V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
flowPIM 2 3rd 1200V/4A
2 Clips housing in 12 and 17mm height
Trench Fieldstop Technology IGBT4
Optional w/o BRC
Industrial Drives
Embedded Generation
V23990-P848-A48-PM 12mm height
V23990-P848-A49-PM 17mm height
V23990-P848-C48-PM 12mm height; w/o BRC
V23990-P848-C49-PM 17mm height; w/o BRC
Tj=25°C, unless otherwise specified
Parameter Symbol Value Unit
Repetitive peak reverse voltage VRRM 1600 V
Th=80°C 28
Tc=80°C
Th=80°C 33
Tc=80°C
Maximum Junction Temperature Tjmax °C
Inverter Transistor
Th=80°C 9
Tc=80°C
Th=80°C 12
Tc=80°C
Th=80°C 38
Tc=80°C
tSC Tj150°C 10 μs
VCC VGE=15V 800 V
Input Rectifier Diode
A
W
Tj=Tjmax
Tj=Tjmax
tp limited by Tjmax
Maximum Junction Temperature
Power dissipation per IGBT
VGE
Tjmax
Ptot
Short circuit ratings
Gate-emitter peak voltage
A
V
°C
V
A
Types
I2t-value
Maxi mum Ratings
IFAV
A2s
IFSM
Condition
DC current
Surge forward current 220
Ptot
Power dissipation per Diode
I2t220
Tj=25°C
Tj=Tjmax
tp=10ms
Features flow0 Housing
Target Applications
Forward current per diode
Schematics
175
Collector-emitter break down voltage
Repetitive peak collector current
DC collector current
VCE
ICpulse
IC
1200
±20
W
A
copyright Vincotech 1 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Tj=25°C, unless otherwise specified
Parameter Symbol Value Unit
Maxi mum Ratings
Condition
Inverter Diode
Th=80°C 10
Tc=80°C
Th=80°C 32
Tc=80°C
Th=80°C 37
Tc=80°C
Brc Transistor
1200
Th=80°C 8
Tc=80°C
tp=1ms Th=80°C 12
Th=80°C 32
Tc=80°C ±20
tSC Tj150°C 10 μs
VCC VGE=15V 800 V
Brc. Diode
Tj=25°C 1200
Th=80°C 9
Tc=80°C
tp=1ms Th=80°C 6
Tc=80°C
Th=80°C 18
Tc=80°C
Thermal Properties
Insulation Properties
Vis t=2s 4000 VDC
min 12,7 mm
min 12,7 mm
Clearance
Insulation voltage
Creepage distance
Top
Operation temperature under switching condition -40…+125 °C
Storage temperature Tstg -40…+125 °C
Peak Repetitive Reverse Voltage
°CMaximum Junction Temperature Tjmax 175
WPower dissipation per Diode Ptot
DC forward current
A
Tj=Tjmax
tp limited by Tjmax
A
IFTj=Tjmax
Tj=25°C
VRRMPeak Repetitive Reverse Voltage
IFRM
Tjmax
Repetitive peak forward current
IC
VCE
Tj=Tjmax
Power dissipation per Diode Ptot Tj=Tjmax
Tj=Tjmax
DC forward current IF
Repetitive peak forward current IFRM
VRRM
W
A
V
A
VGE
Tj=Tjmax
V1200
175Maximum Junction Temperature °C
Maximum Junction Temperature
Short circuit ratings
DC collector current
Power dissipation per IGBT
Collector-emitter break down voltage
Repetitive peak collector current
Gate-emitter peak voltage
Ptot
ICpuls
V
A
V
°C
W
A
175
Tjmax
copyright Vincotech 2 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Parameter Symbol Unit
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] o r
IF [A ] o r
ID [A] TjMin Typ Max
Tj=25°C 1 1,22 1,9
Tj=125°C 1,19
Tj=25°C 0,93
Tj=125°C 0,81
Tj=25°C 0,009
Tj=125°C 0,013
Tj=25°C 0,1
Tj=150°C
Therm al resistance chip to heatsink per chip RthJH
Therm al grease
thickness50um
λ = 1 W/mK 2,12 K/W
Tj=25°C 5 5,8 6,5
Tj=125°C
Tj=25°C 1,95
Tj=125°C 2,28
Tj=25°C 0,05
Tj=125°C
Tj=25°C 200
Tj=125°C
Tj=25°C 77
Tj=125°C 75
Tj=25°C 18
Tj=125°C 23
Tj=25°C 176
Tj=125°C 226
Tj=25°C 83
Tj=125°C 110
Tj=25°C 0,32
Tj=125°C 0,56
Tj=25°C 0,21
Tj=125°C 0,31
Therm al resistance chip to heatsink per chip RthJH
Therm al grease
thickness50um
λ = 1 W/mK 2,51 K/W
