Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
To all our customers
Description
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
1
Description
The M16C/62M group of single-chip microcomputers are built using the high-performance silicon gate
CMOS process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP.
These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruc-
tion efficiency. With 1M bytes of address space, low voltage (2.2V to 3.6V), they are capable of executing
instructions at high speed. They also feature a built-in multiplier and DMAC, making them ideal for control-
ling office, communications, industrial equipment, and other high-speed processing applications.
The M16C/62M group includes a wide range of products with different internal memory types and sizes and
various package types.
Features
• Memory capacity..................................ROM (See Figure 1.1.4. ROM Expansion)
RAM 10K to 20K bytes
• Shortest instruction execution time......100ns (f(XIN)=10MHZ, VCC=2.7V to 3.6V)
142.9ns (f(XIN)=7MHZ, VCC=2.2V to 3.6V with software one-wait)
• Supply voltage .....................................2.7V to 3.6V (f(XIN)=10MHZ, without software wait)
2.4V to 2.7V (f(XIN)=7MHZ, without software wait)
2.2V to 2.4V (f(XIN)=7MHZ with software one-wait)
• Low power consumption ......................28.5mW (VCC = 3V, f(XIN)=10MHZ, without software wait)
• Interrupts..............................................25 internal and 8 external interrupt sources, 4 software
interrupt sources; 7 levels (including key input interrupt)
• Multifunction 16-bit timer......................5 output timers + 6 input timers
• Serial I/O..............................................5 channels
(3 for UART or clock synchronous, 2 for clock synchronous)
• DMAC ..................................................2 channels (trigger: 24 sources)
• A-D converter.......................................10 bits X 8 channels (Expandable up to 10 channels)
• D-A converter.......................................8 bits X 2 channels
• CRC calculation circuit.........................1 circuit
• Watchdog timer....................................1 line
• Programmable I/O ...............................87 lines
• Input port.............................................. _______
1 line (P85 shared with NMI pin)
• Memory expansion ..............................Available (to a maximum of 1M bytes)
• Chip select output ................................4 lines
• Clock generating circuit .......................2 built-in clock generation circuits
(built-in feedback resistor, and external ceramic or quartz oscillator)
Applications
Audio, cameras, office equipment, communications equipment, portable equipment
Description
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
2
Pin Configuration
Figures 1.1.1 and 1.1.2 show the pin configurations (top view).
PIN CONFIGURATION (top view)
Package: 100P6S-A
Figure 1.1.1. Pin configuration (top view)
1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
515253545556575859606162636465666768697071727374757677787980
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
P0
0
/D
0
P0
1
/D
1
P0
2
/D
2
P0
3
/D
3
P0
4
/D
4
P0
5
/D
5
P0
6
/D
6
P0
7
/D
7
P1
0
/D
8
P1
1
/D
9
P1
2
/D
10
P1
3
/D
11
P1
4
/D
12
V
REF
AV
SS
V
CC
X
IN
X
OUT
V
SS
RESET
CNVss
P8
7
/X
CIN
P8
6
/X
COUT
BYTE P2
0
/A
0
(/D
0
/-)
P2
1
/A
1
(/D
1
/D
0
)
P2
2
/A
2
(/D
2
/D
1
)
P2
3
/A
3
(/D
3
/D
2
)
P2
4
/A
4
(/D
4
/D
3
)
P2
5
/A
5
(/D
5
/D
4
)
P2
6
/A
6
(/D
6
/D
5
)
P2
7
/A
7
(/D
7
/D
6
)
P3
0
/A
8
(/-/D
7
)
P3
1
/A
9
P3
2
/A
10
P3
3
/A
11
P3
4
/A
12
P3
5
/A
13
P3
6
/A
14
P3
7
/A
15
P4
0
/A
16
P4
1
/A
17
P4
2
/A
18
P4
3
/A
19
P7
4
/TA2
OUT
/W
P7
6
/TA3
OUT
P5
6
/ALE
P7
7
/TA3
IN
P5
5
/HOLD
P5
4
/HLDA
P5
3
/BCLK
P5
2
/RD
Vcc
Vss
P5
7
/RDY/CLK
OUT
P4
5
/CS1
P4
6
/CS2
P4
7
/CS3
AVcc
P6
3
/T
X
D
0
P6
5
/CLK
1
P6
6
/RxD
1
P6
7
/T
X
D
1
P6
1
/CLK
0
P6
2
/RxD
0
P10
0
/AN
0
P10
1
/AN
1
P10
2
/AN
2
P10
3
/AN
3
P9
3
/DA
0
/TB3
IN
P9
4
/DA
1
/TB4
IN
P9
5
/ANEX0/CLK4
P9
6
/ANEX1/S
OUT
4
P9
1
/TB1
IN
/S
IN
3
P9
2
/TB2
IN
/S
OUT
3
P8
0
/TA4
OUT
/U
P6
0
/CTS
0
/RTS
0
P6
4
/CTS
1
/RTS
1
/CLKS
1
P7
2
/CLK
2
/TA1
OUT
/V
P8
2
/INT
0
P7
1
/RxD
2
/SCL/TA0
IN
/TB5
IN
P8
3
/INT
1
P8
5
/NMI
P9
7
/AD
TRG
/S
IN
4
P4
4
/CS0
P5
0
/WRL/WR
P5
1
/WRH/BHE
P9
0
/TB0
IN
/CLK3
P7
0
/T
X
D
2
/SDA/TA0
OUT
P8
4
/INT
2
P8
1
/TA4
IN
/U
P7
5
/TA2
IN
/W
P1
5
/D
13
/INT3
P1
6
/D
14
/INT4
P1
7
/D
15
/INT5
P10
7
/AN
7
/KI
3
P10
6
/AN
6
/KI
2
P10
5
/AN
5
/KI
1
P10
4
/AN
4/
KI
0
P7
3
/CTS
2
/RTS
2
/TA1
IN
/V
M16C/62M group
(Low voltage version)
Description
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
3
Figure 1.1.2. Pin configuration (top view)
Package: 100P6Q-A
PIN CONFIGURATION (top view)
1 2 3 4 5 6 7 8 9 101112131415161718192021 22 23 24 25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
525354555657585960616263646566676869707172737475
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
P0
0
/D
0
P0
1
/D
1
P0
2
/D
2
P0
3
/D
3
P0
4
/D
4
P0
5
/D
5
P0
6
/D
6
P0
7
/D
7
P1
0
/D
8
P1
1
/D
9
P1
2
/D
10
P1
3
/D
11
P1
4
/D
12
V
REF
AV
SS
V
CC
X
IN
X
OUT
V
SS
RESET
CNVss
P8
7
/X
CIN
P8
6
/X
COUT
BYTE P2
0
/A
0
(/D
0
/-)
P2
1
/A
1
(/D
1
/D
0
)
P2
2
/A
2
(/D
2
/D
1
)
P2
3
/A
3
(/D
3
/D
2
)
P2
4
/A
4
(/D
4
/D
3
)
P2
5
/A
5
(/D
5
/D
4
)
P2
6
/A
6
(/D
6
/D
5
)
P2
7
/A
7
(/D
7
/D
6
)
P3
0
/A
8
(/-/D
7
)
P3
1
/A
9
P3
2
/A
10
P3
3
/A
11
P3
4
/A
12
P3
5
/A
13
P3
6
/A
14
P3
7
/A
15
P4
0
/A
16
P4
1
/A
17
P4
2
/A
18
P4
3
/A
19
P7
4
/TA2
OUT
/W
P7
6
/TA3
OUT
P5
6
/ALE
P7
7
/TA3
IN
P5
5
/HOLD
P5
4
/HLDA
P5
3
/BCLK
P5
2
/RD
Vcc
Vss
P5
7
/RDY/CLK
OUT
P4
5
/CS1
P4
6
/CS2
P4
7
/CS3
AVcc
P6
3
/T
X
D
0
P6
5
/CLK
1
P6
6
/RxD
1
P6
7
/T
X
D
1
P6
1
/CLK
0
P6
2
/RxD
0
P10
0
/AN
0
P10
1
/AN
1
P10
2
/AN
2
P10
3
/AN
3
P9
3
/DA
0
/TB3
IN
P9
4
/DA
1
/TB4
IN
P9
5
/ANEX0/CLK4
P9
6
/ANEX1/S
OUT
4
P9
1
/TB1
IN
/S
IN
3
P9
2
/TB2
IN
/S
OUT
3
P8
1
/TA4
IN
/U
P8
0
/TA4
OUT
/U
P6
0
/CTS
0
/RTS
0
P6
4
/CTS
1
/RTS
1
/CLKS
1
P8
2
/INT
0
P8
3
/INT
1
P8
5
/NMI
P9
7
/AD
TRG
/S
IN
4
P4
4
/CS0
P5
0
/WRL/WR
P5
1
/WRH/BHE
P9
0
/TB0
IN
/CLK3
P8
4
/INT
2
P7
2
/CLK
2
/TA1
OUT
/V
P7
1
/RxD
2
/SCL/TA0
IN
/TB5
IN
P7
0
/T
X
D
2
/SDA/TA0
OUT
P7
5
/TA2
IN
/W
P7
3
/CTS
2
/RTS
2
/TA1
IN
/V
P1
5
/D
13
/INT
3
P1
6
/D
14
/INT
4
P1
7
/D
15
/INT
5
P10
7
/AN
7
/KI
3
P10
6
/AN
6
/KI
2
P10
5
/AN
5
/KI
1
P10
4
/AN
4/
KI
0
M16C/62M group
(Low voltage version)
Description
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
4
Block Diagram
Figure 1.1.3 is a block diagram of the M16C/62M group.
