Datasheet
DS000677
AS621x
Digital Temperature Sensor
v2-00 2020-Feb-24
Document Feedback
AS621x
Content Guide
Datasheet PUBLIC
DS000677 v2-00 2020-Feb-24
36 2
Content Guide
1 General Description ....................... 3
1.1 Key Benefits & Features .............................. 3
1.2 Applications .................................................. 4
1.3 Block Diagram .............................................. 4
2 Ordering Information ..................... 5
3 Pin Assignment ............................. 6
3.1 Pin Diagram .................................................. 6
3.2 Pin Description ............................................. 6
4 Absolute Maximum Ratings .......... 8
5 Operating Conditions .................... 9
5.1 Analog System Parameters ......................... 9
5.2 Digital System Parameters ......................... 10
6 Register Description .................... 11
6.1 Register Overview ...................................... 11
6.2 Detailed Register Description .................... 12
6.3 Serial Interface ........................................... 22
7 Application Information .............. 31
7.1 External Components ................................ 32
8 Package Drawings & Markings ... 33
9 Revision Information ................... 35
10 Legal Information ........................ 36
Document Feedback
AS621x
General Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
1 General Description
The AS621x IC family is a high accuracy temperature sensor system that communicates via a 2-wire
digital bus with other devices. It consists of a Si bandgap temperature sensor, an ADC and a digital
signal processor.
The family consists of 3 different variants (AS6212, AS6214 and AS6218). The difference between
these variants is the temperature accuracy:
Figure 1:
AS621x Variants
Variant
Temperature Accuracy
Remark
AS6212
±0.2°C
between -10°C to 65°C
AS6214
±0.4°C
between 0°C to 65°C
AS6218
±0.8°C
between 0°C to 65°C
The high temperature accuracy (shown in Figure 1) and an ultra-low power consumption (low
operation and quiescent current) makes the AS621x ideally suited for mobile/battery powered
applications.
The AS621x is an easy to integrate and use solution, featuring a factory-calibrated sensor, integrated
linearization and the possibility to use 8 different I²C addresses, enabling to use eight AS621x devices
on one bus.
Additionally the AS621x temperature sensor system features an alert functionality, which triggers e.g.
an interrupt to protect devices from excessive temperatures.
1.1 Key Benefits & Features
The benefits and features of AS621x are listed below:
Figure 2:
Added Value of Using AS621x
Benefits
Features
High Measurement Accuracy
± 0.2 °C ( -10°C to 65 °C, for AS6212)
± 0.3 °C (from -40°C to -10°C and from 65°C to
85°C, for AS6212)
± 0.5 °C (for remaining temperature span, for
AS6212)
Document Feedback
AS621x
General Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Benefits
Features
Low Power Consumption
6 µA @ Operation (typical, @ 4 Hz)
0.1 µA @ Standby (typical)
Supply Voltage Range
1.71 3.6 V (0 °C to 125 °C)
Small PCB Footprint
1.5 mm x 1 mm (WLCSP)
1.2 Applications
Electronic Equipment
Tablets
Convertibles
Laptop
Personal Computers
Wearables
HVAC
1.3 Block Diagram
The functional blocks of this device are shown below:
Figure 3 :
Functional Blocks of AS621x
In Figure 3 the functional blocks are depicted. The sensing element for sensing the temperature is a Si
bipolar transistor. The analog signal of the sensing element is converted into a digital signal by the A/D
converter and the signal is further processed by a digital signal processor and written into the
registers. The registers can be accessed via the serial bus interface (I²C bus).
Document Feedback
AS621x
Ordering Information
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
2 Ordering Information
Ordering Code
Package
Marking
Delivery Form
Delivery Quantity
AS6212-AWLT-S
WLCSP
AS6212
Tape & Reel
500 pcs/reel
AS6212-AWLT-L
WLCSP
AS6212
Tape & Reel
5000 pcs/reel
AS6214-AWLT-S
WLCSP
AS6214
Tape & Reel
500 pcs/reel
AS6214-AWLT-L
WLCSP
AS6214
Tape & Reel
5000 pcs/reel
AS6218-AWLT-S
WLCSP
AS6218
Tape & Reel
500 pcs/reel
AS6218-AWLT-L
WLCSP
AS6218
Tape & Reel
5000 pcs/reel
Document Feedback
AS621x
Pin Assignment
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
3 Pin Assignment
3.1 Pin Diagram
Figure 4:
Pin Assignment WLCSP
In Figure 4 the pin assignment of the WLCSP package is shown. The viewing side is from the top. The
A1 pin is also marked with a point on the top side
3.2 Pin Description
Figure 5:
Pin Description of AS621x (WLCSP)
Pin Number
Pin Name
Pin Type(1)
Description
A1
VSS
S
Ground Pin
A2
ALERT/ADD1
DIO_SOD
Alert output and address select1
A3
SCL
DI_S
Serial Interface Clock
B1
VDD
S
Positive Supply Voltage
B2
ADD0
DI_S
Address select 0
Document Feedback
AS621x
Pin Assignment
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Pin Number
Pin Name
Pin Type(1)
Description
B3
SDA
DIO_SOD
Serial Interface Data
(1) Explanation of abbreviations:
S Supply
DI_S Digital Schmitt Trigger Input
DIO_SOD Digital Schmitt Trigger Input / Open Drain Output
In Figure 5 the pins of AS621x are described. External pull up resistors (to VDD) are necessary for the
pins “SDA” and “SCL”.