Tj=25°C 1,35 1,41 2,2
Tj=125°C 1,25
Tj=25°C 5
Tj=125°C 6
Tj=25°C 248
Tj=125°C 431
Tj=25°C 0,58
Tj=125°C 1,24
di(rec)max Tj=25°C 95
/dt Tj=125°C 49
Tj=25°C 0,21
Tj=125°C 0,47
Therm al resistance chip to heatsink per chip RthJH
Therm al grease
thickness50um
λ = 1 W/mK 2,56 K/W
V
ns
mA
V
mWs
A
ns
V
pF
mWs
25
25
250
none
Tj=25°C
Rgon=32Ohm
25
0
Eoff
1600
0,00015
600 4
4
Rgon=64Ohm 15
Int egr ated Gate resistor
Inverter Transist or
Gate emitter threshold voltage
Collector-emitter cut-off current incl. Diode
Fall time
Turn-off delay time
Turn- on delay time
Rise time
Gate-emitter leakage curr ent
Collector-emitter saturation voltage
Turn- on ener gy loss per pulse
1200
Rgoff=64Ohm
15
f=1MHz
15
uC
nC
Ir
Reverse current
30 V
V
mA
Conditions
30
Characteristic Values
Forward voltage
Input Rectifier Di ode
Value
Thres hold voltage (for power loss calc. only)
Slope resistance (for power loss calc . only)
VF
Vto
rt
Output c apac itance Coss
Rgint
IGES
tf
Eon
Cies
Turn- off energy loss per pulse
tr
td(off)
td(on)
Input c apac itance
VCE(sat)
ICES
VGE(th)
QGate 4
trr
Reverse transfer c apac itance
Diode forward voltage
Gate charge
Inverter Di ode
Peak reverse recovery current
Reverse recovery time
Reverse recovered energy
Peak rate of fall of recovery c ur r ent
Reverse recovered charge
Erec
Qrr
IRRM
Crss
VF
Tj=25°C
10
0
15
20
15
VCE=VGE
0
960
600
10
nA
A/μs
copyright Vincotech 3Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Parameter Symbol Unit
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] o r
IF [A ] o r
ID [A] TjMin Typ Max
Conditions
Characteristic Values
Value
Tj=25°C 5 5,8 6,5
Tj=125°C
Tj=25°C 1,96
Tj=125°C 2,27
Tj=25°C 0,05
Tj=125°C
Tj=25°C 200
Tj=125°C none
Tj=25°C 78
Tj=125°C 75
Tj=25°C 18
Tj=125°C 24
Tj=25°C 170
Tj=125°C 217
Tj=25°C 81
Tj=125°C 103
Tj=25°C 0,24
Tj=125°C 0,36
Tj=25°C 0,22
Tj=125°C 0,33
Therm al resistance chip to heatsink per chip RthJH
Therm al grease
thickness50um
λ = 1 W/mK 2,95 K/W
Tj=25°C 1 1,88 2,35
Tj=125°C 1,79
Tj=25°C 250
Tj=125°C
Tj=25°C 4
Tj=125°C 5
Tj=25°C 276
Tj=125°C 485
Tj=25°C 0,43
Tj=125°C 0,87
di(rec)max Tj=25°C 37
/dt Tj=125°C 31
Tj=25°C 0,43
Tj=125°C 0,87
Therm al resistance chip to heatsink per chip RthJH
Therm al grease
thickness50um
λ = 1 W/mK 3,86 K/W
R25 Tol. ±13% Tj=25°C 19,1 22 24,9 k
R100 Tol. ±5% Tj=100°C 1411 1486 1560
Tj=25°C
Tj=25°C
600
600
25
4960
600 415
f=1MHz
15
15
20
0
15
Brc. Di ode
1200
4
Tj=25°C
Tj=25°C
25
mWs
mA
nA
0
250
15
VGE(th) VCE=VGE
15Collector-emitter saturation voltage
Rgoff=64Ohm
Rgon=64Ohm
Int egr ated Gate resistor
ICES
IGES
Rgon=64Ohm
Pow er dissipation given Epcos-Ty p P
Collector-emitter cut-off incl diode
Gate emitter threshold voltage
Rated resi s t anc e
Thermistor
B-value B(25/100) Tol. ±3%
ns
ns
A/μs
A
Reverse recovery energy
VF
Ir
trr
Qrr
Erec
Reverse recovery time
IRRM
Diode forward voltage
Reverse leakage current
VCE(sat)
Coss
Eon
Rgint
Peak rate of fall of recovery c ur r ent
Peak reverse recovery current
Reverse recovered charge
0
Reverse transfer c apac itance
QGate
Gate charge
Output c apac itance
Crss
Cies
Eoff
td(off)
tf
Fall time
Brc Transistor
Gate-emitter leakage curr ent
Turn- on delay time td(on)
tr
Turn- off energy loss per pulse
Input c apac itance
Rise time
Turn-off delay time
Turn- on ener gy loss per pulse
4
4
25
4000
0,00015
210
4
K