Figure 1.1.3. Block diagram of M16C/62M group
AAAA
AAAA
Timer
Timer TA0 (16 bits)
Timer TA1 (16 bits)
Timer TA2 (16 bits)
Timer TA3 (16 bits)
Timer TA4 (16 bits)
Timer TB0 (16 bits)
Timer TB1 (16 bits)
Timer TB2 (16 bits)
Timer TB3 (16 bits)
Timer TB4 (16 bits)
Timer TB5 (16 bits)
Internal peripheral functions
Watchdog timer
(15 bits)
DMAC
(2 channels)
D-A converter
(8 bits X 2 channels)
A-D converter
(10 bits
X
8 channels
Expandable up to 10 channels)
UART/clock synchronous SI/O
(8 bits
X
3 channels)
System clock generator
X
IN
-X
OUT
X
CIN
-X
COUT
M16C/60 series16-bit CPU core
I/O ports Port P0
8
Port P1
8
Port P2
8
Port P3
8
Port P4
8
Port P5
8
Port P6
8
8
R0LR0H
R1H R1L
R2
R3
A0
A1
FB
R0LR0H
R1H R1L
R2
R3
A0
A1
FB
Registers
ISP
USP
Stack pointer
CRC arithmetic circuit (CCITT )
(Polynomial : X
16
+X
12
+X
5
+1)
Multiplier
788
Port P10
Port P9
Port P8
Port P7
AAAAAA
A
AAAA
A
A
AAAA
A
A
AAAA
A
AAAAAA
Memory
Port P8
5
ROM
(Note 1)
RAM
(Note 2)
Note 1: ROM size depends on MCU type.
Note 2: RAM size depends on MCU type.
SB FLG
PC
Program counter
Clock synchronous SI/O
(8 bits
X
2 channels)
Vector table
INTB
Flag register
Description
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
5
Item Performance
Number of basic instructions 91 instructions
Shortest instruction execution time 100ns(f(XIN)=10MHZ, VCC=2.7V to 3.6V)
142.9ns (f(XIN)=7MHZ, VCC=2.2V to 3.6V with software one-wait)
Memory ROM (See the figure 1.1.4. ROM Expansion)
capacity RAM 10K to 20K bytes
I/O port P0 to P10 (except P85) 8 bits x 10, 7 bits x 1
Input port P851 bit x 1
Multifunction TA0, TA1, TA2, TA3, TA4 16 bits x 5
timer TB0, TB1, TB2, TB3, TB4, TB5 16 bits x 6
Serial I/O UART0, UART1, UART2 (UART or clock synchronous) x 3
SI/O3, SI/O4 (Clock synchronous) x 2
A-D converter 10 bits x (8 + 2) channels
D-A converter 8 bits x 2
DMAC 2 channels (trigger: 24 sources)
CRC calculation circuit CRC-CCITT
Watchdog timer 15 bits x 1 (with prescaler)
Interrupt
25 internal and 8 external sources, 4 software sources, 7 levels
Clock generating circuit 2 built-in clock generation circuits
(built-in feedback resistor, and external ceramic or quartz oscillator)
Supply voltage 2.7V to 3.6V (f(XIN)=10MHZ, without software wait)
2.4V to 2.7V (f(XIN)=7MHZ, without software wait)
2.2V to 2.4V (f(XIN)=7MHZ with software one-wait)
Power consumption 28.5mW (f(XIN) =10MHZ, VCC=3V without software wait)
I/O I/O withstand voltage 3V
characteristics
Output current 1mA
Memory expansion Available (to a maximum of 1M bytes)
Device configuration CMOS high performance silicon gate
Package 100-pin plastic mold QFP
Table 1.1.1. Performance outline of M16C/62M group
Performance Outline
Table 1.1.1 is a performance outline of M16C/62M group.
Description
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
6
Mitsubishi plans to release the following products in the M16C/62M group:
(1) Support for mask ROM version and Flash memory version
(2) ROM capacity
(3) Package
100P6S-A : Plastic molded QFP (mask ROM and flash memory versions)
100P6Q-A : Plastic molded QFP (mask ROM and flash memory versions)
The M16C/62M group products currently supported are listed in Table 1.1.2.
Table 1.1.2. M16C/62M group
ROM Size
(Byte)
External
ROM
128K
96K
64K
32K
M30624MGM-XXXFP/GP
Mask ROM version Flash memory version
M30620FCMFP/GP
256K
M30620MCM-XXXFP/GP
M30624FGMFP/GP
100P6S-A
100P6Q-A
100P6S-A
100P6Q-A
100P6S-A
100P6Q-A
100P6S-A
M30620MCM-XXXGP
M30620MCM-XXXFP
100P6Q-A
M30624MGM-XXXFP
M30624MGM-XXXGP
M30620FCMFP
M30620FCMGP
M30624FGMFP
M30624FGMGP
RAM capacity
ROM capacity Package type RemarksType No June, 2001
128K byte
20K byte256K byte
128K byte
256K byte
10K byte
20K byte
10K byte
mask ROM version
Flash memory
3V version
Figure 1.1.4. ROM expansion
Description
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
7
Figure 1.1.5. Type No., memory size, and package
M16C/62 Group
M16C Family
Package type:
FP : Package 100P6S-A
GP : 100P6Q-A
ROM No.