The pin “ADD0” must not be left unconnected (refer to section 6.3.3 for further details).
The pin “ALERT/ADD1” is used to set the I²C address and has the additional functionality of triggering
an interrupt. In case this ALERT functionality is used, a pull up resistor (to VDD) is necessary. If this
functionality is not used it must be connected to VSS or SCL, depending on the selected I²C address
(refer to section 6.3.3 for further details). It must not be left unconnected.
Document Feedback
AS621x
Absolute Maximum Ratings
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
4 Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings may cause permanent damage to
the device. These are stress ratings only. Functional operation of the device at these or any other
conditions beyond those indicated under “Operating Conditions” is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Figure 6
Absolute Maximum Ratings of AS621x
Symbol
Parameter
Min
Max
Unit
Comments
Electrical Parameters
VDD / VSS
Supply Voltage to VSS
-0.3
4
V
Reference to VSS
VDIO
IO Pin voltage
-0.3
4
V
Reference to VSS
I_SCR
Input Current (latch up
immunity)
-100
100
mA
According to JESD78D
Electrostatic Discharge
ESDHBM
Electrostatic Discharge HBM
±2000
V
MIL_STD_833J-3015.9
Temperature Ranges and Storage Conditions
TA
Operating Ambient Temperature
-40
125
°C
TJ
Operating Junction Temperature
-40
125
°C
TSTRG
Storage Temperature Range
-55
125
°C
TBODY
Package Body Temperature
260
°C
IPC/JEDEC J-STD-020 (1)
RHNC
Relative Humidity (non-
condensing)
5
85
%
MSL
Moisture Sensitivity Level
1
Unlimited floor life time
(1) The reflow peak soldering temperature (body temperature) is specified according to IPC/JEDEC J-STD-020
“Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.”
Document Feedback
AS621x
Operating Conditions
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
5 Operating Conditions
The AS621x is a complete sensor system that has an integrated sensing element, the analog
frontend, the A/D converter and the digital signal processing part.
The digital signal processing part consists of the signal processor, the registers and the serial bus
interface.
5.1 Analog System Parameters
Figure 7:
Analog System Parameters of AS621x
Parameter
Symbol
Min
Typ
Max
Unit
Note
Supply Voltage
VDD
1.71
2.0
3.0
3.0
3.6
3.6
V
T= 0°C to 125°C
T= -40°C to 125°C
Temperature Range
T
-40
125
°C
Standby Current
Consumption
IDD
0.1
0.3
0.4
9.0
µA
T= -40°C to 65°C
T= 65°C to 125°C
Current Consumption
(4 conversions /s)
IDD
6
7
16
µA
T= -40°C to 65°C
Serial bus inactive
T= 65°C to 125°C
Serial bus inactive
Resolution
N
16
Bits
Conversion Time
TS
22
36
51
ms
Conversion Rate
NS
0.25
1
4
8
0.35
1.35
5.5
10.7
Conv/s
CR[1:0]=00
CR[1:0]=01
CR[1:0]=10
CR[1:0]=11
Supply Voltage Rise
Time
TRise_VDD
20
ms
from 0.1V to 1.6V
Supply Voltage Slew
Rate
SR_VDD
50
mV/ms
from 0.1V to 1.6V
In Figure 7 an overview of the analog system parameters is given.
The current consumption for less than 4 conversions per second is lower than the values given in
Figure 7.
Document Feedback
AS621x
Operating Conditions
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Figure 8:
Temperature Accuracy Values of AS621x
Variant
Symbol
Min
Typ
Max
Unit
Note
AS6212
T_ERR
-0.3
-0.2
-0.3
-0.5
0.3
0.2
0.3
0.5
°C
T= -40°C to -10°C
T= -10°C to 65°C
T= 65°C to 85°C
T= 85°C to 125°C
AS6214
T_ERR
-1.0
-0.4
-1.0
1.0
0.4
1.0
°C
T= -40°C to 0°C
T= 0°C to 65°C
T= 65°C to 125°C
AS6218
T_ERR
-1.0
-0.8
-1.0
1.0
0.8
1.0
°C
T= -40°C to 0°C
T= 0°C to 65°C
T= 65°C to 125°C
In Figure 8 the different accuracy values of AS621x are shown. These values are representative for a
3 distribution. All accuracy values are valid for the complete supply voltage range given in Figure 7.
5.2 Digital System Parameters
Figure 9:
Digital System Parameters of AS621x
Parameter
Symbol
Pins
Min
Max
Unit
Note
High level input voltage
V_IH
SCL, ADD0
0.7 * VDD
V
Low level input voltage
V_IL
SCL, ADD0
0.3 * VDD
V
Hysteresis voltage
V_HYST
SCL,ADD0,
SDA,Alert
200
1200
mV
Input leakage current
I_LEAK
SCL;ADD0
-1
1
µA
V_IL=0.0V
Low level output voltage
V_OL
Alert
VSS+0.4
V
I_OL=3mA
High level input voltage
V_IH
SDA
0.7 * VDD
V
Low level input voltage
V_IL
SDA
0.3*VDD
V
Low level output voltage
V_OL
SDA
VSS+0.4
V
Tristate leakage current
I_OZ
SDA
-10
10
µA
to VSS
In Figure 9 an overview of the digital system parameters is given.