mWs
uC
mW
V
pF
μA
nC
V
V
copyright Vincotech 4Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 1 Output inverter IG B T Figure 2 Output inverter IG B T
Ty pi cal output characteristics
IC = f(VCE) IC = f(VCE)
At At
tp = 250 μstp = 250 μs
Tj = 25 °C Tj = 150 °C
VGE from 7 V to 17 V in st eps of 1 V VGE from 7 V to 17 V in st eps of 1 V
Figure 3 Output inverter IG B T Figure 4 Output inverter FRED
Ty pi cal transfer characteristics Ty pi cal diode forward current as
Ic = f(VGE) a function of forward vo l tage
IF = f(VF)
At At
tp = 250 μstp = 250 μs
VCE = 10 V
Output Inverter
Ty pi cal output characteristics
0
3
6
9
12
012345
VCE (V)
IC (A)
0
1
2
3
4
5
024681012
VGE (V)
IC (A)
Tj = 25°C
Tj = Tjmax-25°C
0
3
6
9
12
0 0,5 1 1,5 2 2,5
VF (V)
IF (A)
Tj = 25°C
Tj = Tjma
x
-25°C
0
3
6
9
12
012345
VCE (V)
IC (A)
copyright Vincot ech 5 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 5 Output inverter IG B T Figure 6 Output inverter IG B T
Typical switching energy losses Typical switching energy losses
as a function of collector current as a function of gate resistor
E = f(Ic)E = f(RG)
With an inductive load at With an inductive load at
Tj = 25/150 °C Tj = 25/150 °C
VCE =600 V VCE =600 V
VGE =±15 V VGE =±15 V
Rgon =64 IC =4A
Rgoff = 64
Figure 7 Output inverter IG B T Figure 8 Output inverter IG B T
Typical reverse recovery energy loss Typical reverse recovery energy loss
as a function of collector current as a function of gate resistor
Erec = f(Ic)Erec = f(R
G)
With an inductive load at With an inductive load at
Tj = 25/150 °C Tj = 25/150 °C
VCE =600 V VCE =600 V
VGE =±15 V VGE =±15 V
Rgon =64 IC =4A
Output Inverter
Eon
Eoff
Eon:
Eoff
0
0,2
0,4
0,6
0,8
1
1,2
02468
IC (A)
E (mWs)
Eoff
Eon
Eon
Eoff
0
0,2
0,4
0,6
0,8
1
1,2
0 60 120 180 240 300
RG(
Ω
)
E (mWs )
Erec
Erec
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
02468
IC (A)
E (mWs)
Erec
Erec
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0 60 120 180 240 300
RG(
Ω
)
E (mWs )
copyright Vincot ech 6 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 9 Output inverter IG B T Figure 10 Output inverter IG B T
Ty pi cal switching times as a Ty pi cal switching times as a
function of collector current function of gate resistor
t = f(IC)t = f(RG)
With an inductive load at With an inductive load at
Tj = 150 °C Tj = 150 °C
VCE =600 V VCE =600 V
VGE =±15 V VGE =±15 V
Rgon =64 IC =4A
Rgoff = 64
Figure 11 Output inverter FRED Figure 12 Output inverter FRED
Ty pi cal reverse recovery time as a Ty pi cal reverse recov ery time as a
function of collector current function of IGBT turn on gate resistor
trr = f(Ic) trr = f(Rgon)
At At
Tj = 25/150 °C Tj = 25/150 °C
VCE =600 V VR =600 V
VGE =±15 V IF =4A
Rgon =64 VGE =±15 V
Output Inverter
tdoff
tf
tdon tr
0,001
0,01
0,1
1
02468IC (A)
t (μs)
trr
trr
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0 60 120 180 240 300
RGon (
Ω
)
t rr(μs)
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 60 120 180 240 300
RG (
Ω
)
t (μs)
trr
trr
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
02468
IC (A)
t rr(μs)
copyright Vincot ech 7 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 13 Output inverter FRED Figure 14 Output inverter FRED
Ty pi cal reverse recovery charge as a Typical reverse recovery charge as a