Omitted for blank flash memory version
ROM capacity:
C : 128K bytes
G : 256K bytes
Memory type:
M : Mask ROM version
F : Flash memory version
Type No. M 3 0 6 2 0 M C M – X X X F P
Shows RAM capacity, pin count, etc
(The value itself has no specific meaning)
Electrical characteristics
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
8
Table 1.26.1. Absolute maximum ratings
V
REF
, X
IN
X
OUT
- 0.3 to Vcc + 0.3
- 0.3 to Vcc + 0.3
- 0.3 to 4.6
- 65 to 150
300
- 20 to 85 / -40 to 85 (Note)
P3
0
to P3
7
,P4
0
to P4
7
, P5
0
to P5
7
,
P6
0
to P6
7
, P7
2
to P7
7
, P8
0
to P8
7
,
P0
0
to P0
7
, P1
0
to P1
7
, P2
0
to P2
7
,
P3
0
to P3
7
, P4
0
to P4
7
, P5
0
to P5
7
,
P6
0
to P6
7
, P7
2
to P7
7
, P8
0
to P8
4,
P0
0
to P0
7
, P1
0
to P1
7
, P2
0
to P2
7
,
RESET,
P9
0
to P9
7
, P10
0
to P10
7
,
P8
6
, P8
7
, P9
0
to P9
7
, P10
0
to P10
7
,
P7
0
, P7
1
P7
0
, P7
1
- 0.3 to 4.6
CNV
SS
, BYTE,
V
CC
=AV
CC
V
CC
=AV
CC
- 0.3 to 4.6
- 0.3 to 4.6
V
O
P
d
Topr=25
V
I
AVcc
Vcc
T
stg
T
opr
C
Symbol Parameter Condition Rated value Unit
Supply voltage
Analog supply voltage
Input
voltage
Output
voltage
Power dissipation
Operating ambient temperature
Storage temperature
V
V
V
V
V
V
mW
C
C
Note : Specify a product of -40°C to 85°C to use it.
Electrical characteristics
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
9
2.2 3.6
Vcc 3.0
VccAVcc V
V0
0
V
IH
I
OH (avg)
mA
mA
Vss
AVss
0.8Vcc
V
V
V
V
V
V
V
0.8Vcc
0.5Vcc
Vcc
Vcc
Vcc
0.2Vcc
0.2Vcc
0
0
00.16Vcc
I
OH (peak)
P7
2
to P7
7
, P8
0
to P8
7
, P9
0
to P9
7
, P10
0
to P10
7
,
- 5.0
- 10.0
P0
0
to P0
7
, P1
0
to P1
7
, P2
0
to P2
7
, P3
0
(during single-chip mode)
P0
0
to P0
7
, P1
0
to P1
7
, P2
0
to P2
7
, P3
0
P0
0
to P0
7
, P1
0
to P1
7
,
P2
0
to P2
7
, P3
0
to P3
7
,
P4
0
to P4
7
, P5
0
to P5
7
,
P6
0
to P6
7
, P7
2
to P7
7
,
P8
0
to P8
4
,
P8
6
,
P8
7
,
P9
0
to P9
7
,
P10
0
to P10
7
P3
1
to P3
7
, P4
0
to P4
7
, P5
0
to P5
7,
P6
0
to P6
7
,
10.0
5.0
mA
f
(X
IN
)
I
OL (peak)
mA
I
OL (avg)
V
X
IN
, RESET, CNV
SS
, BYTE
P7
0
to P7
7
, P8
0
to P8
7
, P9
0
to P9
7
, P10
0
to P10
7
,
P3
1
to P3
7
, P4
0
to P4
7
, P5
0
to P5
7,
P6
0
to P6
7
,
X
IN
, RESET, CNV
SS
, BYTE
P0
0
to P0
7
, P1
0
to P1
7
, P2
0
to P2
7
, P3
0
(during single-chip mode)
P0
0
to P0
7
, P1
0
to P1
7
, P2
0
to P2
7
, P3
0
P0
0
to P0
7
, P1
0
to P1
7
,
P2
0
to P2
7
, P3
0
to P3
7
,
P4
0
to P4
7
, P5
0
to P5
7
,
P6
0
to P6
7
, P7
2
to P7
7
,
P8
0
to P8
4
,
P8
6
,
P8
7
,
P9
0
to P9
7
,
P10
0
to P10
7
P0
0
to P0
7
, P1
0
to P1
7
,
P2
0
to P2
7
, P3
0
to P3
7
,
P4
0
to P4
7
, P5
0
to P5
7
,
P6
0
to P6
7
, P7
0
to P7
7
,
P8
0
to P8
4
,
P8
6
,
P8
7
,
P9
0
to P9
7
,
P10
0
to P10
7
P0
0
to P0
7
, P1
0
to P1
7
,
P2
0
to P2
7
, P3
0
to P3
7
,
P4
0
to P4
7
, P5
0
to P5
7
,
P6
0
to P6
7
, P7
0
to P7
7
,
P8
0
to P8
4
,
P8
6
,
P8
7
,
P9
0
to P9
7
,
P10
0
to P10
7
P7
0
,0.8Vcc 4.6 V
P7
1
V
IL
10 X Vcc
- 17
Vcc=2.7V to 3.6V
Vcc=2.4V to 2.7V
0
0
MHz
MHz
10
0MHz
17.5 X Vcc
- 35
f
(Xc
IN
)kHz
50
32.768
6 X Vcc
- 6.2
Vcc=2.7V to 3.6V
Vcc=2.2V to 2.7V
0
0
MHz
MHz
10
Vcc=2.2V to 2.4V
Supply voltage
Analog supply voltage
Supply voltage
Analog supply voltage
HIGH input
voltage
LOW input
voltage
HIGH peak output
current
HIGH average output
current
LOW peak output
current
LOW average
output current
Main clock input
oscillation
frequency
Subclock oscillation frequency
with wait
No wait
Symbol Parameter Unit
Standard
Min. Typ. Max.
(data input function during memory expansion and microprocessor modes)
(data input function during memory expansion and microprocessor modes)
Note 1: The mean output current is the mean value within 100ms.
Note 2: The total IOL (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IOH (peak) for ports P0, P1,
P2, P86, P87, P9, and P10 must be 80mA max. The total IOL (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be
80mA max. The total IOH (peak) for ports P3, P4, P5, P6, P72 to P77, and P80 to P84 must be 80mA max.
Note 3: Specify a product of -40°C to 85°C to use it.
Note 4: Relationship between main clock oscillation frequency and supply voltage.
Note 5: Execute case without wait, program / erase of flash memory by VCC=2.7V to 3.6V and f(BCLK) 6.25 MHz. Execute case
with wait, program / erase of flash memory by VCC=2.7V to 3.6V and f(BCLK) 10.0 MHz.
Table 1.26.2. Recommended operating conditions (referenced to VCC = 2.2V to 3.6V at Topr =
–20°C to 85oC / – 40°C to 85oC (Note 3) unless otherwise specified)
Main clock input oscillation frequency
(With wait)
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
2.2 2.7 3.6
Operating maximum
frequency
[MH
Z
]
Supply voltage
[V]
(BCLK: no division)
6 X V
CC
–6.2MH
Z
Main clock input oscillation frequency
(No wait)
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA
10.0
3.5
0.0
Operating maximum
frequency
[MH
Z
]
Supply voltage
[V]
(BCLK: no division)
10 X V
CC –
17MH
Z
2.4
7.0
2.2 2.7 3.62.4
10.0
0.0
7.0
17.5 X V
CC
35MH
Z
Flash program voltage Flash read operation voltage
V
CC
=2.7V to 3.6V V
CC
=2.4V to 3.6V
V
CC
=2.7V to 3.4V V
CC
=2.2V to 2.4V
Flash memory version program voltage and read
operation voltage characteristics
Electrical characteristics
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
10
Table 1.26.3.
Electrical characteristics (referenced to V
CC
= 2.7V to 3.6V, V
SS
= 0V at
Topr = – 20oC to
85oC / – 40oC to 85 oC (Note 1)
, f(X
IN
) = 10MH
Z
without wait unless otherwise specified)
V
V
X
O
U
T
2.5
2.5
V0
.
5
V
X
O
U
T
0
.
5
0
.
