1
DIF0
RSTN
01H
Control 2
0
0
SD
DFS1
DFS0
DEM11
DEM10
SMUTE
02H
Control 3
DP
0
DCKS
DCKB
MONO1
DZFB
SELLR1
SLOW
03H
L1ch ATT
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
04H
R1ch ATT
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
05H
Control 4
INVL1
INVR1
0
0
0
0
DFS2
SSLOW
06H
DSD1
DDM
DML1
DMR1
DMC
DMRE
0
DSDD
DSDSEL0
07H
Control 5
0
0
0
0
0
0
1
SYNCE
08H
Sound Control
L1
R1
0
0
0
0
SC1
SC0
09H
DSD2
0
0
0
0
0
0
DSDF
DSDSEL1
0AH
Control 6
TDM1
TDM0
SDS1
SDS2
1
PW1
0
1
0BH
Control 7
ATS1
ATS0
0
SDS0
1
1
DCHAIN
0
0CH
Control 8
0
0
0
0
0
FIR2
FIR1
FIR0
0DH
Reserved
0
0
0
0
0
0
0
0
0EH
Reserved
0
1
0
1
0
0
0
0
0FH
Reserved
1
1
1
1
1
1
1
1
10H
Reserved
1
1
1
1
1
1
1
1
Note 34. Data must not be written into addresses from 11H to 1FH.
Note 35. When the PDN pin is set to “L”, all registers are initialized to their default values.
Note 36. When RSTN bit is set to “0”, only the internal timing circuit is reset but register values are not
initialized.
[AK4452]
015002211-E-03 2017/07
- 73 -
Register Definitions
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
00H
Control 1
ACKS
0
0
0
DIF2
DIF1
DIF0
RSTN
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
1
1
0
0
RSTN: Internal Timing Reset
0: Reset (default)
Internal clock timings are reset, but all other registers are not reset to their default value and R/W
access is still allowed.
1: Normal Operation
DIF2-0: Audio Data Interface Modes (Table 13)
Default value is 110” (Mode 6: 32-bit MSB justified).
ACKS: Master Clock Frequency Auto Setting Mode Enable (PCM only)
0: Disable : Manual Setting Mode (default)
1: Enable : Auto Setting Mode
When ACKS bit = 1, the sampling frequency and MCLK frequency are detected automatically.
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
01H
Control 2
0
0
SD
DFS1
DFS0
DEM11
DEM10
SMUTE
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
1
0
0
0
1
0
SMUTE: Soft Mute Enable.
0: Normal Operation (default)
1: DAC outputs soft-muted.
DEM11-0: DAC1 De-emphasis Response (Table 16)
Default value is “01” (OFF).
DFS1-0: Sampling Speed Control (Table 2)
Default value is 00” (Normal Speed). See also register address 05H for DFS2.
A click noise occurs when switching DFS2-0 bits setting.
SD: Short delay Filter Enable. (Table 12)
0: Sharp roll-off filter
1: Short delay filter (default)
[AK4452]
015002211-E-03 2017/07
- 74 -
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
02H
Control 3
DP
0
DCKS
DCKB
MONO1
DZFB
SELLR1
SLOW
R/W
R/W
R
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
0
0
0
SLOW: Slow Roll-off Filter Enable. (Table 12)
0: Sharp roll-off filter (default)
1: Slow roll-off filter
SELLR1: The data selection of DAC1 L channel and R channel, when MONO mode (Table 21)
0: All channel output L channel data. (default)
1: All channel output R channel data.
Settings of MONO1 bit, INVL1 bit and INVR1 bit should also be considered when setting this bit.
DZFB: Inverting Enable of DZF (Table 20)
0: DZF pin goes H at Zero Detection (default)
1: DZF pin goes L at Zero Detection
MONO1: DAC1 enters monaural output mode when MONO bit = 1. (Table 21)
0: Stereo mode (default)
1: MONO mode
DCKB: Polarity of DCLK (DSD Only)
0: DSD data is output from DCLK falling edge. (default)
1: DSD data is output from DCLK rising edge.
DCKS: Master Clock Frequency Select at DSD mode (DSD only)
0: 512fs (default)
1: 768fs
DP: DSD/PCM Mode Select
0: PCM Mode (default)
1: DSD Mode
The AK4452 must be reset by RSTN bit when changing DP bit setting.
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
03H
L1ch ATT
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
04H
R1ch ATT
ATT7
ATT6
ATT5
ATT4
ATT3
ATT2
ATT1
ATT0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
1
1
1
1
1
1
1
1
ATT7-0: Attenuation Level (Table 17)
Initial value is “FF” (0dB)
[AK4452]
015002211-E-03 2017/07
- 75 -
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
05H
Control 4
INVL1
INVR1
0
0
0
0
DFS2
SSLOW
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
0
0
0
SSLOW: Digital Filter Bypass Mode Enable (Table 15)
0: Enable digital filter selected by SD and SLOW bits (default)
1: Super Slow Roll-off Mode
DFS2: Sampling Speed Control (Table 2)
Default value is “0” (Normal Speed). See also register address 01H for DFS1-0.