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
6 Register Description
6.1 Register Overview
Figure 10 :
Register Map with Serial Interface
In Figure 10 the registers that the device contains are shown.
With the use of the index register, it is possible to address the specific register. The index register is
an 8-bit register, where only bits 0 and 1 are used as shown in Figure 11 and all other bits are set to 0
and read only
6.1.1 Index Register
Figure 11:
Index Register
Bit
Bit Name
Default
Access
0
Address Bit
0
RW
1
Address Bit
0
RW
2
Reserved
0
RO
3
Reserved
0
RO
4
Reserved
0
RO
5
Reserved
0
RO
6
Reserved
0
RO
7
Reserved
0
RO
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Figure 12:
Register Map
Address
Symbol
Register
Description
0x0
TVAL
Temperature Register
Contains the temperature value
0x1
CONFIG
Configuration Register
Configuration settings of the temperature sensor
0x2
TLOW
TLOW Register
Low temperature threshold value
0x3
THIGH
THIGH Register
High temperature threshold value
The first 2 bit addresses in the index register define the access to the registers shown in Figure 12.
This means that in order to access the different registers, the index register must be set accordingly.
With the exception of the TVAL register (which contains the temperature value data), all registers are
read/write accessible.
6.2 Detailed Register Description
6.2.1 Configuration Register (Address 0x1)
Figure 13:
CONFIGURATION Register
Addr: 0x1
Bit
Bit Name
Default
Access
Bit Description
0
Reserved
0
RO
Reserved
1
Reserved
0
RO
Reserved
2
Reserved
0
RO
Reserved
3
Reserved
0
RO
Reserved
4
Reserved
0
RO
Reserved
5
AL
1
RO
Alert Bit (AL)
6
CR[0]
0
RW
Conversion RATE (CR)
7
CR[1]
1
RW
Conversion RATE (CR)
8
SM
0
RW
Sleep Mode (SM)
9
IM
0
RW
Interrupt Mode (IM)
10
POL
0
RW
Polarity (POL)
11
CF[0]
0
RW
Consecutive Faults (CF)
12
CF[1]
0
RW
Consecutive Faults (CF)
13
Reserved
0
RO
Reserved
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Addr: 0x1
Bit
Bit Name
Default
Access
Bit Description
14
Reserved
1
RO
Reserved
15
SS
0
RW
Single Shot
The configuration register is a 16-bit register which defines the operation modes of the device. Any
read/write operation processes the MSB byte first.
In Figure 13 the configuration register is shown. The bits 0-4 and 13-14 are not to be used and are set
to read only. The explanation of the other bits are detailed in the following sections.
6.2.2 Alert Bit
The alert bit can be used to easily compare the current temperature reading to the thresholds that can
be set in the TLWO and THIGH registers.
If the polarity bit is set to 0, the AL bit is read as 1 until the converted temperature value exceeds the
defined value in the high temperature threshold register THIGH for the number of defined consecutive
faults (bits CF). Such an event causes the AL bit to toggle to 0 and the value is kept until the
converted temperature value falls below the defined value in the low temperature threshold register
TLOW for the number of defined consecutive faults. If this condition is met, the AL bit is reset to 1.
The polarity bit (POL) defines the active state of the alert bit as depicted in the following figure.
The alert bit has the same setting as the alert output as long as the device is configured for the
comparator mode.
Figure 14:
State Diagram of the Alert Bit
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
6.2.3 Conversion Rate Bits
The conversion rate bits define the number of executed temperature conversions per time unit.
Additional readouts of the temperature register between conversions are possible but not
recommended because the value is changed only after a conversion is finished.
Values of 125ms, 250ms, 1s and 4s for a conversion can be configured while the default rate is set to
4 conversions per second. The following table summarizes the different configuration settings:
Figure 15:
Conversion Rate Configuration
Conversion Rate Bits
Conversion Rate
Bit 7
Bit 6
Conv/s
0
0
0.25
0
1
1
1
0
4
1
1
8
The device immediately starts a conversion after a power-on sequence and provides the first result
after typ. 36ms (max. 51ms). A higher power consumption occurs during the actual conversion while
the device stays in the standby mode after a finished conversion until the next conversion is activated.
This is shown in the following figure.
Figure 16:
Conversion Sequence
6.2.4 Sleep Mode
The sleep mode is activated by setting the bit SM in the configuration register to 1. This shuts the
device down immediately and reduces the power consumption to a minimum value.
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
The serial interface is the only active circuitry in the sleep mode in order to provide access to the
digital registers.
Entering the sleep mode will take some time (120 ms maximum) and the first conversion after the
sleep mode has been entered takes longer than the values specified in Figure 7. It is therefore
recommended when entering sleep mode to trigger a single shot conversion at the same time. After
150 ms (max), the device has then entered the sleep mode and subsequent conversion times are as
specified in Figure 7.