5
2.5I
OH
=–1mA
I
OH
=–0.1mA
I
OH
=–50µA
I
OL
=1mA
I
OL
=0.1mA
I
OL
=50µA
P0
0
to P0
7
, P1
0
to P1
7
, P2
0
to P2
7
, P3
0
to P3
7
,
P
0
0
t
o
P
0
7
,
P
1
0
t
o
P
1
7
,
P
2
0
t
o
P
2
7
,
P
3
0
t
o
P
3
7
,
P
4
0
t
o
P
4
7
,
P
5
0
t
o
P
5
7
,
P
6
0
t
o
P
6
7
,
P
7
2
t
o
P
7
7
,
P
4
0
t
o
P
4
7
,
P
5
0
t
o
P
5
7
,
P
6
0
t
o
P
6
7
,
P
7
0
t
o
P
7
7
,
P
8
0
t
o
P
8
4
,
P
8
6
,
P
8
7
,
P
9
0
t
o
P
9
7
,
P
1
0
0
t
o
P
1
0
7
HIGHPOWER
LOWPOWER
HIGHPOWER
LOWPOWER
P
8
0
t
o
P
8
4
,
P
8
6
,
P
8
7
,
P
9
0
t
o
P
9
7
,
P
1
0
0
t
o
P
1
0
7
HIGHPOWER
LOWPOWER
X
COUT
3.0
1.6 V
0.2 0
.
8V
0.2 1
.
8V
P
0
0
t
o
P
0
7
,
P
1
0
t
o
P
1
7
,
P
2
0
t
o
P
2
7
,
P
3
0
t
o
P
3
7
,
P
4
0
t
o
P
4
7
,
P
5
0
t
o
P
5
7
,
P
6
0
t
o
P
6
7
,
P
7
0
t
o
P
7
7
,
P
8
0
t
o
P
8
7
,
P
9
0
t
o
P
9
7
,
P
1
0
0
t
o
P
1
0
7
,
4
.
A
µA
When clock is stopped 2.0 V
R
E
S
E
T
X
I
N
,
R
E
S
E
T
,
C
N
V
s
s
,
B
Y
T
EV
I
=3V
V
I
=0V
4.0
P
0
0
t
o
P
0
7
,
P
1
0
t
o
P
1
7
,
P
2
0
t
o
P
2
7
,
P
3
0
t
o
P
3
7
,
P
4
0
t
o
P
4
7
,
P
5
0
t
o
P
5
7
,
P
6
0
t
o
P
6
7
,
P
7
0
t
o
P
7
7
,
P
8
0
t
o
P
8
7
,
P
9
0
t
o
P
9
7
,
P
1
0
0
t
o
P
1
0
7
,
X
I
N
,
R
E
S
E
T
,
C
N
V
s
s
,
B
Y
T
E
X
I
N
X
CIN
10.0
3
.
0M
M
S
q
u
a
r
e
w
a
v
e
,
n
o
d
i
v
i
s
i
o
n
f
(
X
I
N
)
=
1
0
M
H
zm
A9
.
52
1
.
2
5
Mask ROM version
75 k
P
0
0
t
o
P
0
7
,
P
1
0
t
o
P
1
7
,
P
2
0
t
o
P
2
7
,
P
3
0
t
o
P
3
7
,
P
4
0
t
o
P
4
7
,
P
5
0
t
o
P
5
7
,
P
6
0
t
o
P
6
7
,
P
7
2
t
o
P
7
7
,
P
8
0
t
o
P
8
4
,
P
8
6
,
P
8
7
,
P
9
0
t
o
P
9
7
,
P
1
0
0
t
o
P
1
0
7
V
X
C
O
U
T
0
0
HIGHPOWER
LOWPOWER
V
I
=0V 20 330
W
h
e
n
c
l
o
c
k
i
s
s
t
o
p
p
e
d
T
o
p
r
=
2
5°C1.0
µ
A
Topr=85°C2
0
.
0
W
h
e
n
c
l
o
c
k
i
s
s
t
o
p
p
e
d
f(X
CIN
)=32kHz
e
n
a
n
s
t
r
u
c
t
o
n
i
s
e
x
e
c
u
t
e
d
.
O
s
c
i
l
l
a
t
i
o
n
c
a
p
a
c
i
t
y
H
i
g
h
(
N
o
t
e
2
)
2
.
A
0
.
A
f
(
X
C
I
N
)
=
3
2
k
H
z
Wh
en a
WAIT
i
nstruct
i
on
is executed.
Oscillation capacity Low
(Note 2)
S
q
u
a
r
e
w
a
v
e
,
n
o
d
i
v
i
s
i
o
n
f
(
X
I
N
)
=
1
0
M
H
zm
A1
2
.
02
1
.
2
5
Flash memory
3V version
S
q
u
a
r
e
w
a
v
e
f
(
X
C
I
N
)
=
3
2
k
H
z45.0 µ
A
Mask ROM version
,
flash memo ry
3V version
S
D
A
,
C
L
K
0
t
o
C
L
K
4
,
T
A
2
O
U
T
t
o
T
A
4
O
U
T
,
H
O
L
D
,
R
D
Y
,
T
A
0
I
N
t
o
T
A
4
I
N
,
T
B
0
I
N
t
o
T
B
5
I
N
,
I
N
T
0
t
o
I
N
T
5
,
N
M
I
,
A
D
T
R
G
,
C
T
S
0
t
o
C
T
S
2
,
S
C
L
,
KI
0
to KI
3
, RxD
0
to RxD
2
, S
IN3
, S
IN4
Mask ROM version
,
flash memo ry
3V version
Flash memory
3V version
program
F
la sh memory
3V version
erase
S
quare wave,
division by 2
f(X
IN
)=10MHz
S
q
u
a
r
e
w
a
v
e
,
d
i
v
i
s
i
o
n
b
y
2
f
(
X
I
N
)
=
1
0
M
H
z
1
4
.
0
1
7
.
0
m
A
m
A
S
y
m
b
o
l
VO
H
H
I
G
H
o
u
t
p
u
t
v
o
l
t
a
g
e
VO
H
VO
L
L
O
W
o
u
t
p
u
t
v
o
l
t
a
g
e
L
O
W
o
u
t
p
u
t
v
o
l
t
a
g
e
VO
L
H
I
G
H
o
u
t
p
u
t
v
o
l
t
a
g
e
S
t
a
n
d
a
r
d
Typ. U
n
i
tMeasuring condi tion Min M
a
x
.
P
a
r
a
m
e
t
e
r
H
I
G
H
o
u
t
p
u
t
v
o
l
t
a
g
eWith no load applied
With no load applied
H
y
s
t
e
r
e
s
i
s
H
y
s
t
e
r
e
s
i
s
H
I
G
H
i
n
p
u
t
c
u
r
r
e
n
t
II
H
L
O
W
i
n
p
u
t
c
u
r
r
e
n
t
II
L
VR
A
M
RAM retention voltage
IC
C
Power supply current
VT+
VT
VT+
VT
RfXIN
R
fX
C
I
N
F
e
e
d
b
a
c
k
r
e
s
i
s
t
a
n
c
e
Feedback res istance
RPULLUP
L
O
W
o
u
t
p
u
t
v
o
l
t
a
g
eWith no load applied
With no load applied
In single-chip mode, the output pins
are open and other pins are V
SS
P
u
l
l
-
u
p
r
e
s
i
s
t
a
n
c
e
Note 1: Specify a product of -40°C to 85°C to use it.
Note 2: With one timer operated using fC32.
Electrical characteristics
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
11
R
L
A
D
D
E
R
R
e
f
e
r
e
n
c
e
v
o
l
t
a
g
e
A
n
a
l
o
g
i
n
p
u
t
v
o
l
t
a
g
e
k
V
V
I
A
V
R
E
F
V
0
2.4
1
0
V
C
C
V
REF
4
0
t
C
O
N
V
V
REF
=V
CC
B
i
t
s
LSB
V
REF
=V
CC
±2
1
0
V
REF
=V
CC
=3V, f
AD
=f
AD
/2
9.8 µ
s
L
a
d
d
e
r
r
e
s
i
s
t
a
n
c
e
C
o
n
v
e
r
s
i
o
n
t
i
m
e
(
8
b
i
t
)
A
b
s
o
l
u
t
e
a
c
c
u
r
a
c
y
S
a
m
p
l
e
&
h
o
l
d
f
u
n
c
t
i
o
n
n
o
t
a
v
a
i
l
a
b
l
e
(
8
b
i
t
)
S
t
a
n
d
a
r
d
M
i
n
.T
y
p
.M
a
x
Symbol P
a
r
a
m
e
t
e
r M easuri ng condition U
n
i
t
%1.0
B
i
t
s
8
R
O
k
201
04 m
A
I
VREF
1
.