A click noise occurs when switching DFS2-0 bits setting.
INVL1: AOUTL1 Output Phase Inverting Bit
INVR1: AOUTR1 Output Phase Inverting Bit
0: Normal (default)
1: Inverted
[AK4452]
015002211-E-03 2017/07
- 76 -
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
06H
DSD1
DDM
DML1
DMR1
DMC
DMRE
0
DSDD
DSDSEL0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
0
0
0
DSDSEL1-0: DSD sampling speed control (Table 10)
Default value is “00.
DSDD: DSD play back path control (Table 11)
Default value is “0”.
DMRE: DSD mute release
0: Hold (default)
1: Mute Release
This register is only valid when DDM bit = 1 and DMC bit = 1. It releases a mute state
when DSD data is muted by DDM and DMC bits.
DMC: DSD mute control
0: Auto Return (default)
1: Mute Hold
This register is only valid when DDM bit = 1. It selects the process when DSD data level
drops under full scale while DSD data is muted by DDM bit.
DMR1/DML1
This register output detection flag when the signal level of the DSDR1/L1 pin is full scale.
DDM: DSD data mute
0: Disable (default)
1: Enable
The AK4452 has a function that mutes the output when DSD data is all 1 or 0 for 2048
samplings (1/fs). This register controls the DSD mute function.
[AK4452]
015002211-E-03 2017/07
- 77 -
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
07H
Control 5
0
0
0
0
0
0
1
SYNCE
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
0
1
1
SYNCE: SYNC Mode Enable
0: SYNC Mode Disable
1: SYNC Mode Enable (default)
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
08H
Sound Control
L1
R1
0
0
0
0
SC1
SC0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
0
0
0
SC1-0: Sound Control (Table 22)
Default value is “00.
L1, R1: Zero Detect Flag Enable Bit for the DZF pin
0: Disable (default)
1: Enable
[AK4452]
015002211-E-03 2017/07
- 78 -
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
09H
DSD2
0
0
0
0
0
0
DSDF
DSDSEL1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
0
0
0
DSDSEL1-0: DSD Sampling Speed Control (Table 10)
Default value is “00.
DSDF: DSD Filter Select (Table 12)
Default value is “0”.
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
0AH
Control 6
TDM1
TDM0
SDS1
SDS2
1
PW1
0
1
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
1
1
0
1
PW1: Power Down control for DAC
PW1: Power management for DAC
0: DAC power OFF
1: DAC power ON (default)
SDS2-0: DAC Data Select
0: Normal Operation
1: Output Other Slot Data (Table 14)
Default value is “000.
TDM1-0: TDM Mode Select (Table 13)
Default value is 00.
[AK4452]
015002211-E-03 2017/07
- 79 -
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
0BH
Control 7
ATS1
ATS0
0
SDS0
1
1
DCHAIN
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
1
1
0
0
DCHAIN: Daisy Chain Mode Enable
0: Daisy Chain Mode Disable (default)
1: Daisy Chain Mode Enable
SDS2-0: DAC Data Select
0: Normal Operation
1: Output Other Slot Data (Table 14)
ATS1-0: DAC Digital attenuator transition time setting (Table 18)
Default value is 00.
Addr
Register Name
D7
D6
D5
D4
D3
D2
D1
D0
0CH
Control 8
0
0
0
0
0
FIR2
FIR1
FIR0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
0
0
0
FIR2-0: FIR Filter Control (Table 19)
Default value is 000.
[AK4452]
015002211-E-03 2017/07
- 80 -
10. Recommended External Circuits
Typical Connection Diagram
Figure 78 and Figure 79 show system connection diagram, and Figure 80 shows the analog output circuit
example.
(1) LDOE pin = H, I2C-bus Control Mode(I2C pin = H)
Analog 5.0V
Ceramic Capacitor
+
Electrolytic Capacitor
Analog
Ground
Digital
Ground
Digital 3.3V
+
0.1u
10u
DSP
Micro-
Controller
0.1u
R1ch
LPF
R1ch
Mute
R1ch Out
MCLK
VDD18
1
BICK
31
2
LRCK
3
SDTI1
4
TST1
5
TDMO1
6
DZF
7
CAD1
8
SDA
23
TST3
AK4452VN
10
11
12
13
14
15
16
SCL
CAD0_I2C
PS
I2C
AOUT1LP
AOUT1LN
VREFL1
22
TST2
21
AVDD
20
AVSS
19
AOUTR1P
18
AOUTR1N
17
VREFH1
N
DVSS
30
TVDD
29
LDOE
28
TST7
27
TST6
26
TST5
25
24
TST4
PDN
32
1u
+
+
10u
0.1u
L1ch
LPF
L1ch
Mute
L1ch Out
Analog 5.0V
Notes:
- Chip Address = 00. BICK = 64fs, LRCK = fs
- Power lines of AVDD and VREFH1 should be distributed separately from LDO and etc. while keeping low
impedance. If it is not possible, it is recommended to connect a LPF composed by a 10Ω resistor and a
220uF capacitor between VREFL1 and VREFH1.
