Rugged Power MOSFETs IRF140R, IRF141R IRF142R, IRF143R File Number 2001 Avalanche Energy Rated N-Channel Power MOSFETs 27A and 24A, 60V-100V 'ps(on) = 0.0859 and 0.1192 Features: lf Single pulse avalanche energy rated @ SOA is power-dissipation limited @ Nanosecond switching speeds G @ Linear transfer characteristics @ High input impedance N-CHANNEL ENHANCEMENT MODE D 92C$-42658 TERMINAL DIAGRAM TERMINAL DESIGNATION The IRF140R, IRF141R, IRF142R and IRF143R are ad- vanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. These are n-channel en- hancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- ers for high-power bipotar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AE steel package. DRAIN SOURCE {FLANGE ) GATE 92Cs- 3780: JEDEC TO-204AE Absolute Maximum Ratings Parameter IRF140R IRF141R IRF142R IRF143R Units Vos Drain - Source Voltage 100 60 100 60 V Vosr Drain - Gate Voltage (Res = 20 KQ) @ 100 60 100 60 Vv lo @ Tc = 25C Continuous Drain Current 27 27 24 24 A Ip @ Tc = 100C Continuous Drain Current 17 17 15 15 A lom Pulsed Drain Current @ 108 108 96 96 A Vas Gate - Source Voltage +20 Vv Pp @ Te = 25C Max. Power Dissipation 125 (See Fig. 14) Ww Linear Derating Factor 1.0 (See Fig. 14) W/C Ew Single Pulse Avalanche Energy Rating @ 100 mj Tos Serene Gomperature Range ~55 to 150 C Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) CRugged Power MOSFETs IRF140R, IRF141R IRF142R, IRF143R Electrical Characteristics @ T; = 25C (Unless Otherwise Specified) Pi Type Min. | Typ. | Max. | Units Test Conditions BVoss_ Drain - Source Breakdown Voltage IRF140R _ _ = IRF142R | 100 Vv Ves = OV IRF141R = IRF143R | 59 _ - Ip = 250A Vesim Gate Threshold Voltage ALL 2.0 = 4.0 Vv Vos = Vas, lo = 250u A loss Gate-Source Leakage Forward ALL _ = 100 nA Ves = 20V tess Gate-Source Leakage Reverse ALL _ -100 nA Ves = -20V loss Zero Gate Voltage Drain Current ~ = 250 HA Vos = Max. Rating, Ves = OV Alt [7 [1000 | pA | Vos = Max. Rating x 0.8, Vas = OV, Te = 125C Ibe += On-State Drain Current @ IRF140R InFi4iR| 27 | = A = RFIa2R Vos > loions X Rosion max, Vas = 10V I inF143A| 24 | | A Rosion Static Drain-Source On-State IRF140R Resistance IRFI41R| 0.07 | 0.085 a Ves = 10V, lp = 15A IRF142R soe IRF143R | 7 0.09 | 0.11 Q Qts Forward Transconductance @ ALL 6.0 10 - S(G)_{ Vos > Soiom X Rosionmar., !o = 15A Ciss Input Capacitance ALL =~ 1275 = PF | Weg = OV, Vis = 25V, f= 1.0 MHz Coas Output Capacitance ALL _ 550 pF See Fig. 10 Cras Reverse Transfer Capacitance ALL 160 _ pF . tations Turn-On Delay Time ALL _ 16 30 ns Voo = 30V, Ip = 15A, Zo = 4.72 t Rise Time ALL 27 60 ns See Fig. 17 toom _ Turn-Off Delay Time ALL - 38 80 ns (MOSFET switching times are essentially tt Fall Time ALL 14 30 ns independent of operating temperature.) Q, Total Gate Charge ALL _ 38 60 nc Ves = 10V, Ib = 34A, Vos = 0.8 Max. Rating. (Gate-Source Plus Gate-Drain) See Fig. 18 for test circuit. (Gate charge is Qye Gate-Source Charge ALL _ 47 nc essentially independent of operating Drain {"RAille temperature.) Qea Gate-Drain (Miller) Charge ALL - 21 =_ nc Lo Internal Drain Inductance ALL _ 5.0 _ nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to | internal device source and gate pins inductances and center of die. Lo Ls Internal Source Inductance ALL _ 12.5 oH Measured from the source pin, 6 mm 6 (0.25 in.) from us header and source 3 bonding pad. otes-arees Thermal Resistance RiJC Junction-to-Case ALL = 1.0 C/W. RwCS Case-to-Sink ALL _ 0.1 _ C/AW_| Mounting surface flat, smooth, and greased. RuJA Junction-to-Ambient ALL _ 30 C/W _]| Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF1I40R | _ 27 A Modified MOSFET symbol (Body Diode) IRF141R showing the integral . IRF142R 24 A reverse P-N junction rectifier. IRF143R = _ ism Pulse Source Current (RF140R 108 A s (Body Diode) tRFI4iR| 7 $s IRE aor _ _ 96 A vace-azene Vsp Diode Forward Voltage @ IRF140R | _ 25 Vv Te = 28C, Is = 27A, Vea = OV IRF141R IRF142R = = = IRFI43R| - 2.3 Vv Te = 25C, Is = 24A, Ves = OV ter Reverse Recovery Time ALL _ 500 _ ns Ty = 180C, Ir = 27A, di-/dt = 100A/ps Qra Reverse Recovered Charge ALL 2.9 ue Ty = 150C, tr = 27A, dir/dt = 100A/pus ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Ls + Lo. @ T, = 25C to 150C. Pulse Test: Pulse width < 300us, Duty Cycle < 2%. Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). @ Von = 10V, starting Ty = 25C, L = 250uH, Ros = 500, Ipeak = 27A. See figures 15, 16. 6-8us PULSE tp, ORAIN CURRENT (AMPERES) 0 10 20 30 40 50 Vps. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Ip, DRAIN CURRENT (AMPERES) 0 2 3 4 5 Vps, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics ns = 2 on o nn es 2 = a SINGLE PULSE (TRANSIENT THERMAL IMPEDANCE) THEAMAL IMPEDANCE {PER UNIT) 0.02 ZthscttRypyc, NORMALIZED EFFECTIVE TRANSIENT 001 8 92 5 4 2 5 93 2 |p, ORAIN CURRENT (AMPERES! to-2 Rugged Power MOSFETs IRF140R, IRF141R IRF142R, IRF143R BO gis PULSE TEST f ' Vos > 'Dion) * Roston} max. Ip, DRAIN CURRENT (AMPERES) Q 2 4 6 8 10 Vos, GATE-TO-SOURCE VOLTAGE {VOLTS} Fig. 2 Typical Transfer Characteristics 1000 + 500 t HTOPERATION IN THIS 7) . ++" TH aRea ls LIMITED see BY Rasion) " 200 oa topens te eetlt IRF140A, 1 | 100 IRF142R, $0 (AF140A,1R | 20 3R + Te = 28C Ty~ 180C MAX Ric TOK W + + 7 |. SINGLE PULSE ee IRF141R, t ce bb afeee . atte IRF140R, 2A oc 10 2 5 10 20 50 6100 86200 500 Vos. ORAIN TO SOURCE VOLTAGE (VOLTS) + + + + 10 ms 100 ms 10 Fig. 4 Maximum Safe Operating Area fe ty om et 1. DUTY FACTOR, 0 = z . 2. PER UNIT BASE = Rypyc = 1.0 DEG. CW. 3. Ty Te = Pom Zenucl 2 got 2 5 10 2 5 10 11, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse DurationRugged Power MOSFETs IRF140R, IRF141R IRF142R, IRF143R 1 8 Pt 3S 1 S o wo 0 us PULSE TEST Ty = 1800 Vos > !Dton} x Roston) max. Mfg, TRANSCONDUCTANCE (SIEMENS) os Ipp, REVERSE DRAIN CURRENT (AMPERES) nN 0 10 20 30 40 50 0 a4 08 12 1.6 2.0 ip. ORAIN CURRENT (AMPERES) Vgp, SOURCE-TD-DRAIN VOLTAGE (VOLTS) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 125 25 a & 2 2 B {NORMALIZED} s a 2 oo a 05 BV oss. DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) Agsion). QRAIN-TO-SOURCE ON-STATE RESISTANCE 0.75 0 -40 0 40 80 120 160 -40 a 40 a0 120 160 Ty, JUNCTION TEMPERATURE (C) Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature 2000 Cigg = Cys + Cga, Cag SHORTED : 20 Vgs = OV Crs * Cyd f= 1 MHz Cet Coss = Cas + poe 1600 gs * Cod = Cas + Cog e 2 15 2 Vos = = a 1200 2 Vos= 3 5 f 1 Ss = z 2 Ves = 80V, IRF140R, 142R 5 S 10 3 - s <= 800 3 o o o a 1p = 344 es 400 eo FOR TEST CIRCUIT > FIGURE 18 0 5 10 15 20 25 30 Ri 40 45 (450 0 20 40 60 80 Vps, DRAIN-TO-SOURCE VOLTAGE {VOLTS) Qy, TOTAL GATE CHARGE (nC) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typicat Gate Charge Vs. Gate-to-Source Voltage 6-10Rugged Power MOSFETs 03 g Ros(on} MEASURED WITH CURRENT PULSE OF = 2.0 us DURATION. INITIAL Ty = 25C. (HEATING S EFFECT OF 2.0 us PULSE 1S MINIMAL} 3 z < 2 02 { a = 3 Vgs 2 lov ws 3 = > i=} 3 a e Zoi = 7 ry a _" pee Gs* S oa 0 20 40 60 80 100 120 tp. ORAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current Pp. POWER DISSIPATION (WATTS) 0 20 40 60 80 100 120 140 Tc, CASE TEMPERATUAE (C) Fig. 14 Power Vs. Temperature Derating Curve ADJUST A, TO OBTAIN SPECIFIED Ip Vos | GENERATOR 472 SOURCE IMPEDANCE Fig. 17 Switching Time Test Circuit IRF140R, IRF141AR IRF142R, IRF143A IRF 140R, 141A IRF142R, 143R Ip. DRAIN CURRENT {AMPERES} 0 25 50 76 100 126 150 Tc, CASE TEMPERATURE (9C} Fig. 13 Maximum Drain Current Vs. Case Temperature VARY tp TO OBTAIN REQUIRED PEAK I 92CS- 42659 Fig. 15 Unclamped Energy Test Circuit 92CS- 42660 Fig. 16 Unclamped Energy Waveforms Vos CURRENT ISOLATED REGULATOR SUPPLY) tL { O2ut at SAME TYPE AS DUT l2v BATTERY 6 O Vos CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit