High-Performance IR Emitter and IR PIN Photodiode in Subminiature SMT Package HSDL-44xx IR Emitter Series HSDL-54xx IR Detector Series Technical Data Features Description * Subminiature Flat Top and Dome Package Size - 2x2 mm * IR Emitter 875 nm TS AlGaAs Intensity - 17 mW/sr Speed - 40 ns * Wide Range of Drive Currents 500 A to 500 mA * IR Detector PIN Photodiode High Sensitivity Speed - 7.5 ns * Flexible Lead Configurations Surface Mount or Through Hole Flat Top Package The HSDL-4400 Series of flat top IR emitters use an untinted, nondiffused, truncated lens to provide a wide radiation pattern that is useful for short distance communication where alignment of the emitter and detector is not critical. The HSDL-5400 Series of flat top IR detectors uses the same truncated lens design as the HSDL-4400 Series of IR emitters with the added feature of a black tint that acts as an optical filter to reduce the effects of ambient light, such as sun, incandescent and fluorescent light from interfering with the IR signal. Applications * Short Distance IR Links * IrDA Compatible * Small Handheld Devices Pagers Industrial Handhelds * Diffuse LANs * Wireless Audio Dome Package The HSDL-4420 Series of dome IR emitters uses an untinted, nondiffused lens to provide a 24 degree viewing angle with high on-axis intensity. The HSDL-5420 Series of IR detectors uses the same lens design as the HSDL4420 IR emitter and optical filter used in the HSDL-5400 IR detector. Lead Configuration All of these devices are made by encapsulating LED and PIN photodiode chips on axial lead frames to form molded epoxy subminiature packages. A variety of lead configurations is available and includes: surface mount gull wing, yoke lead, or Z-bend and through hole lead bends at 2.54 mm (0.100 inch) center spacing. Technology The subminiature solid state emitters utilize a highly optimized LED material, transparent substrate aluminum gallium arsenide, TS AlGaAs. This material has a very high radiant efficiency, capable of producing high light output over a wide range of drive currents and temperature. 2 Device Selection Guide IR Emitters Part Number HSDL-4400 HSDL-4420 Device Description[1] LED, Flat Top, 110 deg LED, Dome, 24 deg Device Outline Drawing A B Device Description[1] PIN Photodiode, Flat Top, 110 deg PIN Photodiode, Dome, 28 deg Device Outline Drawing C D IR Detectors Part Number HSDL-5400 HSDL-5420 Package Configuration Options Option Code 011 021 031 1L1 1S1 No Option Package Configuration Description Gull Wing Lead, Tape and Reel[2] Surface Yoke Lead, Tape and Reel[2] Mount Lead Z-Bend, Tape and Reel[2] 2.54 mm (0.100 in) Long Leads; Thru Hole Center Lead Spacing 10.4 mm (0.410 in) Lead Short Leads; 3.7 mm (0.145 in) [3] Straight Leads Prototyping Package Outline Drawing E, J, M F, K, M G, L, M H I A, B, C, D Notes: 1. IR Emitters have untinted, nondiffused lenses and IR Detectors have black tinted, nondiffused lenses. 2. Emitters and detectors are supplied in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 1500 units per reel. Minimum order quantity and order increment are in quantity of reels only. 3. Emitters and detectors are supplied in bulk form in bags of 50 units. 