0
t
s
u
3µ
s
R
e
s
o
l
u
t
i
o
n
A
b
s
o
l
u
t
e
a
c
c
u
r
a
c
y
Setup time
O
u
t
p
u
t
r
e
s
i
s
t
a
n
c
e
Reference power supply input current (
N
o
t
e
1
)
S
t
a
n
d
a
r
d
M
i
n
.T
y
p
.M
a
x
S
y
m
b
o
lP
a
r
a
m
e
t
e
r M easuri ng condition Unit
Page program time
B
l
o
c
k
e
r
a
s
e
t
i
m
e
E
r
a
s
e
a
l
l
u
n
l
o
c
k
e
d
b
l
o
c
k
s
t
i
m
e
L
o
c
k
b
i
t
p
r
o
g
r
a
m
t
i
m
e
6
50
50 X n (Note)
6
1
2
0
6
0
0
600 X n (Note)
1
2
0
m
s
m
s
ms
m
s
Parameter S
t
a
n
d
a
r
d
Min. T
y
p
.Max
Unit
R
e
s
o
l
u
t
i
o
n
Table 1.26.5.
D-A conversion characteristics (referenced to VCC = 2.4V to 3.6V, VSS = AVSS = 0V, VREF=3V,
at Topr = – 20oC to 85oC / – 40oC to 85oC (Note 2), f(XIN)=10MHZ unless otherwise specified)
Note 1: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to “0016”.
The A-D converter's ladder resistance is not included.
Also, when D-A register contents are not “0016”, the current IVREF always flows even though Vref may have
been set to be “unconnected” by the A-D control register.
Note 2: Specify a product of –40°C to 85°C to use it.
Note 1: Connect AVCC pin to VCC pin and apply the same electric potential.
Note 2: Specify a product of –40°C to 85°C to use it.
Table 1.26.4.
A-D conversion characteristics (referenced to V
CC
= AV
CC
= V
REF
= 2.4V to 3.6V, V
SS
= AV
SS
= 0V, at Topr = – 20
o
C to 85
o
C / – 40
o
C to 85
o
C (Note 2), f(X
IN
)=10MH
Z
unless otherwise specified)
Table 1.26.6.
Flash memory version electrical characteristics
(referenced to VCC = 2.7V to 3.6V, at Topr = 0oC to 60oC unless otherwise specified)
Note : n denotes the number of block erases.
Table 1.26.7.
Flash memory version program voltage and read operation voltage characteristics
(Topr = 0oC to 60oC)
Flash program voltage Flash read operation voltage
V
CC
=2.7V to 3.6V V
CC
=2.4V to 3.6V
V
CC
=2.7V to 3.4V V
CC
=2.2V to 2.4V
Timing
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
12
Timing requirements
(referenced to VCC = 3V, VSS = 0V, at Topr = – 20oC to 85oC / – 40oC to 85oC (*) unless otherwise specified)
* : Specify a product of -40°C to 85°C to use it.
Table 1.26.8. External clock input
Table 1.26.9. Memory expansion and microprocessor modes
18
80
60
0
0
80
18
100
0
100
40
40
9
10
(Note)
Note: Calculated according to the BCLK frequency as follows:
tac1(RD – DB) = f(BCLK) X 2 – 90 [ns]
tac2(RD – DB) = f(BCLK) X 2 – 90
3 X 10 9
[ns]
tac3(RD – DB) = f(BCLK) X 2 – 90
3 X 10 9[ns]
Max.
External clock rise time nstr
Min.
External clock input cycle time ns
tc
External clock input HIGH pulse width ns
tw(H)External clock input LOW pulse width ns
tw(L)
External clock fall time ns
tf
Parameter
Symbol Unit
Standard
Min.
Data input setup time ns
tsu(DB-RD)
tsu(RDY-BCLK )
ParameterSymbol Unit
Max.
Standard
RDY input setup time ns
Data input hold time ns
th(RD-DB)
th(BCLK -RDY) ns
RDY input hold time
HOLD input setup time ns
tsu(HOLD-BCLK )
HOLD input hold time ns
th(BCLK-HOLD )
Data input access time (no wait) ns
tac1(RD-DB) ns
ns
tac2(RD-DB)
tac3(RD-DB) Data input access time (with wait)
Data input access time (when accessing multiplex bus area)
HLDA output delay time ns
td(BCLK-HLDA)
(Note)
(Note)
Timing
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
13
Table 1.26.11. Timer A input (gating input in timer mode)
Table 1.26.12. Timer A input (external trigger input in one-shot timer mode)
Table 1.26.13. Timer A input (external trigger input in pulse width modulation mode)
Table 1.26.14. Timer A input (up/down input in event counter mode)
Table 1.26.10. Timer A input (counter input in event counter mode)
Timing requirements
(referenced to VCC = 3V, VSS = 0V, at Topr = – 20oC to 85oC / – 40oC to 85oC (*) unless otherwise specified)
* : Specify a product of –40°C to 85°C to use it.
Standard
Max.Min. UnitParameterSymbol
nst
w(TAL)
TAi
IN
input LOW pulse width 60
nst
c(TA)
TAi
IN
input cycle time 150 nst
w(TAH)
TAi
IN
input HIGH pulse width 60
Standard
Max.Min. UnitParameterSymbol
nst
c(TA)
TAi
IN
input cycle time 600 nst
w(TAH)
TAi
IN
input HIGH pulse width 300 nst
w(TAL)
TAi
IN
input LOW pulse width 300
Standard
Max.Min. UnitParameterSymbol
nst
c(TA)
TAi
IN
input cycle time 300 nst
w(TAH)
TAi
IN
input HIGH pulse width 150 nst
w(TAL)
TAi
IN
input LOW pulse width 150
Standard
Max.Min. UnitParameterSymbol
nst
w(TAH)
TAi
IN
input HIGH pulse width 150 nst
w(TAL)
TAi
IN
input LOW pulse width 150
Standard
Max.Min. UnitParameterSymbol
nst
c(UP)
TAi
OUT
input cycle time 3000 nst
w(UPH)
TAi
OUT
input HIGH pulse width 1500 nst
w(UPL)
TAi
OUT
input LOW pulse width 1500 nst
su(UP-T
IN
)
TAi
OUT
input setup time 600 nst
h(T
IN-
UP)
TAi
OUT
input hold time 600
Timing
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
14
Table 1.26.15. Timer B input (counter input in event counter mode)
Table 1.26.16. Timer B input (pulse period measurement mode)
Table 1.26.17. Timer B input (pulse width measurement mode)
Table 1.26.18. A-D trigger input
Table 1.26.19. Serial I/O
_______
Table 1.26.20. External interrupt INTi inputs
Timing requirements
(referenced to VCC = 3V, VSS = 0V, at Topr = – 20oC to 85oC / – 40oC to 85oC (*) unless otherwise specified)
* : Specify a product of –40°C to 85°C to use it.
Standard
Max.
Min.
Parameter
Symbol Unit
nst
c(TB)
TBi
IN
input cycle time (counted on one edge) 150 nst
w(TBH)
TBi
IN
input HIGH pulse width (counted on one edge) 60 nst
w(TBL)
TBi
IN
input LOW pulse width (counted on one edge) 60
t
w(TBH)
ns
TBi
IN
input HIGH pulse width (counted on both edges) 160
t
w(TBL)
ns
TBi
IN
input LOW pulse width (counted on both edges) 160
t
c(TB)
ns
TBi
IN
input cycle time (counted on both edges) 300
Standard
Max.
