Product Folder Sample & Buy Technical Documents Tools & Software Support & Community TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 TMS570LS31x5/21x5 16- and 32-Bit RISC Flash Microcontroller 1 Device Overview 1.1 Features 1 * High-Performance Automotive-Grade Microcontroller for Safety-Critical Applications - Dual CPUs Running in Lockstep - ECC on Flash and RAM Interfaces - Built-In Self-Test (BIST) for CPU and On-chip RAMs - Error Signaling Module With Error Pin - Voltage and Clock Monitoring * ARM(R) Cortex(R)-R4F 32-Bit RISC CPU - Efficient 1.66 DMIPS/MHz With 8-Stage Pipeline - FPU With Single- and Double-Precision - 12-Region Memory Protection Unit (MPU) - Open Architecture With Third-Party Support * Operating Conditions - System Clock up to 180 MHz - Core Supply Voltage (VCC): 1.2 V Nominal - I/O Supply Voltage (VCCIO): 3.3 V Nominal - ADC Supply Voltage (VCCAD): 3.0 to 5.25 V * Integrated Memory - 3MB of Program Flash With ECC (LS3135) - 2MB of Program Flash With ECC (LS2135/2125) - 256KB of RAM With ECC (LS3135/2135) - 192KB of RAM With ECC (LS2125) - 64KB of Flash With ECC for Emulated EEPROM * 16-Bit External Memory Interface * Common Platform Architecture - Consistent Memory Map Across Family - Real-Time Interrupt (RTI) Timer OS Timer - 96-Channel Vectored Interrupt Module (VIM) - 2-Channel Cyclic Redundancy Checker (CRC) * Direct Memory Access (DMA) Controller - 16 Channels and 32 Control Packets - Parity Protection for Control Packet RAM - DMA Accesses Protected by Dedicated MPU * Frequency-Modulated Phase-Locked Loop (FMPLL) With Built-In Slip Detector * Separate Nonmodulating PLL for FlexRayTM * Trace and Calibration Capabilities - Embedded Trace Macrocell (ETM-R4) - Data Modification Module (DMM) - RAM Trace Port (RTP) - Parameter Overlay Module (POM) * Multiple Communication Interfaces - FlexRay Controller With Two Channels * 8KB of Message RAM With Parity Protection * Dedicated Transfer Unit (FTU) - Three CAN Controllers (DCANs) * 64 Mailboxes, Each With Parity Protection * Compliant to CAN Protocol Version 2.0B - Standard Serial Communication Interface (SCI) - Local Interconnect Network (LIN) Interface Controller * Compliant to LIN Protocol Version 2.1 * Can be Configured as a Second SCI - Inter-Integrated Circuit (I2C) - Three Multibuffered Serial Peripheral Interfaces (MibSPIs) * 128 Words With Parity Protection Each - Two Standard Serial Peripheral Interfaces (SPIs) * Two Next Generation High-End Timer (N2HET) Modules - N2HET1: 32 Programmable Channels - N2HET2: 18 Programmable Channels - 160-Word Instruction RAM Each With Parity Protection - Each N2HET Includes Hardware Angle Generator - Dedicated High-End Transfer Unit (HTU) With MPU for Each N2HET * Two 12-Bit Multibuffered ADC Modules - ADC1: 24 Channels - ADC2: 16 Channels Shared With ADC1 - 64 Result Buffers With Parity Protection Each * General-Purpose Input/Output (GPIO) Pins Capable of Generating Interrupts - Sixteen Pins on the ZWT Package - Four Pins on the PGE Package * IEEE 1149.1 JTAG, Boundary Scan and ARM CoreSightTM Components * JTAG Security Module * Packages - 144-Pin Quad Flatpack (PGE) [Green] - 337-Ball Grid Array (ZWT) [Green] 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 1.2 * * * * 2 www.ti.com Applications Braking Systems (Antilock Brake Systems and Electronic Stability Control) Electric Power Steering HEV and EV Inverter Systems Battery Management Systems * * * * Active Driver Assistance Systems Aerospace and Avionics Railway Communications Off-road Vehicles Device Overview Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 1.3 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Description The TMS570LS31x5/21x5 device is a high-performance automotive-grade microcontroller family for safety systems. The safety architecture includes dual CPUs in lockstep, CPU and memory BIST logic, ECC on both the flash and the data SRAM, parity on peripheral memories, and loopback capability on peripheral I/Os. The TMS570LS31x5/21x5 device integrates the ARM Cortex-R4F Floating-Point CPU. The CPU offers an efficient 1.66 DMIPS/MHz, and has configurations that can run up to 180 MHz, providing up to 298 DMIPS. The device supports the word-invariant big-endian [BE32] format. The TMS570LS3135 device has 3MB of integrated flash and 256KB of data RAM. The TMS570LS2135 device has 2MB of integrated flash and 256KB of data RAM. The TMS570LS2125 device has 2MB of integrated flash and 192KB of data RAM. Both the flash and RAM have single-bit error correction and double-bit error detection. The flash memory on this device is a nonvolatile, electrically erasable, and programmable memory implemented with a 64-bit-wide data bus interface. The flash operates on a 3.3-V supply input (same level as I/O supply) for all read, program, and erase operations. When in pipeline mode, the flash operates with a system clock frequency of up to 180 MHz. The SRAM supports singlecycle read and write accesses in byte, halfword, word, and double-word modes. The TMS570LS31x5/21x5 device features peripherals for real-time control-based applications, including two Next Generation High-End Timer (N2HET) timing coprocessors and two 12-bit Analog-to-Digital Converters (ADCs) supporting up to 24 inputs. The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The N2HET can be used for pulse-width-modulated outputs, capture or compare inputs, or GPIO. The N2HET is especially well suited for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses. A High-End Timer Transfer Unit (HTU) can perform DMA-type transactions to transfer N2HET data to or from main memory. A Memory Protection Unit (MPU) is built into the HTU. The device has two 12-bit-resolution MibADCs with 24 channels and 64 words of parity-protected buffer RAM each. The MibADC channels can be converted individually or can be grouped by software for sequential conversion sequences. Sixteen channels are shared between the two MibADCs. There are three separate groupings. Each sequence can be converted once when triggered or configured for continuous conversion mode. The MibADC has a 10-bit mode for use when compatibility with older devices or faster conversion time is desired. The device has multiple communication interfaces: three MibSPIs, two SPIs, one LIN, one SCI, three DCANs, one I2C module, and one FlexRay controller. The SPIs provide a convenient method of serial high-speed communication between similar shift-register type devices. The LIN supports the Local Interconnect standard 2.0 and can be used as a UART in full-duplex mode using the standard NonReturn-to-Zero (NRZ) format. The DCAN supports the CAN 2.0 (A and B) protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 Mbps. The DCAN is ideal for systems operating in noisy and harsh environments (for example, automotive vehicle networking and industrial fieldbus) that require reliable serial communication or multiplexed wiring. The FlexRay controller uses a dual-channel serial, fixed time base multimaster communication protocol with communication rates of 10 Mbps per channel. A FlexRay Transfer Unit (FTU) enables autonomous transfers of FlexRay data to and from the CPU main memory. Transfers are protected by a dedicated, built-in MPU. The I2C module is a multimaster communication module providing an interface between the microcontroller and an I2C-compatible device through the I2C serial bus. The I2C supports speeds of 100 and 400 Kbps. Device Overview Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 3 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com The Frequency-Modulated Phase-Locked Loop (FMPLL) clock module is used to multiply the external frequency reference to a higher frequency for internal use. There are two FMPLL modules on this device. These modules, when enabled, provide two of the seven possible clock source inputs to the Global Clock Module (GCM). The GCM manages the mapping between the available clock sources and the device clock domains. The device also has an External Clock Prescaler (ECP) module that when enabled, outputs a continuous external clock on the ECLK pin (or ball). The ECLK frequency is a user-programmable ratio of the peripheral interface clock (VCLK) frequency. This low-frequency output can be monitored externally as an indicator of the device operating frequency. The DMA controller has 16 channels, 32 control packets, and parity protection on its memory. An MPU is built into the DMA to limit the DMA to prescribed areas of memory and to protect the rest of the memory system from any malfunction of the DMA. The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt is generated or the external ERROR pin is toggled when a fault is detected. The ERROR pin can be monitored externally as an indicator of a fault condition in the microcontroller. The External Memory Interface (EMIF) provides off-chip expansion capability with the ability to interface to synchronous DRAM (SDRAM) devices, asynchronous memories, peripherals or FPGA devices. Several interfaces are implemented to enhance the debugging capabilities of application code. In addition to the built-in ARM Cortex-R4F CoreSight debug features, an External Trace Macrocell (ETM) provides instruction and data trace of program execution. For instrumentation purposes, a RAM Trace Port (RTP) module is implemented to support high-speed tracing of RAM and peripheral accesses by the CPU or any other master. A Data Modification Module (DMM) gives the ability to write external data into the device memory. Both the RTP and DMM have no or only minimum impact on the program execution time of the application code. A Parameter Overlay Module (POM) can reroute flash accesses to internal memory or to the EMIF. This rerouting allows the dynamic calibration against production code of parameters and tables without rebuilding the code to explicitly access RAM or halting the processor to reprogram the data flash. With integrated safety features and a wide choice of communication and control peripherals, the TMS570LS31x5/21x5 device is an ideal solution for high-performance real-time control applications with safety-critical requirements. Device Information (1) PART NUMBER PACKAGE BODY SIZE NFBGA (337) 16.0 mm x 16.0 mm TMS570LS2125PGE LQFP (144) 20.0 mm x 20.0 mm TMS570LS2135ZWT NFBGA (337) 16.0 mm x 16.0 mm TMS570LS2135PGE LQFP (144) 20.0 mm x 20.0 mm TMS570LS3135ZWT NFBGA (337) 16.0 mm x 16.0 mm TMS570LS3135PGE LQFP (144) 20.0 mm x 20.0 mm TMS570LS2125ZWT (1) 4 For more information, see Section 9, Mechanical Packaging and Orderable Information. Device Overview Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com Dual Cortex-R4F CPUs in Lockstep TRACECTL ETMDATA[31:0] TRACECLKIN Color Legend for Power Domains Core/RAM always on RAM Core #1 #2 ETM-R4 RTP DMA TRACECLK 256KB RAM with ECC DMMSYNC DMMDATA[15:0] (A) DMMCLK DMMnENA 64K 64K 64K 64K RTPSYNC RTPDATA[15:0] 3MB(B) Flash with ECC RTPnENA Functional Block Diagram RTPCLK 1.4 SPNS164C - APRIL 2012 - REVISED APRIL 2015 POM HTU1 DMM #3 #1 #2 #4 #3 #5 FTU HTU2 Switched Central Resource Switched Central Resource Main Cross Bar: Arbitration and Prioritization Control 64KB Flash for EEPROM Emulation with ECC CRC Peripheral Central Resource Bridge Switched Central Resource SYS nPORRST nRST ECLK ESM nERROR IOMM PMM DCAN1 DCAN2 VIM EMIF_nWAIT EMIF_CLK EMIF_CKE EMIF_nCS[4:2] EMIF_nCS[0] EMIF_ADDR[21:0] EMIF_BA[1:0] EMIF_DATA[15:0] EMIF_nDQM[1:0] EMIF_nOE EMIF_nWE EMIF_nRAS EMIF_nCAS EMIF_nRW DCAN3 RTI MibSPI1 MIBSPI1_nCS[5:0] MIBSPI1_nENA EMIF DCC1 SPI2 DCC2 MibSPI3 SPI4 MibADC1 MibADC2 N2HET1 N2HET2 GIO FlexRay I2C I2C_SCL I2C_SDA FRAY_RX2 FRAY_TX2 FRAY_TXEN2 FRAY_RX1 FRAY_TX1 FRAY_TXEN1 GIOB[7:0] GIOA[7:0] N2HET2_PIN_nDIS N2HET2[18,16] N2HET2[15:0] N2HET1[31:0] N2HET1_PIN_nDIS ADREFLO AD2EVT VCCAD VSSAD ADREFHI AD2IN[15:0] ADREFLO AD1EVT AD1IN[7:0] AD1IN[23:8] VCCAD VSSAD ADREFHI MibSPI5 A. B. CAN1_RX CAN1_TX CAN2_RX CAN2_TX CAN3_RX CAN3_TX MIBSPI1_CLK MIBSPI1_SIMO[1:0] MIBSPI1_SOMI[1:0] SPI2_CLK SPI2_SIMO SPI2_SOMI SPI2_nCS[1:0] SPI2_nENA MIBSPI3_CLK MIBSPI3_SIMO MIBSPI3_SOMI MIBSPI3_nCS[5:0] MIBSPI3_nENA SPI4_CLK SPI4_SIMO SPI4_SOMI SPI4_nCS0 SPI4_nENA MIBSPI5_CLK MIBSPI5_SIMO[3:0] MIBSPI5_SOMI[3:0] MIBSPI5_nCS[3:0] MIBSPI5_nENA LIN LIN_RX LIN_TX SCI SCI_RX SCI_TX For devices with 192KB RAM with ECC, the RAM #3 power domain is not supported. The TMS570LS2135 and TMS570LS2125 devices only support 2MB of Flash with ECC. Figure 1-1. Functional Block Diagram Device Overview Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 5 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table of Contents 1 2 3 4 5 Device Overview ......................................... 1 6.11 Tightly Coupled RAM (TCRAM) Interface Module .. 80 1.1 Features .............................................. 1 6.12 Parity Protection for Peripheral RAMs .............. 80 1.2 Applications ........................................... 2 6.13 On-Chip SRAM Initialization and Testing 1.3 Description ............................................ 3 6.14 External Memory Interface (EMIF) .................. 84 1.4 Functional Block Diagram ............................ 5 6.15 Vectored Interrupt Manager ......................... 91 Revision History ......................................... 7 Device Comparison ..................................... 9 Terminal Configuration and Functions ........... 10 6.16 DMA Controller ...................................... 94 6.17 Real Time Interrupt Module ......................... 96 6.18 Error Signaling Module .............................. 98 PGE QFP Package Pinout (144-Pin) ............... 10 6.19 Reset / Abort / Error Sources ...................... 102 4.2 ZWT BGA Package Ball-Map (337-Ball Grid Array) 11 6.20 Digital Windowed Watchdog ....................... 104 4.3 ................................. .......................................... Absolute Maximum Ratings ........................ ESD Ratings ........................................ Power-On Hours (POH) ............................. Recommended Operating Conditions ............... Switching Characteristics for Clock Domains ....... Wait States Required ............................... Power Consumption................................. Input/Output Electrical Characteristics .............. Thermal Resistance Characteristics ................ Output Buffer Drive Strengths ...................... Input Timings ........................................ Output Timings ...................................... Low-EMI Output Buffers ............................ 6.21 Debug Subsystem Terminal Functions Specifications 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 12 39 7 ................................. 105 39 Peripheral Information and Electrical Specifications ......................................... 116 39 7.1 Peripheral Legend ................................. 116 39 7.2 Multibuffered 12-Bit Analog-to-Digital Converter 40 7.3 General-Purpose Input/Output ..................... 127 41 7.4 Enhanced High-End Timer (N2HET) 41 7.5 FlexRay Interface .................................. 133 42 7.6 Controller Area Network (DCAN) .................. 135 43 7.7 Local Interconnect Network Interface (LIN) ........ 136 44 7.8 Serial Communication Interface (SCI) ............. 137 45 7.9 7.10 Inter-Integrated Circuit (I2C) ....................... 138 Multibuffered / Standard Serial Peripheral Interface ............................................ 141 46 46 48 8 .. .............. 116 128 Device and Documentation Support .............. 153 8.1 Device Support..................................... 153 8.2 Documentation Support ............................ 155 Device Power Domains ............................. 50 8.3 Related Links 6.2 Voltage Monitor Characteristics ..................... 51 8.4 Community Resources............................. 155 6.3 Power Sequencing and Power On Reset ........... 52 8.5 Trademarks ........................................ 155 Warm Reset (nRST)................................. 54 8.6 Electrostatic Discharge Caution 6.5 ARM-R4F CPU Information ......................... 55 8.7 Glossary............................................ 155 6.6 Clocks ............................................... 58 8.8 .................................... Glitch Filters ......................................... Device Memory Map ................................ Flash Memory ....................................... 66 8.9 68 8.10 ............... ....................... Module Certifications............................... System Information and Electrical Specifications ........................................... 50 6.1 6.4 6.7 Clock Monitoring 6.8 6.9 6.10 6 82 4.1 5.1 6 ........... 69 77 9 ...................................... ................... Device Identification Code Register Die Identification Registers 155 155 157 158 158 Mechanical Packaging and Orderable Information ............................................. 165 9.1 Packaging Information ............................. 165 Table of Contents Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 2 Revision History This data manual revision history highlights the technical changes made to the SPNS164B device-specific data manual to make it an SPNS164C revision. Scope: Applicable updates to the HerculesTM TMS570 MCU device family, specifically relating to the TMS570LS31x5/21x5 devices, which are now in the production data (PD) stage of development have been incorporated. Changes from August 1, 2013 to April 30, 2015 (from B Revision (July 2013) to C Revision) * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Page Section 1 (Device Overview): Updated/Changed section title ................................................................. 1 Updated/Changed the N2HET feature ............................................................................................. 1 (Device Information): Added table .................................................................................................. 4 Added Section 3, Device Comparison ............................................................................................. 9 Section 4 (Terminal Configuration and Functions): Updated/Changed section title ........................................ 10 Table 4-2 (PGE Enhanced High-End Timer Modules (N2HET1, N2HET2)): Updated/Changed N2HET1 time input capture or output compare pin description ................................................................................ 14 Table 4-2: Added N2HET1_PIN_nDIS signal DESCRIPTION ................................................................ 14 Table 4-2: Updated/Changed N2HET2 time input capture or output compare pin description ........................... 15 Table 4-2: Added N2HET2_PIN_nDIS signal DESCRIPTION ................................................................ 15 Table 4-3 Updated description about using GIOB[2] on pin 55 .............................................................. 15 Table 4-13 (PGE Test and Debug Modules Interface): Updated/Changed TEST pin description ........................ 18 Table 4-19 (ZWT Enhanced High-End Timer (N2HET) Modules): Updated/Changed N2HET1 time input capture or output compare pin description ................................................................................................ 22 Table 4-19 Added alternate terminals for N2HET1 pins 17, 19, 21, 23, 25, 27, 29 and 31 ............................... 22 Table 4-19: Added N2HET1_PIN_nDIS signal DESCRIPTION ............................................................... 22 Table 4-19: Updated/Changed N2HET2 time input capture or output compare pin description .......................... 23 Table 4-19: Added N2HET2_PIN_nDIS signal DESCRIPTION ............................................................... 23 Table 4-20 Updated description about using GIOB[2] on ball V10 ........................................................... 24 Table 4-28 (External Memory Interface (EMIF)): Global: Deleted EMIF_RNW pin function............................... 28 Table 4-34 (ZWT Test and Debug Modules Interface): Updated/Changed TEST pin description ....................... 34 Table 4-36 (No Connects): Deleted NC pins A8, B8, and B9; supported on FlexRay Interface Controller ............. 35 Section 5 (Specifications): Updated/Changed section title .................................................................... 39 Section 5.1 (Absolute Maximum Ratings): Reformatted table................................................................. 39 Section 5.1 (Absolute Maximum Ratings): Updated/Changed VCCAD supply voltage range MAX value from "5.5" to "6.25" V ............................................................................................................................ 39 Section 5.1: Updated/Changed ADC input pins input voltage range MAX value from "5.5" to "6.25" V ................. 39 Section 5.2 (ESD Ratings): Added table (new).................................................................................. 39 Section 5.3 (Power-On Hours (POH)): Added table (new) .................................................................... 39 Section 5.8 (Input/Output Electrical Characteristics): Updated/Changed Input Clamp Current from IIC to IIK ........... 43 Section 5.9 (Thermal Resistance Characteristics): Moved section and updated/changed subsection title. ............ 44 Table 5-2 (Thermal Resistance Characteristics (PGE Package)): Added test conditions and added JT row for PGE package ........................................................................................................................ 44 Table 5-3 (Thermal Resistance Characteristics (ZWT Package)): Added test conditions and added JT row for ZWT package ........................................................................................................................ 44 Clarified impact of SPI2PC9 register on drive strength of SPI2SOMI pin .................................................. 45 Updated/Changed the MIN value of tv(RST) to 2256tc(OSC) ns .................................................................. 54 Section 6.6.1 (Clock Sources): Added Table 6-8, Available Clock Source cross-references ............................. 58 Section 6.6.1.1 (Main Oscillator): Added Figure 6-4, Recommended Crystal/Clock Connection cross-reference ..... 