- DVSS and AVSS must be connected to the same potential.
- All digital input pins should not be allowed to float.
Figure 78. Typical Connection Diagram (AVDD=5V, TVDD=3.3V)
[AK4452]
015002211-E-03 2017/07
- 81 -
(2) LDOE pin = L, I2C-bus Control Mode(I2C pin = H)
Analog 5.0V
Ceramic Capacitor
+
Electrolytic Capacitor
Analog
Ground
Digital
Ground
Digital 3.3V
+
0.1u
10u
DSP
Micro-
Controller
0.1u
R1ch
LPF
R1ch
Mute
R1ch Out
MCLK
VDD18
1
BICK
31
2
LRCK
3
SDTI1
4
TST1
5
TDMO1
6
DZF
7
CAD1
8
SDA
23
TST3
AK4452VN
10
11
12
13
14
15
16
SCL
CAD0_I2C
PS
I2C
AOUT1LP
AOUT1LN
VREFL1
22
TST2
21
AVDD
20
AVSS
19
AOUTR1P
18
AOUTR1N
17
VREFH1
N
DVSS
30
TVDD
29
LDOE
28
TST7
27
TST6
26
TST5
25
24
TST4
PDN
32
1u
+
+
10u
0.1u
L1ch
LPF
L1ch
Mute
L1ch Out
Analog 5.0V
Digital 1.8V
Notes:
- Chip Address = 00. BICK = 64fs, LRCK = fs
- Power lines of AVDD and VREFH1 should be distributed separately from LDO and etc. while keeping low
impedance. If it is not possible, it is recommended to connect a LPF composed by a 10Ω resistor and a
220uF capacitor between VREFL1 and VREFH1.
- DVSS and AVSS must be connected to the same potential.
- All digital input pins should not be allowed to float.
Figure 79. Typical Connection Diagram (AVDD=5V, TVDD=3.3V, VDD18=1.8V)
[AK4452]
015002211-E-03 2017/07
- 82 -
1. Grounding and Power Supply Decoupling
To minimize coupling by digital noise, decoupling capacitors should be connected to AVDD and TVDD
respectively. AVDD are supplied from the analog supply of the system and TVDD is supplied from the digital
supply of the system. DVSS and AVSS must be connected to the same potential. Decoupling
capacitors especially small ceramic capacitors for high frequency should be placed as near as possible to the
supply pin.
2. Voltage Reference
The differential voltage between the VREFH1 pin and the VREFL1 pin sets the analog output range. The
VREFH1 pin is normally connected to AVDD, and the VREFL1 pin is normally connected to AVSS. VREFH1
and VREFL1 should be connected with a 0.1µF ceramic capacitor as near as possible to the pin to eliminate the
effects of high frequency noise. All signals, especially clocks, should be kept away from the VREFH1 and
VREFL1 pins in order to avoid unwanted noise coupling into the AK4452.
[AK4452]
015002211-E-03 2017/07
- 83 -
3. Analog Outputs
The analog outputs are full differential outputs and 2.8Vpp (typ, VREFH1 VREFL1 = 5V) centered around
VREFH/2. The differential outputs are summed externally, adding voltage VAOUT is calculated as (AOUT+)
(AOUT). If the summing gain is 1, the output range is 5.6Vpp (typ, VREFH1 VREFL1= 5V). The bias
voltage of the external summing circuit is supplied externally. PCM input data format is 2's complement. The
output voltage (VAOUT) is a positive full scale for 7FFFFFH (@24bit) and a negative full scale for 800000H
(@24bit). The ideal VAOUT is 0V for 000000H(@24bit).
The output level is determined by the 1-bit signal duty ratio in DSD input mode. The output level is positive full
scale when the duty is 100% (all 1) and the output level is negative full scale when the duty is 0% (all 0). In
ideal case, a 0V voltage is output when the input signal duty is 50%.
The internal switched - capacitor filters attenuate the noise generated by the delta -sigma modulator beyond the
audio pass band. Figure 80 shows an example of differential outputs and LPF circuit example by a single
op-amp.