4. The HSDL-44xx and HSDL-54xx families are not designed to be used in medical devices with life support functions or in safety equipment (or similar applications where components failures would result in loss of life or physical harm), eg. in automotive, medical or airline industries. 3 Package Dimensions (A) Flat Top Emitters 0.50 (0.020) REF. 1.14 (0.045) 1.40 (0.055) 0.58 (0.023) 0.43 (0.017) 1.40 (0.055) 1.65 (0.065) 11.68 (0.460) 10.67 (0.420) BOTH SIDES 1.91 (0.075) 2.41 (0.095) 0.76 (0.030) MAX. CATHODE 2.08 (0.082) 2.34 (0.092) CATHODE STRIPE NOTE 4 1.65 (0.065) DIA. 1.91 (0.075) 1.91 (0.075) 2.16 (0.085) 0.18 (0.007) 0.23 (0.009) 0.20 (0.008) MAX. (B) Dome Emitters 0.76 (0.030) R. 0.89 (0.035) 0.18 (0.007) 0.23 (0.009) 0.94 (0.037) 1.24 (0.049) 2.03 (0.080) 1.78 (0.070) 2.92 (0.115) MAX. 2.08 (0.082) 2.34 (0.092) 0.63 (0.025) 0.38 (0.015) 0.79 (0.031) 0.53 (0.021) CATHODE STRIPE NOTE 4 1.91 (0.075) 2.16 (0.085) 0.50 (0.020) REF. NOTE 3 ANODE 11.68 (0.460) 10.67 (0.420) BOTH SIDES 0.46 (0.018) 0.56 (0.022) CATHODE 1.65 (0.065) DIA. 1.91 (0.075) 0.20 (0.008) MAX. 0.25 (0.010) MAX.* NOTE 2 NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD. 3. LEAD POLARITY FOR THESE TS AlGaAs SUBMINIATURE LAMPS IS OPPOSITE TO THE LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES. 4. CATHODE STRIPE MARKING IS DARK BLUE. NOTE 3 ANODE 0.46 (0.018) 0.56 (0.022) 0.25 (0.010) MAX.* NOTE 2 4 (C) Flat Top Detectors 0.50 (0.020) REF. 1.40 (0.055) 1.65 (0.065) CATHODE 1.14 (0.045) 1.40 (0.055) 0.58 (0.023) 0.43 (0.017) 11.68 (0.460) 10.67 (0.420) BOTH SIDES 1.91 (0.075) 2.41 (0.095) 0.76 (0.030) MAX. ANODE 2.08 (0.082) 2.34 (0.092) CATHODE STRIPE NOTE 3 0.18 (0.007) 0.23 (0.009) 1.65 (0.065) DIA. 1.91 (0.075) 1.91 (0.075) 2.16 (0.085) 0.20 (0.008) MAX. (D) Dome Detectors 0.76 (0.030) R. 0.89 (0.035) 0.18 (0.007) 0.23 (0.009) 0.94 (0.037) 1.24 (0.049) 2.03 (0.080) 1.78 (0.070) 2.92 (0.115) MAX. 2.08 (0.082) 2.34 (0.092) 0.63 (0.025) 0.38 (0.015) 0.79 (0.031) 0.53 (0.021) CATHODE STRIPE NOTE 3 1.91 (0.075) 2.16 (0.085) 0.50 (0.020) REF. CATHODE 11.68 (0.460) 10.67 (0.420) BOTH SIDES ANODE 0.46 (0.018) 0.56 (0.022) 1.65 (0.065) DIA. 1.91 (0.075) 0.20 (0.008) MAX. NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES). 2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD. 3. CATHODE STRIPE MARKING IS DARK BLUE. 0.25 (0.010) MAX.* NOTE 2 0.46 (0.018) 0.56 (0.022) 0.25 (0.010) MAX.* NOTE 2 5 Package Dimensions The following notes affect the package outline drawings E through I. 1. The pinout represents the HSDL-54xx IR detectors where the protruding support tab is closest to the anode lead. While the pinout is reversed for the HSDL-44xx IR emitters where the protruding support tab is closest to the cathode lead. 2. The protruding support tab of the HSDL-54xx is connected to the cathode lead. While the protruding support tab of the HSDL-44xx is connected to the anode lead. (E) Gull Wing Lead, Option 011 0.76 (0.030) MAX. (F) "Yoke" Lead, Options 021 0.76 (0.030) MAX. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES) 6 (G) Z-Bend Lead, Options 031 0.76 (0.030) MAX. (H) Thru Hole Lead Option 1L1 (I) Thru Hole Lead Option 1S1 7 Package Dimensions: Surface Mount Tape and Reel Options (J) 12 mm Tape and Reel, Gull Wing Lead, Option 011 GULL WING LEAD SUBMINIATURE PACKAGE NOTES: 1. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE. 2. 7 INCH REEL - 1500 PIECES PER REEL. 3. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 500 mm. 4. THE MAXIMUM NUMBER OF CONSECUTIVE MISSING DEVICES IS TWO. 5. IN ACCORDANCE WITH ANSI/EIA RS-481 SPECIFICATIONS, THE CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKETS HOLE. 8 (K) 12 mm Tape and Reel, "Yoke" Lead, Option 021 "YOKE" LEAD SUBMINIATURE PACKAGE 9 (L) 12 mm Tape and Reel, Z-Bend Lead, Option 031 Z-BEND LEAD SUBMINIATURE PACKAGE 10 (M) 12 mm Tape and Reel 11 HSDL-44xx Absolute Maximum Ratings Parameter Peak Forward Current (Duty Factor = 20%, Pulse Width = 100 s) Symbol IFPK Min. Max. 500 Unit mA Ref. Fig. 7, 8 100 100 mA mW Fig. 6 V A C DC Forward Current Power Dissipation IFDC PDISS Reverse Voltage (IR = 100 A) Transient Forward Current (10 s Pulse) Operating Temperature VR IFTR TO -40 1.0 85 Storage Temperature TS -55 100 C Junction Temperature Lead Solder Temperature [1.6 mm (0.063 in.) from body] Reflow Soldering Temperatures Convection IR Vapor Phase TJ 110 260/5 s C C 235/90 s 215/180 s C C 5 [1] Fig. 20 Note: 1. The transient peak current in the maximum nonrecurring peak current the device can withstand without damaging the LED die and the wire bonds. HSDL-44xx Electrical Characteristics at TA = 25C Parameter Forward Voltage Symbol Min. Typ. Max. Unit Condition Ref. VF 1.30 1.50 2.15 1.70 V IFDC = 50 mA IFPK = 250 mA Fig. 2 Fig. 3 VF/T -2.1 -2.1 mV/C IFDC = 50 mA IFDC = 100 mA Series Resistance RS 2 IFDC = 100 mA Diode Capacitance CO 50 pF 0 V, 1 MHz 20 V IR = 100 A 170 C/W Forward Voltage Temperature Coefficient Reverse Voltage Thermal Resistance, Junction to Pin VR Rjp 5 12 HSDL-44XX Optical Characteristics at TA = 25C Parameter Symbol Min. Typ. Max. Unit Condition Ref. HSDL-4400 IE 1 3 6 15 8 mW/sr IFDC = 50 mA IFDC = 100 mA IFPK = 250 mA Fig. 4, 5 HSDL-4420 IE 9 17 32 85 30 mW/sr IFDC = 50 mA IFDC = 100 mA IFPK = 250 mA Fig. 4, 5 Radiant On-Axis Intensity IE /T -0.35 -0.35 %/C IFDC = 50 mA IFDC = 100 mA HSDL-4400 21/2 110 deg IFDC = 50 mA Fig. 9 HSDL-4420 21/2 24 deg IFDC = 50 mA Fig. 10 Fig. 1 Radiant On-Axis Intensity Temperature Coefficient Viewing Angle Peak Wavelength PK nm IFDC = 50 mA Peak Wavelength Temperature Coefficient /T 0.25 nm/ C IFDC = 50 mA Spectral Width at FWHM 37 nm IFDC = 50 mA Optical Rise and Fall Times, 10%-90% tr/tf 40 ns IFPK = 50 mA fc 9 MHz IFDC = 50 mA 10 mA Bandwidth 850 875 900 Fig. 1 Fig. 11 13 HSDL-54xx Absolute Maximum Ratings Parameter Symbol PDISS Power Dissipation Min. Max. 150 Unit mW V C Reverse Voltage (IR = 100 A) Operating Temperature VR TO -40 40 85 Storage Temperature TS -55 100 C Junction Temperature Lead Solder Temperature [1.6 mm (0.063 in.) from body] TJ 110 260/5 s C C 235/90 s 215/180 s C C Reflow Soldering Temperatures Convection IR Vapor Phase HSDL-54xx Electrical