function of collector current function of IGBT turn on gate resistor
Qrr = f(Ic) Qrr = f(Rgon)
At
At At
Tj = 25/150 °C Tj = 25/150 °C
VCE =600 V VR =600 V
VGE =±15 V IF =4A
Rgon =64 VGE =±15 V
Figure 15 Output inverter FRED Figure 16 Output inverter FRED
Ty pi cal reverse recovery current as a Ty pi cal reverse recov ery current as a
function of collector current function of IGBT turn on gate resistor
IRRM = f(Ic) IRRM = f(Rgon)
At At
Tj = 25/150 °C Tj = 25/150 °C
VCE =600 V VR =600 V
VGE =±15 V IF =4A
Rgon =64 VGE =±15 V
Output Inverter
IRRM
IRRM
0
2
4
6
8
10
0 60 120 180 240 300
RGon (
Ω
)
IrrM (A)
Qrr
Qrr
0
0,2
0,4
0,6
0,8
1
1,2
1,4
0 60 120 180 240 300
RGon (Ω)
Qrr (μC)
IRRM
IRRM
0
2
4
6
8
02468
IC (A)
IrrM (A)
Qrr
Qrr
0
0,4
0,8
1,2
1,6
2
02468
IC (A)
Qrr (μC)
copyright Vincot ech 8 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 17 Output inverter FRED Figure 18 Output inverter FRED
Typical rate of fall of forward Typical rate of fall of forward
and reverse recovery current as a and reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
dI0/ dt ,dIrec/dt = f(I c) dI0/ dt ,dIrec/dt = f(Rgon)
At At
Tj = 25/150 °C Tj = 25/150 °C
VCE =600 V VR =600 V
VGE =±15 V IF =4A
Rgon =64 VGE =±15 V
Figure 19 Output inverter IG B T Figure 20 Output inverter FRED
IGBT transi ent thermal impedance FRED transient therm al impedance
as a function of pulse width as a function of pulse width
ZthJH = f(tp) ZthJH = f(tp)
At At
D = tp / T D = tp / T
RthJH =2,51 K/W RthJH =2,56 K/W
IGBT t herm al model values FRED thermal model values
R (C/W) Tau (s) R (C/W) Tau (s)
0,05 6,2E+00 0,12 2,8E+00
0,26 4,9E-01 0,62 2,1E-01
0,85 8,6E-02 1,10 4,8E-02
0,64 1,3E-02 0,37 7,2E-03
0,38 2,2E-03 0,35 8,8E-04
0,33 3,4E-04
Output Inverter
tp (s)
ZthJH (K/W)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
110-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
tp (s)
ZthJH (K/W)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
1
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
dI0/dt
dIrec/dt
0
300
600
900
1200
1500
0 60 120 180 240 300
RGon (Ω)
direc / dt (A/μs)
dI0/dt
dIrec/dt
0
50
100
150
200
250
02468
IC (A)
direc / dt (A/μs)
copyright Vincot ech 9 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 21 Output inverter IG B T Figure 22 Output inverter IG B T
Power di ssi pati on as a Collector current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
C = f(Th)
At At
Tj =175 °C single heating Tj = 175 °C
overall heating VGE =15 V
Figure 23 Output inverter FRED Figure 24 Output inverter FRED
Power dissipation as a Forw ard current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
F = f(Th)
At At
Tj = 175 °C single heating Tj = 175 °C
overall heating
Output Inverter
0
15
30
45
60
75
0 50 100 150 200
Th (oC)
Ptot (W)
0
2
4
6
8
10
12
0 50 100 150 200
Th (oC)
IC (A)
0
15
30
45
60
75
0 50 100 150 200
Th (oC)
Ptot (W)
0
2
4
6
8
10
12
0 50 100 150 200
Th (oC)
IF (A)
copyright Vincotech 10 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 25 Output inverter IG B T Figure 26 Output inverter IG B T
Safe operating area as a function Gate vo l tage vs Gate charge
of collector-emi tter voltage
IC = f(VCE)V
GE = f(Qg)
At At
D = single pulse IC = 4A
Th = 80 ºC
VGE = ±15 V
Tj = Tjmax ºC
Output Inverter
0,0
0,1
1,0
10,0
100,0
1 10 100 1000 10000
VCE (V)
IC (A)
100
m
DC
10
m
1
m
100
u
10