58 Table 6-10 Added limits for HF LPO after software trim ...................................................................... 60 Table 6-13 (Clock Domain Descriptions): Added missing "1" to the VCLKACON clock source selection register name for VCLKA3 row .............................................................................................................. 63 Section 6.9.1 Added addititional device-specific memory map................................................................ 70 Table 6-20 Corrected size of bank 7 OTP and bank 7 OTP ECC ............................................................ 72 Figure 6-12 (TCRAM Block Diagram): Updated/Changed figure, deleted A TCM .......................................... 80 Table 6-25 Added table footnotes identifying the address ranges of the ESRAM PBIST groups ........................ 82 Table 6-25 Added RAM power domain information in the table notes ....................................................... 82 Table 6-26(Memory Initialization): Updated/Changed N2HET2 RAM ending address from "0xFF57FFFF" to "0xFF45FFFF" ....................................................................................................................... 83 Revision History Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 7 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 * * * * * * * * * * * * 8 www.ti.com Table 6-38 Corrected base JTAG ID Base Value From 0xnD8A002F to 0xnB8A002F .................................. Table 6-38 (JTAG ID Code): Added JTAG Identification Code for Silicon Revision "Rev D" ........................... Table 7-7 (MibADC Recommended Operating Conditions): Updated/Changed Analog input clamp current from IAIC to IAIK ............................................................................................................................ FlexRay Interface, Section 7.5.1 (Features): Updated/Changed "8KB of message ..." bullet for clarification ......... Controller Area Network (DCAN) Section 7.6.1 (Features): Updated/Changed TRM references to the correct document titles .................................................................................................................... Table 7-24 (SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO = output, and SPISOMI = input)): Updated/Changed table footnote to "... CLOCK PHASE bit (SPIFMTx.16) is cleared" ............................................................................................................................. Section 8 (Device and Documentation Support): Updated/Changed section to meet new requirements, including addition of several subsections .................................................................................................. Section 8.8 (Device Identification Code Register): Added Device ID code value for silicon Rev D .................... Section 8.9 (Die Identification Registers): Updated/Changed the address of the two die identification registers (DIEIDL and DIEIDH) to point to the original registers at location 0xFFFFFF7C and 0xFFFFFF80 for this section. Table 8-3 (Die-ID Registers): Updated/Changed the BIT LOCATION column for all ITEM rows ....................... Section 9 (Mechanical Packaging and Orderable Information): Updated/Changed section title ........................ Section 9.1 (Packaging Information): Updated/Changed the paragraph ................................................... Revision History 106 106 121 133 135 145 153 157 158 158 165 165 Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 3 Device Comparison Table 3-1 lists the features of the TMS570LS2125/LS2135/LS3135 devices. Table 3-1. TMS570LS2125, LS2135, LS3135 Device Comparison (1) (2) FEATURES Generic Part Number Package DEVICES TMS570LC4357ZWT (3) TMS570LS3137ZWT (3) TMS570LS3135ZWT TMS570LS3135PGE TMS570LS2135ZWT TMS570LS2135PGE TMS570LS2125ZWT TMS570LS2125PGE TMS570LS1227ZWT (3) 337 BGA 337 BGA 337 BGA 144 QFP 337 BGA 144 QFP 337 BGA 144 QFP 337 BGA ARM Cortex-R5F ARM Cortex-R4F ARM Cortex-R4F ARM Cortex-R4F ARM Cortex-R4F ARM Cortex-R4F ARM Cortex-R4F ARM Cortex-R4F ARM Cortex-R4F Frequency (MHz) 300 180 180 160 180 160 180 160 180 Cache (KB) 32 I 32 D - - - - - - - - Flash (KB) 4096 3072 3072 3072 2048 2048 2048 2048 1280 RAM (KB) 512 256 256 256 256 256 192 192 192 Data Flash [EEPROM] (KB) 128 64 64 64 64 64 64 64 64 10/100 10/100 - - - - - - 10/100 2-ch 2-ch 2-ch 2-ch 2-ch 2-ch 2-ch 2-ch 2-ch 4 3 3 3 3 3 3 3 3 2 (41ch) 2 (24ch) 2 (24ch) 2 (24ch) 2 (24ch) 2 (24ch) 2 (24ch) 2 (24ch) 2 (24ch) CPU EMAC FlexRay CAN MibADC 12-bit (Ch) N2HET (Ch) 2 (64) 2 (44) 2 (50) 2 (50) 2 (44) 2 (40) 2 (44) 2 (40) 2 (44) ePWM Channels 14 - - - - - - - 14 eCAP Channels 6 - - - - - - - 6 eQEP Channels 2 - - - - - - - 2 5 (4 x 6 + 2) 3 (6 + 6 + 4) 3 (6 + 6 + 4) 3 (5 + 6 + 1) 3 (6 + 6 + 4) 3 (5 + 6 + 1) 3 (6 + 6 + 4) 3 (5 + 6 + 1) 3 (6 + 6 + 4) MibSPI (CS) SPI (CS) - 2 (2 + 1) 2 (2 + 1) 1 (1) 2 (2 + 1) 1 (1) 2 (2 + 1) 1 (1) 2 (2 + 1) SCI (LIN) 4 (2 with LIN) 2 (1 with LIN) 2 (1 with LIN) 2 (1 with LIN) 2 (1 with LIN) 2 (1 with LIN) 2 (1 with LIN) 2 (1 with LIN) 2 (1 with LIN) 2 1 1 1 1 1 1 1 1 168 (with 16 interrupt capable) 144 (with 16 interrupt capable) 144 (with 16 interrupt capable) 58 (with 4 interrupt capable) 144 (with 16 interrupt capable) 58 (with 4 interrupt capable) 144 (with 16 interrupt capable) 58 (with 4 interrupt capable) 101 (with 16 interrupt capable) I2C GPIO (INT) (4) EMIF 16-bit data 16-bit data 16-bit data - 16-bit data - 16-bit data - 16-bit data ETM (Trace) 32-bit 32-bit 32-bit - 32-bit - 32-bit - - RTP/DMM 16/16 16/16 16/16 - 16/16 - 16/16 - - Operating Temperature -40C to 125C -40C to 125C -40C to 125C -40C to 125C -40C to 125C -40C to 125C -40C to 125C -40C to 125C -40C to 125C Core Supply (V) 1.14 V - 1.32 V 1.14 V - 1.32 V 1.14 V - 1.32 V 1.14 V - 1.32 V 1.14 V - 1.32 V 1.14 V - 1.32 V 1.14 V - 1.32 V 1.14 V - 1.32 V 1.14 V - 1.32 V 3.0 V - 3.6 V 3.0 V - 3.6 V 3.0 V - 3.6 V 3.0 V - 3.6 V 3.0 V - 3.6 V 3.0 V - 3.6 V 3.0 V - 3.6 V 3.0 V - 3.6 V 3.0 V - 3.6 V I/O Supply (V) (1) (2) (3) (4) For additional device variants, see www.ti.com/tms570 This table reflects the maximum configuration for each peripheral. Some functions are multiplexed and not all pins are available at the same time. Superset device Total number of pins that can be used as general-purpose input or output when not used as part of a peripheral Device Comparison Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 9 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 4 Terminal Configuration and Functions PGE QFP Package Pinout (144-Pin) 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 TMS N2HET1[28] N2HET1[08] MIBSPI1NCS[0] VCCIO VSS VSS VCC MIBSPI5CLK MIBSPI5SIMO[0] MIBSPI5SOMI[0] MIBSPI5NENA MIBSPI1NENA MIBSPI1CLK MIBSPI1SOMI MIBSPI1SIMO N2HET1[26] N2HET1[24] CAN1RX CAN1TX VSS VCC AD1EVT AD1IN[15] / AD2IN[15] AD1IN[23] / AD2IN[07] AD1IN[08] / AD2IN[08] AD1IN[14] / AD2IN[14] AD1IN[22] / AD2IN[06] AD1IN[06] AD1IN[13] / AD2IN[13] AD1IN[05] AD1IN[12] / AD2IN[12] AD1IN[04] AD1IN[11] / AD2IN[11] AD1IN[03] AD1IN[02] 4.1 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 AD1IN[10] / AD2IN[10] AD1IN[01] AD1IN[09] / AD2IN[09] VCCAD VSSAD ADREFLO ADREFHI AD1IN[21] / AD2IN[05] AD1IN[20] / AD2IN[04] AD1IN[19] / AD2IN[03] AD1IN[18] / AD2IN[02] AD1IN[07] AD1IN[0] AD1IN[17] / AD2IN[01] AD1IN[16] / AD2IN[0] VCC VSS MIBSPI3NCS[0] MIBSPI3NENA MIBSPI3CLK MIBSPI3SIMO MIBSPI3SOMI VSS VCC VCC VSS nPORRST VCC VSS VSS VCCIO N2HET1[15] MIBSPI1NCS[2] N2HET1[13] N2HET1[06] MIBSPI3NCS[1] FRAYTX2 FRAYRX2 MIBSPI3NCS[3] MIBSPI3NCS[2] FRAYTXEN2 N2HET1[11] FLTP1 FLTP2 GIOA[2] VCCIO VSS CAN3RX CAN3TX GIOA[5] N2HET1[22] GIOA[6] VCC OSCIN Kelvin_GND OSCOUT VSS GIOA[7] N2HET1[01] N2HET1[03] N2HET1[0] VCCIO VSS VSS VCC N2HET1[02] N2HET1[05] MIBSPI5NCS[0] N2HET1[07] TEST N2HET1[09] N2HET1[4] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 nTRST TDI TDO TCK RTCK VCC VSS nRST nERROR N2HET1[10] ECLK VCCIO VSS VSS VCC N2HET1[12] N2HET1[14] FRAYRX1 N2HET1[30] CAN2TX CAN2RX MIBSPI1NCS[1] LINRX LINTX FRAYTX1 VCCP VSS VCCIO VCC VSS N2HET1[16] N2HET1[18] N2HET1[20] FRAYTXEN1 VCC VSS A. Pins can have multiplexed functions. Only the default function is depicted in the figure. Figure 4-1. PGE QFP Package Pinout (144-Pin)(A) 10 Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 4.2 SPNS164C - APRIL 2012 - REVISED APRIL 2015 ZWT BGA Package Ball-Map (337-Ball Grid Array) A B C D E F G H J K L M N P R AD1IN[15] AD1IN[22] / / AD1EVT AD2IN[15] AD2IN[06] 19 VSS VSS TMS N2HET1 [10] MIBSPI5 NCS[0] MIBSPI1 SIMO MIBSPI1 NENA MIBSPI5 CLK MIBSPI5 SIMO[0] N2HET1 [28] DMM_ DATA[0] CAN3RX 18 VSS TCK TDO nTRST N2HET1 [08] MIBSPI1 CLK MIBSPI1 SOMI MIBSPI5 NENA MIBSPI5 SOMI[0] N2HET1 [0] DMM_ DATA[1] CAN3TX NC 17 TDI RST EMIF_ ADDR[21] EMIF_ nWE MIBSPI5 SOMI[1] DMM_ CLK MIBSPI5 SIMO[3] MIBSPI5 SIMO[2] N2HET1 [31] EMIF_ nCS[3] EMIF_ nCS[2] EMIF_ nCS[4] EMIF_ nCS[0] NC 16 RTCK FRAY TXEN1 EMIF_ ADDR[20] EMIF_ BA[1] MIBSPI5 SIMO[1] DMM_ NENA MIBSPI5 SOMI[3] MIBSPI5 SOMI[2] DMM_ SYNC NC NC NC NC NC 15 FRAY RX1 FRAY TX1 ETM DATA[16] / EMIF_ DATA[0] ETM DATA[17] / EMIF_ DATA[1] ETM DATA[18] / EMIF_ DATA[2] ETM DATA[19] / EMIF_ DATA[3] NC NC 14 N2HET1 [26] nERROR EMIF_ EMIF_ ETM ADDR[17] ADDR[16] DATA[07] VCCIO VCC VCCIO VCCIO VCCIO VCCIO NC 13 N2HET1 [17] N2HET1 [19] EMIF_ ADDR[15] NC ETM DATA[12] / EMIF_BA[0] VCCIO VCCIO 12 ECLK N2HET1 [04] EMIF_ ADDR[14] NC ETM DATA[13] / EMIF_nOE VCCIO VSS VSS VCC VSS VSS 11 N2HET1 [14] N2HET1 [30] EMIF_ ADDR[13] NC ETM DATA[14] / EMIF_ nDQM[1] VCCIO VSS VSS VSS VSS 10 CAN1TX CAN1RX EMIF_ ADDR[12] NC ETM DATA[15] / EMIF_ nDQM[0] VCC VCC VSS VSS EMIF_ EMIF_ ETM ETM ETM ETM ETM ADDR[19] ADDR[18] DATA[06] DATA[05] DATA[04] DATA[03] DATA[02] VCCIO VCCIO VCC T U V W AD1IN [06] AD1IN[11] / AD2IN[11] VSSAD VSSAD 19 AD1IN [04] AD1IN [02] VSSAD 18 AD1IN[10] / AD2IN[10] AD1IN [01] AD1IN[08] AD1IN[14] AD1IN[13] / / / AD2IN[08] AD2IN[14] AD2IN[13] AD1IN [05] AD1IN [03] AD1IN[09] / 17 AD2IN[09] AD1IN[23] AD1IN[12] AD1IN[19] / / / ADREFLO AD2IN[07] AD2IN[12] AD2IN[03] VSSAD 16 AD1IN[21] AD1IN[20] / / ADREFHI AD2IN[05] AD2IN[04] VCCAD 15 NC AD1IN[18] / AD2IN[02] AD1IN [0] 14 ETM DATA[01] NC AD1IN[17] AD1IN[16] / / AD2IN[01] AD2IN[0] NC 13 VCCIO ETM DATA[0] MIBSPI5 NCS[3] NC NC NC 12 VSS VCCPLL ETME TRACE CTL NC NC NC NC 11 VSS VCC VCC ETM TRACE CLKOUT NC NC MIBSPI3 NCS[0] GIOB[3] 10 AD1IN [07] 9 N2HET1 [27] FRAY TXEN2 EMIF_ ADDR[11] NC ETM DATA[08] / EMIF_ ADDR[5] VCC VSS VSS VSS VSS VSS VCCIO ETM TRACE CLKIN NC NC MIBSPI3 CLK MIBSPI3 9 NENA 8 FRAY RX2 FRAY TX2 EMIF_ ADDR[10] NC ETM DATA[09] / EMIF_ ADDR[4] VCCP VSS VSS VCC VSS VSS VCCIO ETM DATA[31] / EMIF_ DATA[15] NC NC MIBSPI3 SOMI MIBSPI3 8 SIMO 7 LINRX LINTX EMIF_ ADDR[9] NC ETM DATA[10] / EMIF_ ADDR[3] VCCIO VCCIO ETM DATA[30] / EMIF_ DATA[14] NC NC N2HET1 [09] nPORRST 7 6 GIOA[4] MIBSPI5 NCS[1] EMIF_ ADDR[8] NC ETM DATA[11] / EMIF_ ADDR[2] VCCIO VCCIO VCCIO VCCIO VCC VCC VCCIO VCCIO VCCIO ETM DATA[29] / EMIF_ DATA[13] NC NC N2HET1 [05] MIBSPI5 6 NCS[2] 5 GIOA[0] GIOA[5] EMIF_ ADDR[7] EMIF_ ADDR[1] ETM DATA[20] / EMIF_ DATA[4] ETM DATA[21] / EMIF_ DATA[5] ETM DATA[22] / EMIF_ DATA[6] FLTP2 FLTP1 ETM DATA[23] / EMIF_ DATA[7] ETM DATA[24] / EMIF_ DATA[8] ETM DATA[25] / EMIF_ DATA[9] ETM DATA[26] / EMIF_ DATA[10] ETM DATA[27] / EMIF_ DATA[11] ETM DATA[28] / EMIF_ DATA[12] NC NC MIBSPI3 NCS[1] N2HET1 [02] 5 4 N2HET1 [16] N2HET1 [12] EMIF_ ADDR[6] EMIF_ ADDR[0] NC NC NC N2HET1 [21] N2HET1 [23] NC NC NC NC NC EMIF_ nCAS NC NC NC NC 4 3 N2HET1 [29] N2HET1 [22] MIBSPI3 NCS[3] SPI2 NENA N2HET1 [11] MIBSPI1 NCS[1] MIBSPI1 NCS[2] GIOA[6] MIBSPI1 NCS[3] EMIF_ CLK EMIF_ CKE N2HET1 [25] SPI2 NCS[0] EMIF_ nWAIT EMIF_ nRAS NC NC NC N2HET1 [06] 3 2 VSS MIBSPI3 NCS[2] GIOA[1] SPI2 SOMI SPI2 CLK GIOB[2] GIOB[5] CAN2TX GIOB[6] GIOB[1] KELVIN_ GND GIOB[0] N2HET1 [13] N2HET1 [20] MIBSPI1 NCS[0] NC TEST N2HET1 [01] VSS 2 1 VSS VSS GIOA[2] SPI2 SIMO GIOA[3] GIOB[7] GIOB[4] CAN2RX N2HET1 [18] OSCIN OSCOUT GIOA[7] N2HET1 [15] N2HET1 [24] NC N2HET1 [07] N2HET1 [03] VSS VSS 1 B C D E F G H J K L M N P R T U V W A A. Balls can have multiplexed functions. Only the default function, except for the EMIF signals that are multiplexed with ETM signals, is depicted in the figure. Figure 4-2. ZWT Package Pinout. Top View(A) Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 11 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3 www.ti.com Terminal Functions Section 4.3.1 and Section 4.3.2 identify the external signal names, the associated pin or ball numbers along with the mechanical package designator, the pin or ball type (Input, Output, I/O, Power, or Ground), whether the pin or ball has any internal pullup or pulldown, whether the pin or ball can be configured as a GPIO, and a functional pin or ball description. The first signal name listed is the primary function for that terminal. The signal name in bold is the function being described. For information on how to select between different multiplexed functions, see the TMS570LS31x/21x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual (SPNU499) . NOTE In the Terminal Functions table below, the "Reset Pull State" is the state of the pull applied to the terminal while nPORRST is low and immediately after nPORRST goes High. The default pull direction may change when software configures the pin for an alternate function. The "Pull Type" is the type of pull asserted when the signal name in bold is enabled for the given terminal by the IOMM control registers. All I/O signals except nRST are configured as inputs while nPORRST is low and immediately after nPORRST goes High. While nPORRST is low, the input buffers are disabled, and the output buffers are disabled with the default pulls enabled. All output-only signals have the output buffer disabled and the default pull enabled while nPORRST is low, and are configured as outputs with the pulls disabled immediately after nPORRST goes High. 4.3.1 PGE Package 4.3.1.1 Multibuffered Analog-to-Digital Converters (MibADCs) Table 4-1. PGE Multibuffered Analog-to-Digital Converters (MibADC1, MibADC2) TERMINAL SIGNAL NAME 144 PGE SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION ADREFHI (1) 66 Input ADREFLO (1) 67 Input VCCAD (1) 69 Power VSSAD (1) 68 Ground AD1EVT 86 I/O Pulldown Programmable, 20 A ADC1 event trigger input, or GPIO MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS 55 I/O Pullup Programmable, 20 A ADC2 event trigger input, or GPIO AD1IN[0] 60 AD1IN[1] 71 AD1IN[2] 73 AD1IN[3] 74 AD1IN[4] 76 Input N/A AD1IN[5] 78 AD1IN[6] 80 AD1IN[7] 61 (1) 12 ADC high reference supply N/A None None ADC low reference supply Operating supply for ADC ADC1 analog input The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores. Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 4-1. PGE Multibuffered Analog-to-Digital Converters (MibADC1, MibADC2) (continued) TERMINAL SIGNAL NAME 144 PGE AD1IN[8] / AD2IN[8] 83 AD1IN[9] / AD2IN[9] 70 AD1IN[10] / AD2IN[10] 72 AD1IN[11] / AD2IN[11] 75 AD1IN[12] / AD2IN[12] 77 AD1IN[13] / AD2IN[13] 79 AD1IN[14] / AD2IN[14] 82 AD1IN[15] / AD2IN[15] 85 AD1IN[16] / AD2IN[0] 58 AD1IN[17] / AD2IN[1] 59 AD1IN[18] / AD2IN[2] 62 AD1IN[19] / AD2IN[3] 63 AD1IN[20] / AD2IN[4] 64 AD1IN[21] / AD2IN[5] 65 AD1IN[22] / AD2IN[6] 81 AD1IN[23] / AD2IN[7] 84 SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION Input N/A None ADC1/ADC2 shared analog inputs Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 13 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.1.2 www.ti.com Enhanced High-End Timer (N2HET) Modules Table 4-2. PGE Enhanced High-End Timer Modules (N2HET1, N2HET2) TERMINAL SIGNAL NAME 144 PGE N2HET1[0]/SPI4CLK 25 N2HET1[1]/SPI4NENA/N2HET2[8] 23 N2HET1[2]/SPI4SIMO[0] 30 N2HET1[3]/SPI4NCS[0]/N2HET2[10] 24 N2HET1[4] 36 N2HET1[5]/SPI4SOMI[0]/N2HET2[12] 31 N2HET1[6]/SCIRX 38 N2HET1[7]/N2HET2[14] 33 N2HET1[8]/MIBSPI1SIMO[1] 106 N2HET1[9]/N2HET2[16] 35 N2HET1[10] 118 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] N2HET1[12] SIGNAL TYPE RESET PULL STATE PULL TYPE I/O Pulldown Programmable, 20 A 6 124 N2HET1[13]/SCITX 39 N2HET1[14] 125 N2HET1[15]/MIBSPI1NCS[4] 41 N2HET1[16] 139 MIBSPI1NCS[1]/N2HET1[17] 130 I/O Pullup Programmable, 20 A N2HET1[18] 140 I/O Pulldown Programmable, 20 A MIBSPI1NCS[2]/N2HET1[19] 40 I/O Pullup Programmable, 20 A N2HET1[20] 141 I/O Pulldown Programmable, 20 A N2HET1[22] 15 I/O Pulldown Programmable, 20 A MIBSPI1NENA/N2HET1[23] 96 I/O Pullup Programmable, 20 A N2HET1[24]/MIBSPI1NCS[5] 91 I/O Pulldown Programmable, 20 A MIBSPI3NCS[1]/N2HET1[25]/MDCLK 37 I/O Pullup Programmable, 20 A N2HET1[26] 92 I/O Pulldown Programmable, 20 A MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] 4 I/O Pullup Programmable, 20 A 107 I/O Pulldown Programmable, 20 A 3 I/O Pullup Programmable, 20 A N2HET1[30] 127 I/O Pulldown Programmable, 20 A MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] 54 I/O Pullup Programmable, 20 A GIOA[5]/EXTCLKIN/N2HET1_PIN_nDIS 14 I/O Pulldown Programmable, 20 A N2HET1[28] MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] 14 DESCRIPTION Terminal Configuration and Functions N2HET1 timer input capture or output compare, or GIO. Each terminal has a suppression filter with a programmable duration. Disable selected PWM outputs Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 4-2. PGE Enhanced High-End Timer Modules (N2HET1, N2HET2) (continued) TERMINAL 144 PGE SIGNAL NAME GIOA[2]/N2HET2[0] 9 GIOA[6]/N2HET2[4] 16 GIOA[7]/N2HET2[6] 22 N2HET1[1]/SPI4NENA/N2HET2[8] 23 N2HET1[3]/SPI4NCS[0]/N2HET2[10] 24 N2HET1[5]/SPI4SOMI[0]/N2HET2[12] 31 N2HET1[7]/N2HET2[14] 33 N2HET1[9]/N2HET2[16] 35 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] 6 MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS 55 4.3.1.3 SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION N2HET2 time input capture or output compare, or GPIO I/O Pulldown Programmable, 20 A I/O Pullup Programmable, 20 A Each terminal has a suppression filter with a programmable duration. Disable selected PWM outputs General-Purpose Input/Output (GPIO) Table 4-3. PGE General-Purpose Input/Output (GPIO) TERMINAL 144 PGE SIGNAL NAME GIOA[2]/N2HET2[0] 9 GIOA[5]/EXTCLKIN/N2HET1_PIN_nDIS 14 GIOA[6]/N2HET2[4] 16 GIOA[7]/N2HET2[6] 22 MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS 4.3.1.4 55 SIGNAL TYPE RESET PULL STATE PULL TYPE Pulldown Programmable, 20 A DESCRIPTION General-purpose I/O. I/O I/O Programmable, 20 A Pullup All GPIO terminals are capable of generating interrupts to the CPU on rising / falling / both edges. The application cannot output a level onto this terminal when it is configured as GIOB[2]. A pull-up is enabled on this input. This pull cannot be disabled, and is not programmable using the GIO module pull control registers. FlexRay Interface Controller (FlexRay) Table 4-4. FlexRay Interface Controller (FlexRay) TERMINAL SIGNAL NAME 144 PGE SIGNAL TYPE RESET PULL STATE PULL TYPE Pullup Fixed 100 A Pullup N/A None Pullup Fixed 100 A Pullup N/A None FRAYRX1 126 Input FRAYTX1 133 Output FRAYTXEN1 142 Output FRAYRX2 2 Input FRAYTX2 1 Output FRAYTXEN2 5 Output DESCRIPTION FlexRay data receive (channel 1) FlexRay data transmit (channel 1) FlexRay transmit enable (channel 1) FlexRay data receive (channel 2) FlexRay data transmit (channel 2) FlexRay transmit enable (channel 2) Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 15 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.1.5 www.ti.com Controller Area Network Controllers (DCANs) Table 4-5. PGE Controller Area Network Controllers (DCAN) TERMINAL SIGNAL NAME 144 PGE SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION CAN1RX 90 CAN1TX 89 CAN2RX 129 CAN2TX 128 CAN3RX 12 CAN3 receive, or GPIO CAN3TX 13 CAN3 transmit, or GPIO 4.3.1.6 CAN1 receive, or GPIO CAN1 transmit, or GPIO I/O Programmable, 20 A Pullup CAN2 receive, or GPIO CAN2 transmit, or GPIO Local Interconnect Network Interface Module (LIN) Table 4-6. PGE Local Interconnect Network Interface Module (LIN) TERMINAL SIGNAL NAME 144 PGE LINRX 131 LINTX 132 4.3.1.7 SIGNAL TYPE RESET PULL STATE PULL TYPE I/O Pullup Programmable, 20 A DESCRIPTION LIN receive, or GPIO LIN transmit, or GPIO Standard Serial Communication Interface (SCI) Table 4-7. PGE Standard Serial Communication Interface (SCI) TERMINAL SIGNAL NAME 144 PGE N2HET1[6]/SCIRX 38 N2HET1[13]/SCITX 39 4.3.1.8 SIGNAL TYPE RESET PULL STATE PULL TYPE I/O Pulldown Programmable, 20 A DESCRIPTION SCI receive, or GPIO SCI transmit, or GPIO Inter-Integrated Circuit Interface Module (I2C) Table 4-8. PGE Inter-Integrated Circuit Interface Module (I2C) TERMINAL SIGNAL NAME 144 PGE MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] 4 MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] 3 4.3.1.9 SIGNAL TYPE RESET PULL STATE PULL TYPE I/O Pullup Programmable, 20 A DESCRIPTION I2C serial data, or GPIO I2C serial clock, or GPIO Standard Serial Peripheral Interface (SPI) Table 4-9. PGE Standard Serial Peripheral Interface (SPI) TERMINAL SIGNAL NAME 144 PGE SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION N2HET1[0]/SPI4CLK 25 SPI4 clock, or GPIO N2HET1[3]/SPI4NCS[0]/N2HET2[10] 24 SPI4 chip select, or GPIO N2HET1[1]/SPI4NENA/N2HET2[8] 23 I/O N2HET1[2]/SPI4SIMO[0] 30 N2HET1[5]/SPI4SOMI[0]/N2HET2[12] 31 16 Pulldown Terminal Configuration and Functions Programmable, 20 A SPI4 enable, or GPIO SPI4 slave-input masteroutput, or GPIO SPI4 slave-output masterinput, or GPIO Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.1.10 Multibuffered Serial Peripheral Interface Modules (MibSPI) Table 4-10. PGE Multibuffered Serial Peripheral Interface Modules (MibSPI) TERMINAL 144 PGE SIGNAL NAME MIBSPI1CLK 95 MIBSPI1NCS[0]/MIBSPI1SOMI[1] 105 MIBSPI1NCS[1]/N2HET1[17] 130 MIBSPI1NCS[2]/N2HET1[19] 40 N2HET1[15]/MIBSPI1NCS[4] 41 N2HET1[24]/MIBSPI1NCS[5] 91 MIBSPI1NENA/N2HET1[23] 96 MIBSPI1SIMO[0] 93 N2HET1[8]/MIBSPI1SIMO[1] SIGNAL TYPE RESET PULL STATE PULL TYPE Pullup Programmable, 20 A Pulldown Programmable, 20 A Pullup Programmable, 20 A Pulldown Programmable, 20 A MibSPI1 slave-in master-out, or GPIO Pullup Programmable, 20 A MibSPI1 slave-out master-in, or GPIO DESCRIPTION MibSPI1 clock, or GPIO I/O 106 MibSPI1 chip select, or GPIO MibSPI1 chip select, or GPIO MibSPI1 enable, or GPIO MibSPI1 slave-in master-out, or GPIO MIBSPI1SOMI[0] 94 MIBSPI1NCS[0]/MIBSPI1SOMI[1] 105 MIBSPI3CLK 53 MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS 55 MIBSPI3NCS[1]/N2HET1[25]/MDCLK 37 MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] 4 MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] 3 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] 6 MIBSPI3NENA /MIBSPI3NCS[5]/N2HET1[31] 54 MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] 54 MIBSPI3SIMO[0] 52 MIBSPI3SOMI[0] 51 MibSPI3 slave-out master-in, or GPIO MIBSPI5CLK 100 MibSPI5 clock, or GPIO MIBSPI5NCS[0] 32 MIBSPI5NENA 97 MIBSPI5SIMO[0] 99 MibSPI5 slave-in master-out, or GPIO MIBSPI5SOMI[0] 98 MibSPI5 slave-out master-in, or GPIO MibSPI3 clock, or GPIO I/O Pullup Programmable, 20 A Pulldown Programmable, 20 A Pullup Programmable, 20 A MibSPI3 chip select, or GPIO MibSPI3 chip select, or GPIO MibSPI3 chip select, or GPIO MibSPI3 enable, or GPIO MibSPI3 slave-in master-out, or GPIO MibSPI5 chip select, or GPIO I/O Pullup Programmable, 20 A MibSPI5 enable, or GPIO 4.3.1.11 System Module Interface Table 4-11. PGE System Module Interface TERMINAL SIGNAL NAME nPORRST 144 PGE 46 SIGNAL TYPE Input RESET PULL STATE Pulldown PULL TYPE DESCRIPTION Fixed 100 A Pulldown Power-on reset, cold reset External power supply monitor circuitry must drive nPORRST low when any of the supplies to the microcontroller fall out of the specified range. This terminal has a glitch filter. See Section 6.8. Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 17 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 4-11. PGE System Module Interface (continued) TERMINAL 144 PGE SIGNAL NAME SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION nRST 116 I/O Pullup Fixed 100 A Pullup System reset, warm reset, bidirectional. The internal circuitry indicates any reset condition by driving nRST low. The external circuitry can assert a system reset by driving nRST low. To ensure that an external reset is not arbitrarily generated, TI recommends that an external pullup resistor is connected to this terminal. This terminal has a glitch filter. See Section 6.8. nERROR 117 I/O Pulldown Fixed 20 A Pulldown ESM Error Signal Indicates error of high severity. See Section 6.18. 4.3.1.12 Clock Inputs and Outputs Table 4-12. PGE Clock Inputs and Outputs TERMINAL 144 PGE SIGNAL NAME SIGNAL TYPE OSCIN 18 Input KELVIN_GND 19 Input OSCOUT 20 Output RESET PULL STATE N/A PULL TYPE None DESCRIPTION From external crystal/resonator, or external clock input Kelvin ground for oscillator To external crystal/resonator ECLK 119 I/O Pulldown Programmable, 20 A GIOA[5]/EXTCLKIN/N2HET1_PIN_nDIS 14 Input Pulldown 20 A External prescaled clock output, or GIO. External clock input #1 4.3.1.13 Test and Debug Modules Interface Table 4-13. PGE Test and Debug Modules Interface TERMINAL SIGNAL NAME 144 PGE SIGNAL TYPE TEST 34 I/O nTRST 109 Input RTCK 113 Output RESET PULL STATE PULL TYPE DESCRIPTION Pulldown Fixed 100 A Pulldown Test enable. This terminal must be connected to ground directly or via a pulldown resistor. N/A None JTAG test clock JTAG test data in JTAG test hardware reset TCK 112 Input Pulldown Fixed 100 A Pulldown TDI 110 I/O Pullup Fixed 100 A Pullup TDO 111 Output 100 A Pulldown None TMS 108 I/O Pullup Fixed 100 A Pullup 18 Terminal Configuration and Functions JTAG return test clock JTAG test data out JTAG test select Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.1.14 Flash Supply and Test Pads Table 4-14. PGE Flash Supply and Test Pads TERMINAL 144 PGE SIGNAL NAME VCCP 134 FLTP1 7 FLTP2 8 SIGNAL TYPE RESET PULL STATE PULL TYPE 3.3-V Power N/A None Flash pump supply None Flash test pads. These terminals are reserved for TI use only. For proper operation these terminals must connect only to a test pad or not be connected at all [no connect (NC)]. N/A DESCRIPTION 4.3.1.15 Supply for Core Logic: 1.2-V Nominal Table 4-15. PGE Supply for Core Logic: 1.2-V Nominal TERMINAL 144 PGE SIGNAL NAME VCC 17 VCC 29 VCC 45 VCC 48 VCC 49 VCC 57 VCC 87 VCC 101 VCC 114 VCC 123 VCC 137 VCC 143 SIGNAL TYPE RESET PULL STATE PULL TYPE 1.2-V Power N/A None DESCRIPTION 1.2-V Core supply 4.3.1.16 Supply for I/O Cells: 3.3-V Nominal Table 4-16. PGE Supply for I/O Cells: 3.3-V Nominal TERMINAL SIGNAL NAME 144 PGE VCCIO 10 VCCIO 26 VCCIO 42 VCCIO 104 VCCIO 120 VCCIO 136 SIGNAL TYPE RESET PULL STATE PULL TYPE 3.3-V Power N/A None DESCRIPTION 3.3-V Operating supply for I/Os Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 19 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 4.3.1.17 Ground Reference for All Supplies Except VCCAD Table 4-17. PGE Ground Reference for All Supplies Except VCCAD TERMINAL SIGNAL NAME 144 PGE VSS 11 VSS 21 VSS 27 VSS 28 VSS 43 VSS 44 VSS 47 VSS 50 VSS 56 VSS 88 VSS 102 VSS 103 VSS 115 VSS 121 VSS 122 VSS 135 VSS 138 VSS 144 20 SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION Ground reference Ground N/A Terminal Configuration and Functions None Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 4.3.2 SPNS164C - APRIL 2012 - REVISED APRIL 2015 ZWT Package 4.3.2.1 Multibuffered Analog-to-Digital Converters (MibADCs) Table 4-18. ZWT Multibuffered Analog-to-Digital Converters (MibADC1, MibADC2) TERMINAL SIGNAL NAME 337 ZWT SIGNAL TYPE ADREFHI (1) V15 Input ADREFLO (1) V16 Input VCCAD (1) W15 Power VSSAD V19 VSSAD W16 VSSAD W18 VSSAD W19 AD1EVT RESET PULL STATE PULL TYPE N/A None DESCRIPTION ADC high reference supply ADC low reference supply Operating supply for ADC Ground N/A None N19 I/O Pulldown Programmable, 20 A ADC1 event trigger input, or GPIO MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS V10 I/O Pullup Programmable, 20 A ADC2 event trigger input, or GPIO AD1IN[0] W14 AD1IN[1] V17 AD1IN[2] V18 Input N/A None ADC1 analog input Input N/A None ADC1/ADC2 shared analog inputs AD1IN[3] T17 AD1IN[4] U18 AD1IN[5] R17 AD1IN[6] T19 AD1IN[7] V14 AD1IN[8] / AD2IN[8] P18 AD1IN[9] / AD2IN[9] W17 AD1IN[10] / AD2IN[10] U17 AD1IN[11] / AD2IN[11] U19 AD1IN[12] / AD2IN[12] T16 AD1IN[13] / AD2IN[13] T18 AD1IN[14] / AD2IN[14] R18 AD1IN[15] / AD2IN[15] P19 AD1IN[16] / AD2IN[0] V13 AD1IN[17] / AD2IN[1] U13 AD1IN[18] / AD2IN[2] U14 AD1IN[19] / AD2IN[3] U16 AD1IN[20] / AD2IN[4] U15 AD1IN[21] / AD2IN[5] T15 AD1IN[22] / AD2IN[6] R19 AD1IN[23] / AD2IN[7] R16 (1) ADC supply power The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores. Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 21 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.2.2 www.ti.com Enhanced High-End Timer (N2HET) Modules Table 4-19. ZWT Enhanced High-End Timer (N2HET) Modules TERMINAL SIGNAL NAME N2HET1[0]/SPI4CLK 337 ZWT V2 N2HET1[2]/SPI4SIMO[0] W5 N2HET1[3]/SPI4NCS[0]/N2HET2[10] U1 N2HET1[4] B12 N2HET1[5]/SPI4SOMI[0]/N2HET2[12] V6 N2HET1[6]/SCIRX W3 N2HET1[8]/MIBSPI1SIMO[1] N2HET1[9]/N2HET2[16] N2HET1[10] I/O Pulldown Programmable, 20 A V7 D19 E3 B4 N2HET1[13]/SCITX N2 N2HET1[14] A11 N2HET1[15]/MIBSPI1NCS[4] N1 N2HET1[16] A4 N2HET1[17] A13 MIBSPI1NCS[1]/N2HET1[17] F3 N2HET1[18] J1 N2HET1[19] B13 MIBSPI1NCS[2]/N2HET1[19] G3 N2HET1[20] P2 N2HET1[21] H4 MIBSPI1NCS[3]/N2HET1[21] J3 N2HET1[22] B3 N2HET1 time input capture or output compare, or GIO. Each terminal has a suppression filter with a programmable duration. J4 G19 N2HET1[24]/MIBSPI1NCS[5] P1 N2HET1[25] M3 MIBSPI3NCS[1]/N2HET1[25] V5 N2HET1[26] A14 N2HET1[27] A9 MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] B2 N2HET1[28] K19 N2HET1[29] A3 MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] C3 N2HET1[30] B11 N2HET1[31] J17 MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] W9 GIOA[5]/EXTCLKIN/N2HET1_PIN_nDIS B5 22 Pulldown T1 N2HET1[12] MIBSPI1NENA/N2HET1[23] I/O Programmable, 20 A DESCRIPTION E18 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] N2HET1[23] PULL TYPE K18 N2HET1[1]/SPI4NENA/N2HET2[8] N2HET1[7]/N2HET2[14] RESET PULL STATE SIGNAL TYPE Terminal Configuration and Functions Disable selected PWM outputs Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 4-19. ZWT Enhanced High-End Timer (N2HET) Modules (continued) TERMINAL SIGNAL NAME 337 ZWT GIOA[2]/N2HET2[0] C1 EMIF_ADDR[0]/N2HET2[1] D4 GIOA[3]/N2HET2[2] E1 EMIF_ADDR[1]/N2HET2[3] D5 GIOA[6]/N2HET2[4] H3 EMIF_BA[1]/N2HET2[5] D16 GIOA[7]/N2HET2[6] M1 EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7] N17 N2HET1[1]/SPI4NENA/N2HET2[8] V2 EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9] K17 N2HET1[3]/SPI4NCS[0]/N2HET2[10] U1 EMIF_ADDR[6]/RTP_DATA[13]/N2HET2[11] C4 N2HET1[5]/SPI4SOMI[0]/N2HET2[12] V6 EMIF_ADDR[7]/RTP_DATA[12]/N2HET2[13] C5 N2HET1[7]/N2HET2[14] T1 EMIF_ADDR[8]/RTP_DATA[11]/N2HET2[15] C6 N2HET1[9]/N2HET2[16] V7 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] E3 MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS V10 SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION N2HET2 time input capture or output compare, or GIO. I/O Pulldown Programmable, 20 A I/O Pullup Programmable, 20 A Each terminal has a suppression filter with a programmable duration. Disable selected PWM outputs Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 23 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.2.3 www.ti.com General-Purpose Input/Output (GPIO) Table 4-20. ZWT General-Purpose Input/Output (GPIO) TERMINAL 337 ZWT SIGNAL NAME GIOA[0] A5 GIOA[1] C2 GIOA[2]/N2HET2[0] C1 GIOA[3]/N2HET2[2] E1 GIOA[4] A6 GIOA[5]/EXTCLKIN/N2HET1_PIN_nDIS B5 GIOA[6]/N2HET2[4] H3 GIOA[7]/N2HET2[6] M1 GIOB[0] M2 GIOB[1] K2 GIOB[2] F2 GIOB[3] W10 GIOB[4] G1 GIOB[5] G2 GIOB[6] J2 GIOB[7] F1 MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS 4.3.2.4 SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION Pulldown Programmable, 20 A General-purpose I/O. All GPIO terminals are capable of generating interrupts to the CPU on rising / falling / both edges. Fixed 20 A Pulldown The application cannot output a level onto this terminal when it is configured as GIOB[2]. A pull-up is enabled on this input. This pull cannot be disabled, and is not programmable using the GIO module pull control registers I/O V10 Pullup FlexRay Interface Controller (FlexRay) Table 4-21. FlexRay Interface Controller (FlexRay) TERMINAL SIGNAL NAME 337 ZWT SIGNAL TYPE RESET PULL STATE PULL TYPE Pullup Fixed 100 A Pullup None None Pullup Fixed 100 A Pullup FRAYRX1 A15 Input FRAYTX1 B15 Output FRAYTXEN1 B16 Output FRAYRX2 A8 Input FRAYTX2 B8 Output FRAYTXEN2 B9 Output None 24 Terminal Configuration and Functions None DESCRIPTION FlexRay data receive (channel 1) FlexRay data transmit (channel 1) FlexRay transmit enable (channel 1) FlexRay data receive (channel 2) FlexRay data transmit (channel 2) FlexRay transmit enable (channel 2) Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 4.3.2.5 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Controller Area Network Controllers (DCANs) Table 4-22. ZWT Controller Area Network Controllers (DCANs) TERMINAL SIGNAL NAME 337 ZWT SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION CAN1RX B10 CAN1TX A10 CAN2RX H1 CAN2TX H2 CAN3RX M19 CAN3 receive, or GPIO CAN3TX M18 CAN3 transmit, or GPIO 4.3.2.6 CAN1 receive, or GPIO CAN1 transmit, or GPIO I/O Pullup Programmable, 20 A CAN2 receive, or GPIO CAN2 transmit, or GPIO Local Interconnect Network Interface Module (LIN) Table 4-23. ZWT Local Interconnect Network Interface Module (LIN) TERMINAL SIGNAL NAME 337 ZWT LINRX A7 LINTX B7 4.3.2.7 SIGNAL TYPE RESET PULL STATE PULL TYPE I/O Pullup Programmable, 20 A DESCRIPTION LIN receive, or GPIO LIN transmit, or GPIO Standard Serial Communication Interface (SCI) Table 4-24. ZWT Standard Serial Communication Interface (SCI) TERMINAL SIGNAL NAME 337 ZWT N2HET1[6]/SCIRX W3 N2HET1[13]/SCITX N2 SIGNAL TYPE RESET PULL STATE PULL TYPE I/O Pulldown Programmable, 20 A DESCRIPTION SCI receive, or GPIO SCI transmit, or GPIO Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 25 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.2.8 www.ti.com Inter-Integrated Circuit Interface Module (I2C) Table 4-25. ZWT Inter-Integrated Circuit Interface Module (I2C) TERMINAL SIGNAL NAME 337 ZWT MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] B2 MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] C3 4.3.2.9 SIGNAL TYPE RESET PULL STATE PULL TYPE I/O Pullup Programmable, 20 A DESCRIPTION I2C serial data, or GPIO I2C serial clock, or GPIO Standard Serial Peripheral Interface (SPI) Table 4-26. ZWT Standard Serial Peripheral Interface (SPI) TERMINAL SIGNAL NAME 337 ZWT SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION SPI2CLK E2 SPI2 clock, or GPIO SPI2NCS[0] N3 SPI2 chip select, or GPIO SPI2NENA/SPI2NCS[1] D3 SPI2NENA/SPI2NCS[1] D3 SPI2SIMO[0] D1 SPI2 slave-input masteroutput, or GPIO SPI2SOMI[0] D2 SPI2 slave-output masterinput, or GPIO N2HET1[0]/SPI4CLK K18 SPI4 clock, or GPIO N2HET1[3]/SPI4NCS[0]/N2HET2[10] U1 SPI4 chip select, or GPIO N2HET1[1]/SPI4NENA/N2HET2[8] V2 SPI2 chip select, or GPIO I/O I/O N2HET1[2]/SPI4SIMO[0] W5 N2HET1[5]/SPI4SOMI[0]/N2HET2[12] V6 26 Programmable, 20 A Pullup Pulldown Terminal Configuration and Functions Programmable, 20 A SPI2 enable, or GPIO SPI4 enable, or GPIO SPI4 slave-input masteroutput, or GPIO SPI4 slave-output masterinput, or GPIO Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.2.10 Multibuffered Serial Peripheral Interface Modules (MibSPI) Table 4-27. ZWT Multibuffered Serial Peripheral Interface Modules (MibSPI) TERMINAL SIGNAL NAME 337 ZWT MIBSPI1CLK F18 MIBSPI1NCS[0]/MIBSPI1SOMI[1] R2 MIBSPI1NCS[1]/N2HET1[17] F3 MIBSPI1NCS[2]/N2HET1[19] G3 MIBSPI1NCS[3]/N2HET1[21] J3 N2HET1[15]/MIBSPI1NCS[4] N1 N2HET1[24]/MIBSPI1NCS[5] P1 MIBSPI1NENA/N2HET1[23] G19 MIBSPI1SIMO[0] F19 N2HET1[8]/MIBSPI1SIMO[1] E18 MIBSPI1SOMI[0] G18 MIBSPI1NCS[0]/MIBSPI1SOMI[1] R2 MIBSPI3CLK V9 MIBSPI3NCS[0]/AD2EVT/GIOB[2]/N2HET2_PIN_nDIS V10 MIBSPI3NCS[1]/N2HET1[25]/MDCLK V5 MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] B2 MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] C3 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18] E3 MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] W9 MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] W9 MIBSPI3SIMO[0] W8 MIBSPI3SOMI[0] V8 MIBSPI5CLK/DMM_DATA[4] H19 MIBSPI5NCS[0]/DMM_DATA[5] E19 MIBSPI5NCS[1]/DMM_DATA[6] B6 MIBSPI5NCS[2]/DMM_DATA[2] W6 MIBSPI5NCS[3]/DMM_DATA[3] T12 MIBSPI5NENA/DMM_DATA[7] H18 MIBSPI5SIMO[0]/DMM_DATA[8] J19 MIBSPI5SIMO[1]/DMM_DATA[9] E16 MIBSPI5SIMO[2]/DMM_DATA[10] H17 MIBSPI5SIMO[3]/DMM_DATA[11] G17 MIBSPI5SOMI[0]/DMM_DATA[12] J18 MIBSPI5SOMI[1]/DMM_DATA[13] E17 MIBSPI5SOMI[2]/DMM_DATA[14] H16 MIBSPI5SOMI[3]/DMM_DATA[15] G16 SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION MibSPI1 clock, or GPIO Pullup Programmable, 20 A Pulldown Programmable, 20 A Pullup Programmable, 20 A Pulldown Programmable, 20 A MibSPI1 slave-in master-out, or GPIO Pullup Programmable, 20 A MibSPI1 slave-out master-in, or GPIO I/O MibSPI1 chip select, or GPIO MibSPI1 chip select, or GPIO MibSPI1 enable, or GPIO MibSPI1 slave-in master-out, or GPIO MibSPI3 clock, or GPIO I/O Pullup Programmable, 20 A Pulldown Programmable, 20 A MibSPI3 chip select, or GPIO MibSPI3 chip select, or GPIO MibSPI3 chip select, or GPIO MibSPI3 enable, or GPIO Pullup Programmable, 20 A MibSPI3 slave-in master-out, or GPIO MibSPI3 slave-out master-in, or GPIO MibSPI5 clock, or GPIO MibSPI5 chip select, or GPIO MibSPI5 enable, or GPIO I/O Pullup Programmable, 20 A MibSPI5 slave-in master-out, or GPIO Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 27 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 4.3.2.11 External Memory Interface (EMIF) Table 4-28. External Memory Interface (EMIF) TERMINAL SIGNAL NAME EMIF_CKE 337 ZWT L3 EMIF_CLK K3 ETMDATA[13]/EMIF_nOE E12 EMIF_nWAIT SIGNAL TYPE RESET PULL STATE Output I/O PULL TYPE DESCRIPTION None EMIF Clock Enable None EMIF clock. This is an output signal in functional mode. It is gated off by default, so that the signal is tri-stated. PINMUX29[8] must be cleared to enable this output. Pulldown None EMIF Output Enable Pullup Fixed 20 A Pullup Pulldown P3 I/O EMIF_nWE D17 Output EMIF_nCAS R4 Output EMIF_nRAS R3 Output EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7] N17 Output Pulldown EMIF_nCS[2] L17 Output Pullup EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9] K17 Output Pulldown EMIF_nCS[4]/RTP_DATA[7] M17 Output Pullup ETMDATA[15]/EMIF_nDQM[0] E10 Output ETMDATA[14]/EMIF_nDQM[1] E11 Output ETMDATA[12]/EMIF_BA[0] E13 Output EMIF bank address or address line EMIF_BA[1]/N2HET2[5] D16 Output EMIF bank address or address line EMIF_ADDR[0]/N2HET2[1] D4 Output EMIF_ADDR[1]/N2HET2[3] D5 Output ETMDATA[11]/EMIF_ADDR[2] E6 Output ETMDATA[10]/EMIF_ADDR[3] E7 Output ETMDATA[9]/EMIF_ADDR[4] E8 Output ETMDATA[8]/EMIF_ADDR[5] E9 Output EMIF_ADDR[6]/RTP_DATA[13]/N2HET2[11] C4 Output EMIF_ADDR[7]/RTP_DATA[12]/N2HET2[13] C5 Output EMIF_ADDR[8]/RTP_DATA[11]/N2HET2[15] C6 Output EMIF_ADDR[9]/RTP_DATA[10] C7 Output EMIF_ADDR[10]/RTP_DATA[9] C8 Output EMIF_ADDR[11]/RTP_DATA[8] C9 Output EMIF_ADDR[12]/RTP_DATA[6] C10 Output EMIF_ADDR[13]/RTP_DATA[5] C11 Output EMIF_ADDR[14]/RTP_DATA[4] C12 Output EMIF_ADDR[15]/RTP_DATA[3] C13 Output EMIF_ADDR[16]/RTP_DATA[2] D14 Output EMIF_ADDR[17]/RTP_DATA[1] C14 Output EMIF_ADDR[18]/RTP_DATA[0] D15 Output EMIF_ADDR[19]/RTP_nENA C15 Output EMIF_ADDR[20]/RTP_nSYNC C16 Output EMIF_ADDR[21]/RTP_CLK C17 Output 28 EMIF Extended Wait Signal EMIF Write Enable. Pullup EMIF column address strobe EMIF row address strobe EMIF chip select, SDRAM EMIF chip selects, asynchronous This applies to chip selects 2, 3, and 4 EMIF Data Mask or Write Strobe. Data mask for SDRAM devices, write strobe for connected asynchronous devices. None Pulldown EMIF address Pulldown Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 4-28. External Memory Interface (EMIF) (continued) TERMINAL SIGNAL NAME 337 ZWT SIGNAL TYPE ETMDATA[16]/EMIF_DATA[0] K15 I/O ETMDATA[17]/EMIF_DATA[1] L15 I/O ETMDATA[18]/EMIF_DATA[2] M15 I/O ETMDATA[19]/EMIF_DATA[3] N15 I/O ETMDATA[20]/EMIF_DATA[4] E5 I/O ETMDATA[21]/EMIF_DATA[5] F5 I/O ETMDATA[22]/EMIF_DATA[6] G5 I/O ETMDATA[23]/EMIF_DATA[7] K5 I/O ETMDATA[24]/EMIF_DATA[8] L5 I/O ETMDATA[25]/EMIF_DATA[9] M5 I/O ETMDATA[26]/EMIF_DATA[10] N5 I/O ETMDATA[27]/EMIF_DATA[11] P5 I/O ETMDATA[28]/EMIF_DATA[12] R5 I/O ETMDATA[29]/EMIF_DATA[13] R6 I/O ETMDATA[30]/EMIF_DATA[14] R7 I/O ETMDATA[31]/EMIF_DATA[15] R8 I/O RESET PULL STATE PULL TYPE Pulldown Fixed 20 A Pullup DESCRIPTION EMIF Data Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 29 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 4.3.2.12 Embedded Trace Macrocell for Cortex-R4F CPU (ETM-R4F) Table 4-29. Embedded Trace Macrocell for Cortex-R4F CPU (ETM-R4F) TERMINAL SIGNAL NAME 337 ZWT SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION Input Pulldown Fixed 20 A Pullup ETM Trace Clock Input ETMTRACECLKIN/EXTCLKIN2 R9 ETMTRACECLKOUT R10 ETM Trace Clock Output ETMTRACECTL R11 ETM trace control ETMDATA[0] R12 ETMDATA[1] R13 ETMDATA[2] J15 ETMDATA[3] H15 ETMDATA[4] G15 ETMDATA[5] F15 ETMDATA[6] E15 ETMDATA[7] E14 ETMDATA[8]/EMIF_ADDR[5] E9 ETMDATA[9]/EMIF_ADDR[4] E8 ETMDATA[10]/EMIF_ADDR[3] E7 ETMDATA[11]/EMIF_ADDR[2] E6 ETMDATA[12]/EMIF_BA[0] E13 ETMDATA[13]/EMIF_nOE E12 ETMDATA[14]/EMIF_nDQM[1] E11 ETMDATA[15]/EMIF_nDQM[0] E10 ETMDATA[16]/EMIF_DATA[0] K15 ETMDATA[17]/EMIF_DATA[1] L15 ETMDATA[18]/EMIF_DATA[2] M15 ETMDATA[19]/EMIF_DATA[3] N15 ETMDATA[20]/EMIF_DATA[4] E5 ETMDATA[21]/EMIF_DATA[5] F5 ETMDATA[22]/EMIF_DATA[6] G5 ETMDATA[23]/EMIF_DATA[7] K5 ETMDATA[24]/EMIF_DATA[8] L5 ETMDATA[25]/EMIF_DATA[9] M5 ETMDATA[26]/EMIF_DATA[10] N5 ETMDATA[27]/EMIF_DATA[11] P5 ETMDATA[28]/EMIF_DATA[12] R5 ETMDATA[29]/EMIF_DATA[13] R6 ETMDATA[30]/EMIF_DATA[14] R7 ETMDATA[31]/EMIF_DATA[15] R8 30 Output Pulldown Terminal Configuration and Functions None ETM data Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.2.13 RAM Trace Port (RTP) Table 4-30. RAM Trace Port (RTP) TERMINAL SIGNAL NAME 337 ZWT SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION EMIF_ADDR[21]/RTP_CLK C17 I/O RTP packet clock, or GPIO EMIF_ADDR[19]/RTP_nENA C15 I/O RTP packet handshake, or GPIO EMIF_ADDR[20]/RTP_nSYNC C16 I/O RTP synchronization, or GPIO EMIF_ADDR[18]/RTP_DATA[0] D15 EMIF_ADDR[17]/RTP_DATA[1] C14 EMIF_ADDR[16]/RTP_DATA[2] D14 EMIF_ADDR[15]/RTP_DATA[3] C13 EMIF_ADDR[14]/RTP_DATA[4] C12 EMIF_ADDR[13]/RTP_DATA[5] C11 EMIF_ADDR[12]/RTP_DATA[6] C10 EMIF_nCS[4]/RTP_DATA[7] M17 EMIF_ADDR[11]/RTP_DATA[8] C9 EMIF_ADDR[10]/RTP_DATA[9] C8 EMIF_ADDR[9]/RTP_DATA[10] C7 EMIF_ADDR[8]/RTP_DATA[11]/N2HET2[15] C6 EMIF_ADDR[7]/RTP_DATA[12]/N2HET2[13] C5 EMIF_ADDR[6]/RTP_DATA[13]/N2HET2[11] C4 EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7] N17 EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9] K17 I/O Pulldown Programmable, 20 A Pullup Programmable, 20 A Pulldown Programmable, 20 A RTP packet data, or GPIO Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 31 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 4.3.2.14 Data Modification Module (DMM) Table 4-31. Data Modification Module (DMM) TERMINAL SIGNAL NAME 337 ZWT SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION DMM_CLK F17 DMM clock, or GPIO DMM_nENA F16 DMM handshake, or GPIO DMM_SYNC J16 DMM synchronization, or GPIO DMM_DATA[0] L19 DMM_DATA[1] L18 MIBSPI5NCS[2]/DMM_DATA[2] W6 MIBSPI5NCS[3]/DMM_DATA[3] T12 MIBSPI5CLK/DMM_DATA[4] H19 MIBSPI5NCS[0]/DMM_DATA[5] E19 MIBSPI5NCS[1]/DMM_DATA[6] B6 MIBSPI5NENA/DMM_DATA[7] H18 MIBSPI5SIMO[0]/DMM_DATA[8] J19 MIBSPI5SIMO[1]/DMM_DATA[9] E16 MIBSPI5SIMO[2]/DMM_DATA[10] H17 MIBSPI5SIMO[3]/DMM_DATA[11] G17 MIBSPI5SOMI[0]/DMM_DATA[12] J18 MIBSPI5SOMI[1]/DMM_DATA[13] E17 MIBSPI5SOMI[2]/DMM_DATA[14] H16 MIBSPI5SOMI[3]/DMM_DATA[15] G16 32 I/O Pullup Terminal Configuration and Functions Programmable, 20 A DMM data, or GPIO Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.2.15 System Module Interface Table 4-32. ZWT System Module Interface TERMINAL 337 ZWT SIGNAL NAME nPORRST W7 SIGNAL TYPE Input RESET PULL STATE Pulldown PULL TYPE DESCRIPTION Fixed 100 A Pulldown Power-on reset, cold reset External power supply monitor circuitry must drive nPORRST low when any of the supplies to the microcontroller fall out of the specified range. This terminal has a glitch filter. See Section 6.8. nRST B17 I/O Pullup Fixed 100 A Pullup System reset, warm reset, bidirectional. The internal circuitry indicates any reset condition by driving nRST low. The external circuitry can assert a system reset by driving nRST low. To ensure that an external reset is not arbitrarily generated, TI recommends that an external pullup resistor is connected to this terminal. This terminal has a glitch filter. See Section 6.8. nERROR B14 I/O Pulldown Fixed 20 A Pulldown ESM Error Signal Indicates error of high severity. See Section 6.18. 