Characteristics at TA = 25C Parameter Symbol Forward Voltage VF Breakdown Voltage VBR Min. Typ. Max. 0.8 Unit Condition V IFDC = 1 mA 40 V IR = 100 A, Ee = 0 mW/cm2 5 nA VR = 5 V, Ee = 0 mW/cm2 Reverse Dark Current ID 1 Series Resistance RS 2000 VR = 5 V, Ee = 0 mW/cm2 Diode Capacitance CO 5 pF VR = 0 V, Ee = 0 mW/cm2 f = 1 MHz Open Circuit Voltage VOC 375 mV Ee = 1 mW/cm2 PK = 875 nm -2.2 mV/K Ee = 1 mW/cm2 PK = 875 nm Temperature Coefficient of VOC VOC/T Short Circuit Current ISC HSDL-5400 1.6 A HSDL-5420 4.3 A ISC/T 0.16 %/K Rjp 170 C/W Temperature Coefficient of ISC Thermal Resistance, Junction to Pin Ee = 1 mW/cm2 PK = 875 nm Ee = 1 mW/cm2 PK = 875 nm Ref. Fig. 12 Fig. 16 14 HSDL-54xx Optical Characteristics at TA = 25 C Parameter Photocurrent HSDL-5400 HSDL-5420 Symbol Min. Typ. IPH 0.8 3.0 Temperature Coefficient of IPH Unit Condition 1.6 6.0 A Ee = 1 mW/cm2 PK = 875 nm VR = 5 V Fig. 14, 15 IPH/T 0.1 %/K Ee = 1 mW/cm2 PK = 875 nm VR = 5 V Fig. 13 Radiant Sensitive Area A 0.15 mm2 Absolute Spectral Sensitivity S 0.5 A/W 21/2 110 28 875 deg nm Ee = 1 mW/cm2 VR = 5 V 7701000 70 nm Ee = 1 mW/cm2 VR = 5 V Ee = 1 mW/cm2 PK = 875 nm, VR = 5 V W/Hz1/2 tr /tf 6.2 x 10-15 6.3 x 1012 7.5 fc 50 MHz Viewing Angle HSDL-5400 HSDL-5420 Wavelength of Peak Sensitivity PK Spectral Bandwidth Quantum Efficiency Noise Equivalent Power Detectivity Optical Rise and Fall Times, 10%-90% Bandwidth NEP D Max. % cm* Hz1/2/W ns Ref. Ee = 1 mW/cm2 PK = 875 nm VR = 5 V VR = 5 V PK = 875 nm VR = 5 V PK = 875 nm VR = 5 V RL = 1 k PK = 875 nm VR = 5 V RL = 1 k PK = 875 nm Fig. 18 Fig. 19 Fig. 17 Fig. 17 1.0 0.5 0 800 850 950 900 2.0 1,000 TA = 25 C 100 10 1 0 0.5 - WAVELENGTH - nm 1.0 1.5 2.0 2.5 NORMALIZED RADIANT INTENSITY PULSE WIDTHS < 100 s TA = 25C 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0 0 100 200 300 400 500 0.10 0.01 0.1 1 10 Figure 5. Normalized Radiant Intensity vs. Peak Forward Current (0 to 10 mA). IFPK - PEAK FORWARD CURRENT - mA IFPK - PEAK FORWARD CURRENT - mA IFPK - FORWARD CURRENT - mA Figure 4. Normalized Radiant Intensity vs. Peak Forward Current. 500 DUTY FACTOR 7% 10 % 20 % 50 % 300 200 100 0 0.01 0.1 1 tPW - PULSE WIDTH - ms Figure 7. Maximum Peak Forward Current vs. Duty Factor. 1.4 1.2 10 500 DUTY FACTOR 10 % 20 % 50 % 300 10 % 20 % 200 50 % 100 PULSE WIDTHS < 100 s 0 -40 -20 0 20 40 60 80 100 TA - AMBIENT TEMPERATURE - C Figure 8. Maximum Peak Forward Current vs. Ambient Temperature. Derated Based on T JMAX = 110C. IFDC = 1 mA 0 20 40 60 80 120 100 Rja = 220 C/W 80 Rja = 270 C/W Rja = 370 C/W 60 40 20 0 -40 -20 0 20 40 60 80 100 TA - AMBIENT TEMPERATURE - C Figure 6. Maximum DC Forward Current vs. Ambient Temperature. Derated Based on TJMAX = 110C. 600 400 IFDC = 50 mA Figure 3. Forward Voltage vs Ambient Temperature. TA = 25C IFPK - PEAK FORWARD CURRENT - mA 400 1.6 TA - AMBIENT TEMPERATURE - C 1.00 5.00 IFDC = 100 mA 1.0 -20 3.0 Figure 2. Peak Forward Current vs. Forward Voltage. 