Min.
Parameter
Symbol Unit
nst
c(TB)
TBi
IN
input cycle time 600 nst
w(TBH)
TBi
IN
input HIGH pulse width 300
t
w(TBL)
nsTBi
IN
input LOW pulse width 300
Standard
Max.
Min.
Parameter
Symbol Unit
nst
c(TB)
TBi
IN
input cycle time 600 nst
w(TBH)
TBi
IN
input HIGH pulse width 300
t
w(TBL)
nsTBi
IN
input LOW pulse width 300
Standard
Max.
Min.
Parameter
Symbol Unit
nst
c(AD)
AD
TRG
input cycle time (trigger able minimum) 1500 nst
w(ADL)
AD
TRG
input LOW pulse width 200
Standard
Max.
Min.
Parameter
Symbol Unit
nst
w(INH)
INTi input HIGH pulse width 380
nst
w(INL)
INTi input LOW pulse width 380
Standard
Max.
Min.
Parameter
Symbol Unit
nst
c(CK)
CLKi input cycle time 300 nst
w(CKH)
CLKi input HIGH pulse width 150 nst
w(CKL)
CLKi input LOW pulse width 150
t
h(C-Q)
nsTxDi hold time 0
t
su(D-C)
nsRxDi input setup time 50
t
h(C-D)
nsRxDi input hold time 90
t
d(C-Q)
nsTxDi output delay time 160
Timing
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
15
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to
85oC (Note 3), CM15 = “1” unless otherwise specified)
Table 1.26.21. Memory expansion and microprocessor modes (with no wait)
td(BCLK-AD) Address output delay time 60 ns
td(BCLK-CS) Chip select output delay time 60 ns
th(BCLK-AD) Address output hold time (BCLK standard) 4 ns
th(BCLK-CS) Chip select output hold time (BCLK standard) 4 ns
td(BCLK-ALE) ALE signal output delay time 60 ns
th(BCLK-ALE) ALE signal output hold time 4ns
td(BCLK-RD) RD signal output delay time 60 ns
th(BCLK-RD) RD signal output hold time 0 ns
th(RD-AD) Address output hold time (RD standard) 0ns
td(BCLK-WR) WR signal output delay time 60 ns
th(BCLK-WR) WR signal output hold time 0 ns
th(WR-AD) Address output hold time (WR standard) 0ns
td(BCLK-DB) Data output delay time (BCLK standard) 80 ns
th(BCLK-DB) Data output hold time (BCLK standard) 4ns
td(DB-WR) Data output delay time (WR standard) (Note1) ns
th(WR-DB) Data output hold time (WR standard)(Note2) 0 ns
Note 1: Calculated according to the BCLK frequency as follows:
td(DB – WR) = f(BCLK) X 2
10 9 – 80 [ns]
Symbol Standard
Measuring condition
Max.Min.
Parameter Unit
Note 2: This is standard value shows the timing when the output is off,
and doesn't show hold time of data bus.
Hold time of data bus is different by capacitor volume and pull-up
(pull-down) resistance value.
Hold time of data bus is expressed in
t = –CR X ln (1 – V
OL
/ V
CC
)
by a circuit of the right figure.
For example, when V
OL
= 0.2V
CC
, C = 30pF, R = 1k, hold time
of output “L” level is
t = – 30pF X 1k X ln (1 – 0.2V
CC
/ V
CC
)
= 6.7ns.
DBi
R
C
Note 3: Specify a product of –40°C to 85°C to use it.
P6
P7
P8
P10
P9
P0
P1
P2
P3
P4
P5
30pF
Figure 1.26.1. Port P0 to P10 measurement circuit
Figure 1.26.1
Timing
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
16
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to
85oC (Note 3), CM15 = “1” unless otherwise specified)
Table 1.26.22. Memory expansion and microprocessor modes
(when accessing external memory area with wait)
Note 3: Specify a product of –40°C to 85°C to use it.
td(BCLK-AD) Address output delay time 60 ns
td(BCLK-CS) Chip select output delay time 60 ns
th(BCLK-AD) Address output hold time (BCLK standard) 4 ns
th(BCLK-CS) Chip select output hold time (BCLK standard) 4 ns
td(BCLK-ALE) ALE signal output delay time 60 ns
th(BCLK-ALE) ALE signal output hold time – 4 ns
td(BCLK-RD) RD signal output delay time 60 ns
th(BCLK-RD) RD signal output hold time 0 ns
th(RD-AD) Address output hold time (RD standard) 0ns
td(BCLK-WR) WR signal output delay time 60 ns
th(BCLK-WR) WR signal output hold time 0 ns
th(WR-AD) Address output hold time (WR standard) 0ns
td(BCLK-DB) Data output delay time (BCLK standard) 80 ns
th(BCLK-DB) Data output hold time (BCLK standard) 4ns
td(DB-WR) Data output delay time (WR standard) (Note1) ns
th(WR-DB) Data output hold time (WR standard)(Note2) 0 ns
Note 1: Calculated according to the BCLK frequency as follows:
td(DB – WR) = f(BCLK)
10 9– 80 [ns]
Symbol Standard
Measuring condition
Max.Min.
Parameter Unit
Note 2: This is standard value shows the timing when the output is off,
and doesn't show hold time of data bus.
Hold time of data bus is different by capacitor volume and pull-up
(pull-down) resistance value.
Hold time of data bus is expressed in
t = –CR X ln (1 – V
OL
/ V
CC
)
by a circuit of the right figure.
For example, when V
OL
= 0.2V
CC
, C = 30pF, R = 1k, hold time
of output “L” level is
t = – 30pF X 1k X ln (1 – 0.2V
CC
/ V
CC
)
= 6.7ns.
DBi
R
C
Figure 1.31.1
Timing
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
17
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Topr = – 20oC to 85oC / – 40oC to
85oC (Note 2), CM15 = “1” unless otherwise specified)
Table 1.26.23. Memory expansion and microprocessor modes
(when accessing external memory area with wait, and select multiplexed bus)
Note 2: Specify a product of –40°C to 85°C to use it.
Symbol Standard
Measuring condition Max.Min.
Parameter Unit
td(BCLK-AD) Address output delay time 60 ns
th(BCLK-AD) Address output hold time (BCLK standard) 4ns
td(BCLK-CS) Chip select output delay time 60 ns
th(BCLK-CS) Chip select output hold time (BCLK standard) 4ns
nsth(RD-AD) Address output hold time (RD standard) (Note 1)
td(BCLK-RD) RD signal output delay time 60 ns
th(BCLK-RD) RD signal output hold time 0 ns
nsth(WR-AD) Address output hold time (WR standard) (Note 1)
td(BCLK-WR) WR signal output delay time 60 ns
td(BCLK-DB) Data output delay time (BCLK standard) 80 ns
th(BCLK-DB) Data output hold time (BCLK standard) 4 ns
td(DB-WR) Data output delay time (WR standard) (Note 1) ns
th(BCLK-ALE) ALE signal output hold time (BCLK standard) – 4 ns
td(AD-ALE) ALE signal output delay time (Address standard) (Note 1) ns
th(ALE-AD) ALE signal output hold time(Address standard) 40 ns
th(BCLK-WR) WR signal output hold time 0ns
nsth(RD-CS) Chip select output hold time (RD standard) (Note 1)
th(WR-CS) Chip select output hold time (WR standard) (Note 1) ns
td(AD-RD) Post-address RD signal output delay time ns0
td(AD-WR) Post-address WR signal output delay time ns0
tdZ(RD-AD) Address output floating start time ns8
td(BCLK-ALE) ALE signal output delay time (BCLK standard) ns60
Note 1: Calculated according to the BCLK frequency as follows:
th(RD – AD) = f(BCLK) X 2
10 9
[ns]
th(WR – AD) = f(BCLK) X 2
10 9
[ns]
th(RD – CS) = f(BCLK) X 2
10 9
[ns]
th(WR – CS) = f(BCLK) X 2
10 9
[ns]
td(DB – WR) = f(BCLK) X 2
10 9 – 80 [ns]
X 3
td(AD – ALE) = f(BCLK) X 2
10 9 – 45 [ns]
th(WR – DB) = f(BCLK) X 2
10 9
[ns]
th(WR-DB) Data output hold time (WR standard) ns(Note 1)
Figure 1.26.1
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing
18
VCC = 3V
tsu(D–C)
TAi
IN
input
TAi
OUT
input
During event counter mode
TBi
IN
input
CLKi
TxDi
RxDi
tc(TA)
tw(TAH)
tw(TAL)
tc(UP)
tw(UPH)
tw(UPL)
tc(TB)
tw(TBH)
tw(TBL)
tc(AD)
tw(ADL)
tc(CK)
tw(CKH)
tw(CKL)
tw(INL)
tw(INH)
td(C–Q) th(C–D)
th(C–Q)
th(TIN–UP) tsu(UP–TIN)
TAi
IN
input
(When count on falling
edge is selected)
TAi
IN
input
(When count on rising
edge is selected)
TAi
OUT
input
(Up/down input)
INTi input
AD
TRG
input
Figure 1.26.2. VCC=3V timing diagram (1)
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing
19
VCC = 3V
Measuring conditions :
• VCC=3V
• Input timing voltage : Determined with VIL=0.6V, VIH=2.4V
• Output timing voltage : Determined with VOL=1.5V, VOH=1.5V
Memory Expansion Mode and Microprocessor Mode
BCLK
HOLD input
HLDA output
P0, P1, P2,
P3, P4,
P50 to P52
(Valid with or without wait)
Note: The above pins are set to high-impedance regardless of the input level of the
BYTE pin and bit (PM06) of processor mode register 0 selects the function of
ports P40 to P43.
th(BCLK–HOLD)
tsu(HOLD–BCLK)
(Valid only with wait)
td(BCLK–HLDA)
td(BCLK–HLDA)
Hi–Z
tsu(RDY–BCLK) th(BCLK–RDY)
BCLK
RDY input
RD
(Multiplexed bus)
(Multiplexed bus)
WR, WRL, WRH
WR, WRL, WRH
(Separate bus)
RD
(Separate bus)
Figure 1.26.3. VCC=3V timing diagram (2)
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing
20
Read timing
Write timing
BCLK
CSi
ALE
RD 60ns.max
4ns.min
4ns.min
Hi–Z
DB
0ns.min
ADi
BHE
tcyc
80ns.min
BCLK
CSi
ALE –4ns.min
60ns.max 0ns.min
4ns.min
Hi–Z
DB 4ns.min
ADi
BHE
tcyc
th(BCLK–ALE)
th(BCLK–DB)
td(BCLK–ALE)
td(BCLK–WR)
0ns.min
th(WR–AD)
Memory Expansion Mode and Microprocessor Mode
(With no wait)
WR,WRL,
WRH
td(BCLK–CS)
60ns.max th(BCLK–CS)
th(RD–CS)
td(BCLK–AD)
60ns.max th(BCLK–AD)
60ns.max
td(BCLK–ALE)
–4ns.min
th(RD–AD) 0ns.min
td(BCLK–RD) th(BCLK–RD)
tac1(RD–DB)
th(RD–DB)
0ns.min
tSU(DB–RD)
td(BCLK–CS) th(BCLK–CS)
4ns.min
60ns.max
0ns.min
th(WR–CS)
td(BCLK–AD)
60ns.max th(BCLK–AD)
60ns.max
th(BCLK–ALE)
th(BCLK–WR)
td(BCLK–DB)
th(WR–DB)
td(DB–WR)
(
tc
y
c/2–80
)
ns.min 0ns.min
80ns.max
0ns.min
VCC = 3V
Figure 1.26.4. VCC=3V timing diagram (3)
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing
21
Read timing
Write timing
BCLK
CSi
ALE
RD
4ns.min
4ns.min
Hi–Z
DB
80ns.min
0ns.min
ADi
BHE
td(BCLK–WR)
60ns.max th(BCLK–WR)
0ns.min
BCLK
CSi
td(BCLK–CS)
60ns.max
td(BCLK–AD)
ALE th(BCLK–ALE)
th(BCLK–CS)
4ns.min
tcyc 0ns.min
th(WR–CS)
0ns.min
th(WR–AD)
ADi
BHE
td(BCLK–DB) 4ns.min
th(BCLK–DB)
td(DB–WR)
(tcyc–80)ns.min 0ns.min
th(WR–DB)
DBi
th(RD–AD)
0ns.min
td(BCLK–ALE)
60ns.max
tSU(DB–RD)
Memory Expansion Mode and Microprocessor Mode
(When accessing external memory area with wait)
Measuring conditions :
• V
CC
=3V
• Input timing voltage : Determined with V
IL
=0.48V, V
IH
=1.5V
• Output timing voltage : Determined with V
OL
=1.5V, V
OH
=1.5V
WR,WRL,
WRH
td(BCLK–CS)
60ns.max
th(RD–CS)
tcyc
td(BCLK–AD)
60ns.max th(BCLK–AD)
–4ns.min
th(BCLK–ALE)
60ns.max
td(BCLK–RD) th(BCLK–RD) 0ns.min
tac2(RD–DB)
th(RD–DB)
0ns.min
th(BCLK–AD)
60ns.max
td(BCLK–ALE)
60ns.max –4ns.min
80ns.max
th(BCLK–CS)
4ns.min
VCC = 3V
Figure 1.26.5. VCC=3V timing diagram (4)
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timing
22
Memory Expansion Mode and Microprocessor Mode
(When accessing external memory area with wait, and select multiplexed bus)
Measuring conditions :
• V
CC
=3V
• Input timing voltage : Determined with V
IL
=0.48V,V
IH
=1.5V
• Output timing voltage : Determined with V
OL
=1.5V,V
OH
=1.5V
Read timing
Write timing
0ns.min
60ns.max –4ns.min
t
h(BCLK–CS)
4ns.min
tcyc
80ns.max
t
h(BCLK–DB)
4ns.min
t
d(DB–WR)
(tcyc*3/2–80)ns.min
Address Data output
(tcyc/2)ns.min
Address
(tcyc/2–60)ns.min
t
d(BCLK–ALE)
t
d(BCLK–WR)
4ns.min
t
d(BCLK–CS)
60ns.max
4ns.min
t
h(BCLK–CS)
4ns.min
tcyc
t
h(RD–DB)
0ns.min
Address
(tcyc/2)ns.min
Data input
Address
tac3(RD–DB)
t
dz(RD–AD)
8ns.max
t
d(AD–RD)
0ns.min
t
d(AD–WR)
BCLK
CSi
ALE
ADi
BHE
ADi
/DBi
BCLK
CSi
ALE
RD
ADi
BHE
ADi
/DBi
WR,WRL,
WRH
t
h(RD–CS)
t
d(AD–ALE) (tcyc/2–45)ns.min
t
SU(DB–RD)
80ns.min
t
h(ALE–AD)
40ns.min
t
d(BCLK–AD)
60ns.max
60ns.max
t
d(BCLK–ALE)
t
h(BCLK–ALE)
–4ns.min (tcyc/2)ns.min
t
h(RD–AD)
t
h(BCLK–AD)
t
h(BCLK–RD)
0ns.min
t
d(BCLK–RD)
60ns.max
t
d(BCLK–CS)
60ns.max
t
h(WR–CS)
(tcyc/2)ns.min
t
d(BCLK–DB)
t
d(AD–ALE)
t
d(BCLK–AD)
60ns.max
t
h(WR–DB)
(tcyc/2)ns.min
t
h(BCLK–AD)
t
h(WR–AD)
t
h(BCLK–WR)
t
h(BCLK–ALE)
0ns.min
60ns.max
VCC = 3V
Figure 1.26.6. VCC=3V timing diagram (5)
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Mask ROM number
MITSUBISHI ELECTRIC-CHIP 16-BIT
MICROCOMPUTER M30620MCM-XXXFP/GP
MASK ROM CONFIRMATION FORM
GZZ-SH13-95B<02A0>
23
Date :
TEL
( )
Receipt
Section head
signature Supervisor
signature
Customer
Company
name
Date
issued Date :
Note : Please complete all items marked .