4.3.2.16 Clock Inputs and Outputs Table 4-33. ZWT Clock Inputs and Outputs TERMINAL SIGNAL NAME 337 ZWT SIGNAL TYPE OSCIN K1 Input KELVIN_GND L2 Input OSCOUT L1 Output RESET PULL STATE N/A ECLK A12 I/O GIOA[5]/EXTCLKIN/N2HET1_PIN_nDIS B5 Input ETMTRACECLKIN/EXTCLKIN2 R9 Input VCCPLL P11 1.2-V Power PULL TYPE None DESCRIPTION From external crystal/resonator, or external clock input Kelvin ground for oscillator To external crystal/resonator Pulldown Programmable, 20 A Pulldown Fixed 20 A Pulldown N/A None External prescaled clock output, or GIO. External clock input #1 External clock input #2 Dedicated core supply for PLLs Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 33 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 4.3.2.17 Test and Debug Modules Interface Table 4-34. ZWT Test and Debug Modules Interface TERMINAL 337 ZWT SIGNAL NAME SIGNAL TYPE TEST U2 I/O nTRST D18 Input RTCK A16 Output RESET PULL STATE PULL TYPE DESCRIPTION Pulldown Fixed 100 A Pulldown Test enable. This terminal must be connected to ground directly or via a pulldown resistor. N/A None JTAG test clock JTAG test data in JTAG test hardware reset TCK B18 Input Pulldown Fixed 100 A Pulldown TDI A17 I/O Pullup Fixed 100 A Pullup TDO C18 Output 100 A Pulldown None TMS C19 I/O Pullup Fixed 100 A Pullup JTAG return test clock JTAG test data out JTAG test select 4.3.2.18 Flash Supply and Test Pads Table 4-35. ZWT Flash Supply and Test Pads TERMINAL SIGNAL NAME 337 ZWT VCCP F8 FLTP1 J5 FLTP2 H5 34 SIGNAL TYPE RESET PULL STATE PULL TYPE 3.3-V Power N/A None Flash pump supply None Flash test pads. These terminals are reserved for TI use only. For proper operation these terminals must connect only to a test pad or not be connected at all [no connect (NC)]. - N/A Terminal Configuration and Functions DESCRIPTION Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.2.19 No Connects Table 4-36. No Connects TERMINAL SIGNAL NAME 337 ZWT SIGNAL TYPE RESET PULL STATE PULL TYPE NC D6 - N/A None NC D7 - N/A None NC D8 - N/A None NC D9 - N/A None NC D10 - N/A None NC D11 - N/A None NC D12 - N/A None NC D13 - N/A None NC E4 - N/A None NC F4 - N/A None NC G4 - N/A None NC K4 - N/A None NC K16 - N/A None NC L4 - N/A None NC L16 - N/A None NC M4 - N/A None NC M16 - N/A None NC N4 - N/A None NC N16 - N/A None NC N18 - N/A None NC P4 - N/A None NC P15 - N/A None NC P16 - N/A None NC P17 - N/A None NC R1 - N/A None NC R14 - N/A None NC R15 - N/A None NC T2 - N/A None NC T3 - N/A None NC T4 - N/A None NC T5 - N/A None NC T6 - N/A None NC T7 - N/A None NC T8 - N/A None NC T9 - N/A None NC T10 - N/A None NC T11 - N/A None NC T13 - N/A None NC T14 - N/A None NC U3 - N/A None NC U4 - N/A None DESCRIPTION No Connects. These balls are not connected to any internal logic and can be connected to the PCB ground without affecting the functionality of the device. Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 35 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 4-36. No Connects (continued) TERMINAL 337 ZWT SIGNAL NAME SIGNAL TYPE RESET PULL STATE PULL TYPE DESCRIPTION No Connects. These balls are not connected to any internal logic and can be connected to the PCB ground without affecting the functionality of the device. NC U5 - N/A None NC U6 - N/A None NC U7 - N/A None NC U8 - N/A None NC U9 - N/A None NC U10 - N/A None NC U11 - N/A None NC U12 - N/A None NC V3 - N/A None NC V4 - N/A None NC V11 - N/A None NC V12 - N/A None NC W4 - N/A None NC W11 - N/A None NC W12 - N/A None NC W13 - N/A None 4.3.2.20 Supply for Core Logic: 1.2-V Nominal Table 4-37. ZWT Supply for Core Logic: 1.2-V Nominal TERMINAL SIGNAL NAME 337 ZWT VCC F9 VCC F10 VCC H10 VCC J14 VCC K6 VCC K8 VCC K12 VCC K14 VCC L6 VCC M10 VCC P10 36 SIGNAL TYPE RESET PULL STATE PULL TYPE 1.2-V Power N/A None Terminal Configuration and Functions DESCRIPTION Core supply Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 4.3.2.21 Supply for I/O Cells: 3.3-V Nominal Table 4-38. ZWT Supply for I/O Cells: 3.3-V Nominal TERMINAL SIGNAL NAME VCCIO 337 ZWT SIGNAL TYPE RESET PULL STATE PULL TYPE 3.3-V Power N/A None DESCRIPTION F6 VCCIO F7 VCCIO F11 VCCIO F12 VCCIO F13 VCCIO F14 VCCIO G6 VCCIO G14 VCCIO H6 VCCIO H14 VCCIO J6 VCCIO L14 VCCIO M6 VCCIO M14 VCCIO N6 VCCIO N14 VCCIO P6 VCCIO P7 VCCIO P8 VCCIO P9 VCCIO P12 VCCIO P13 VCCIO P14 Operating supply for I/Os Terminal Configuration and Functions Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 37 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 4.3.2.22 Ground Reference for All Supplies Except VCCAD Table 4-39. ZWT Ground Reference for All Supplies Except VCCAD TERMINAL SIGNAL NAME VSS 337 ZWT RESET PULL STATE PULL TYPE Ground N/A None DESCRIPTION A1 VSS A2 VSS A18 VSS A19 VSS B1 VSS B19 VSS H8 VSS H9 VSS H11 VSS H12 VSS J8 VSS J9 VSS J10 VSS J11 VSS J12 VSS K9 VSS K10 VSS K11 VSS L8 VSS L9 VSS L10 VSS L11 VSS L12 VSS M8 VSS M9 VSS M11 VSS M12 VSS V1 VSS W1 VSS W2 38 SIGNAL TYPE Terminal Configuration and Functions Ground reference Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 5 Specifications 5.1 Absolute Maximum Ratings (1) Over Operating Free-Air Temperature Range Supply voltage Input voltage Input clamp current MIN MAX VCC (2) -0.3 1.43 VCCIO, VCCP (2) -0.3 4.6 VCCAD -0.3 6.25 All input pins -0.3 4.6 ADC input pins -0.3 6.25 IIK (VI < 0 or VI > VCCIO) All pins, except AD1IN[23:0] and AD2IN[15:0] -20 20 IIK (VI < 0 or VI > VCCAD) AD1IN[23:0] and AD2IN[15:0] -10 10 Total UNIT V V mA -40 40 mA Operating free-air temperature, TA: -40 125 C Operating junction temperature, TJ: -40 150 C Storage temperature, Tstg -65 150 C (1) (2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to their associated grounds. 5.2 ESD Ratings VALUE UNIT 2 kV Human body model (HBM), per AEC Q100-002 (1) VESD (1) 5.3 (1) (2) Electrostatic discharge (ESD) performance: Charged device model (CDM), per AEC Q100-011 All pins 500 Corner pins on 144-pin PGE (1, 36, 37, 72, 73, 108, 109, 144) 750 Corner balls on 337-ball ZWT (A1, A19, W1, W19) 750 V AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS001 specification. Power-On Hours (POH) (1) (2) NOMINAL CORE VOLTAGE (VCC) JUNCTION TEMPERATURE (Tj) LIFETIME POH 1.2 105C 100K This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products. To avoid significant degradation, the device power-on hours (POH) must be limited to those specified in this table. To convert to equivalent POH for a specific temperature profile, see the Calculating Equivalent Power-on-Hours for Hercules Safety MCUs Application Report (SPNA207). Specifications Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 39 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Recommended Operating Conditions (1) 5.4 MIN NOM MAX UNIT VCC Digital logic supply voltage (Core) 1.14 1.2 1.32 V VCCPLL PLL Supply Voltage 1.14 1.2 1.32 V VCCIO Digital logic supply voltage (I/O) 3 3.3 3.6 V VCCAD MibADC supply voltage 3 3.3/5.0 5.25 V VCCP Flash pump supply voltage 3 3.3 3.6 V VSS Digital logic supply ground VSSAD MibADC supply ground VADREFHI VADREFLO VSLEW Maximum positive slew rate for VCCIO, VCCAD and VCCP supplies TA Operating free-air temperature TJ (1) (2) 40 0 V -0.1 0.1 V A-to-D high-voltage reference source VSSAD VCCAD V A-to-D low-voltage reference source VSSAD VCCAD Operating junction temperature (2) 1 V V/s -40 125 C -40 150 C All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD Reliability data is based upon a temperature profile that is equivalent to 100,000 power-on hours at 105C junction temperature. Specifications Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 5.5 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Switching Characteristics for Clock Domains Over Recommended Operating Conditions Table 5-1. Clock Domain Timing Specifications PARAMET ER DESCRIPTION CONDITIONS PGE fHCLK HCLK - System clock frequency ZWT MIN MAX Pipeline mode enabled UNIT 160 Pipeline mode disabled 50 Pipeline mode enabled 180 Pipeline mode disabled 50 MHz fGCLK GCLK - CPU clock frequency fHCLK MHz fVCLK VCLK - Primary peripheral clock frequency 100 MHz fVCLK2 VCLK2 - Secondary peripheral clock frequency 100 MHz fVCLK3 VCLK3 - Secondary peripheral clock frequency 100 MHz fVCLKA1 VCLKA1 - Primary asynchronous peripheral clock frequency 100 MHz fVCLKA2 VCLKA2 - Secondary asynchronous peripheral clock frequency 100 MHz fVCLKA4 VCLKA4 - Secondary asynchronous peripheral clock frequency 50 MHz fRTICLK RTICLK - clock frequency fVCLK MHz 5.6 Wait States Required RAM 0 Address Wait States fHCLK(max) 0MHz Data Wait States 0 fHCLK(max) 0MHz Flash Address Wait States 1 0 150MHz 0MHz Data Wait States 0 1 0MHz 50MHz 3 2 100MHz fHCLK(max) 150MHz fHCLK(max) Figure 5-1. Wait States Scheme As shown in Figure 5-1, the TCM RAM can support program and data fetches at full CPU speed without any address or data wait states required. The TCM flash can support zero address and data wait states up to a CPU speed of 50 MHz in nonpipelined mode. The flash supports a maximum CPU clock speed of 160 MHz in pipelined mode for the PGE Package and 180 MHz for the ZWT package, with one address wait state and three data wait states. The flash wrapper defaults to nonpipelined mode with zero address wait state and one random-read data wait state. Specifications Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 41 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 5.7 www.ti.com Power Consumption Over Recommended Operating Conditions PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fHCLK = 180 MHz (ZWT Package only) VCC Digital supply current (operating mode) 220 (1) 440 (2) fVCLK = 90 MHz, Flash in pipelined mode, VCCmax ICC, ICCPLL VCC Digital supply current (LBIST mode) LBIST clock rate = 90 MHz (ZWT Package only) 700 (3) (4) VCC Digital supply current (PBIST mode) PBIST ROM clock frequency = 90 MHz (ZWT Package only) 700 (3) (4) fHCLK = 160 MHz VCC Digital supply current (operating mode) ICCIO LBIST clock rate = 80 MHz 665 (3) (4) VCC Digital supply current (PBIST mode) PBIST ROM clock frequency = 80 MHz 665 (3) (4) VCCIO supply current (operating mode) No DC load, VCCmax 10 Single ADC operational, VCCADmax 15 Both ADCs operational, VCCADmax 30 IADREFHI ADREFHI supply current (operating mode) ICCP VCCP pump supply current (4) 42 420 (2) VCC Digital supply current (LBIST mode) VCCAD supply current (operating mode) (3) 200 (1) fVCLK = 80 MHz, Flash in pipelined mode, VCCmax ICCAD (1) (2) mA Single ADC operational, ADREFHImax 3 Both ADCs operational, ADREFHImax 6 Read from 1 bank and program or erase another bank, VCCPmax 60 mA mA mA mA The typical value is the average current for the nominal process corner and junction temperature of 25C. The maximum ICC, value can be derated * linearly with voltage * by 1 ma/MHz for lower operating frequency when fHCLK= 2 * fVCLK * for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes. 235 - 0.15 e0.0174 TJK The maximum ICC, value can be derated * linearly with voltage * by 1.7 ma/MHz for lower operating frequency when fHCLK= 2 * fVCLK * for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes. 235 - 0.15 e0.0174 TJK LBIST and PBIST currents are for a short duration, typically less than 10 ms. They are usually ignored for thermal calculations for the device and the voltage regulator Specifications Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 5.8 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Input/Output Electrical Characteristics (1) Over Recommended Operating Conditions PARAMETER Vhys VIL Input hysteresis Low-level input voltage TEST CONDITIONS MIN All inputs except FRAYRX1, FRAYRX2 180 FRAYRX1, FRAYRX2 100 All inputs (2) (except FRAYRX1, FRAYRX2) -0.3 TYP MAX UNIT mV 0.8 V FRAYRX1, FRAYRX2 0.4 VCCIO (2) VIH High-level input voltage All inputs (except FRAYRX1, FRAYRX2) 2 V FRAYRX1, FRAYRX2 0.6 VCCIO IOL = IOLmax VOL Low-level output voltage IIK II High-level output voltage 0.2 IOL = 50 A, low-EMI output mode (see Section 5.13) 0.2 VCCIO Input current (I/O pins) V 0.8 VCCIO IOH = 50 A, standard output mode VCCIO - 0.3 IOH = 50 A, low-EMI output mode (see Section 5.13) 0.8 VCCIO VI < VSSIO - 0.3 or VI > VCCIO + 0.3 Input clamp current (I/O pins) 0.2 VCCIO IOL = 50 A, standard output mode IOH = IOHmax VOH VCCIO + 0.3 V -3.5 3.5 5 40 40 195 IIH Pulldown 20 A VI = VCCIO IIH Pulldown 100 A VI = VCCIO IIL Pullup 20 A VI = VSS -40 -5 IIL Pullup 100 A VI = VSS -195 -40 All other pins No pullup or pulldown -1 1 mA A CI Input capacitance 2 pF CO Output capacitance 3 pF (1) (2) Source currents (out of the device) are negative while sink currents (into the device) are positive. This does not apply to the nPORRST pin. Specifications Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 43 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 5.9 www.ti.com Thermal Resistance Characteristics Table 5-2 shows the thermal resistance characteristics for the QFP - PGE mechanical package. Table 5-3 shows the thermal resistance characteristics for the BGA - ZWT mechanical package. Table 5-2. Thermal Resistance Characteristics (PGE Package) C / W RJA Junction-to-free air thermal resistance, Still air using JEDEC 2S2P test board RJB Junction-to-board thermal resistance 26.3 RJC Junction-to-case thermal resistance 6.7 JT Junction-to-package top, Still air 0.10 39 Table 5-3. Thermal Resistance Characteristics (ZWT Package) C / W 44 RJA Junction-to-free air thermal resistance, Still air (includes 5x5 thermal via cluster in 2s2p PCB connected to 1st ground plane) 18.8 RJB Junction-to-board thermal resistance 14.1 RJC Junction-to-case thermal resistance 7.1 JT Junction-to-package top, Still air (includes 5x5 thermal via cluster in 2s2p PCB connected to 1st ground plane) 0.33 Specifications Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 5.10 Output Buffer Drive Strengths Table 5-4. Output Buffer Drive Strengths LOW-LEVEL OUTPUT CURRENT, IOL for VI=VOLmax or HIGH-LEVEL OUTPUT CURRENT, IOH for VI=VOHmin SIGNALS FRAYTX2, FRAYTX1, FRAYTXEN1, FRAYTXEN2, MIBSPI5CLK, MIBSPI5SOMI[0], MIBSPI5SOMI[1], MIBSPI5SOMI[2], MIBSPI5SIMO[0], MIBSPI5SIMO[1], MIBSPI5SIMO[2], MIBSPI5SIMO[3], 8 mA MIBSPI5SOMI[3], TMS, TDI, TDO, RTCK, SPI4CLK, SPI4SIMO, SPI4SOMI, nERROR, N2HET2[1], N2HET2[3], All EMIF Outputs and I/Os, All ETM Outputs 4 mA MIBSPI3SOMI, MIBSPI3SIMO, MIBSPI3CLK, MIBSPI1SIMO, MIBSPI1SOMI, MIBSPI1CLK, nRST AD1EVT, CAN1RX, CAN1TX, CAN2RX, CAN2TX, CAN3RX, CAN3TX, DMM_CLK, DMM_DATA[0], DMM_DATA[1], DMM_nENA, DMM_SYNC, GIOA[0-7], GIOB[0-7], 2 mA zero-dominant LINRX, LINTX, MIBSPI1NCS[0], MIBSPI1NCS[1-3], MIBSPI5NCS[0-3], MIBSPI5NENA, MIBSPI1NENA, MIBSPI3NCS[0-3], MIBSPI3NENA, N2HET1[0-31], N2HET2[0], N2HET2[2], N2HET2[4], N2HET2[5], N2HET2[6], N2HET2[7], N2HET2[8], N2HET2[9], N2HET2[10], N2HET2[11], N2HET2[12], N2HET2[13], N2HET2[14], N2HET2[15], N2HET2[16], N2HET2[18], SPI2NCS[0], SPI2NENA, SPI4NCS[0], SPI4NENA ECLK, selectable 8 mA/2 mA SPI2CLK, SPI2SIMO, SPI2SOMI The default output buffer drive strength is 8mA for these signals. Table 5-5. Selectable 8 mA/2 mA Control (1) SIGNAL CONTROL BIT ADDRESS 8 mA 2 mA ECLK SYSPC10[0] 0xFFFF FF78 0 1 SPI2CLK SPI2PC9[9] (1) 0xFFF7 F668 0 1 SPI2SIMO SPI2PC9[10] (1) 0xFFF7 F668 0 1 SPI2SOMI SPI2PC9[11] (1) 0xFFF7 F668 0 1 Either SPI2PC9[11] or SPI2PC9[24] can change the output strength of the SPI2SOMI pin. In case of a 32-bit write where these two bits differ, SPI2PC9[11] determines the drive strength. Specifications Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 45 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 5.11 Input Timings t pw Input V IH VCCIO VIH VIL V IL 0 Figure 5-2. TTL-Level Inputs Table 5-6. Timing Requirements for Inputs (1) MIN tpw (1) (2) Input minimum pulse width tc(VCLK) + 10 MAX (2) UNIT ns tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK) The timing shown in Figure 5-2 is only valid for pins used in GPIO mode. 5.12 Output Timings Table 5-7. Switching Characteristics for Output Timings versus Load Capacitance (CL) PARAMETER MIN CL = 15 pF CL = 50 pF Rise time, tr 8 mA low EMI pins (see Table 5-4) Fall time, tf Rise time, tr 4 mA low EMI pins (see Table 5-4) Fall time, tf 2 mA-z low EMI pins (see Table 5-4) Rise time, tr Fall time, tf 46 MAX 2.5 4 CL = 100 pF 7.2 CL = 150 pF 12.5 CL = 15 pF 2.5 CL = 50 pF 4 CL = 100 pF 7.2 CL = 150 pF 12.5 CL = 15 pF 5.6 CL = 50 pF 10.4 CL = 100 pF 16.8 CL = 150 pF 23.2 CL = 15 pF 5.6 CL= 50 pF 10.4 CL = 100 pF 16.8 CL = 150 pF 23.2 CL = 15 pF 8 CL = 50 pF 15 CL = 100 pF 23 CL = 150 pF 33 CL = 15 pF 8 CL = 50 pF 15 CL = 100 pF 23 CL = 150 pF 33 Specifications UNIT ns ns ns ns ns ns Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 5-7. Switching Characteristics for Output Timings versus Load Capacitance (CL) (continued) PARAMETER MIN MAX CL = 15 pF CL = 50 pF Rise time, tr 8 mA mode Fall time, tf Selectable 8 mA/2 mA-z pins (see Table 5-4) Rise time, tr 2 mA-z mode Fall time, tf 7.2 CL = 150 pF 12.5 CL = 15 pF 2.5 CL = 50 pF 4 CL = 100 pF 7.2 CL = 150 pF 12.5 CL = 15 pF 8 CL = 50 pF 15 CL = 100 pF 23 CL = 150 pF 33 CL = 15 pF 8 CL = 50 pF 15 CL = 100 pF 23 CL = 150 pF 33 ns ns ns tf V OH Output ns 4 CL = 100 pF tr UNIT 2.5 VCCIO VOH VOL VOL 0 Figure 5-3. CMOS-Level Outputs Table 5-8. Timing Requirements for Outputs (1) MIN td(parallel_out) (1) Delay between low to high, or high to low transition of general-purpose output signals that can be configured by an application in parallel, for example, all signals in a GIOA port, or all N2HET1 signals, and so forth. MAX 5 UNIT ns This specification does not account for any output buffer drive strength differences or any external capacitive loading differences. Check Table 5-4 for output buffer drive strength information on each signal. Specifications Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 47 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 5.13 Low-EMI Output Buffers The low-EMI output buffer has been designed explicitly to address the issue of decoupling sources of emissions from the pins which they drive. This is accomplished by adaptively controlling the impedance of the output buffer, and is particularly effective with capacitive loads. This is not the default mode of operation of the low-EMI output buffers and must be enabled by setting the system module GPCR1 register for the desired module or signal, as shown in Table 5-9. The adaptive impedance control circuit monitors the DC bias point of the output signal. The buffer internally generates two reference levels, VREFLOW and VREFHIGH, which are set to approximately 10% and 90% of VCCIO, respectively. Once the output buffer has driven the output to a low level, if the output voltage is below VREFLOW, then the impedance of the output buffer will increase to Hi-Z. A high degree of decoupling between the internal ground bus and the output pin will occur with capacitive loads, or any load in which no current is flowing, for example, the buffer is driving low on a resistive path to ground. Current loads on the buffer which attempt to pull the output voltage above VREFLOW will be opposed by the impedance of the output buffer so as to maintain the output voltage at or below VREFLOW. Conversely, once the output buffer has driven the output to a high level, if the output voltage is above VREFHIGH then the output buffer's impedance will again increase to Hi-Z. A high degree of decoupling between internal power bus ad output pin will occur with capacitive loads or any loads in which no current is flowing, for example, buffer is driving high on a resistive path to VCCIO. Current loads on the buffer which attempt to pull the output voltage below VREFHIGH will be opposed by the buffer's output impedance so as to maintain the output voltage at or above VREFHIGH. The bandwidth of the control circuitry is relatively low, so that the output buffer in adaptive impedance control mode cannot respond to high-frequency noise coupling into the power buses of the buffer. In this manner, internal bus noise approaching 20% peak-to-peak of VCCIO can be rejected. Unlike standard output buffers which clamp to the rails, an output buffer in impedance control mode will allow a positive current load to pull the output voltage up to VCCIO + 0.6 V without opposition. Also, a negative current load will pull the output voltage down to VSSIO - 0.6 V without opposition. This is not an issue because the actual clamp current capability is always greater than the IOH / IOL specifications. The low-EMI output buffers are automatically configured to be in the standard buffer mode when the device enters a low-power mode. 48 Specifications Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 5-9. Low-EMI Output Buffer Hookup MODULE OR SIGNAL NAME CONTROL REGISTER TO ENABLE LOW-EMI MODE Module: MibSPI1 GPREG1.0 Module: SPI2 GPREG1.1 Module: MibSPI3 GPREG1.2 Reserved GPREG1.3 Module: MibSPI5 GPREG1.4 Module: FlexRay GPREG1.5 Module: EMIF GPREG1.6 Module: ETM GPREG1.7 Signal: TMS GPREG1.8 Signal: TDI GPREG1.9 Signal: TDO GPREG1.10 Signal: RTCK GPREG1.11 Signal: TEST GPREG1.12 Signal: nERROR GPREG1.13 Reserved GPREG1.14 Module: RTP GPREG1.15 Specifications Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 49 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 6 System Information and Electrical Specifications 6.1 Device Power Domains The device core logic is split up into multiple power domains in order to optimize the power for a given application use case. There are 8 core power domains in total: PD1, PD2, PD3, PD4, PD5, RAM_PD1, RAM_PD2 and RAM_PD3. The actual contents of these power domains are indicated in Section 1.4. PD1 is an "always-ON" power domain, which cannot be turned off. Each of the other core power domains can be turned ON/OFF one time during device initialization as per the application requirement. Refer to the Power Management Module (PMM) chapter of TMS570LS31X/21X Technical Reference Manual (SPNU499) for more details. NOTE The clocks to a module must be turned off before powering down the core domain that contains the module. NOTE The logic in the modules that are powered down lose power completely. Any access to modules that are powered down results in an abort being generated. When power is restored, the modules power-up to their default states (after normal power-up). No register or memory contents are preserved in the core domains that are turned off. 50 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 6.2 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Voltage Monitor Characteristics A voltage monitor is implemented on this device. The purpose of this voltage monitor is to eliminate the requirement for a specific sequence when powering up the core and I/O voltage supplies. 