4.50 4.00 1.8 VF - FORWARD VOLTAGE - V Figure 1. Relative Radiant Intensity vs. Wavelength. NORMALIZED RADIANT INTENSITY VF - FORWARD VOLTAGE - V TA = 25 C IFDC = 50 mA IFDC - MAXIMUM DC FORWARD CURRENT - mA RELATIVE RADIANT INTENSITY 1.5 IFPK - PEAK FORWARD CURRENT - mA 15 16 RELATIVE RADIANT INTENSITY 1.0 IF = 50 mA 0.9 TA = 25C 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -100 -80 -60 -40 -20 0 20 40 60 80 100 - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE) Figure 9. Relative Radiant Intensity vs. Angular Displacement HSDL-4400. RELATIVE RADIANT INTENSITY 1.0 0.9 IF = 50 mA 0.8 TA = 25C 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE) 1 0 -1 -2 TA = 25C 9 MHz -3 -4 -5 -6 -7 -8 -9 -10 1E+5 1E+6 1E+7 1E+8 f - FREQUENCY - Hz Figure 11. Relative Radiant Intensity vs. Frequency. 1.40 10.000 NORMALIZED PHOTOCURRENT RELATIVE RADIANT INTENSITY 2 ID - REVERSE DARK CURRENT - nA Figure 10. Relative Radiant Intensity vs. Angular Displacement HSDL-4420. VR = 5 V 1.000 0.100 0.010 0.001 0 20 40 60 80 100 TA - AMBIENT TEMPERATURE - C Figure 12. Reverse Dark Current vs. Ambient Temperature. 1.30 VR = 5 V 1.20 1.10 1.00 0.90 0.80 0.70 0.60 -40 -20 0 20 40 60 80 100 TA - AMBIENT TEMPERATURE - C Figure 13. Relative Reverse Light Current vs. Ambient Temperature. 17 1.40 NORMALIZED PHOTOCURRENT NORMALIZED PHOTOCURRENT 10 VR = 5 V TA = 25C 1 0.1 0.01 0.01 1.30 TA = 25C 1.20 1.10 1.00 0.90 0.80 0.70 0.60 0.1 10 1 0 Ee - IRRADIANCE - mW/cm2 15 20 25 30 35 40 Figure 15. Reverse Light Current vs. Reverse Voltage. 1.2 Ee = 0 mW/cm2 f = 1 MHz TA = 25C 4 3 2 1 1 10 VR - REVERSE VOLTAGE - V Figure 16. Diode Capacitance vs. Reverse Voltage. 100 NORMALIZED PHOTOCURRENT 5 CO - DIODE CAPACITANCE - pF 10 VR - REVERSE VOLTAGE - V Figure 14. Reverse Light Current vs. Irradiance 0 0.1 5 VR = 5 V 1.0 TA = 25C 0.8 0.6 0.4 0.2 0 700 750 800 850 900 950 1000 1050 1100 - WAVELENGTH - nm Figure 17. Relative Spectral Sensitivity vs. Wavelength. At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Brief I-008 for more information. 18 NORMALIZED PHOTOCURRENT 1.0 VR = 5 V 0.9 TA = 25C 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -100 -80 -60 -40 -20 0 20 40 60 80 100 - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE) Figure 18. Relative Radiant Intensity vs. Angular Displacement. HSDL-5400. NORMALIZED PHOTOCURRENT 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 - ANGLE FROM OPTICAL CENTERLINE - DEGREES (CONE HALF ANGLE) Figure 19. Relative Radiant Intensity vs. Angular Displacement. HSDL-5420. 250 NORMAL COQ TEMPERATURE (C) 200 150 EVALUATION 100 50 0 0 50 100 150 200 250 300 350 TIME (s) Figure 20. Evaluation Soldering Profiles (Polyled). Ramp Up Rate (25C - 125C) Peak Temperature Temperature Maintained Above 183C Ramp Down Rate (170 C - 50 C) = 2 to 3C/s = 230 5C for 10 s = 60 s to 150 s = 3 to 4C/s 400 www.agilent.com/semiconductors For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (408) 654-8675 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 271 2451 India, Australia, New Zealand: (+65) 271 2394 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only) Korea: (+65) 271 2194 Malaysia, Singapore: (+65) 271 2054 Taiwan: (+65) 271 2654 Data subject to change. Copyright (c) 2002 Agilent Technologies, Inc. Obsoletes 5988-2425EN January 17, 2002 5988-5284EN