After resetting the SM bit to 0, the device enters the continuous conversion mode.
Figure 17:
Sleep Mode Configuration
Sleep Mode Bit
Operation Mode
0
Continuous Conversion Mode
1
Sleep Mode
6.2.5 Interrupt Mode
The interrupt mode bit defines whether the device operates in the temperature comparator mode or
the interrupt mode. This defines the operation of the ALERT output as described in the polarity section
bit.
Figure 18:
Interrupt Mode Configuration
Interrupt Mode Bit
Configuration Mode
0
Comparator Mode
1
Interrupt Mode
The comparator mode is characterized that if the temperature value exceeds the THIGH value, the
alert output is changed (e.g. from high to low if the polarity bit is set to 0 and vice versa). The alert
output stays in that condition until the measured temperature drops below the defined TLOW value.
The interrupt mode is characterized that it changes the alert output as soon as the measured
temperature crosses the THIGH or TLOW value threshold.
The alert bit has the same setting as the alert output if the device is set to comparator mode.
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Figure 19:
Alert Output Functionality
6.2.6 Polarity Bit
The polarity bit configures the polarity of the ALERT output. If the polarity bit is cleared, the ALERT
output is low active while it becomes high active if the polarity bit is set to ‘1’.
Figure 20:
Polarity Bit Configuration
Polarity Bit
ALERT Output
0
Active low
1
Active high
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
6.2.7 Consecutive Faults
A fault condition persists if the measured temperature either exceeds the configured value in register
THIGH or falls below the defined value in register TLOW. As a result, the ALERT pin indicates the
fault condition if a defined number of consecutive temperature readings meets this fault condition. The
number of consecutive faults are defined with two bits (12 and 11) and prevent a false alert if
environmental temperature noise is present. The register configuration is shown in the following table.
Figure 21:
Consecutive Faults Bit Settings
Consecutive Fault Bits
Consecutive Faults (N)
Bit 13
Bit 12
0
0
1
0
1
2
1
0
3
1
1
4
6.2.8 Single Shot Conversion
The device features a single shot measurement mode if the device is in sleep mode (SM=1). By
setting the “Single Shot-bit” to 1, a single temperature conversion is started and the SS-bit can be read
as 1 during the active conversion operation. Once the conversion is completed, the device enters the
sleep mode again and the SS-bit is set to 0. The single shot conversion allows very low power
consumption since a temperature conversion is executed on demand only. This allows a user defined
timing of the temperature conversions to be executed and is used if the consecutive operation mode is
not required.
The first conversion triggered in this mode has a longer conversion time. In the section 6.2.4 Sleep
Mode it is detailed together with the recommendation to trigger the first conversion simultaneously with
entering the sleep mode.
As the device exhibits a very short conversion time, the effective conversion rate can be increased by
setting the single shot bit repetitively after a conversion has finished. However, it has to be ensured
that the additional power is limited, otherwise self-heating effects have to be considered.
Figure 22:
Single Shot Conversion Bit Settings
Single Shot Bit
Conversion
0
No conversion ongoing/ conversion finished
1
Start single shot conversion / conversion ongoing
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
6.2.9 High and Low Limit Registers
If the comparator mode is configured (IM=0), the ALERT output becomes active if the temperature
equals or exceeds the defined value in register THIGH for the configured number of consecutive
faults (N). This configuration is defined by the field CF in the configuration register. The ALERT output
remains assigned until the converted temperature value equals or falls below the defined value in
register TLOW for the same number of consecutive fault cycles.
If the interrupt mode is configured (IM=1), the ALERT output becomes active if the temperature equals
or exceeds the defined value in register THIGH for the configured number of consecutive fault cycles.
It remains active until a read operation is executed on any register. The ALERT output is also cleared
if the device is set into sleep mode by setting bit SM in the configuration register.
Once the ALERT output is cleared, it is activated again only if the temperature value falls below the
configured value in register TLOW. It remains active unless a read operation has taken place.
This sequence is repeated unless the device is set into the comparator mode. This reset command
clears the interrupt mode bit and consequently puts the device into the comparator mode.
The sequential behavior is summarized in the following Figure 23.
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Figure 23:
Alert Operation Modes
The following table defines the content of the registers TLOW and THIGH. For data transmission, the
MSB byte is transmitted first, followed by the LSB byte. The data format for representing the threshold
temperatures is equal to the temperature register (TVAL). After a power-up, the registers are initialized
with the following default values:
ALERT output
cleared
ALERT output
active
ALERT output
cleared
ALERT output
active
T THIGH for
N consecutive cycles
Read operation
or
Set to sleep mode
T TLOW for
N consecutive cycles
Read operation
or
Set to sleep mode
Interrupt Mode
ALERT output
cleared
ALERT output
active
Comparator Mode
T THIGH for
N consecutive cycles
T TLOW for
N consecutive cycles
IM=1IM=0
General Reset
Command
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Figure 24:
Default Values for THIGH and TLOW
Register
Temperature
Binary Value
TLOW
75 °C
0010 0101 1000 0000
THIGH
80 °C
0010 1000 0000 0000
The following table defines the register bits of the THIGH and TLOW register.