6.2.1 Important Considerations * * 6.2.2 The voltage monitor does not eliminate the need of a voltage supervisor circuit to guarantee that the device is held in reset when the voltage supplies are out of range. The voltage monitor only monitors the core supply (VCC) and the I/O supply (VCCIO). The other supplies are not monitored by the VMON. For example, if the VCCAD or VCCP are supplied from a source different from that for VCCIO, then there is no internal voltage monitor for the VCCAD and VCCP supplies. Voltage Monitor Operation The voltage monitor generates the Power Good MCU signal (PGMCU) as well as the I/Os Power Good IO signal (PGIO) on the device. During power-up or power-down, the PGMCU and PGIO are driven low when the core or I/O supplies are lower than the specified minimum monitoring thresholds. The PGIO and PGMCU being low isolates the core logic as well as the I/O controls during the power-up or power-down of the supplies. This allows the core and I/O supplies to be powered up or down in any order. When the voltage monitor detects a low voltage on the I/O supply, it will assert a power-on reset. When the voltage monitor detects an out-of-range voltage on the core supply, it asynchronously makes all output pins high impedance, and asserts a power-on reset. The voltage monitor is disabled when the device enters a low power mode. The VMON also incorporates a glitch filter for the nPORRST input. Refer to Section 6.3.3.1 for the timing information on this glitch filter. Table 6-1. Voltage Monitoring Specifications PARAMETER VMON 6.2.3 Voltage monitoring thresholds MIN TYP MAX VCC low - VCC level below this threshold is detected as too low. 0.75 0.9 1.13 VCC high - VCC level above this threshold is detected as too high. 1.40 1.7 2.1 VCCIO low - VCCIO level below this threshold is detected as too low. 1.85 2.4 2.9 UNIT V Supply Filtering The VMON has the capability to filter glitches on the VCC and VCCIO supplies. Table 6-2 shows the characteristics of the supply filtering. Glitches in the supply larger than the maximum specification cannot be filtered. Table 6-2. VMON Supply Glitch Filtering Capability MIN MAX UNIT Width of glitch on VCC that can be filtered PARAMETER 250 1000 ns Width of glitch on VCCIO that can be filtered 250 1000 ns Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 51 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.3 6.3.1 www.ti.com Power Sequencing and Power On Reset Power-Up Sequence There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage. The powerup sequence starts with the I/O voltage rising above the minimum I/O supply threshold, (see Table 6-4 for more details), core voltage rising above the minimum core supply threshold and the release of power-on reset. The high frequency oscillator will start up first and its amplitude will grow to an acceptable level. The oscillator start up time is dependent on the type of oscillator and is provided by the oscillator vendor. The different supplies to the device can be powered up in any order. The device goes through the following sequential phases during power up. Table 6-3. Power-Up Phases Oscillator startup and validity check 1032 oscillator cycles eFuse autoload 1180 oscillator cycles Flash pump power-up 688 oscillator cycles Flash bank power-up 617 oscillator cycles Total 3517 oscillator cycles The CPU reset is released at the end of the sequence in Table 6-3 and fetches the first instruction from address 0x00000000. 52 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 6.3.2 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Power-Down Sequence The different supplies to the device can be powered down in any order. 6.3.3 Power-On Reset: nPORRST This is the power-on reset. This reset must be asserted by an external circuitry whenever the I/O or core supplies are outside the specified recommended range. This signal has a glitch filter on it. It also has an internal pulldown. 6.3.3.1 nPORRST Electrical and Timing Requirements Table 6-4. Electrical Requirements for nPORRST NO. PARAMETER MIN MAX UNIT VCCPORL VCC low supply level when nPORRST must be active during power-up VCCPORH VCC high supply level when nPORRST must remain active during powerup and become active during power down 0.5 V VCCIOPORL VCCIO / VCCP low supply level when nPORRST must be active during power-up VCCIOPORH VCCIO / VCCP high supply level when nPORRST must remain active during power-up and become active during power down VIL(PORRST) Low-level input voltage of nPORRST VCCIO > 2.5V 0.2 * VCCIO V Low-level input voltage of nPORRST VCCIO < 2.5V 0.5 V 1.14 V 1.1 V 3.0 V 3 tsu(PORRST) Setup time, nPORRST active before VCCIO and VCCP > VCCIOPORL during power-up 6 th(PORRST) Hold time, nPORRST active after VCC > VCCPORH 1 7 tsu(PORRST) Setup time, nPORRST active before VCC < VCCPORH during power down 2 s 8 th(PORRST) Hold time, nPORRST active after VCCIO and VCCP > VCCIOPORH 1 ms 9 th(PORRST) Hold time, nPORRST active after VCC < VCCPORL 0 ms 0 ms ms Filter time nPORRST pin; tf(nPORRST) 500 pulses less than MIN will be filtered out, pulses greater than MAX will generate a reset. 3.3 V 1.2 V VCCIOPORH VCCPORH 6 VCCIOPORL VCC (1.2 V) VCCIO / VCCP(3.3 V) nPORRST VCCPORH VCC 7 6 7 VCCPORL VCCPORL 3 VIL(PORRST) ns VCCIOPORH VCCIO / VCCP 8 2000 VCCIOPORL 9 VIL VIL VIL VIL(PORRST) NOTE: There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage; this is just an exemplary drawing. Figure 6-1. nPORRST Timing Diagram Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 53 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.4 www.ti.com Warm Reset (nRST) This is a bidirectional reset signal. The internal circuitry drives the signal low on detecting any device reset condition. An external circuit can assert a device reset by forcing the signal low. On this terminal, the output buffer is implemented as an open drain (drives low only). To ensure an external reset is not arbitrarily generated, TI recommends that an external pullup resistor is connected to this terminal. This terminal has a glitch filter. It also has an internal pullup 6.4.1 Causes of Warm Reset Table 6-5. Causes of Warm Reset DEVICE EVENT SYSTEM STATUS FLAG Power-Up Reset Exception Status Register, bit 15 Oscillator fail Global Status Register, bit 0 PLL slip Global Status Register, bits 8 and 9 Watchdog exception / Debugger reset Exception Status Register, bit 13 CPU Reset (driven by the CPU STC) Exception Status Register, bit 5 Software Reset Exception Status Register, bit 4 External Reset Exception Status Register, bit 3 6.4.2 nRST Timing Requirements Table 6-6. nRST Timing Requirements MIN tv(RST) Valid time, nRST active after nPORRST inactive Valid time, nRST active (all other System reset conditions) tf(nRST) (1) 54 Filter time nRST pin; pulses less than MIN will be filtered out; pulses greater than MAX will generate a reset. See Section 6.8. MAX 2256tc(OSC) (1) ns 32tc(VCLK) 475 UNIT 2000 ns Assumes the oscillator has started up and stabilized before nPORRST is released . System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 6.5 SPNS164C - APRIL 2012 - REVISED APRIL 2015 ARM-R4F CPU Information 6.5.1 Summary of ARM Cortex-R4F CPU Features The features of the ARM Cortex-R4F CPU include: * An integer unit with integral EmbeddedICE-RT logic. * High-speed Advanced Microprocessor Bus Architecture (AMBA) Advanced eXtensible Interfaces (AXI) for Level two (L2) master and slave interfaces. * Floating Point Coprocessor * Dynamic branch prediction with a global history buffer, and a 4-entry return stack * Low interrupt latency. * Nonmaskable interrupt. * A Harvard Level one (L1) memory system with: - Tightly-Coupled Memory (TCM) interfaces with support for error correction or parity checking memories - ARMv7-R architecture Memory Protection Unit (MPU) with 12 regions * Dual core logic for fault detection in safety-critical applications. * An L2 memory interface: - Single 64-bit master AXI interface - 64-bit slave AXI interface to TCM RAM blocks * A debug interface to a CoreSight Debug Access Port (DAP). * A trace interface to a CoreSight ETM-R4. * A Performance Monitoring Unit (PMU). * A Vectored Interrupt Controller (VIC) port. For more information on the ARM Cortex-R4F CPU see www.arm.com. 6.5.2 ARM Cortex-R4F CPU Features Enabled by Software The following CPU features are disabled on reset and must be enabled by the application if required. * ECC On Tightly-Coupled Memory (TCM) Accesses * Hardware Vectored Interrupt (VIC) Port * Floating Point Coprocessor * Memory Protection Unit (MPU) 6.5.3 Dual Core Implementation The device has two Cortex-R4F cores, where the output signals of both CPUs are compared in the CCMR4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed by two clock cycles as shown in Figure 6-3. The CPUs have a diverse CPU placement given by following requirements: different orientation; for example, CPU1 = "north" orientation, CPU2 = "flip west" orientation dedicated guard ring for each CPU North F Flip West F * * Figure 6-2. Dual-CPU Orientation Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 55 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.5.4 www.ti.com Duplicate Clock Tree After GCLK The CPU clock domain is split into two clock trees, one for each CPU, with the clock of the second CPU running at the same frequency and in phase to the clock of CPU1. See Figure 6-3. 6.5.5 ARM Cortex-R4F CPU Compare Module (CCM-R4) for Safety This device has two ARM Cortex-R4F CPU cores, where the output signals of both CPUs are compared in the CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed in a different way as shown in Figure 6-3. Output + Control CCM-R4 2 cycle delay CCM-R4 compare CPU1CLK CPU 1 compare error CPU 2 2 cycle delay CPU2CLK Input + Control Figure 6-3. Dual Core Implementation To avoid an erroneous CCM-R4 compare error, the application software must initialize the registers of both CPUs before the registers are used, including function calls where the register values are pushed onto the stack. 6.5.6 CPU Self-Test The CPU STC (Self-Test Controller) is used to test the two Cortex-R4F CPU Cores using the Deterministic Logic BIST Controller as the test engine. The main features of the self-test controller are: * Ability to divide the complete test run into independent test intervals * Capable of running the complete test as well as running few intervals at a time * Ability to continue from the last executed interval (test set) as well as ability to restart from the beginning (First test set) * Complete isolation of the self-tested CPU core from rest of the system during the self-test run * Ability to capture the Failure interval number * Time-out counter for the CPU self-test run as a fail-safe feature 56 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 6.5.6.1 1. 2. 3. 4. 5. 6. 7. SPNS164C - APRIL 2012 - REVISED APRIL 2015 Application Sequence for CPU Self-Test Configure clock domain frequencies. Select number of test intervals to be run. Configure the time-out period for the self-test run. Enable self-test. Wait for CPU reset. In the reset handler, read CPU self-test status to identify any failures. Retrieve CPU state if required. For more information see the device specific technical reference manual. 6.5.6.2 CPU Self-Test Clock Configuration The maximum clock rate for the self-test is 90MHz. The STCCLK is divided down from the CPU clock. This divider is configured by the STCCLKDIV register at address 0xFFFFE108. For more information see the device specific technical reference manual. 6.5.6.3 CPU Self-Test Coverage Table 6-7 shows CPU test coverage achieved for each self-test interval. It also lists the cumulative test cycles. The test time can be calculated by multiplying the number of test cycles with the STC clock period. Table 6-7. CPU Self-Test Coverage INTERVALS TEST COVERAGE, % TEST CYCLES 0 0 0 1 62.13 1365 2 70.09 2730 3 74.49 4095 4 77.28 5460 5 79.28 6825 6 80.90 8190 7 82.02 9555 8 83.10 10920 9 84.08 12285 10 84.87 13650 11 85.59 15015 12 86.11 16380 13 86.67 17745 14 87.16 19110 15 87.61 20475 16 87.98 21840 17 88.38 23205 18 88.69 24570 19 88.98 25935 20 89.28 27300 21 89.50 28665 22 89.76 30030 23 90.01 31395 24 90.21 32760 Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 57 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.6 www.ti.com Clocks 6.6.1 Clock Sources Table 6-8 lists the available clock sources on the device. Each of the clock sources can be enabled or disabled using the CSDISx registers in the system module. The clock source number in the table corresponds to the control bit in the CSDISx register for that clock source. Table 6-8 also shows the default state of each clock source. Table 6-8. Available Clock Sources 6.6.1.1 CLOCK SOURCE # NAME 0 OSCIN 1 PLL1 DEFAULT STATE DESCRIPTION 2 Reserved 3 EXTCLKIN1 Main Oscillator Enabled Output From PLL1 Disabled Reserved Disabled External Clock Input #1 Disabled Enabled 4 CLK80K Low Frequency Output of Internal Reference Oscillator 5 CLK10M High Frequency Output of Internal Reference Oscillator Enabled 6 PLL2 Output From PLL2 Disabled 7 EXTCLKIN2 External Clock Input #2 Disabled Main Oscillator The oscillator is enabled by connecting the appropriate fundamental resonator/crystal and load capacitors across the external OSCIN and OSCOUT pins as shown in Figure 6-4. The oscillator is a single stage inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test measurement and low power modes. TI strongly encourages each customer to submit samples of the device to the resonator/crystal vendors for validation. The vendors are equipped to determine what load capacitors will best tune their resonator/crystal to the microcontroller device for optimum startup and operation over temperature/voltage extremes. An external oscillator source can be used by connecting a 3.3-V clock signal to the OSCIN pin and leaving the OSCOUT pin unconnected (open) as shown in Figure 6-4. OSCIN (see Note B) Kelvin_GND C1 OSCIN OSCOUT OSCOUT C2 (see Note A) External Clock Signal (toggling 0 V to 3.3 V) Crystal (a) (b) Note A: The values of C1 and C2 should be provided by the resonator/crystal vendor. Note B: Kelvin_GND should not be connected to any other GND. Figure 6-4. Recommended Crystal/Clock Connection 58 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.6.1.1.1 Timing Requirements for Main Oscillator Table 6-9. Timing Requirements for Main Oscillator MIN MAX UNIT tc(OSC) Cycle time, OSCIN (when using a sine-wave input) 50 200 ns tc(OSC_SQR) Cycle time, OSCIN, (when input to the OSCIN is a square wave ) 50 200 ns tw(OSCIL) Pulse duration, OSCIN low (when input to the OSCIN is a square wave) 6 ns tw(OSCIH) Pulse duration, OSCIN high (when input to the OSCIN is a square wave) 6 ns Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 59 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.6.1.2 www.ti.com Low Power Oscillator The Low Power Oscillator (LPO) is comprised of two oscillators -- HF LPO and LF LPO, in a single macro. 6.6.1.2.1 Features The main features of the LPO are: * Supplies a clock at extremely low power for power-saving modes. This is connected as clock source # 4 of the Global Clock Module. * Supplies a high-frequency clock for nontiming-critical systems. This is connected as clock source # 5 of the Global Clock Module. * Provides a comparison clock for the crystal oscillator failure detection circuit. BIAS_EN CLK80K LFEN LF_TRIM Low Power Oscillator HFEN HF_TRIM CLK10M CLK10M_VALID nPORRST Figure 6-5. LPO Block Diagram Figure 6-5 shows a block diagram of the internal reference oscillator. This is a low power oscillator (LPO) and provides two clock sources: one nominally 80 kHz and one nominally 10 MHz. 6.6.1.2.2 LPO Electrical and Timing Specifications Table 6-10. LPO Specifications PARAMETER Clock Detection LPO - HF oscillator (fHFLPO) MIN TYP MAX UNIT 1.375 2.4 4.875 MHz Oscillator fail frequency - higher threshold, using untrimmed LPO output 22 38.4 78 MHz Untrimmed frequency 5.5 9 19.5 MHz 8 9.6 11 MHz 10 s Oscillator fail frequency - lower threshold, using untrimmed LPO output Trimmed frequency Startup time from STANDBY (LPO BIAS_EN High for at least 900s) Cold startup time Untrimmed frequency LPO - LF oscillator (fLFLPO) Startup time from STANDBY (LPO BIAS_EN High for at least 900s) cold startup time 60 System Information and Electrical Specifications Submit Documentation Feedback 36 85 900 s 180 kHz 100 s 2000 s Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 6.6.1.3 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Phase Locked Loop (PLL) Clock Modules The PLL is used to multiply the input frequency to some higher frequency. The main features of the PLL are: * Frequency modulation can be optionally superimposed on the synthesized frequency of PLL1. The frequency modulation capability of PLL2 is permanently disabled. * Configurable frequency multipliers and dividers. * Built-in PLL Slip monitoring circuit. * Option to reset the device on a PLL slip detection. 6.6.1.3.1 Block Diagram Figure 6-6 shows a high-level block diagram of the two PLL macros on this microcontroller. PLLCTL1 and PLLCTL2 are used to configure the multiplier and dividers for the PLL1. PLLCTL3 is used to configure the multiplier and dividers for PLL2. OSCIN /NR INTCLK VCOCLK PLL /1 to /64 /OD post_ODCLK /1 to /8 /R PLLCLK /1 to /32 fPLLCLK = (fOSCIN / NR) * NF / (OD * R) /NF /1 to /256 OSCIN /NR2 /OD2 VCOCLK2 INTCLK2 /1 to /64 PLL#2 post_ODCLK2 /1 to /8 /NF2 /R2 PLL2CLK /1 to /32 f PLL2CLK = (fOSCIN / NR2) * NF2 / (OD2 * R2) /1 to /256 Figure 6-6. ZWT PLLx Block Diagram 6.6.1.3.2 PLL Timing Specifications Table 6-11. PLL Timing Specifications PARAMETER MIN fINTCLK PLL1 Reference Clock frequency fpost_ODCLK Post-ODCLK - PLL1 Post-divider input clock frequency fVCOCLK VCOCLK - PLL1 Output Divider (OD) input clock frequency fINTCLK2 PLL2 Reference Clock frequency fpost_ODCLK2 Post-ODCLK - PLL2 Post-divider input clock frequency fVCOCLK2 VCOCLK - PLL2 Output Divider (OD) input clock frequency Copyright (c) 2012-2015, Texas Instruments Incorporated 1 150 1 150 MAX UNIT 20 MHz 400 MHz 550 MHz 20 MHz 400 MHz 550 MHz System Information and Electrical Specifications Submit Documentation Feedback 61 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.6.1.4 www.ti.com External Clock Inputs The device supports up to two external clock inputs. This clock input must be a square wave input. The electrical and timing requirements for these clock inputs are specified in Table 6-12. The external clock sources are not checked for validity. They are assumed valid when enabled. Table 6-12. External Clock Timing and Electrical Specifications PARAMETER DESCRIPTION MIN MAX UNIT 80 MHz fEXTCLKx External clock input frequency tw(EXTCLKIN)H EXTCLK high-pulse duration 6 ns tw(EXTCLKIN)L EXTCLK low-pulse duration 6 ns viL(EXTCLKIN) Low-level input voltage -0.3 0.8 V viH(EXTCLKIN) High-level input voltage 2 VCCIO + 0.3 V 6.6.2 Clock Domains 6.6.2.1 Clock Domain Descriptions Table 6-13 lists the device clock domains and their default clock sources. The table also shows the system module control register that is used to select an available clock source for each clock domain. Table 6-13. Clock Domain Descriptions 62 CLOCK DOMAIN NAME DEFAULT CLOCK SOURCE CLOCK SOURCE SELECTION REGISTER HCLK OSCIN GHVSRC * * Is disabled via the CDDISx registers bit 1 Used for all system modules including DMA, ESM GCLK OSCIN GHVSRC * * * * Always the same frequency as HCLK In phase with HCLK Is disabled separately from HCLK via the CDDISx registers bit 0 Can be divided by 1up to 8 when running CPU self-test (LBIST) using the CLKDIV field of the STCCLKDIV register at address 0xFFFFE108 GCLK2 OSCIN GHVSRC * * * * Always the same frequency as GCLK 2 cycles delayed from GCLK Is disabled along with GCLK Gets divided by the same divider setting as that for GCLK when running CPU self-test (LBIST) VCLK OSCIN GHVSRC * * * Divided down from HCLK Can be HCLK/1, HCLK/2, ... or HCLK/16 Is disabled separately from HCLK via the CDDISx registers bit 2 VCLK2 OSCIN GHVSRC * * * * Divided down from HCLK Can be HCLK/1, HCLK/2, ... or HCLK/16 Frequency must be an integer multiple of VCLK frequency Is disabled separately from HCLK via the CDDISx registers bit 3 VCLK3 OSCIN GHVSRC * * * Divided down from HCLK Can be HCLK/1, HCLK/2, ... or HCLK/16 Is disabled separately from HCLK via the CDDISx registers bit 8 VCLKA1 VCLK VCLKASRC * * Defaults to VCLK as the source Is disabled via the CDDISx registers bit 4 VCLKA2 VCLK VCLKASRC * * Defaults to VCLK as the source Is disabled via the CDDISx registers bit 5 DESCRIPTION System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 6-13. Clock Domain Descriptions (continued) CLOCK DOMAIN NAME DEFAULT CLOCK SOURCE CLOCK SOURCE SELECTION REGISTER VCLKA3 VCLK VCLKACON1 * * * Defaults to VCLK as the source Frequency can be as fast as HCLK frequency. Is disabled via the CDDISx registers bit 10 VCLKA3_DIVR VCLK VCLKACON1 * * * * Divided down from the VCLKA3 using the VCLKA3R field of the VCLKACON1 register at address 0xFFFFE140 Frequency can be VCLKA3/1, VCLKA3/2, ..., or VCLKA3/8 Default frequency is VCLKA3/2 Is disabled separately via the VCLKACON1 register VCLKA3_DIV_CDDIS bit only if the VCLKA3 clock is not disabled DESCRIPTION VCLKA4 VCLK VCLKACON1 * * Defaults to VCLK as the source Is disabled via the CDDISx registers bit 11 RTICLK VCLK RCLKSRC * * Defaults to VCLK as the source If a clock source other than VCLK is selected for RTICLK, then the RTICLK frequency must be less than or equal to VCLK/3 - Application can ensure this by programming the RTI1DIV field of the RCLKSRC register, if necessary Is disabled via the CDDISx registers bit 6 * Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 63 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.6.2.2 www.ti.com Mapping of Clock Domains to Device Modules Each clock domain has a dedicated functionality as shown in Figure 6-7. GCM 0 OSCIN FMzPLL X1..256 /1..64 Low Power Oscillator GCLK, GCLK2 (to CPU) (SSPLL) /1..32 /1..8 1 * 80kHz 4 10MHz 5 /1..16 HCLK (to SYSTEM) VCLK _peri (VCLK to peripherals on PCR1) VCLK_sys (VCLK to system modules) /1..16 VCLK2 (to N2HETx and HTUx) /1..16 VCLK3 (to EMIF) PLL # 2 (SSPLL) /1..64 X1..256 * the frequency at this node must not exceed the maximum HCLK specifiation. /1..8 /1..32 6 * 3 EXTCLKIN 1 7 EXTCLKIN2 VCLK3 0 1 3 4 5 6 7 EMIF 0 1 3 4 5 6 7 VCLK VCLKA1 (to DCANx) 0 1 3 4 5 6 7 VCLK VCLKA2 (to FlexRay) /1, 2, 4, or 8 RTICLK (to RTI, DWWD) VCLK VCLKA1 VCLK VCLK2 VCLKA2 /1,2,..1024 /1,2,..4 GTUC1,2 Prop_seg Phase_seg2 Phase_seg1 FlexRay Baud Rate FlexRay CAN Baud Rate DCANx VCLK2 VCLKA2 /1,2,..256 /2,3..224 /1,2..32 /1,2..65536 HRP /1..64 /1,2..256 N2HETx TU FlexRay TU SPI Baud Rate SPIx,MibSPIx LIN / SCI Baud Rate ADCLK ECLK I2C baud rate LIN, SCI MibADCx External Clock I2C EXTCLKIN1 PLL#2 output Start of cycle Macro Tick NTU[3] NTU[2] NTU[1] LRP /20 ..2 5 Loop High Resolution Clock N2HETx RTI NTU[0] Figure 6-7. Device Clock Domains 64 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 6.6.3 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Clock Test Mode The TMS570 platform architecture defines a special mode that allows various clock signals to be brought out on to the ECLK pin and N2HET1[12] device outputs. This mode is called the Clock Test mode. It is very useful for debugging purposes and can be configured via the CLKTEST register in the system module. Table 6-14. Clock Test Mode Options SEL_ECP_PIN = CLKTEST[3-0] SIGNAL ON ECLK SEL_GIO_PIN = CLKTEST[11-8] SIGNAL ON N2HET1[12] 0000 Oscillator 0000 Oscillator Valid Status 0001 Main PLL free-running clock output 0001 Main PLL Valid status 0010 Reserved 0010 Reserved 0011 EXTCLKIN1 0011 Reserved 0100 CLK80K 0100 Reserved 0101 CLK10M 0101 CLK10M Valid status 0110 Secondary PLL free-running clock output 0110 Secondary PLL Valid Status 0111 EXTCLKIN2 0111 Reserved 1000 GCLK 1000 CLK80K 1001 RTI Base 1001 Reserved 1010 Reserved 1010 Reserved 1011 VCLKA1 1011 Reserved 1100 VCLKA2 1100 Reserved 1101 Reserved 1101 Reserved 1110 VCLKA4 1110 Reserved 1111 Reserved 1111 Reserved Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 65 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.7 www.ti.com Clock Monitoring The LPO Clock Detect (LPOCLKDET) module consists of a clock monitor (CLKDET) and an internal low power oscillator (LPO). The LPO provides two different clock sources - a low frequency (LFLPO) and a high frequency (HFLPO). The CLKDET is a supervisor circuit for an externally supplied clock signal (OSCIN). In case the OSCIN frequency falls out of a frequency window, the CLKDET flags this condition in the global status register (GLBSTAT bit 0: OSC FAIL) and switches all clock domains sourced by OSCIN to the HFLPO clock (limp mode clock). The valid OSCIN frequency range is defined as: fHFLPO / 4 < fOSCIN < fHFLPO * 4. 