Issuance
signature
Submitted by Supervisor
1. Check sheet
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on
the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that
there is any discrepancy between the contents of these mask files and the ROM data to be burned into
products we produce. Check thoroughly the contents of the mask files you give in.
Prepare 3.5 inches 2HD (IBM format) floppy disks. And store only one mask file in a floppy disk.
2. Mark specification
The mark specification differs according to the type of package. After entering the mark specification on
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet
for submission to Mitsubishi.
For the M30620MCM-XXXFP, submit the 100P6S mark specification sheet. For the M30620MCM-XXXGP,
submit the 100P6Q mark specification sheet.
3. Usage Conditions
For our reference when of testing our products, please reply to the following questions about the usage
of the products you ordered.
(1) Which kind of XIN-XOUT oscillation circuit is used?
Ceramic resonator Quartz-crystal oscillator
External clock input Other ( )
What frequency do not use?
f(XIN) = MHZ
Microcomputer type No. : M30620MCM-XXXFP M30620MCM-XXXGP
File code : (hex)
Mask file name : .MSK (alpha-numeric 8-digit)
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ-SH13-95B<02A0>
MITSUBISHI ELECTRIC-CHIP 16-BIT
MICROCOMPUTER M30620MCM-XXXFP/GP
MASK ROM CONFIRMATION FORM
Mask ROM number
24
(2) Which kind of XCIN-XCOUT oscillation circuit is used?
Ceramic resonator Quartz-crystal oscillator
External clock input Other ( )
What frequency do not use?
f(XCIN) = kHZ
(3) Which operation mode do you use?
Single-chip mode Memory expansion mode
Microprocessor mode
(4) Which operating supply voltage do you use?
(Circle the operating voltage range of use)
(5) Which operating ambient temperature do you use?
(Circle the operating temperature range of use)
-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90(°C)
(6) Do you use I2C (Inter IC) bus function?
Not use Use
(7) Do you use IE (Inter Equipment) bus function?
Not use Use
Thank you cooperation.
4. Special item (Indicate none if there is not specified item)
(V)
2.2 2.4 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Mask ROM number
MITSUBISHI ELECTRIC-CHIP 16-BIT
MICROCOMPUTER M30624MGM-XXXFP/GP
MASK ROM CONFIRMATION FORM
GZZ-SH13-48B<98A1>
25
Date :
TEL
( )
Receipt
Section head
signature Supervisor
signature
Customer
Company
name
Date
issued Date :
Note : Please complete all items marked .
Issuance
signature
Submitted by Supervisor
1. Check sheet
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on
the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that
there is any discrepancy between the contents of these mask files and the ROM data to be burned into
products we produce. Check thoroughly the contents of the mask files you give in.
Prepare 3.5 inches 2HD (IBM format) floppy disks. And store only one mask file in a floppy disk.
2. Mark specification
The mark specification differs according to the type of package. After entering the mark specification on
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet
for submission to Mitsubishi.
For the M30624MGM-XXXFP, submit the 100P6S mark specification sheet. For the M30624MGM-
XXXGP, submit the 100P6Q mark specification sheet.
3. Usage Conditions
For our reference when of testing our products, please reply to the following questions about the usage
of the products you ordered.
(1) Which kind of XIN-XOUT oscillation circuit is used?
Ceramic resonator Quartz-crystal oscillator
External clock input Other ( )
What frequency do not use?
f(XIN) = MHZ
Microcomputer type No. : M30624MGM-XXXFP M30624MGM-XXXGP
File code : (hex)
Mask file name : .MSK (alpha-numeric 8-digit)
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
GZZ-SH13-48B<98A1>
MITSUBISHI ELECTRIC-CHIP 16-BIT
MICROCOMPUTER M30624MGM-XXXFP/GP
MASK ROM CONFIRMATION FORM
Mask ROM number
26
(2) Which kind of XCIN-XCOUT oscillation circuit is used?
Ceramic resonator Quartz-crystal oscillator
External clock input Other ( )
What frequency do not use?
f(XCIN) = kHZ
(3) Which operation mode do you use?
Single-chip mode Memory expansion mode
Microprocessor mode
(4) Which operating supply voltage do you use?
(Circle the operating voltage range of use)
(5) Which operating ambient temperature do you use?
(Circle the operating temperature range of use)
-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90(°C)
(6) Do you use I2C (Inter IC) bus function?
Not use Use
(7) Do you use IE (Inter Equipment) bus function?
Not use Use
Thank you cooperation.
4. Special item (Indicate none if there is not specified item)
(V)
2.2 2.4 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
27
Differences between M16C/62M (Low voltage version) and M30624FGLFP/GP
Item M16C/62M (Low voltage version) M30624FGLFP/GP
Serial I/O
Memory version Flash memory version only
IIC bus mode
Memory area Memory expansion
1.2 Mbytes mode
4 Mbytes mode
1 Mbyte fixed
No CTS/RTS separate function CTS/RTS separate function
Analog or digital delay is selected as
SDA delay Only analog delay is selected as
SDA delay
Mask ROM version
Flash memory version
Standard serial I/O
mode
(Flash memory version)
Clock synchronized only
Clock synchronized
Clock asynchronized
Contents for change Revision
date
Version
Revision history M16C/62M Group data sheet
Mitsubishi microcomputers
M16C / 62M Group
(Low voltage version)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
28
01.6.22REV. B1 Page 8-17 All symbols of Ta are revised to Topr.
Keep safety first in your circuit designs!
Notes regarding these materials
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble may
occur with them. Trouble with semiconductors may lead to personal injury, fire or
property damage. Remember to give due consideration to safety when making your
circuit designs, with appropriate measures such as (i) placement of substitutive,
auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any
malfunction or mishap.
These materials are intended as a reference to assist our customers in the selection
of the Mitsubishi semiconductor product best suited to the customer's application;
they do not convey any license under any intellectual property rights, or any other
rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in
these materials.
All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication
of these materials, and are subject to change by Mitsubishi Electric Corporation
without notice due to product improvements or other reasons. It is therefore
recommended that customers contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor for the latest product information before
purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical
errors. Mitsubishi Electric Corporation assumes no responsibility for any damage,
liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation
by various means, including the Mitsubishi Semiconductor home page (http://
www.mitsubishichips.com).
When using any or all of the information contained in these materials, including
product data, diagrams, charts, programs, and algorithms, please be sure to evaluate
all information as a total system before making a final decision on the applicability of
the information and products. Mitsubishi Electric Corporation assumes no
responsibility for any damage, liability or other loss resulting from the information
contained herein.
Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human life is
potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor when considering the use of a product
contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint
or reproduce in whole or in part these materials.
If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan
and/or the country of destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon
ductor product distributor for further details on these materials or the products con
tained therein.
MITSUBISHI SEMICONDUCTORS
M16C/62M Group (Low voltage version) Data Sheet REV.B1
June First Edition 2001
Edition by
Committee of editing of Mitsubishi Semiconductor
Published by
Mitsubishi Electric Corp., Kitaitami Works
This book, or parts thereof, may not be reproduced in any form without
permission of Mitsubishi Electric Corporation.
©2001 MITSUBISHI ELECTRIC CORPORATION