u
0
5
10
15
0 5 10 15 20 25 30
Qg (nC)
VGE (V)
240
960
copyright Vincotech 11 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 1 Brake IGB T Figure 2 Brake IGBT
Ty pi cal output characteristics Ty pi cal output characteristics
IC = f(VCE) IC = f(VCE)
At At
tp = 250 μstp = 250 μs
Tj = 25 °C Tj = 150 °C
VGE from 7 V to 17 V in st eps of 1 V VGE from 7 V to 17 V in st eps of 1 V
Figure 3 Brake IGB T Figure 4 Brake FRED
Ty pi cal transfer characteristics Ty pi cal diode forward current as
IC = f(VGE) a function of forward voltage
IF = f(VF)
At At
tp = 250 μstp = 250 μs
VCE = 10 V
Brake
0
2
4
6
8
10
12
012345
VCE (V)
IC (A)
0
0,8
1,6
2,4
3,2
4
024681012
VGE (V)
IC (A)
Tj = 25°C
Tj = Tjmax-25°C
0
2
4
6
8
10
12
00,511,522,533,5
VF (V)
IF (A)
Tj = 25°C
Tj = Tjmax-25°C
0
2
4
6
8
10
12
012345
VCE (V)
IC (A)
copyright Vincotech 12 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 5 Brake IGB T Figure 6 Brake IGBT
Typical switching energy losses Typical switching energy losses
as a function of collector current as a function of gate resistor
E = f(IC)E = f(RG)
With an inductive load at With an inductive load at
Tj = 25/150 °C Tj = 25/150 °C
VCE =600 V VCE =600 V
VGE =±15 V VGE =±15 V
Rgon =64 IC = 4A
Rgoff = 64
Figure 7 Brake IGB T Figure 8 Brake IGBT
Typical reverse recovery energy loss Typical reverse recovery energy loss
as a function of collector current as a function of gate resistor
Erec = f(Ic)E
rec = f(RG)
With an inductive load at With an inductive load at
Tj = 25/150 °C Tj = 25/150 °C
VCE =600 V VCE =600 V
VGE =±15 V VGE =±15 V
Rgon =64 IC = 4A
Brake
Erec
Erec
0
0,1
0,2
0,3
0,4
0,5
0,6
02468
IC (A)
E (mWs)
Erec
Erec
0
0,1
0,2
0,3
0,4
0,5
0,6
0 60 120 180 240 300
RG (
Ω
)
E (mWs )
Eoff
Eon
Eon
Eoff
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
02468
IC (A)
E (mWs)
Eoff
Eon
Eon
Eoff
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0 60 120 180 240 300
RG(
Ω
)
E (mWs )
copyright Vincotech 13 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 9 Brake IGB T Figure 10 Brake IGB T
Ty pi cal switching times as a Ty pi cal switching times as a
function of collector current function of gate resistor
t = f(IC)t = f(RG)
With an inductive load at With an inductive load at
Tj = 25/150 °C Tj = 25/150 °C
VCE =600 V VCE =600 V
VGE =±15 V VGE =±15 V
Rgon =64 IC = 4A
Rgoff = 64
Figure 11 Brake IGBT Figure 12 Brake FRED
IGBT transi ent thermal impedance FRED transient therm al impedance
as a function of pulse width as a function of pulse width
ZthJH = f(tp)Z
thJH = f(tp)
At At
D = tp / T D = tp / T
RthJH =2,95 K/W RthJH =3,86 K/W
Brake
tdoff
tftdon
tr
0,001
0,01
0,1
1
02468
IC (A)
t (μs)
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 60 120 180 240 300RG (
Ω
)
t (μs)
tp (s)
ZthJH (K/W)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
1
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
tp (s)
ZthJH (K/W)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
1
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
copyright Vincotech 14 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 13 Brake IGBT Figure 14 Brake IGBT
Power di ssi pati on as a Collector current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
C = f(Th)
At At
Tj = 175 ºC Tj = 175 ºC
VGE =15 V
Figure 15 Brake FRED Figure 16 Brake FRED