6.7.1 Clock Monitor Timings For more information on LPO and Clock detection, refer to Table 6-10. fail lower threshold 1.375 upper threshold pass 4.875 22 fail 78 f[MHz] Figure 6-8. LPO and Clock Detection, Untrimmed HFLPO 6.7.2 External Clock (ECLK) Output Functionality The ECLK pin can be configured to output a prescaled clock signal indicative of an internal device clock. This output can be externally monitored as a safety diagnostic. 6.7.3 Dual Clock Comparators The Dual Clock Comparator (DCC) module determines the accuracy of selectable clock sources by counting the pulses of two independent clock sources (counter 0 and counter 1). If one clock is out of spec, an error signal is generated. For example, the DCC1 can be configured to use CLK10M as the reference clock (for counter 0) and VCLK as the "clock under test" (for counter 1). This configuration allows the DCC1 to monitor the PLL output clock when VCLK is using the PLL output as its source. An additional use of this module is to measure the frequency of a selectable clock source, using the input clock as a reference, by counting the pulses of two independent clock sources. Counter 0 generates a fixed-width counting window after a preprogrammed number of pulses. Counter 1 generates a fixed-width pulse (1 cycle) after a preprogrammed number of pulses. This pulse sets as an error signal if counter 1 does not reach 0 within the counting window generated by counter 0. 6.7.3.1 * * * * 66 Features Takes two different clock sources as input to two independent counter blocks. One of the clock sources is the known-good, or reference clock; the second clock source is the "clock under test." Each counter block is programmable with initial, or seed values. The counter blocks start counting down from their seed values at the same time; a mismatch from the expected frequency for the clock under test generates an error signal which is used to interrupt the CPU. System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 6.7.3.2 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Mapping of DCC Clock Source Inputs Table 6-15. DCC1 Counter 0 Clock Sources CLOCK SOURCE [3:0] CLOCK NAME others oscillator (OSCIN) 0x5 high frequency LPO 0xA test clock (TCK) Table 6-16. DCC1 Counter 1 Clock Sources KEY [3:0] CLOCK SOURCE [3:0] others - N2HET1[31] 0x0 Main PLL free-running clock output 0x1 PLL #2 free-running clock output 0xA CLOCK NAME 0x2 low frequency LPO 0x3 high frequency LPO 0x4 flash HD pump oscillator 0x5 EXTCLKIN1 0x6 EXTCLKIN2 0x7 ring oscillator 0x8 - 0xF VCLK Table 6-17. DCC2 Counter 0 Clock Sources CLOCK SOURCE [3:0] CLOCK NAME others oscillator (OSCIN) 0xA test clock (TCK) Table 6-18. DCC2 Counter 1 Clock Sources KEY [3:0] CLOCK SOURCE [3:0] CLOCK NAME others - N2HET2[0] 0xA 00x0 - 0x7 Reserved 0x8 - 0xF VCLK Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 67 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.8 www.ti.com Glitch Filters A glitch filter is present on the following signals. Table 6-19. Glitch Filter Timing Specifications PIN PARAMETER MIN MAX UNIT 475 2000 ns 475 2000 ns 475 2000 ns Filter time nPORRST pin; nPORRST tf(nPORRST) nRST tf(nRST) TEST tf(TEST) pulses less than MIN will be filtered out, pulses greater than MAX will generate a reset (1) Filter time nRST pin; pulses less than MIN will be filtered out, pulses greater than MAX will generate a reset Filter time TEST pin; (1) 68 pulses less than MIN will be filtered out, pulses greater than MAX will pass through The glitch filter design on the nPORRST signal is designed such that no size pulse will reset any part of the microcontroller (flash pump, I/O pins, and so forth) without also generating a valid reset signal to the CPU. System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 6.9 6.9.1 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Device Memory Map Memory Map Diagram The figures below show the device memory maps. 0xFFFFFFFF SYSTEM Modules 0xFFF80000 Peripherals - Frame 1 0xFF000000 0xFE000000 CRC RESERVED 0xFCFFFFFF 0xFC000000 Peripherals - Frame 2 RESERVED 0xF07FFFFF Flash Module Bus2 Interface (Flash ECC, OTP and EEPROM accesses) 0xF0000000 RESERVED 0x87FFFFFF 0x80000000 0x6FFFFFFF 0x60000000 EMIF (128MB) SDRAM RESERVED CS0 reserved 0x6C000000 CS4 0x68000000 CS3 0x64000000 CS2 EMIF (16MB * 3) Async RAM RESERVED 0x202FFFFF Flash (3MB) (Mirrored Image) 0x20000000 RESERVED 0x0843FFFF 0x08400000 RAM - ECC RESERVED 0x0803FFFF 0x08000000 RAM (256KB) RESERVED 0x002FFFFF Flash (3MB) 0x00000000 Figure 6-9. TMS570LS3135 Memory Map Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 69 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 0xFFFFFFFF SYSTEM Modules 0xFFF80000 Peripherals - Frame 1 0xFF000000 0xFE000000 CRC RESERVED 0xFCFFFFFF 0xFC000000 Peripherals - Frame 2 RESERVED 0xF07FFFFF Flash Module Bus2 Interface (Flash ECC, OTP and EEPROM accesses) 0xF0000000 RESERVED 0x87FFFFFF 0x80000000 0x6FFFFFFF 0x60000000 EMIF (128MB) SDRAM RESERVED CS0 reserved 0x6C000000 CS4 0x68000000 CS3 0x64000000 CS2 EMIF (16MB * 3) Async RAM RESERVED 0x201FFFFF 0x20000000 Flash (2MB) (Mirrored Image) RESERVED 0x0843FFFF 0x08400000 RAM - ECC RESERVED 0x0803FFFF 0x08000000 0x001FFFFF 0x00000000 RAM (256KB) RESERVED Flash (2MB) Figure 6-10. TMS570LS2135 Memory Map 70 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 0xFFFFFFFF SYSTEM Modules 0xFFF80000 Peripherals - Frame 1 0xFF000000 0xFE000000 CRC RESERVED 0xFCFFFFFF 0xFC000000 Peripherals - Frame 2 RESERVED 0xF07FFFFF Flash Module Bus2 Interface (Flash ECC, OTP and EEPROM accesses) 0xF0000000 RESERVED 0x87FFFFFF 0x80000000 0x6FFFFFFF 0x60000000 EMIF (128MB) SDRAM RESERVED CS0 reserved 0x6C000000 CS4 0x68000000 CS3 0x64000000 CS2 EMIF (16MB * 3) Async RAM RESERVED 0x201FFFFF Flash (2MB) (Mirrored Image) 0x20000000 RESERVED 0x0842FFFF 0x08400000 RAM - ECC RESERVED 0x0802FFFF 0x08000000 RAM (192KB) RESERVED 0x001FFFFF Flash (2MB) 0x00000000 Figure 6-11. TMS570LS2125 Memory Map The Flash memory is mirrored to support ECC logic testing. The base address of the mirrored Flash image is 0x2000 0000. Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 71 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.9.2 www.ti.com Memory Map Table Table 6-20. Device Memory Map MODULE NAME FRAME CHIP SELECT FRAME ADDRESS RANGE START END FRAME SIZE ACTUAL SIZE RESPONSE FOR ACCESS TO UNIMPLEMENTED LOCATIONS IN FRAME MEMORIES TIGHTLY COUPLED TO THE ARM CORTEX-R4F CPU TCM Flash CS0 0x00000000 0x00FFFFFF 16MB 3MB (1) TCM RAM + RAM ECC CSRAM0 0x08000000 0x0BFFFFFF 64MB 256KB (2) Mirrored Flash Flash mirror frame 0x20000000 0x20FFFFFF 16MB 3MB (1) Abort EXTERNAL MEMORY ACCESSES EMIF Chip Select 2 (asynchronous) EMIF select 2 0x60000000 0x63FFFFFF 64MB 16MB EMIF Chip Select 3 (asynchronous) EMIF select 3 0x64000000 0x67FFFFFF 64MB 16MB EMIF Chip Select 4 (asynchronous) EMIF select 4 0x68000000 0x6BFFFFFF 64MB 16MB EMIF Chip Select 0 (synchronous) EMIF select 0 0x80000000 0x87FFFFFF 128MB 128MB Access to "Reserved" space will generate Abort FLASH MODULE BUS2 INTERFACE Customer OTP, TCM Flash Bank 0 0xF0000000 0xF0001FFF 8KB 4KB Customer OTP, TCM Flash Bank 1 0xF0002000 0xF0003FFF 8KB 4KB Customer OTP, EEPROM Bank 7 0xF000E000 0xF000FFFF 8KB 2KB Customer OTP-ECC, TCM Flash Bank 0 0xF0040000 0xF00403FF 1KB 512B Customer OTP-ECC, TCM Flash Bank 1 0xF0040400 0xF00407FF 1KB 512B Customer OTP-ECC, EEPROM Bank 7 0xF0041C00 0xF0041FFF 1KB 256B TI OTP, TCM Flash Bank 0 0xF0080000 0xF0081FFF 8KB 4KB TI OTP, TCM Flash Bank 1 0xF0082000 0xF0083FFF 8KB 4KB TI OTP, EEPROM Bank 7 0xF008E000 0xF008FFFF 8KB 2KB TI OTP-ECC, TCM Flash Bank 0 0xF00C0000 0xF00C03FF 1KB 512B TI OTP-ECC, TCM Flash Bank 1 0xF00C0400 0xF00C07FF 1KB 512B TI OTP-ECC, EEPROM Bank 7 0xF00C1C00 0xF00C1FFF 1KB 256B EEPROM Bank-ECC 0xF0100000 0xF013FFFF 256KB 8KB EEPROM Bank 0xF0200000 0xF03FFFFF 2MB 64KB Flash Data Space ECC 0xF0400000 0xF04FFFFF 1MB 384KB EMIF Registers 0xFCFFE800 Abort EMIF SLAVE INTERFACES 0xFCFFE8FF 256B 256B Abort CYCLIC REDUNDANCY CHECKER (CRC) MODULE REGISTERS CRC CRC frame 0xFE000000 0xFEFFFFFF MIBSPI5 RAM PCS[5] 0xFF0A0000 0xFF0BFFFF MIBSPI3 RAM PCS[6] 0xFF0C0000 0xFF0DFFFF 16MB 512B Accesses above 0x200 generate abort. 128KB 2KB Abort for accesses above 2KB 128KB 2KB Abort for accesses above 2KB PERIPHERAL MEMORIES (1) (2) 72 The TMS570LS2135 and TMS570LS2125 devices only have 2MB of Flash The TMS570LS2125 device has only 192KB of RAM. System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 6-20. Device Memory Map (continued) MODULE NAME FRAME CHIP SELECT START FRAME ADDRESS RANGE END FRAME SIZE ACTUAL SIZE RESPONSE FOR ACCESS TO UNIMPLEMENTED LOCATIONS IN FRAME MIBSPI1 RAM PCS[7] 0xFF0E0000 0xFF0FFFFF 128KB 2KB Abort for accesses above 2KB DCAN3 RAM PCS[13] 0xFF1A0000 0xFF1BFFFF 128KB 2KB Wrap around for accesses to unimplemented address offsets lower than 0x7FF. Abort generated for accesses beyond offset 0x800. DCAN2 RAM PCS[14] 0xFF1C0000 0xFF1DFFFF 128KB 2KB Wrap around for accesses to unimplemented address offsets lower than 0x7FF. Abort generated for accesses beyond offset 0x800. DCAN1 RAM PCS[15] 0xFF1E0000 0xFF1FFFFF 128KB 2KB Wrap around for accesses to unimplemented address offsets lower than 0x7FF. Abort generated for accesses beyond offset 0x800. MIBADC2 RAM PCS[29] 0xFF3A0000 0xFF3BFFFF 128KB 8KB Wrap around for accesses to unimplemented address offsets lower than 0x1FFF. Abort generated for accesses beyond 0x1FFF. MIBADC1 RAM PCS[31] 0xFF3E0000 0xFF3FFFFF 128KB 8KB Wrap around for accesses to unimplemented address offsets lower than 0x1FFF. Abort generated for accesses beyond 0x1FFF. N2HET2 RAM PCS[34] 0xFF440000 0xFF45FFFF 128KB 16KB Wrap around for accesses to unimplemented address offsets lower than 0x3FFF. Abort generated for accesses beyond 0x3FFF. N2HET1 RAM PCS[35] 0xFF460000 0xFF47FFFF 128KB 16KB Wrap around for accesses to unimplemented address offsets lower than 0x3FFF. Abort generated for accesses beyond 0x3FFF. HTU2 RAM PCS[38] 0xFF4C0000 0xFF4DFFFF 128KB 1KB Abort HTU1 RAM PCS[39] 0xFF4E0000 0xFF4FFFFF 128KB 1KB Abort FTU RAM PCS[40] 0xFF500000 0xFF51FFFF 128KB 1KB Abort DEBUG COMPONENTS CoreSight Debug ROM CSCS0 0xFFA00000 0xFFA00FFF 4KB 4KB Reads: 0, writes: no effect Cortex-R4F Debug CSCS1 0xFFA01000 0xFFA01FFF 4KB 4KB Reads: 0, writes: no effect ETM-R4 CSCS2 0xFFA02000 0xFFA02FFF 4KB 4KB Reads: 0, writes: no effect CoreSight TPIU CSCS3 0xFFA03000 0xFFA03FFF 4KB 4KB Reads: 0, writes: no effect POM CSCS4 0xFFA04000 0xFFA04FFF 4KB 4KB Abort PERIPHERAL CONTROL REGISTERS FTU PS[23] 0xFFF7A000 0xFFF7A1FF 512B 512B Reads: 0, writes: no effect HTU1 PS[22] 0xFFF7A400 0xFFF7A4FF 256B 256B Reads: 0, writes: no effect HTU2 PS[22] 0xFFF7A500 0xFFF7A5FF 256B 256B Reads: 0, writes: no effect N2HET1 PS[17] 0xFFF7B800 0xFFF7B8FF 256B 256B Reads: 0, writes: no effect N2HET2 PS[17] 0xFFF7B900 0xFFF7B9FF 256B 256B Reads: 0, writes: no effect GPIO PS[16] 0xFFF7BC00 0xFFF7BCFF 256B 256B Reads: 0, writes: no effect MIBADC1 PS[15] 0xFFF7C000 0xFFF7C1FF 512B 512B Reads: 0, writes: no effect MIBADC2 PS[15] 0xFFF7C200 0xFFF7C3FF 512B 512B Reads: 0, writes: no effect FlexRay PS[12]+PS[13] 0xFFF7C800 0xFFF7CFFF 2KB 2KB Reads: 0, writes: no effect I2C PS[10] 0xFFF7D400 0xFFF7D4FF 256B 256B Reads: 0, writes: no effect DCAN1 PS[8] 0xFFF7DC00 0xFFF7DDFF 512B 512B Reads: 0, writes: no effect DCAN2 PS[8] 0xFFF7DE00 0xFFF7DFFF 512B 512B Reads: 0, writes: no effect DCAN3 PS[7] 0xFFF7E000 0xFFF7E1FF 512B 512B Reads: 0, writes: no effect LIN PS[6] 0xFFF7E400 0xFFF7E4FF 256B 256B Reads: 0, writes: no effect SCI PS[6] 0xFFF7E500 0xFFF7E5FF 256B 256B Reads: 0, writes: no effect MibSPI1 PS[2] 0xFFF7F400 0xFFF7F5FF 512B 512B Reads: 0, writes: no effect SPI2 PS[2] 0xFFF7F600 0xFFF7F7FF 512B 512B Reads: 0, writes: no effect Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 73 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 6-20. Device Memory Map (continued) FRAME ADDRESS RANGE END FRAME SIZE ACTUAL SIZE RESPONSE FOR ACCESS TO UNIMPLEMENTED LOCATIONS IN FRAME 0xFFF7F800 0xFFF7F9FF 512B 512B Reads: 0, writes: no effect 0xFFF7FA00 0xFFF7FBFF 512B 512B Reads: 0, writes: no effect 0xFFF7FDFF 512B 512B Reads: 0, writes: no effect MODULE NAME FRAME CHIP SELECT MibSPI3 PS[1] SPI4 PS[1] MibSPI5 PS[0] 0xFFF7FC00 START SYSTEM MODULES CONTROL REGISTERS AND MEMORIES DMA RAM PPCS0 0xFFF80000 0xFFF80FFF 4KB 4KB Abort VIM RAM PPCS2 0xFFF82000 0xFFF82FFF 4KB 1KB Wrap around for accesses to unimplemented address offsets between 1kB and 4kB. RTP RAM PPCS3 0xFFF83000 0xFFF83FFF 4KB 4KB Abort Flash Module PPCS7 0xFFF87000 0xFFF87FFF 4KB 4KB Abort eFuse Controller PPCS12 0xFFF8C000 0xFFF8CFFF 4KB 4KB Abort Power Management Module (PMM) PPSE0 0xFFFF0000 0xFFFF01FF 512B 512B Abort Test Controller (FMTM) PPSE1 0xFFFF0400 0xFFFF07FF 1KB 1KB Reads: 0, writes: no effect PCR registers PPS0 0xFFFFE000 0xFFFFE0FF 256B 256B Reads: 0, writes: no effect System Module Frame 2 (see device TRM) PPS0 0xFFFFE100 0xFFFFE1FF 256B 256B Reads: 0, writes: no effect PBIST PPS1 0xFFFFE400 0xFFFFE5FF 512B 512B Reads: 0, writes: no effect STC PPS1 0xFFFFE600 0xFFFFE6FF 256B 256B Generates address error interrupt, if enabled IOMM Multiplexing Control Module PPS2 0xFFFFEA00 0xFFFFEBFF 512B 512B Reads: 0, writes: no effect DCC1 PPS3 0xFFFFEC00 0xFFFFECFF 256B 256B Reads: 0, writes: no effect DMA PPS4 0xFFFFF000 0xFFFFF3FF 1KB 1KB Reads: 0, writes: no effect DCC2 PPS5 0xFFFFF400 0xFFFFF4FF 256B 256B Reads: 0, writes: no effect ESM PPS5 0xFFFFF500 0xFFFFF5FF 256B 256B Reads: 0, writes: no effect CCMR4 PPS5 0xFFFFF600 0xFFFFF6FF 256B 256B Reads: 0, writes: no effect DMM PPS5 0xFFFFF700 0xFFFFF7FF 256B 256B Reads: 0, writes: no effect RAM ECC even PPS6 0xFFFFF800 0xFFFFF8FF 256B 256B Reads: 0, writes: no effect RAM ECC odd PPS6 0xFFFFF900 0xFFFFF9FF 256B 256B Reads: 0, writes: no effect RTP PPS6 0xFFFFFA00 0xFFFFFAFF 256B 256B Reads: 0, writes: no effect RTI + DWWD PPS7 0xFFFFFC00 0xFFFFFCFF 256B 256B Reads: 0, writes: no effect VIM Parity PPS7 0xFFFFFD00 0xFFFFFDFF 256B 256B Reads: 0, writes: no effect VIM PPS7 0xFFFFFE00 0xFFFFFEFF 256B 256B Reads: 0, writes: no effect System Module Frame 1 (see device TRM) PPS7 0xFFFFFF00 0xFFFFFFFF 256B 256B Reads: 0, writes: no effect 74 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 6.9.3 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Master/Slave Access Privileges Table 6-21 lists the access permissions for each bus master on the device. A bus master is a module that can initiate a read or a write transaction on the device. Each slave module on the main interconnect is listed in the table. A "Yes" indicates that the module listed in the "MASTERS" column can access that slave module. Table 6-21. Master / Slave Access Matrix MASTERS ACCESS MODE SLAVES ON MAIN SCR Flash Module Bus2 Interface: OTP, ECC, EEPROM Bank Non-CPU Accesses to Program Flash and CPU Data RAM CRC EMIF Slave Interfaces Peripheral Control Registers, All Peripheral Memories, And All System Module Control Registers And Memories CPU READ User/Privilege Yes Yes Yes Yes Yes CPU WRITE User/Privilege No Yes Yes Yes Yes DMA User Yes Yes Yes Yes Yes POM User Yes Yes Yes Yes Yes DMM User Yes Yes Yes Yes Yes DAP Privilege Yes Yes Yes Yes Yes HTU1 Privilege No Yes Yes Yes Yes HTU2 Privilege No Yes Yes Yes Yes FTU User No Yes Yes Yes Yes 6.9.3.1 Special Notes on Accesses to Certain Slaves Write accesses to the Power Domain Management Module (PMM) control registers are limited to the CPU (master id = 1). The other masters can only read from these registers. A debugger can also write to the PMM registers. The master-id check is disabled in debug mode. The device contains dedicated logic to generate a bus error response on any access to a module that is in a power domain that has been turned OFF. Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 75 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.9.4 POM Overlay Considerations * * * * 76 www.ti.com The POM overlay can map onto up to 8MB of the internal or external memory space. The starting address and the size of the memory overlay are configurable via the POM module control registers. Care must be taken to ensure that the overlay is mapped on to available memory. ECC must be disabled by software via CP15 in case POM overlay is enabled; otherwise ECC errors will be generated. POM overlay must not be enabled when the flash and internal RAM memories are swapped via the MEM SWAP field of the Bus Matrix Module Control Register 1 (BMMCR1). When POM is used to overlay the flash onto internal or external RAM, there is a bus contention possibility when another master accesses the TCM flash. This results in a system hang. - The POM module implements a time-out feature to detect this exact scenario. The time-out needs to be enabled whenever POM overlay is enabled. - The time-out can be enabled by writing 1010 to the Enable TimeOut (ETO) field of the POM Global Control register (POMGLBCTRL, address = 0xFFA04000). - In case a read request by the POM cannot be completed within 32 HCLK cycles, the time-out (TO) flag is set in the POM Flag register (POMFLG, address = 0xFFA0400C). Also, an abort is generated to the CPU. This can be a prefetch abort for an instruction fetch or a data abort for a data fetch. - The prefetch- and data-abort handlers must be modified to check if the TO flag in the POM module is set. If so, then the application can assume that the time-out is caused by a bus contention between the POM transaction and another master accessing the same memory region. The abort handlers need to clear the TO flag, so that any further aborts are not misinterpreted as having been caused due to a time-out from the POM. System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.10 Flash Memory 6.10.1 Flash Memory Configuration Flash Bank: A separate block of logic consisting of 1 to 16 sectors. Each flash bank normally has a customer-OTP and a TI-OTP area. These flash sectors share input/output buffers, data paths, sense amplifiers, and control logic. Flash Sector: A contiguous region of flash memory which must be erased simultaneously due to physical construction constraints. Flash Pump: A charge pump which generates all the voltages required for reading, programming, or erasing the flash banks. Flash Module: Interface circuitry required between the host CPU and the flash banks and pump module. Table 6-22. Flash Memory Banks and Sectors MEMORY ARRAYS (OR BANKS) (1) SECTOR NO. SEGMENT (BYTES) LOW ADDRESS BANK0 (1.5MB) 0 32KB 0x0000_0000 0x0000_7FFF 1 32KB 0x0000_8000 0x0000_FFFF 2 32KB 0x0001_0000 0x0001_7FFF 3 32KB 0x0001_8000 0x0001_FFFF 4 128KB 0x0002_0000 0x0003_FFFF 5 128KB 0x0004_0000 0x0005_FFFF 6 128KB 0x0006_0000 0x0007_FFFF 7 128KB 0x0008_0000 0x0009_FFFF 8 128KB 0x000A_0000 0x000B_FFFF 9 128KB 0x000C_0000 0x000D_FFFF 10 128KB 0x000E_0000 0x000F_FFFF 11 128KB 0x0010_0000 0x0011_FFFF 12 128KB 0x0012_0000 0x0013_FFFF 13 128KB 0x0014_0000 0x0015_FFFF 14 128KB 0x0016_0000 0x0017_FFFF 0 128KB 0x0018_0000 0x0019_FFFF 1 128KB 0x001A_0000 0x001B_FFFF 2 128KB 0x001C_0000 0x001D_FFFF 3 128KB 0x001E_0000 0x001F_FFFF 4 128KB 0x0020_0000 0x0021_FFFF 5 128KB 0x0022_0000 0x0023_FFFF 6 128KB 0x0024_0000 0x0025_FFFF 7 128KB 0x0026_0000 0x0027_FFFF 8 128KB 0x0028_0000 0x0029_FFFF BANK1 (1.5MB) (3MB devices only) BANK7 (64KB) for EEPROM emulation (1) (2) (3) (2) (3) HIGH ADDRESS 9 128KB 0x002A_0000 0x002B_FFFF 10 128KB 0x002C_0000 0x002D_FFFF 11 128KB 0x002E_0000 0x002F_FFFF 0 16KB 0xF020_0000 0xF020_3FFF 1 16KB 0xF020_4000 0xF020_7FFF 2 16KB 0xF020_8000 0xF020_BFFF 3 16KB 0xF020_C000 0xF020_FFFF The Flash banks are 144-bit-wide bank with ECC support. The flash bank7 can be programmed while executing code from flash bank0 or bank1. Code execution is not allowed from flash bank7. Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 77 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 6.10.2 Main Features of Flash Module * * * * * * Support for multiple flash banks for program and/or data storage Simultaneous read access on a bank while performing program or erase operation on any other bank Integrated state machines to automate flash erase and program operations Software interface for flash program and erase operations Pipelined mode operation to improve instruction access interface bandwidth Support for Single Error Correction Double Error Detection (SECDED) block inside Cortex-R4F CPU - Error address is captured for host system debugging Support for a rich set of diagnostic features * 6.10.3 ECC Protection for Flash Accesses All accesses to the program flash memory are protected by Single Error Correction Double Error Detection (SECDED) logic embedded inside the CPU. The flash module provides 8 bits of ECC code for 64 bits of instructions or data fetched from the flash memory. The CPU calculates the expected ECC code based on the 64 bits received and compares it with the ECC code returned by the flash module. A single-bit error is corrected and flagged by the CPU, while a multibit error is only flagged. The CPU signals an ECC error via its Event bus. This signaling mechanism is not enabled by default and must be enabled by setting the 'X' bit of the Performance Monitor Control Register, c9. MRC ORR MCR MRC p15,#0,r1,c9,c12,#0 r1, r1, #0x00000010 p15,#0,r1,c9,c12,#0 p15,#0,r1,c9,c12,#0 ;Enabling Event monitor states ;Set 4th bit (`X') of PMNC register The application must also explicitly enable the CPU's ECC checking for accesses on the CPU's ATCM and BTCM interfaces. These are connected to the program flash and data RAM respectively. ECC checking for these interfaces can be done by setting the B1TCMPCEN, B0TCMPCEN and ATCMPCEN bits of the System Control coprocessor's Auxiliary Control Register, c1. MRC p15, #0, r1, c1, c0, #1 ORR r1, r1, #0x0e000000 DMB MCR p15, #0, r1, c1, c0, #1 ;Enable ECC checking for ATCM and BTCMs 6.10.4 Flash Access Speeds For information on flash memory access speeds and the relevant wait states required, refer to Section 5.6. 6.10.5 Flash Program and Erase Timings for Program Flash Table 6-23. Timing Specifications for Program Flash PARAMETER tprog (144bit) Wide Word (144bit) programming time tprog (Total) 3-MB programming time (1) MIN Sector/Bank erase time (2) -40C to 125C 0C to 60C, for first 25 cycles twec (1) (2) 78 Write/erase cycles with 15-year Data Retention requirement MAX UNIT 40 300 s 32 s 16 s -40C to 125C 0C to 60C, for first 25 cycles terase NOM -40C to 125C 8 0.03 4 16 100 ms s 1000 cycles This programming time includes overhead of state machine, but does not include data transfer time. The programming time assumes programming 144 bits at a time at the maximum specified operating frequency. During bank erase, the selected sectors are erased simultaneously. The time to erase the bank is specified as equal to the time to erase a sector. System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.10.6 Flash Program and Erase Timings for Data Flash Table 6-24. Timing Specifications for Data Flash PARAMETER MIN tprog (144bit) Wide Word (144bit) programming time tprog (Total) 64-KB programming time (1) terase Sector/Bank erase time (2) twec Write/erase cycles with 15-year Data Retention requirement NOM MAX UNIT 40 300 s 660 ms ms -40C to 125C (1) (2) 0C to 60C, for first 25 cycles 165 330 -40C to 125C 0.2 8 0C to 60C, for first 25 cycles 14 100 -40C to 125C 100000 s ms cycles This programming time includes overhead of state machine, but does not include data transfer time. The programming time assumes programming 144 bits at a time at the maximum specified operating frequency. During bank erase, the selected sectors are erased simultaneously. The time to erase the bank is specified as equal to the time to erase a sector. Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 79 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 6.11 Tightly Coupled RAM (TCRAM) Interface Module Figure 6-12 illustrates the connection of the Tightly Coupled RAM (TCRAM) to the Cortex-R4F CPU. Upper 32 bits data & 4 ECC bits Cortex-R4F B0 TCM TCM BUS TCRAM Interface 1 72 Bit data + ECC Lower 32 bits data & 4 ECC bits B1 TCM Upper 32 bits data & 4 ECC bits TCM BUS 72 Bit data + ECC TCRAM Interface 2 Lower 32 bits data & 4 ECC bits 36 Bit Bit 3636 Bit wide wide wideRAM RAM RAM 36 Bit Bit 3636 Bit wide wide wideRAM RAM RAM 36 Bit Bit 3636 Bit wide wide wideRAM RAM RAM 36 Bit Bit 3636 Bit wide wide wide RAM RAM RAM Figure 6-12. TCRAM Block Diagram 6.11.1 Features The features of the TCRAM Module are: * * * * * * * * * * Acts as slave to the Cortex-R4F CPU's BTCM interface Supports CPU's internal ECC scheme by providing 64-bit data and 8-bit ECC code Monitors CPU Event Bus and generates single or multibit error interrupts Stores addresses for single and multibit errors Supports RAM trace module Provides CPU address bus integrity checking by supporting parity checking on the address bus Performs redundant address decoding for the RAM bank chip select and ECC select generation logic Provides enhanced safety for the RAM addressing by implementing two 36-bit wide byte-interleaved RAM banks and generating independent RAM access control signals to the two banks Supports auto-initialization of the RAM banks along with the ECC bits No support for bit-wise RAM accesses 6.11.2 TCRAM Interface ECC Support The TCRAM interface passes on the ECC code for each data read by the Cortex-R4F CPU from the RAM. It also stores the CPU's ECC port contents in the ECC RAM when the CPU does a write to the RAM. The TCRAM interface monitors the CPU's event bus and provides registers for indicating singlebit or multibit errors and also for identifying the address that caused the single or multibit error. The event signaling and the ECC checking for the RAM accesses must be enabled inside the CPU. For more information see the device specific technical reference manual. 6.12 Parity Protection for Peripheral RAMs Most peripheral RAMs are protected by odd/even parity checking. During a read access the parity is calculated based on the data read from the peripheral RAM and compared with the good parity value stored in the parity RAM for that peripheral. If any word fails the parity check, the module generates a parity error signal that is mapped to the Error Signaling Module. The module also captures the peripheral RAM address that caused the parity error. 80 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 The parity protection for peripheral RAMs is not enabled by default and must be enabled by the application. Each individual peripheral contains control registers to enable the parity protection for accesses to its RAM. NOTE The CPU read access gets the actual data from the peripheral. The application can choose to generate an interrupt whenever a peripheral RAM parity error is detected. Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 81 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 6.13 On-Chip SRAM Initialization and Testing 6.13.1 On-Chip SRAM Self-Test Using PBIST 6.13.1.1 Features * * * Extensive instruction set to support various memory test algorithms ROM-based algorithms allow application to run TI production-level memory tests Independent testing of all on-chip SRAM 6.13.1.2 PBIST RAM Groups Table 6-25. PBIST RAM Grouping TEST PATTERN (ALGORITHM) MEMORY RAM GROUP TEST CLOCK TRIPLE READ SLOW READ TRIPLE READ FAST READ MARCH 13N (1) TWO PORT (CYCLES) MARCH 13N (1) SINGLE PORT (CYCLES) ALGO MASK 0x1 ALGO MASK 0x2 ALGO MASK 0x4 ALGO MASK 0x8 ROM 24578 8194 19586 6530 MEM TYPE PBIST_ROM 1 ROM CLK STC_ROM 2 ROM CLK ROM DCAN1 3 VCLK Dual Port 25200 DCAN2 4 VCLK Dual Port 25200 DCAN3 5 VCLK Dual Port 25200 ESRAM1 (2) 6 HCLK Single Port MIBSPI1 7 VCLK Dual Port 33440 MIBSPI3 8 VCLK Dual Port 33440 MIBSPI5 9 VCLK Dual Port 33440 VIM 10 VCLK Dual Port 12560 MIBADC1 11 VCLK Dual Port 4200 DMA 12 HCLK Dual Port 18960 N2HET1 13 VCLK Dual Port 31680 HTU1 14 VCLK Dual Port 6480 RTP 15 HCLK Dual Port 37800 16 VCLK Dual Port 75400 FLEXRAY (2) (3) (4) (5) 17 Single Port 133160 MIBADC2 18 VCLK Dual Port 4200 N2HET2 19 VCLK Dual Port 31680 HTU2 20 VCLK Dual Port 6480 ESRAM5 (3) 21 HCLK Single Port 266280 (4) 22 HCLK Single Port 266280 ESRAM8 (5) 28 HCLK Single Port 266280 ESRAM6 (1) 266280 There are several memory testing algorithms stored in the PBIST ROM. However, TI recommends the March13N algorithm for application testing. ESRAM1: Address 0x08000000 - 0x0800FFFF (Always on power domain) ESRAM5: Address 0x08010000 - 0x0801FFFF (RAM power domain 1) ESRAM6: Address 0x08020000 - 0x0802FFFF (RAM power domain 2) ESRAM8: Address 0x08030000 - 0x0803FFFF (RAM power domain 3) Not available on theTMS570LS2125 device. The PBIST ROM clock frequency is limited to 90 MHz, if 90 MHz < HCLK <= HCLKmax, or HCLK, if HCLK <= 90 MHz. The PBIST ROM clock is divided down from HCLK. The divider is selected by programming the ROM_DIV field of the Memory Self-Test Global Control Register (MSTGCR) at address 0xFFFFFF58. 82 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.13.2 On-Chip SRAM Auto Initialization This microcontroller allows some of the on-chip memories to be initialized to zero via the Memory Hardware Initialization mechanism in the System module. This hardware mechanism allows an application to program the memory arrays with error detection capability to a known state based on their error detection scheme (odd/even parity or ECC). The MINITGCR register enables the memory initialization sequence, and the MSINENA register selects the memories that are to be initialized. For more information on these registers see the device specific technical reference manual. The mapping of the different on-chip memories to the specific bits of the MSINENA registers is shown in Table 6-26. Table 6-26. Memory Initialization CONNECTING MODULE ADDRESS RANGE ENDING ADDRESS RAM (PD#1) 0x08000000 0x0800FFFF 0 (1) RAM (RAM_PD#1) 0x08010000 0x0801FFFF 0 (1) RAM (RAM_PD#2) 0x08020000 0x0802FFFF 0 (1) 0x08030000 0x0803FFFF 0 (1) MIBSPI5 RAM 0xFF0A0000 0xFF0BFFFF 12 (3) MIBSPI3 RAM 0xFF0C0000 0xFF0DFFFF 11 (3) MIBSPI1 RAM 0xFF0E0000 0xFF0FFFFF 7 (3) RAM (RAM_PD#3) (2) DCAN3 RAM 0xFF1A0000 0xFF1BFFFF 10 DCAN2 RAM 0xFF1C0000 0xFF1DFFFF 6 DCAN1 RAM 0xFF1E0000 0xFF1FFFFF FlexRay RAM (1) (2) (3) (4) MSINENA REGISTER BIT # BASE ADDRESS RAM is not CPU-Addressable 5 n/a (4) MIBADC2 RAM 0xFF3A0000 0xFF3BFFFF 14 MIBADC1 RAM 0xFF3E0000 0xFF3FFFFF 8 N2HET2 RAM 0xFF440000 0xFF45FFFF 15 N2HET1 RAM 0xFF460000 0xFF47FFFF 3 HTU2 RAM 0xFF4C0000 0xFF4DFFFF 16 HTU1 RAM 0xFF4E0000 0xFF4FFFFF 4 DMA RAM 0xFFF80000 0xFFF80FFF 1 VIM RAM 0xFFF82000 0xFFF82FFF 2 RTP RAM 0xFFF83000 0xFFF83FFF n/a FTU RAM 0xFF500000 0xFF51FFFF 13 Reserved 0xFC520000 0xFC521FFF n/a The TCM RAM wrapper has separate control bits to select the RAM power domain that is to be auto-initialized. Not available on theTMS570LS2125 device. The MibSPIx modules perform an initialization of the transmit and receive RAMs as soon as the module is released from its local reset via the SPIGCR0 register. This is independent of whether the application chooses to initialize the MibSPIx RAMs using the system module auto-initialization method. Before the MibSPI RAM can be initialized using the system module auto-initialization method: (I) The module must be released from its local reset, AND (ii) The application must poll for the "BUF INIT ACTIVE" status flag in the SPIFLG register to become cleared (zero) Reserved only. The FlexRay RAM has its own initialization mechanism. Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 83 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 6.14 External Memory Interface (EMIF) 6.14.1 Features The EMIF includes many features to enhance the ease and flexibility of connecting to external asynchronous memories or SDRAM devices. The EMIF features includes support for: * 3 addressable chip select for asynchronous memories of up to 16MB each * 1 addressable chip select space for SDRAMs up to 128MB * 8- or 16-bit data bus width * Programmable cycle timings such as setup, strobe, and hold times as well as turnaround time * Select strobe mode * Extended Wait mode * Data bus parking 6.14.2 Electrical and Timing Specifications 6.14.2.1 Asynchronous RAM 3 1 EMIF_nCS[3:2] EMIF_BA[1:0] EMIF_ADDR[21:0] EMIF_nDQM[1:0] 4 8 5 9 6 29 7 30 10 EMIF_nOE 13 12 EMIF_DATA[15:0] EMIF_nWE Figure 6-13. Asynchronous Memory Read Timing 84 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com EMIF_nCS[3:2] SPNS164C - APRIL 2012 - REVISED APRIL 2015 SETUP Extended Due to EMIF_WAIT STROBE STROBE HOLD EMIF_BA[1:0] EMIF_ADDR[21:0] EMIF_DATA[15:0] 14 11 EMIF_nOE 2 EMIF_WAIT 2 Asserted Deasserted Figure 6-14. EMIFnWAIT Read Timing Requirements 15 1 EMIF_nCS[3:2] EMIF_BA[1:0] EMIF_ADDR[21:0] EMIF_nDQM[1:0] 16 17 18 19 20 22 24 21 23 EMIF_nWE 27 26 EMIF_DATA[15:0] EMIF_nOE Figure 6-15. Asynchronous Memory Write Timing Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 85 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 SETUP www.ti.com Extended Due to EMIF_WAIT STROBE STROBE HOLD EMIF_nCS[3:2] EMIF_BA[1:0] EMIF_ADDR[21:0] EMIF_DATA[15:0] 28 25 EMIF_nWE 2 EMIF_WAIT 2 Asserted Deasserted Figure 6-16. EMIFnWAIT Write Timing Requirements Table 6-27. EMIF Asynchronous Memory Timing Requirements NO. MIN NOM MAX UNIT Reads and Writes 2 E EMIF clock period 11 ns tw(EM_WAIT) Pulse duration, EMIFnWAIT assertion and deassertion 2E ns Reads 12 tsu(EMDV-EMOEH) Setup time, EMIFDATA[15:0] valid before EMIFnOE high 30 ns 13 th(EMOEH-EMDIV) Hold time, EMIFDATA[15:0] valid after EMIFnOE high 0.5 ns 14 tsu(EMOEL-EMWAIT) Setup Time, EMIFnWAIT asserted before end of Strobe Phase (1) 4E+30 ns 28 tsu(EMWEL-EMWAIT) Setup Time, EMIFnWAIT asserted before end of Strobe Phase (1) 4E+30 ns Writes (1) Setup before end of STROBE phase (if no extended wait states are inserted) by which EMIFnWAIT must be asserted to add extended wait states. Figure Figure 6-14 and Figure Figure 6-16 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles. Table 6-28. EMIF Asynchronous Memory Switching Characteristics (1) (2) (3) NO. PARAMETER MIN NOM MAX (TA)*E - 4 (TA)*E (TA)*E + 3 UNIT Reads and Writes 1 td(TURNAROUND) Turn around time ns Reads (1) (2) (3) 86 TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following ranges of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEWC[1-256]. See the TMS570LS31X/21X Technical Reference Manual (SPNU499) for more information. E = EMIF_CLK period in ns. EWC = external wait cycles determined by EMIFnWAIT input signal. EWC supports the following range of values. EWC[256-1]. Note that the maximum wait time before time-out is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See the TMS570LS31X/21X Technical Reference Manual (SPNU499) for more information. System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 6-28. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued) NO. 3 4 5 PARAMETER tc(EMRCYCLE) tsu(EMCEL-EMOEL) th(EMOEH-EMCEH) MIN NOM MAX EMIF read cycle time (EW = 0) (RS+RST+RH)* E -3 (RS+RST+RH)* E (RS+RST+RH)* E+3 ns EMIF read cycle time (EW = 1) (RS+RST+RH+( (RS+RST+RH+( (RS+RST+RH+( EWC*16))*E -3 EWC*16))*E EWC*16))*E + 3 ns Output setup time, EMIFnCS[4:2] low to EMIFnOE low (SS = 0) (RS)*E-4 (RS)*E (RS)*E+3 Output setup time, EMIFnCS[4:2] low to EMIFnOE low (SS = 1) -3 0 +3 Output hold time, EMIFnOE high to EMIFnCS[4:2] high (SS = 0) (RH)*E -4 (RH)*E (RH)*E + 3 Output hold time, EMIFnOE high to EMIFnCS[4:2] high (SS = 1) -3 0 +3 6 tsu(EMBAV-EMOEL) Output setup time, EMIFBA[1:0] valid to EMIFnOE low (RS)*E-4 (RS)*E (RS)*E+3 7 th(EMOEH-EMBAIV) Output hold time, EMIFnOE high to EMIFBA[1:0] invalid (RH)*E-4 (RH)*E (RH)*E+3 8 tsu(EMAV-EMOEL) Output setup time, EMIFADDR[21:0] valid to EMIFnOE low (RS)*E-4 (RS)*E (RS)*E+3 UNIT ns ns ns ns ns ns ns 9 th(EMOEH-EMAIV) Output hold time, EMIFnOE high to EMIFADDR[21:0] invalid (RH)*E-4 (RH)*E (RH)*E+3 10 tw(EMOEL) EMIFnOE active low width (EW = 0) (RST)*E-3 (RST)*E (RST)*E+3 EMIFnOE active low width (EW = 1) (RST+(EWC*16 )) *E-3 (RST+(EWC*16 ))*E (RST+(EWC*16 )) *E+3 3E-3 4E 4E+30 11 td(EMWAITH-EMOEH) Delay time from EMIFnWAIT deasserted to EMIFnOE high 29 tsu(EMDQMV-EMOEL) Output setup time, EMIFnDQM[1:0] valid to EMIFnOE low (RS)*E-4 (RS)*E (RS)*E+3 (RH)*E-4 (RH)*E (RH)*E+3 ns ns ns ns ns 30 th(EMOEH-EMDQMIV) Output hold time, EMIFnOE high to EMIFnDQM[1:0] invalid 15 tc(EMWCYCLE) EMIF write cycle time (EW = 0) ns Writes EMIF write cycle time (EW = 1) 16 17 tsu(EMCEL-EMWEL) th(EMWEH-EMCEH) (WS+WST+WH) (WS+WST+WH) (WS+WST+WH) * E-3 *E * E+3 (WS+WST+WH +( EWC*16))*E -3 (WS+WST+WH +(E WC*16))*E (WS+WST+WH +( EWC*16))*E +3 Output setup time, EMIFnCS[4:2] low to EMIFnWE low (SS = 0) (WS)*E -4 (WS)*E (WS)*E + 3 Output setup time, EMIFnCS[4:2] low to EMIFnWE low (SS = 1) -4 0 +3 Output hold time, EMIFnWE high to EMIFnCS[4:2] high (SS = 0) (WH)*E-4 (WH)*E (WH)*E+3 Output hold time, EMIFnWE high to EMIFCS[4:2] high (SS = 1) -4 0 +3 18 tsu(EMDQMV-EMWEL) Output setup time, EMIFBA[1:0] valid to EMIFnWE low (WS)*E-4 (WS)*E (WS)*E+3 19 th(EMWEH-EMDQMIV) Output hold time, EMIFnWE high to EMIFBA[1:0] invalid (WH)*E-4 (WH)*E (WH)*E+3 20 tsu(EMBAV-EMWEL) Output setup time, EMIFBA[1:0] valid to EMIFnWE low (WS)*E-4 (WS)*E (WS)*E+3 21 th(EMWEH-EMBAIV) Output hold time, EMIFnWE high to EMIFBA[1:0] invalid (WH)*E-4 (WH)*E (WH)*E+3 22 tsu(EMAV-EMWEL) Output setup time, EMIFADDR[21:0] valid to EMIFnWE low (WS)*E-4 (WS)*E (WS)*E+3 Copyright (c) 2012-2015, Texas Instruments Incorporated ns ns ns ns ns ns ns ns ns ns ns System Information and Electrical Specifications Submit Documentation Feedback 87 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 6-28. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued) NO. MIN NOM MAX 23 th(EMWEH-EMAIV) PARAMETER Output hold time, EMIFnWE high to EMIFADDR[21:0] invalid (WH)*E-4 (WH)*E (WH)*E+3 24 tw(EMWEL) EMIFnWE active low width (EW = 0) (WST)*E-3 (WST)*E (WST)*E+3 EMIFnWE active low width (EW = 1) 25 td(EMWAITH-EMWEH) Delay time from EMIFnWAIT deasserted to EMIFnWE high 26 tsu(EMDV-EMWEL) (WST+(EWC*16 (WST+(EWC*16 (WST+(EWC*16 )) *E-3 ))*E )) *E+3 3E-4 4E 4E+30 Output setup time, EMIFDATA[15:0] valid to EMIFnWE low (WS)*E-4 (WS)*E (WS)*E+3 th(EMWEH-EMDIV) Output hold time, EMIFnWE high to EMIFDATA[15:0] invalid (WH)*E-4 (WH)*E (WH)*E+3 31 tsu(EMDQMV-EMWEL) Output setup time, EMIFnDQM[1:0] valid to EMIFnWE low (WH)*E-4 (WH)*E (WH)*E+3 Output hold time, EMIFnWE high to EMIFnDQM[1:0] invalid (WH)*E-4 (WH)*E (WH)*E+3 th(EMWEH-EMDQMIV) ns ns ns ns ns 27 32 UNIT ns ns ns 6.14.2.2 Synchronous Timing BASIC SDRAM READ OPERATION 1 2 2 EMIF_CLK 4 3 EMIF_nCS[0] 6 5 EMIF_nDQM[1:0] 7 8 7 8 EMIF_BA[1:0] EMIF_ADDR[21:0] 19 2 EM_CLK Delay 17 20 18 EMIF_DATA[15:0] 11 12 EMIF_nRAS 13 14 EMIF_nCAS EMIF_nWE Figure 6-17. Basic SDRAM Read Operation 88 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 BASIC SDRAM WRITE OPERATION 1 2 2 EMIF_CLK 4 3 EMIF_CS[0] 6 5 EMIF_DQM[1:0] 7 8 7 8 EMIF_BA[1:0] EMIF_ADDR[21:0] 9 10 EMIF_DATA[15:0] 11 12 EMIF_nRAS 13 EMIF_nCAS 15 16 EMIF_nWE Figure 6-18. Basic SDRAM Write Operation Table 6-29. EMIF Synchronous Memory Timing Requirements NO. MIN 19 tsu(EMIFDV-EM_CLKH) Input setup time, read data valid on EMIFDATA[15:0] before EMIF_CLK rising 20 th(CLKH-DIV) Input hold time, read data valid on EMIFDATA[15:0] after EMIF_CLK rising MAX UNIT 2 ns 1.5 ns Table 6-30. EMIF Synchronous Memory Switching Characteristics NO. PARAMETER 1 tc(CLK) Cycle time, EMIF clock EMIF_CLK 2 tw(CLK) Pulse width, EMIF clock EMIF_CLK high or low 3 td(CLKH-CSV) Delay time, EMIF_CLK rising to EMIFnCS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMIF_CLK rising to EMIFnCS[0] invalid 5 td(CLKH-DQMV) Delay time, EMIF_CLK rising to EMIFnDQM[1:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMIF_CLK rising to EMIFnDQM[1:0] invalid 7 td(CLKH-AV) Delay time, EMIF_CLK rising to EMIFADDR[21:0] and EMIFBA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMIF_CLK rising to EMIFADDR[21:0] and EMIFBA[1:0] invalid 9 td(CLKH-DV) Delay time, EMIF_CLK rising to EMIFDATA[15:0] valid Copyright (c) 2012-2015, Texas Instruments Incorporated MIN MAX 20 UNIT ns 5 ns 13 1 ns ns 13 1 ns ns 13 1 ns ns 13 ns System Information and Electrical Specifications Submit Documentation Feedback 89 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 6-30. EMIF Synchronous Memory Switching Characteristics (continued) NO. 90 PARAMETER 10 toh(CLKH-DIV) Output hold time, EMIF_CLK rising to EMIFDATA[15:0] invalid 11 td(CLKH-RASV) Delay time, EMIF_CLK rising to EMIFnRAS valid 12 toh(CLKH-RASIV) Output hold time, EMIF_CLK rising to EMIFnRAS invalid 13 td(CLKH-CASV) Delay time, EMIF_CLK rising to EMIFnCAS valid 14 toh(CLKH-CASIV) Output hold time, EMIF_CLK rising to EMIFnCAS invalid 15 td(CLKH-WEV) Delay time, EMIF_CLK rising to EMIFnWE valid 16 toh(CLKH-WEIV) Output hold time, EMIF_CLK rising to EMIFnWE invalid 17 tdis(CLKH-DHZ) Delay time, EMIF_CLK rising to EMIFDATA[15:0] tri-stated 18 tena(CLKH-DLZ) Output hold time, EMIF_CLK rising to EMIFDATA[15:0] driving System Information and Electrical Specifications Submit Documentation Feedback MIN MAX 1 ns 13 1 ns ns 13 1 ns ns 13 1 ns ns 7 1 UNIT ns ns Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.15 Vectored Interrupt Manager The vectored interrupt manager (VIM) provides hardware assistance for prioritizing and controlling the many interrupt sources present on this device. Interrupts are caused by events outside of the normal flow of program execution. Normally, these events require a timely response from the central processing unit (CPU); therefore, when an interrupt occurs, the CPU switches execution from the normal program flow to an interrupt service routine (ISR). 