Figure 25:
Register Bit Settings for THIGH/TLOW
Addr: 0x2 / 0x3
Bit
TLOW Register
THIGH Register
Access
0
0
0
Permanently set to 0
1
0
0
Permanently set to 0
2
0
0
Permanently set to 0
3
0
0
Permanently set to 0
4
L4
H4
RW
5
L5
H5
RW
6
L6
H6
RW
7
L7
H7
RW
8
L8
H8
RW
9
L9
H9
RW
10
L10
H10
RW
11
L11
H11
RW
12
L12
H12
RW
13
L13
H13
RW
14
L14
H14
RW
15
L15
H15
RW
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
6.2.10 Temperature Register (Address 0x0)
Figure 26:
Temperature Value Register
Addr: 0x0
Bit
Bit Name
0
T0
1
T1
2
T2
3
T3
4
T4
5
T5
6
T6
7
T7
8
T8
9
T9
10
T10
11
T11
12
T12
13
T13
14
T14
15
T15
The temperature register contains the digitally converted temperature value and can be read by
setting the index pointer to the TVAL register (0x0).
Two consecutive bytes must be read to obtain the complete temperature value. The MSB byte (Bits 15
to 8) is transmitted upon the first read access and the LSB byte (Bits 7 to 0) is transmitted after the
second read access.
A temperature value is represented as a two complement value in order to cover also negative values.
After power-up, the temperature value is read as 0°C until the first conversion has been completed.
One LSB corresponds to 0.0078125°C (=1/128 °C).
The binary values can be calculated according to the following formulas:
Positive values: |Value| / LSB
Negative values: Complement (|Value| / LSB ) + 1
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Example 75°C:
75°𝐶/0.0078125°𝐶 = 9600 = 𝐵𝑖𝑛𝑎𝑟𝑦 0010 0101 1000 0000 = 𝐻𝑒𝑥 2580
Example -40°C:
|40°𝐶|/0.0078125 °𝐶 + 1 = 5120 + 1 = 𝐵𝑖𝑛𝑎𝑟𝑦 0001 0100 0000 0000 + 1 = 1110 1100 0000 0000 =
𝐻𝑒𝑥 EC00
Figure 27:
Temperature Conversion Examples
Temperature (°C)
Digital Output (Binary)
Digital Output (Hex)
100.0
0011 0010 0000 0000
3200
75.0
0010 0101 1000 0000
2580
50.0
0001 1001 0000 0000
1900
25.0
0000 1100 1000 0000
0C80
0.125
0000 0000 0001 0000
0010
0.0078125
0000 0000 0000 0001
0001
0.0
0000 0000 0000 0000
0000
-0.0078125
1111 1111 1111 1111
FFFF
-0.125
1111 1111 1111 0000
FFF0
-25.0
1111 0011 1000 0000
F380
-40.0
1110 1100 0000 0000
EC00
6.3 Serial Interface
The device employs a standard I²C-serial bus.
6.3.1 Bus Description
A data transfer must be invoked by a master device (e.g. microcontroller) which defines the access to
the slave device. The master device defines and generates the serial clock (SCL) and the start/stop
conditions.
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
In order to address a specific device, a START condition has to be generated by the master device by
pulling the data line (SDA) from a logic high level to a logic low level while the serial clock signal (SCL)
is kept at high level.
After the start condition, the slave address byte is transmitted which is completed with a ninth bit which
indicates a read (bit=’1’) or a write operation (bit=’0’) respectively. All slaves read the data on the rising
edge of the clock. An acknowledge signal is generated by the addressed slave during the ninth clock
pulse. This acknowledge signal is produced by pulling the pin SDA to a low level by the selected
slave.
Subsequently, the byte data transfer is started and finished by an acknowledge bit. A change in the
data signal (SDA) while the clock signal (SCL) is high causes a START or STOP condition. Hence, it
must be ensured such a condition is prevented during a data transfer phase.
After completing the data transfer, the master generates a STOP condition by pulling the data line
(SDA) from low level to high level while the clock signal (SCL) is kept at high level.
6.3.2 Data Interface
A bus connection is created by connecting the open drain input/output lines SDA and SCL to the two
wire bus. The inputs of SDA and SCL feature Schmitt-trigger inputs as well as low pass filters in order
to suppress noise on the bus line. This improves the robustness against spikes on the two wire
interface.
Both fast transmission mode (1kHz to 400kHz) and high-speed transmission mode (1kHz to 3.4MHz)
are employed to cover different bus speed settings.
Any data transfer transmits the MSB first and the LSB as last bit.
6.3.3 Bus Address
A slave address consists of seven bits, followed by a data direction bit (read/write operation). The
slave address can be selected from 8 different address settings by connecting the pin ADD0 and
ADD1 to an appropriate signal as summarized in Figure 28.
The ADD0 and the ADD1 pin must not be left unconnected.
The address selection with ADD1 is depending on the usage of the ALERT function (described in
chapter 6.3.8). In case the ALERT functionality is used, it must be connected via a pull up resistor to
VDD. In case the ALERT functionality is not used, the pin must be connected to either SCL or VSS
(refer to Figure 28 for details).