Power dissipation as a Forw ard current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
F = f(Th)
At At
Tj = 175 ºC Tj = 175 ºC
Brake
0
15
30
45
60
75
0 50 100 150 200
Th (oC)
Ptot (W)
0
2
4
6
8
10
12
0 50 100 150 200
Th (oC)
IC (A)
0
10
20
30
40
50
0 50 100 150 200
Th (oC)
Ptot (W)
0
2
4
6
8
10
12
0 50 100 150 200
Th (oC)
IF (A)
copyright Vincotech 15 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 1 Rectifier diode Figure 2 Rectifier diode
Typical diode forward current as Diode transient thermal impedance
a function of forward v ol tage as a function of pulse width
IF= f(VF) ZthJH = f(tp)
At At
tp = 250 μs D = tp / T
RthJH =2,117 K/W
Figure 3 Rectifier diode Figure 4 Rectifier diode
Power dissipation as a Forw ard current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
F = f(Th)
At At
Tj = 150 ºC Tj = 150 ºC
Input Re ctifier Bridge
0
20
40
60
80
100
00,511,52
VF (V)
IF (A)
Tj = 25°C
Tj = Tjmax-25°C
tp (s)
ZthJC (K/W)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
1
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
0
20
40
60
80
0 50 100 150 200
Th (oC)
Ptot (W)
0
10
20
30
40
0 50 100 150 200
Th (oC)
IF (A)
copyright Vincotech 16 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 1 Thermistor
Ty pi cal NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-ty pi cal temperature characteristic
0
5000
10000
15000
20000
25000
25 50 75 100 125
T (°C)
R/
copyright Vincotech 17 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
T
j
150 °C
R
g
on 64
Rgoff 64
Figure 1 Output inverter IG B T Figure 2 Output inverter IG B T
Turn-off Switching Wav eforms & definition of tdoff, tEoff Turn-on Swi tching Wav eforms & definiti on of tdon, tEon
(tEof
f
= integ r ati n g time for Eof
f
)(t
Eon = integ rating time for E on)
VGE (0%) = -15 V VGE (0%) = -15 V
VGE (100%) = 15 V VGE (100%) = 15 V
VC (100%) = 600 V VC (100%) = 600 V
IC (100%) = 4A IC (100%) = 4A
tdoff = 0,23 μstdon = 0,08 μs
tEoff =0,59 μstEon =0,32 μs
Figure 3 Output inverter IG B T Figure 4 Output inverter IG B T
Turn-off Switching Wav eforms & definition of tf Turn-on Swi tchi ng Waveforms & defini tion of t
r
VC (100%) = 600 V VC (100%) = 600 V
IC (100%) = 4A IC (100%) = 4A
tf =0,11 μstr =0,02 μs
Swit ching De finitions Output Inverter
General conditions
=
=
=
Ic 1%
Uce 90%
Uge 90%
-40
-20
0
20
40
60
80
100
120
140
-0,2 -0,05 0,1 0,25 0,4 0,55 0,7 0,85
time (us)
%
tdoff
tEoff
Uce
Ic
Uge
Ic10%
Uge10%
tdon
Uce3%
-40
20
80
140
200
260
320
2,8 2,9 3 3,1 3,2 3,3 3,4 3,5
time(us)
%
Ic
Uce
tEon
Uge
fitted
Ic10%
Ic 90%
Ic 60%
Ic 40%
-20
0
20
40
60
80
100
120
140
0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45
time (us)
%
Uce
Ic
tfIc10%
Ic90%
-40
20
80
140
200
260
320
2,9 3 3,1 3,2 3,3 3,4 3,5
time(us)
%
tr
Uce
Ic
copyright Vincotech 18 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 5 Output inverter IG B T Figure 6 Output inverter IG B T
Turn-off Switching Wav eforms & definition of tEof
f
Turn-on Swi tchi ng Waveforms & defini tion of tEon
Poff (100%) = 2,41 kW Pon (100%) = 2,41 kW
Eoff (100%) = 0,32 mJ Eon (100%) = 0,56 mJ
tEoff =0,59 μstEon =0,32 μs
Figure 7 Output inverter FRED Figure 8 Output inverter IGBT
Gate vo l tage vs Gate charge (measured) Turn-off Switching Wav eforms & definition of tr
r
VGEoff = -15 V Vd (100% ) = 600 V
VGEon = 15 V Id (100%) = 4A