3.9k
4.7k
150
3.9k
150
4.7k
470p
+Vop
470p
-Vop
AOUT-
AOUT+
3.9n
Analog
Out
AK4452
R1
R1
R2
Figure 80. External LPF Circuit Example 1 for PCM (fc = 99.0kHz, Q=0.680)
R1
3.3k
3.9k
3.9k
4.3k
4.7k
5.6k
R2
3.3k
4.7k
5.6k
6.8k
8.2k
12.0k
GAIN(dB)
0
1.620665
3.142468
3.980809
4.83432
6.619864
DC Load (MAX)
3.8k
4.0k
3.5k
3.6k
3.6k
3.8k
Table 28. External LPF Circuit Example 1 for PCM
Frequency Response
Gain
20kHz
0.036dB
40kHz
0.225dB
80kHz
1.855dB
Table 29. Frequency Response of External LPF Circuit Example 1 for PCM
[AK4452]
015002211-E-03 2017/07
- 84 -
11. Package
Outline Dimensions
32-pin QFN (Unit: mm)
Material & Lead finish
Package molding compound: Epoxy, Halogen (bromine and chlorine) free
Lead frame material: Cu
Lead frame surface treatment: Solder (Pb free) plate
[AK4452]
015002211-E-03 2017/07
- 85 -
Marking
4452
XXXX
1
1) Pin #1 indication
2) Date Code: XXXX (4 digits)
3) Marking Code: 4452
12. Revision History
Date (Y/M/D)
Revision
Reason
Page
Contents
15/02/23
00
First Edition
15/03/21
01
Description
Addition
9
Handling of Unused Pin
TDMO1 was added.
10
Note 7: A description was added.
at the same time
Error
Correction
76
Figure 70 was changed.
Description
Addition
77
Figure 71 was added.
15/08/26
02
Error
Correction
13, 15
Sharp Roll-Off Filter, fs=44.1kHz, DF + SCF, FR: 0
~ 20kHz, max=0.1dB
13, 15
Short Delay Sharp Roll-Off Filter, fs=96kHz, DF +
SCF, FR: 0 ~ 40kHz, max=0.1dB
Description
Addition
13 to 16
Description of Pass band spec of -3.0dB was added.
Description
Delete
13 to 16
Frequency Response of -3.0(-6.0)dB was deleted.
Description
Addition
27
[Table 3] 384kHz, 128fs
49.152 was added.
Description
Change
53
Figure 52 and Figure 53 was changed.
Description
Addition
56
Power Down Function
Description (2) was changed.
[AK4452]
015002211-E-03 2017/07
- 86 -
Date (Y/M/D)
Revision
Reason
Page
Contents
Error
Correction
62
C1-C0: Chip Address
C1= CAD0 pin CAD1 pin
63
The most significant [remove “seven”] [add
“five”] bits of the slave address
68
Correct default value = 0 on table and description.
Clarify description
17/07/11
03
Description
Delete
13
Note 17 (It is the pass band gain amplitude of )
was deleted.
Description
Addition
14
Figure 2 and Figure 3 were added.
16
Figure 4 and Figure 5 were added.
18
Figure 6 and Figure 7 were added.
20
Figure 8 and Figure 9 were added.
32
Table 7 was changed.
49
Out of Band Noise Reduction Filter
Description was changed.
57
Sound Quality Adjustment
Table 22 was changed
[AK4452]
015002211-E-03 2017/07
- 87 -
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the
information contained in this document without notice. When you consider any use or application of
AKM product stipulated in this document (Product), please make inquiries the sales office of AKM
or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and application
examples of AKM Products. AKM neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any
intellectual property rights or any other rights of AKM or any third party with respect to the
information in this document. You are fully responsible for use of such information contained in this
document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY
LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH
INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require
extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may
cause loss of human life, bodily injury, serious property damage or serious public impact, including
but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry,
medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic
signaling equipment, equipment used to control combustions or explosions, safety devices, elevators
and escalators, devices related to electric power, and equipment used in finance-related fields. Do not
use Product for the above use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible
for complying with safety standards and for providing adequate designs and safeguards for your
hardware, software and systems which minimize risk and avoid situations in which a malfunction or
failure of the Product could cause loss of human life, bodily injury or damage to property, including
data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information
contained in this document for any military purposes, including without limitation, for the design,
development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or
missile technology products (mass destruction weapons). When exporting the Products or related
technology or any information contained in this document, you should comply with the applicable
export control laws and regulations and follow the procedures required by such laws and regulations.
The Products and related technology may not be used for or incorporated into any products or systems
whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or
regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS
compatibility of the Product. Please use the Product in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of
noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth
in this document shall immediately void any warranty granted by AKM for the Product and shall not
create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior
written consent of AKM.