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Figure 28:
I²C Address Select Configuration
ALERT / ADD1
Connection
ADD0 Connection
Alert
Functionality
Enabled
Device Address
(bin)
Device Address
(hex)
SCL
VSS
No
100 0100
0x44
SCL
VDD
No
100 0101
0x45
SCL
SDA
No
100 0110
0x46
SCL
SCL
No
100 0111
0x47
VSS
VSS
No
100 1000
0x48
VSS
VDD
No
100 1001
0x49
VSS
SDA
No
100 1010
0x4A
VSS
SCL
No
100 1011
0x4B
Pull up to VDD
VSS
Yes
100 1000
0x48
Pull up to VDD
VDD
Yes
100 1001
0x49
Pull up to VDD
SDA
Yes
100 1010
0x4A
Pull up to VDD
SCL
Yes
100 1011
0x4B
6.3.4 Read/Write Operation
In order to access an internal data register, the index register must be written in advance. This register
contains the actual register address and selects the appropriate register for an access. A typical
transfer consists of the transmission of the slave address with a write operation indication, followed by
the transmission of the register address and is finalized with the actual register content data transfer.
This implies that every write operation to the temperature sensor device requires a value for the index
register prior to the transmission of the actual register data.
The index register defines the register address for both the write and read operation. Consequently, if
a read operation is executed, the register address is taken from the index register which was defined
from the last write operation.
If a different register needs to be read, the index register has to be written in advance to define the
new register address. This is accomplished by transmitting the slave address with a low R/W bit,
followed by the new content of the index register. Subsequently, the master provokes a START
condition on the bus and transmits the slave address with a high R/W bit in order to initiate a read
operation.
Since the index register always keeps its last value, reads can be executed repetitively on the same
register.
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Similarly to the byte transfer where the MSB is transmitted first, the transfer of a 16-bit word is
executed by a two byte transfer whereas the MSB byte is always transmitted first.
6.3.5 Slave Operation
The device employs a slave functionality only (slave transmitter and slave receiver) and cannot be
operated as a bus master. Consequently, the device never actively drives the SCL line.
6.3.6 Slave Receiver Mode
Any transmission is invoked by the master device by transmitting the slave address with a low R/W bit.
Subsequently, the slave device acknowledges the reception of the valid address by pulling the ninth
bit to a low level. Following to acknowledge, the master transmits the content of the index register.
This transfer is again acknowledged by the slave device. The next data byte(s) are written to the
actual data register which is selected by the index register while each transfer is acknowledged upon a
completed transfer by the slave device. A data transfer can be finished if the master transmits a
START or a STOP condition on the bus.
6.3.7 Slave Transmitter
The master transmits the slave address with a high R/W bit. In turn, the slave acknowledges a valid
slave address. Subsequently, the slave transmits the MSB byte of the actual selected data register by
the index register. After the MSB byte transmission, acknowledge is sent by the master. Afterwards,
the LSB byte is transmitted by the slave which is also acknowledged by the master after the
completed transmission. The data transfer can be terminated by the master by transmitting a Not-
Acknowledge after the transmitted slave data or by invoking a START or a STOP condition on the bus.
6.3.8 Alert Function
If the device is configured for an interrupt mode operation (IM=1), the ALERT output can be used as
an alert signal.
If the polarity bit is set to ‘0’ (POL=’0’), the alert condition bit is set to ‘0’ in case the temperature has
exceeded the configured value in register THIGH. Accordingly, the alert condition bit is set to ‘1’ if the
temperature has fallen below the configured value in register TLOW.
If the polarity bit is set to ‘1’ (POL=’1’), the alert condition bit is inverted. The following table
summarizes the status of the alert condition bit with different alert conditions and polarity
configurations.
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Figure 29:
Alert Condition Bit
Polarity Bit
Alert Condition
Alert Condition Bit (AC-Bit)
0
T ≥ THIGH
0
0
T ≤ TLOW
1
1
T ≥ THIGH
1
1
T ≤ TLOW
0
6.3.9 High Speed Mode
The bus operation is limited to 400kHz unless a high speed command is issued by the master device
as the first byte after a START condition. This switches the bus to a high speed operation which allows
data transfer frequencies up to 3.4MHz. Such a command is not acknowledged by the slave but the
input filter time constants on the serial interface (SDA and SCL) are adapted to allow the higher
transfer rate.
After a high speed command, the slave address is transmitted by the master in order to invoke a data
transfer. The bus keeps operating at the higher operating frequency until the master issues a STOP
condition on the serial bus. Upon the reception of the STOP condition by the slave, the input filters are
switched to their initial time constants which allow lower transfer rates only.
6.3.10 General Call
A general call is issued by the master by transmitting the general call address (000 0000) with a low
R/W bit. When this command is issued on the bus, the device acknowledges this command. The
device also acknowledges the second byte but ignores the data. Subsequent bytes sent by the master
during the general call are not acknowledged.