VC (100%) = 600 V IRRM (100%) = -6 A
IC (100%) = 4A trr = 0,43 μs
Qg = 40,28 nC
Swit ching De finitions Output Inverter
Ic 1%
Uge90%
-20
0
20
40
60
80
100
120
-0,2 -0,05 0,1 0,25 0,4 0,55 0,7 0,85
time (us)
%
Pof
f
Eoff
tEoff
Uce3%
Uge10%
-40
0
40
80
120
160
200
240
2,9 3 3,1 3,2 3,3 3,4 3,5
time(us)
%
Pon
Eon
tEon
-20
-15
-10
-5
0
5
10
15
20
-20-100 1020304050
Qg (nC)
Uge (V)
IRRM10%
IRRM90%
IRRM100%
trr
-200
-160
-120
-80
-40
0
40
80
120
160
200
2,9 3,05 3,2 3,35 3,5 3,65 3,8
time(us)
%
Id
Ud
fitted
copyright Vincotech 19 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Figure 9 Out put inverter FRED Fi gure 10 Output inverter FRED
Turn-on Swi tchi ng Waveforms & defini tion of tQr
r
Turn-on Swi tchi ng Waveforms & defini tion of tErec
(tQrr = integr ati n g time for Qr
r
)(t
Erec= integrati n g time for Erec)
Id (100% ) = 4A Prec (100%) = 2,41 kW
Qrr (100%) = 1,24 μCErec (100%) = 0,47 mJ
tQint = 1,00 μstErec = 1,00 μs
Swit ching De finitions Output Inverter
tQint
-200
-150
-100
-50
0
50
100
150
2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4
time(us)
%
Id
Q
rr
-20
0
20
40
60
80
100
120
2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3
time(us)
%
Prec
Erec
tErec
copyright Vincotech 20 Revision: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
Package Outline and Pinout
Pinout
Outline
copyright Vincot ech 21 Revi sion: 1
V23990-P848-A48/A49/C48/C49-PM
preliminary datasheet
PRODUCT STATUS DEFINITIO NS
Formative or In Design
First Product ion
Full Production
DISCLAIMER
LIFE SUPPORT POLICY
As used herein:
Preliminary
This datasheet cont ains pr elim inar y data, and
supplementary data may be published at a later date.
Vincotech reserves t he r ight to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Final
This datasheet contains final specifications. Vincotech
reserves the right to mak e changes at any time without
notice in order to im pr ove design. The data contained is
exclusively intended for technically trained staff.
Target
Product StatusDatasheet Status Defini t ion
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
The information given i n this dat asheet describes t he t ype of component and does not represent assured characteris tics . For tested
values pleas e contac t Vincot ech.Vi ncotec h reserves the ri ght to make changes without further notic e to any products herein to improve
reliability, func t i on or design. Vincotech does not assume any liability arising out of the applic at ion or use of any product o r circui t
described herei n; neither does i t convey any li cense under it s patent ri ghts, nor the rights of others.
Vincot ech products are not authori sed for use as crit i cal components i n l ife support devi ces or s ys tems without the express written
approval of Vincotec h.
1. Life support devic es or systems are devices or systems which, (a) are int ended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions f or use provided in labelling can be
reasonably expected t o result in signifi cant inj ury to the user.
2. A critic al component is any component of a life support devi ce or system whose f ai l ure to perform can be reasonabl y expect ed to
cause t he failure of the life support devic e or system, or to affect it s safety or effec tiveness .
copyright Vincot ech 22 Revi sion: 1