6.3.11 Start Byte
When the master transmits address 000 0000 and a high R/W bit (“START byte”) the device
acknowledges the address. The device then send the MSB data byte and LSB data byte, where the
data corresponds to the content of the register whose address has been last written to. After reset this
corresponds to the temperature register.
6.3.12 Timeout Function
The serial interface of the slave device is reset if the clock signal SCL is kept low for typ. 30ms. Such
a condition results in a release of the data line by the slave in case it has been pulled to low level. The
slave remains inactive after a timeout and waits for a new START command invoked by the bus
master. In order to prevent a timeout, the bus transfer rate must be higher than 1kHz.
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
6.3.13 Bus Conditions
The following conditions occur on the serial bus which is compatible to the I²C-Bus.
Bus Idle
The signals SDA and SCL are not actively driven and pulled to a high level by an external pull-up
resistor.
Start Data Transfer
A transition of the SDA input from high to low level while the SCL signal is kept at high level results in
a START condition. Such a START condition must precede any data transfer.
Stop Data Transfer
A transition of the SDA input from low to high level while the SCL signal is kept at high level results in
a STOP condition. Any data transfer is finished by generating a STOP or START condition.
Data Transfer
The master device defines the number of data bytes between a START and STOP condition and there
is no limitation in the amount of data to be transmitted.
If it is desired to read only a single MSB byte without the LSB byte, a termination of the data transfer
can be provoked by issuing a START or STOP condition on the bus.
Acknowledge
It is mandatory for each slave device to respond with acknowledge if the device is addressed by the
master. Acknowledge is indicated by pulling down the data line (SDA) while the clock signal (SCL) is
high in the acknowledge clock phase. In order to avoid an unwanted START or STOP condition on the
bus, setup and hold times must be met.
The master can signal an end of data transmission by transmitting a Not-Acknowledge on the last
transmitted data byte by keeping the acknowledge bit at high level.
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
6.3.14 Timing Characteristics
Figure 30:
Serial Interface Timing Diagram
Figure 31:
Bus Timing Specifications
Parameter
Symbol
Fast Mode
High Speed Mode
Unit
Min
Max
Min
Max
SCL clock frequency
fSCL
0.001
0.4
0.001
3.4
MHz
Bus free time between STOP
and START condition
tBUF
600
160
ns
Hold time after repeated
START condition
tHDSTA
100
100
ns
Repeated START condition
setup time
tSUSTA
100
100
ns
Data in hold time
tHDDAT
0
0
ns
Data out hold time (1)
tDH
100
100
ns
Data setup time
tSUDAT
100
10
ns
SCL clock low period
tLOW
1300
160
ns
SCL clock high period
tHIGH
600
60
ns
Clock/Data fall time
tF
300
80
ns
Clock/Data rise time
tR
300
80
ns
Clock/Data rise time for
SCL100 kHz
tR
1000
ns
(1) The device will hold the SDA line high for 100 ns during the falling edge of the SCL.
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
6.3.15 Timing Diagrams
The following timing diagrams depict the different bus operation modes and data transmission:
Figure 32:
Timing Diagram for Word Write
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
SCL
SDA
1
0
0
R
/
W
0
0
0
0
0
0
IX
1
IX
0
Start
by master
Values are defined by
ADD
0
pin setting
Frame
1
:
Slave Address Byte
Frame
2
:
Index Register Byte
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
SCL
SDA
Frame
3
:
MSB Data Byte
Frame
4
:
LSB Data Byte
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
6
D
5
D
4
D
3
D
2
D
1
D
7
D
0
(
Continued
)
(
Continued
)
Acknowledge
by slave
Acknowledge
by slave
Acknowledge
by slave
Acknowledge
by slave
Stop
by master
A3
A2
A1
A0
Values are defined
by ALERT/ADD1 pin
setting
Document Feedback
AS621x
Register Description
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Figure 33:
Timing Diagram for Word Read
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
SCL
SDA
1
0
0
R
/
W
0
0
0
0
0
0
IX
1
IX
0
Start
by master
Values are defined by
ADD
0
pin setting
Frame
1
:
Slave Address Byte
Frame
2
:
Index Register Byte
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
SCL
SDA
Frame
3
:
Slave Address
Byte
Frame
4
:
Register MSB
Data Byte
D
6
D
5
D
4
D
3
D
2
D
1
D
7
D
0
(
Continued
)
(
Continued
)
Acknowledge
by slave
Acknowledge
by slave
Acknowledge
by slave
Stop
by master
1
0
0
R
/
W
Start
by master
Acknowledge
by master
1
2
3
4
5
6
7
8
9
Frame
5
:
Register LSB
Data Byte
D
6
D
5
D
4
D
3
D
2
D
1
D
7
D
0
Acknowledge
by master
Stop
by master
A3
A2
A1
A0
A3
A2
A1
A0
Values are defined
by ALERT/ADD1 pin
setting
Document Feedback
AS621x
Application Information
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
7 Application Information
Figure 34:
Application Example
In Figure 34 the connections of the AS621x temperature sensors to a microcontroller and the supply
voltage are shown.
The AS621x is connected to a microcontroller via an I²C bus (SDA and SCL only). Additionally the
Alert output can also be used for temperature monitoring (e.g. using the interrupt mode, refer to IM bit
settings), an example is given in Figure 34 where the Alert output is connected to microcontroller.
The I²C address of the AS621x can be selected by connecting the ADD0 and ADD1 to different pins
(refer to Figure 28 for details). These pins must not be left unconnected.
Micro-
controller
(Bus Master) VDD
10nF
VDD
Address Select 0
Slave
Serial
Interface
ALERT
Interrupt
Pull-up resistors
RPU
SDA
VDD
ADD0
SCL
ADD1/
ALERT
VSS
AS621x
Address Select 1
Document Feedback
AS621x
Application Information
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
7.1 External Components
Figure 35:
Schematic with External Components
Figure 36:
Values for External Components
Parameter
Min
Typ
Unit
Decoupling capacitor
10
nF
Pull up resistors
10
kΩ
In Figure 35 and Figure 36 the schematics and the recommended values for external components are
shown.
The decoupling capacitor for the supply should have a value of at least 10 nF.
In order to use the alert functionality, the ALERT/ADD1 pin must be connected via a pull up resistor to
VDD.
For the serial interface, pull up resistors to VDD are mandatory.
The pull up resistors on the serial interface and the interrupt depend on the bus capacitance and on
the clock speed.
VDD
10nF
VDD
Address Select 0
Slave
Pull-up resistors
RPU
SDA
VDD
ADD0
SCL
ADD1/
ALERT
VSS
AS621x
Address Select 1
SCL
SDA
Alert
Document Feedback
AS621x
Package Drawings & Markings
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
8 Package Drawings & Markings
Figure 37:
WLCSP Outline Drawing
Ref.
Min
Nom
Max
X
1475
1495
1515
Y
1005
1025
1045
ax
347.5
dx
400
ay
312.5
dy
400
d
250
Thickness
(with balls
before
reflow)
600
(1) All dimensions are in micrometers. Angles in degrees.
(2) Dimensioning and tolerance conform to ASME Y14.5M-1994.
(3) This package contains no lead (Pb).
(4) This drawing is subject to change without notice.
RoHS
Green
Document Feedback
AS621x
Package Drawings & Markings
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
Figure 38:
WLCSP Package Marking/Code for AS6212
XXXX Tracecode
Figure 39:
WLCSP Package Marking/Code for AS6214
XXXX Tracecode
Figure 40:
WLCSP Package Marking/Code for AS6218
XXXX Tracecode
XXXX
AS6212
XXXX
AS6214
XXXX
AS6218
Document Feedback
AS621x
Revision Information
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
9 Revision Information
Document Status
Product Status
Definition
Product Preview
Pre-Development
Information in this datasheet is based on product ideas in the planning phase
of development. All specifications are design goals without any warranty and
are subject to change without notice
Preliminary Datasheet
Pre-Production
Information in this datasheet is based on products in the design, validation or
qualification phase of development. The performance and parameters shown
in this document are preliminary without any warranty and are subject to
change without notice
Datasheet
Production
Information in this datasheet is based on products in ramp-up to full production
or full production which conform to specifications in accordance with the terms
of ams AG standard warranty as given in the General Terms of Trade
Datasheet
(discontinued)
Discontinued
Information in this datasheet is based on products which conform to
specifications in accordance with the terms of ams AG standard warranty as
given in the General Terms of Trade, but these products have been
superseded and should not be used for new designs
Changes from previous version (v1-00) to current revision v2-00
Page
Figure 7: Updated conversion time
9
Updated conversion time reference
14
Added clarification for time to enter sleep mode
15
Added reference for longer first conversion in sleep mode
17
Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
Correction of typographical errors is not explicitly mentioned.
Document Feedback
AS621x
Legal Information
Datasheet PUBLIC
DS000677 v2-00 • 2020-Feb-24
10 Legal Information
Copyrights & Disclaimer
Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved.
The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the
copyright owner.
Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of
Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams
AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this
product into a system, it is necessary to check with ams AG for current information. This product is intended for use in
commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high
reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended
without additional processing by ams AG for each application. This product is provided by ams AG “AS IS” and any express or
implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are
disclaimed.
ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property
damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any
kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability
to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.
RoHS Compliant & ams Green Statement
RoHS Compliant: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our
semiconductor products do not contain any chemicals for all 6 substance categories plus additional 4 substance categories (per
amendment EU 2015/863), including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where
designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.
ams Green (RoHS compliant and no Sb/Br/Cl): ams Green defines that in addition to RoHS compliance, our products are free
of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
and do not contain Chlorine (Cl not exceed 0.1% by weight in homogeneous material).
Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that
it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or
warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG
has taken and continues to take reasonable steps to provide representative and accurate information but may not have
conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers
consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for
release.
Headquarters
ams AG
Tobelbader Strasse 30
8141 Premstaetten
Austria, Europe
Tel: +43 (0) 3136 500 0
Please visit our website at www.ams.com
Buy our products or get free samples online at www.ams.com/Products
Technical Support is available at www.ams.com/Technical-Support
Provide feedback about this document at www.ams.com/Document-Feedback
For sales offices, distributors and representatives go to www.ams.com/Contact
For further information and requests, e-mail us at ams_sales@ams.com