6.15.1 VIM Features The VIM module has the following features: * Supports 96 interrupt channels. - Provides programmable priority and enable for interrupt request lines. * Provides a direct hardware dispatch mechanism for fastest IRQ dispatch. * Provides two software dispatch mechanisms when the CPU VIC port is not used. - Index interrupt - Register vectored interrupt * Parity protected vector interrupt table 6.15.2 Interrupt Request Assignments Table 6-31. Interrupt Request Assignments MODULES INTERRUPT SOURCES DEFAULT VIM INTERRUPT CHANNEL ESM ESM High level interrupt (NMI) 0 Reserved Reserved 1 RTI RTI compare interrupt 0 2 RTI RTI compare interrupt 1 3 RTI RTI compare interrupt 2 4 RTI RTI compare interrupt 3 5 RTI RTI overflow interrupt 0 6 RTI RTI overflow interrupt 1 7 RTI RTI timebase interrupt 8 GPIO GPIO interrupt A 9 N2HET1 N2HET1 level 0 interrupt 10 HTU1 HTU1 level 0 interrupt 11 MIBSPI1 MIBSPI1 level 0 interrupt 12 LIN LIN level 0 interrupt 13 MIBADC1 MIBADC1 event group interrupt 14 MIBADC1 MIBADC1 sw group 1 interrupt 15 DCAN1 DCAN1 level 0 interrupt 16 SPI2 SPI2 level 0 interrupt 17 FlexRay FlexRay level 0 interrupt 18 CRC CRC Interrupt 19 ESM ESM Low level interrupt 20 SYSTEM Software interrupt (SSI) 21 CPU PMU Interrupt 22 GPIO GPIO interrupt B 23 N2HET1 N2HET1 level 1 interrupt 24 HTU1 HTU1 level 1 interrupt 25 Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 91 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 6-31. Interrupt Request Assignments (continued) 92 MODULES INTERRUPT SOURCES DEFAULT VIM INTERRUPT CHANNEL MIBSPI1 MIBSPI1 level 1 interrupt 26 LIN LIN level 1 interrupt 27 MIBADC1 MIBADC1 sw group 2 interrupt 28 DCAN1 DCAN1 level 1 interrupt 29 SPI2 SPI2 level 1 interrupt 30 MIBADC1 MIBADC1 magnitude compare interrupt 31 FlexRay FlexRay level 1 interrupt 32 DMA FTCA interrupt 33 DMA LFSA interrupt 34 DCAN2 DCAN2 level 0 interrupt 35 DMM DMM level 0 interrupt 36 MIBSPI3 MIBSPI3 level 0 interrupt 37 MIBSPI3 MIBSPI3 level 1 interrupt 38 DMA HBCA interrupt 39 DMA BTCA interrupt 40 EMIF AEMIFINT3 41 DCAN2 DCAN2 level 1 interrupt 42 DMM DMM level 1 interrupt 43 DCAN1 DCAN1 IF3 interrupt 44 DCAN3 DCAN3 level 0 interrupt 45 DCAN2 DCAN2 IF3 interrupt 46 FPU "OR" of the six Cortex R4F FPU Exceptions 47 FTU FTU Transfer Status interrupt 48 SPI4 SPI4 level 0 interrupt 49 MIBADC2 MibADC2 event group interrupt 50 MIBADC2 MibADC2 sw group1 interrupt 51 FlexRay FlexRay T0C interrupt 52 MIBSPI5 MIBSPI5 level 0 interrupt 53 SPI4 SPI4 level 1 interrupt 54 DCAN3 DCAN3 level 1 interrupt 55 MIBSPI5 MIBSPI5 level 1 interrupt 56 MIBADC2 MibADC2 sw group2 interrupt 57 FTU FTU Error interrupt 58 MIBADC2 MibADC2 magnitude compare interrupt 59 DCAN3 DCAN3 IF3 interrupt 60 FMC FSM_DONE interrupt 61 FlexRay FlexRay T1C interrupt 62 N2HET2 N2HET2 level 0 interrupt 63 SCI SCI level 0 interrupt 64 HTU2 HTU2 level 0 interrupt 65 I2C I2C level 0 interrupt 66 Reserved Reserved 67-72 N2HET2 N2HET2 level 1 interrupt 73 74 SCI SCI level 1 interrupt HTU2 HTU2 level 1 interrupt 75 Reserved Reserved 76-79 HWAG1 HWA_INT_REQ_H 80 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 6-31. Interrupt Request Assignments (continued) INTERRUPT SOURCES DEFAULT VIM INTERRUPT CHANNEL HWAG2 HWA_INT_REQ_H 81 DCC1 DCC1 done interrupt 82 DCC2 DCC2 done interrupt 83 Reserved Reserved 84 PBIST PBIST_DONE 85 Reserved Reserved 86 Reserved Reserved 87 HWAG1 HWA_INT_REQ_L 88 HWAG2 HWA_INT_REQ_L 89 Reserved Reserved 90-95 MODULES NOTE Address location 0x00000000 in the VIM RAM is reserved for the phantom interrupt ISR entry; therefore only request channels 0..94 can be used and are offset by 1 address in the VIM RAM. NOTE The EMIF_nWAIT signal has a pullup on it. The EMIF module generates a "Wait Rise" interrupt whenever it detects a rising edge on the EMIF_nWAIT signal. This interrupt condition is indicated as soon as the device is powered up. This can be ignored if the EMIF_nWAIT signal is not used in the application. If the EMIF_nWAIT signal is actually used in the application, then the external slave memory must always drive the EMIF_nWAIT signal such that an interrupt is not caused due to the default pullup on this signal. NOTE The lower-order interrupt channels are higher priority channels than the higher-order interrupt channels. NOTE The application can change the mapping of interrupt sources to the interrupt channels via the interrupt channel control registers (CHANCTRLx) inside the VIM module. Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 93 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 6.16 DMA Controller The DMA controller is used to transfer data between two locations in the memory map in the background of CPU operations. Typically, the DMA is used to: * Transfer blocks of data between external and internal data memories * Restructure portions of internal data memory * Continually service a peripheral 6.16.1 DMA Features * * * * * * * * * * * * * 94 CPU independent data transfer One master port - PortB (64 bits wide) that interfaces to the TMS570 Memory System. FIFO buffer(4 entries deep and each 64 bits wide) Channel control information is stored in RAM protected by parity 16 channels with individual enable Channel chaining capability 32 peripheral DMA requests Hardware and Software DMA requests 8-, 16-, 32-, or 64-bit transactions supported Multiple addressing modes for source/destination (fixed, increment, offset) Auto-initiation Power-management mode Memory Protection with four configurable memory regions System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.16.2 Default DMA Request Map The DMA module on this microcontroller has 16 channels and up to 32 hardware DMA requests. The module contains DREQASIx registers which are used to map the DMA requests to the DMA channels. By default, channel 0 is mapped to request 0, channel 1 to request 1, and so on. Some DMA requests have multiple sources, as shown in Table 6-32. The application must ensure that only one of these DMA request sources is enabled at any time. Table 6-32. DMA Request Line Connection Modules DMA Request MIBSPI1 MIBSPI1[1] (1) DMAREQ[0] MIBSPI1 MIBSPI1[0] (2) DMAREQ[1] SPI2 SPI2 receive DMAREQ[2] SPI2 SPI2 transmit DMAREQ[3] MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[2] / MIBSPI3[2] / DCAN2 IF3 DMAREQ[4] MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[3] / MIBSPI3[3] / DCAN2 IF2 DMAREQ[5] DCAN1 / MIBSPI5 DCAN1 IF2 / MIBSPI5[2] DMAREQ[6] MIBADC1 / MIBSPI5 MIBADC1 event / MIBSPI5[3] DMAREQ[7] MIBSPI1 / MIBSPI3 / DCAN1 MIBSPI1[4] / MIBSPI3[4] / DCAN1 IF1 DMAREQ[8] MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[5] / MIBSPI3[5] / DCAN2 IF1 DMAREQ[9] MIBADC1 / I2C / MIBSPI5 MIBADC1 G1 / I2C receive / MIBSPI5[4] DMAREQ[10] MIBADC1 / I2C / MIBSPI5 MIBADC1 G2 / I2C transmit / MIBSPI5[5] DMAREQ[11] RTI / MIBSPI1 / MIBSPI3 RTI DMAREQ0 / MIBSPI1[6] / MIBSPI3[6] DMAREQ[12] RTI / MIBSPI1 / MIBSPI3 RTI DMAREQ1 / MIBSPI1[7] / MIBSPI3[7] DMAREQ[13] MIBSPI3 / MibADC2 / MIBSPI5 (1) (2) DMA Request Sources MIBSPI3[1] (1) / MibADC2 event / MIBSPI5[6] DMAREQ[14] MIBSPI3 / MIBSPI5 MIBSPI3[0] (2) / MIBSPI5[7] DMAREQ[15] MIBSPI1 / MIBSPI3 / DCAN1 / MibADC2 MIBSPI1[8] / MIBSPI3[8] / DCAN1 IF3 / MibADC2 G1 DMAREQ[16] MIBSPI1 / MIBSPI3 / DCAN3 / MibADC2 MIBSPI1[9] / MIBSPI3[9] / DCAN3 IF1 / MibADC2 G2 DMAREQ[17] RTI / MIBSPI5 RTI DMAREQ2 / MIBSPI5[8] DMAREQ[18] RTI / MIBSPI5 RTI DMAREQ3 / MIBSPI5[9] DMAREQ[19] N2HET1 / N2HET2 / DCAN3 N2HET1 DMAREQ[4] / N2HET2 DMAREQ[4] / DCAN3 IF2 DMAREQ[20] N2HET1 / N2HET2 / DCAN3 N2HET1 DMAREQ[5] / N2HET2 DMAREQ[5] / DCAN3 IF3 DMAREQ[21] MIBSPI1 / MIBSPI3 / MIBSPI5 MIBSPI1[10] / MIBSPI3[10] / MIBSPI5[10] DMAREQ[22] MIBSPI1 / MIBSPI3 / MIBSPI5 MIBSPI1[11] / MIBSPI3[11] / MIBSPI5[11] DMAREQ[23] N2HET1 / N2HET2 / SPI4 / MIBSPI5 N2HET1 DMAREQ[6] / N2HET2 DMAREQ[6] / SPI4 receive / MIBSPI5[12] DMAREQ[24] N2HET1 / N2HET2 / SPI4 / MIBSPI5 N2HET1 DMAREQ[7] / N2HET2 DMAREQ[7] / SPI4 transmit / MIBSPI5[13] DMAREQ[25] CRC / MIBSPI1 / MIBSPI3 CRC DMAREQ[0] / MIBSPI1[12] / MIBSPI3[12] DMAREQ[26] CRC / MIBSPI1 / MIBSPI3 CRC DMAREQ[1] / MIBSPI1[13] / MIBSPI3[13] DMAREQ[27] LIN / MIBSPI5 LIN receive / MIBSPI5[14] DMAREQ[28] LIN / MIBSPI5 LIN transmit / MIBSPI5[15] DMAREQ[29] MIBSPI1 / MIBSPI3 / SCI / MIBSPI5 MIBSPI1[14] / MIBSPI3[14] / SCI receive / MIBSPI5[1] (1) DMAREQ[30] MIBSPI1 / MIBSPI3 / SCI / MIBSPI5 MIBSPI1[15] / MIBSPI3[15] / SCI transmit / MIBSPI5[0] (2) DMAREQ[31] SPI1, SPI3, SPI5 receive in compatibility mode SPI1, SPI3, SPI5 transmit in compatibility mode Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 95 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 6.17 Real Time Interrupt Module The real-time interrupt (RTI) module provides timer functionality for operating systems and for benchmarking code. The RTI module can incorporate several counters that define the timebases needed for scheduling an operating system. The timers also allow you to benchmark certain areas of code by reading the values of the counters at the beginning and the end of the desired code range and calculating the difference between the values. In addition the RTI provides a mechanism to synchronize the operating system to the FlexRay communication cycle. Clock supervision can detect issues on the FlexRay bus with an automatic switch to an internally generated timebase. 6.17.1 Features The RTI module has the following features: * Two independent 64 bit counter blocks * Four configurable compares for generating operating system ticks or DMA requests. Each event can be driven by either counter block 0 or counter block 1. * One counter block usable for application synchronization to FlexRay network including clock supervision * Fast enabling/disabling of events * Two time-stamp (capture) functions for system or peripheral interrupts, one for each counter block 6.17.2 Block Diagrams Figure 6-19 shows a high-level block diagram for one of the two 64-bit counter blocks inside the RTI module. Both the counter blocks are identical except the Network Time Unit (NTUx) inputs are only available as time base inputs for the counter block 0. 31 0 Compare up counter RTICLK NTU0 NTU1 NTU2 NTU3 0 Up counter RTIUCx RTICPUCx OVLINTx = 31 31 0 Free running counter RTIFRCx 31 0 31 0 Capture up counter Capture free running counter RTICAUCx RTICAFRCx CAP event source 0 CAP event source 1 To Compare Unit External control Figure 6-19. Counter Block Diagram 96 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 31 0 Update compare RTIUDCPy + 31 0 Compare DMAREQy RTICOMPy From counter block 0 = INTy From counter block 1 Compare control Figure 6-20. Compare Block Diagram 6.17.3 Clock Source Options The RTI module uses the RTI1CLK clock domain for generating the RTI time bases. The application can select the clock source for the RTI1CLK by configuring the RCLKSRC register in the System module at address 0xFFFFFF50. The default source for RTI1CLK is VCLK. For more information on clock sources refer to Table 6-8 and Table 6-13. 6.17.4 Network Time Synchronization Inputs The RTI module supports 4 Network Time Unit (NTU) inputs that signal internal system events, and which can be used to synchronize the time base used by the RTI module. On this device, these NTU inputs are connected as shown in Table 6-33. Table 6-33. Network Time Synchronization Inputs NTU Input Source 0 Macrotick 1 Start of Cycle 2 PLL2 Clock output 3 EXTCLKIN1 clock input Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 97 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 6.18 Error Signaling Module The Error Signaling Module (ESM) manages the various error conditions on the TMS570 microcontroller. The error condition is handled based on a fixed severity level assigned to it. Any severe error condition can be configured to drive a low level on a dedicated device terminal called nERROR. This can be used as an indicator to an external monitor circuit to put the system into a safe state. 6.18.1 Features The features of the Error Signaling Module are: * * * * 128 interrupt/error channels are supported, divided into 3 different groups - 64 channels with maskable interrupt and configurable error pin behavior - 32 error channels with nonmaskable interrupt and predefined error pin behavior - 32 channels with predefined error pin behavior only Error pin to signal severe device failure Configurable timebase for error signal Error forcing capability 6.18.2 ESM Channel Assignments The Error Signaling Module (ESM) integrates all the device error conditions and groups them in the order of severity. Group1 is used for errors of the lowest severity while Group3 is used for errors of the highest severity. The device response to each error is determined by the severity group it is connected to. Table 6-35 shows the channel assignment for each group. Table 6-34. ESM Groups ERROR GROUP INTERRUPT CHARACTERISTICS INFLUENCE ON ERROR PIN Group1 maskable, low or high priority configurable Group2 nonmaskable, high priority fixed Group3 no interrupt generated fixed Table 6-35. ESM Channel Assignments 98 ERROR SOURCES GROUP CHANNELS Reserved Group1 0 MibADC2 - parity Group1 1 DMA - MPU Group1 2 DMA - parity Group1 3 Reserved Group1 4 DMA/DMM - imprecise read error Group1 5 FMC - correctable error: bus1 and bus2 interfaces (does not include accesses to EEPROM bank) Group1 6 N2HET1/N2HET2 - parity Group1 7 HTU1/HTU2 - parity Group1 8 HTU1/HTU2 - MPU Group1 9 PLL - Slip Group1 10 Clock Monitor - interrupt Group1 11 FlexRay - parity Group1 12 DMA/DMM - imprecise write error Group1 13 FTU - parity Group1 14 VIM RAM - parity Group1 15 FTU - MPU Group1 16 MibSPI1 - parity Group1 17 MibSPI3 - parity Group1 18 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 6-35. ESM Channel Assignments (continued) ERROR SOURCES GROUP CHANNELS MibADC1 - parity Group1 19 Reserved Group1 20 DCAN1 - parity Group1 21 DCAN3 - parity Group1 22 DCAN2 - parity Group1 23 MibSPI5 - parity Group1 24 Reserved Group1 25 RAM even bank (B0TCM) - correctable error Group1 26 CPU - selftest Group1 27 RAM odd bank (B1TCM) - correctable error Group1 28 Reserved Group1 29 DCC1 - error Group1 30 CCM-R4 - selftest Group1 31 Reserved Group1 32 Reserved Group1 33 Reserved Group1 34 FMC - correctable error (EEPROM bank access) Group1 35 FMC - uncorrectable error (EEPROM bank access) Group1 36 IOMM - Mux configuration error Group1 37 Power domain controller compare error Group1 38 Power domain controller self-test error Group1 39 eFuse Controller Error - this error signal is generated when any bit in the eFuse controller error status register is set. The application can choose to generate an interrupt whenever this bit is set to service any eFuse controller error conditions. Group1 40 eFuse Controller - Self Test Error. This error signal is generated only when a self test on the eFuse controller generates an error condition. When an ECC self test error is detected, group 1 channel 40 error signal will also be set. Group1 41 PLL2 - Slip Group1 42 Reserved Group1 43 Reserved Group1 44 Reserved Group1 45 Reserved Group1 46 Reserved Group1 47 Reserved Group1 48 Reserved Group1 49 Reserved Group1 50 Reserved Group1 51 Reserved Group1 52 Reserved Group1 53 Reserved Group1 54 Reserved Group1 55 Reserved Group1 56 Reserved Group1 57 Reserved Group1 58 Reserved Group1 59 Reserved Group1 60 Reserved Group1 61 DCC2 - error Group1 62 Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 99 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 6-35. ESM Channel Assignments (continued) ERROR SOURCES GROUP CHANNELS Reserved Group1 63 Reserved Group2 0 Reserved Group2 1 CCMR4 - compare Group2 2 Reserved Group2 3 FMC - uncorrectable error (address parity on bus1 accesses) Group2 4 GROUP 2 Reserved Group2 5 RAM even bank (B0TCM) - uncorrectable error Group2 6 Reserved Group2 7 RAM odd bank (B1TCM) - uncorrectable error Group2 8 Reserved Group2 9 RAM even bank (B0TCM) - address bus parity error Group2 10 Reserved Group2 11 RAM odd bank (B1TCM) - address bus parity error Group2 12 Reserved Group2 13 Reserved Group2 14 Reserved Group2 15 TCM - ECC live lock detect Group2 16 Reserved Group2 17 Reserved Group2 18 Reserved Group2 19 Reserved Group2 20 Reserved Group2 21 Reserved Group2 22 Reserved Group2 23 RTI_WWD_NMI Group2 24 Reserved Group2 25 Reserved Group2 26 Reserved Group2 27 Reserved Group2 28 Reserved Group2 29 Reserved Group2 30 Reserved Group2 31 Reserved Group3 0 eFuse Controller - autoload error Group3 1 GROUP 3 Reserved Group3 2 RAM even bank (B0TCM) - ECC uncorrectable error Group3 3 Reserved Group3 4 RAM odd bank (B1TCM) - ECC uncorrectable error Group3 5 Reserved Group3 6 FMC - uncorrectable error: bus1 and bus2 interfaces (does not include address parity error and errors on accesses to EEPROM bank) Group3 7 Reserved Group3 8 Reserved Group3 9 Reserved Group3 10 Reserved Group3 11 100 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 6-35. ESM Channel Assignments (continued) ERROR SOURCES GROUP CHANNELS Reserved Group3 12 Reserved Group3 13 Reserved Group3 14 Reserved Group3 15 Reserved Group3 16 Reserved Group3 17 Reserved Group3 18 Reserved Group3 19 Reserved Group3 20 Reserved Group3 21 Reserved Group3 22 Reserved Group3 23 Reserved Group3 24 Reserved Group3 25 Reserved Group3 26 Reserved Group3 27 Reserved Group3 28 Reserved Group3 29 Reserved Group3 30 Reserved Group3 31 Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 101 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 6.19 Reset / Abort / Error Sources Table 6-36. Reset/Abort/Error Sources ERROR SOURCE SYSTEM MODE ERROR RESPONSE ESM HOOKUP group.channel CPU TRANSACTIONS Precise write error (NCNB/Strongly Ordered) User/Privilege Precise Abort (CPU) n/a Precise read error (NCB/Device or Normal) User/Privilege Precise Abort (CPU) n/a Imprecise write error (NCB/Device or Normal) User/Privilege Imprecise Abort (CPU) n/a User/Privilege Undefined Instruction Trap (CPU) (1) n/a User/Privilege Abort (CPU) n/a User/Privilege ESM 1.26 B0 TCM (even) ECC double error (noncorrectable) User/Privilege Abort (CPU), ESM => nERROR 3.3 B0 TCM (even) uncorrectable error (for example, redundant address decode) User/Privilege ESM => NMI => nERROR 2.6 B0 TCM (even) address bus parity error User/Privilege ESM => NMI => nERROR 2.10 B1 TCM (odd) ECC single error (correctable) User/Privilege ESM 1.28 B1 TCM (odd) ECC double error (noncorrectable) User/Privilege Abort (CPU), ESM => nERROR 3.5 B1 TCM (odd) uncorrectable error (for example, redundant address decode) User/Privilege ESM => NMI => nERROR 2.8 B1 TCM (odd) address bus parity error User/Privilege ESM => NMI => nERROR 2.12 Illegal instruction MPU access violation SRAM B0 TCM (even) ECC single error (correctable) FLASH FMC correctable error - Bus1 and Bus2 interfaces (does not include accesses to EEPROM bank) User/Privilege ESM 1.6 FMC uncorrectable error - Bus1 accesses (does not include address parity error) User/Privilege Abort (CPU), ESM => nERROR 3.7 FMC uncorrectable error - Bus2 accesses (does not include address parity error and EEPROM bank accesses) User/Privilege ESM => nERROR 3.7 FMC uncorrectable error - address parity error on Bus1 accesses User/Privilege ESM => NMI => nERROR 2.4 FMC correctable error - Accesses to EEPROM bank User/Privilege ESM 1.35 User/Privilege ESM 1.36 FMC uncorrectable error - Accesses to EEPROM bank DMA TRANSACTIONS External imprecise error on read (Illegal transaction with ok response) User/Privilege ESM 1.5 External imprecise error on write (Illegal transaction with ok response) User/Privilege ESM 1.13 Memory access permission violation User/Privilege ESM 1.2 User/Privilege ESM 1.3 Memory parity error DMM TRANSACTIONS External imprecise error on read (Illegal transaction with ok response) User/Privilege ESM 1.5 External imprecise error on write (Illegal transaction with ok response) User/Privilege ESM 1.13 HTU1 NCNB (Strongly Ordered) transaction with slave error response User/Privilege Interrupt => VIM n/a External imprecise error (Illegal transaction with ok response) User/Privilege Interrupt => VIM n/a Memory access permission violation User/Privilege ESM 1.9 (1) 102 The Undefined Instruction TRAP is NOT detectable outside the CPU. The trap is taken only if the instruction reaches the execute stage of the CPU. System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 6-36. Reset/Abort/Error Sources (continued) ERROR SOURCE Memory parity error SYSTEM MODE ERROR RESPONSE ESM HOOKUP group.channel User/Privilege ESM 1.8 HTU2 NCNB (Strongly Ordered) transaction with slave error response User/Privilege Interrupt => VIM n/a External imprecise error (Illegal transaction with ok response) User/Privilege Interrupt => VIM n/a Memory access permission violation User/Privilege ESM 1.9 Memory parity error User/Privilege ESM 1.8 ESM 1.7 ESM 1.7 ESM 1.12 n/a N2HET1 Memory parity error User/Privilege N2HET2 Memory parity error User/Privilege FLEXRAY Memory parity error User/Privilege FTU NCNB (Strongly Ordered) transaction with slave error response User/Privilege Interrupt => VIM External imprecise error (Illegal transaction with ok response) User/Privilege Interrupt => VIM n/a Memory access permission violation User/Privilege ESM 1.16 Memory parity error User/Privilege ESM 1.14 MIBSPI MibSPI1 memory parity error User/Privilege ESM 1.17 MibSPI3 memory parity error User/Privilege ESM 1.18 User/Privilege ESM 1.24 User/Privilege ESM 1.19 User/Privilege ESM 1.1 MibSPI5 memory parity error MIBADC MibADC1 Memory parity error MibADC2 Memory parity error DCAN DCAN1 memory parity error User/Privilege ESM 1.21 DCAN2 memory parity error User/Privilege ESM 1.23 User/Privilege ESM 1.22 User/Privilege ESM 1.10 User/Privilege ESM 1.42 ESM 1.11 DCAN3 memory parity error PLL PLL slip error PLL #2 slip error CLOCK MONITOR Clock monitor interrupt User/Privilege DCC DCC1 error User/Privilege ESM 1.30 DCC2 error User/Privilege ESM 1.62 CCM-R4 Self test failure User/Privilege ESM 1.31 Compare failure User/Privilege ESM => NMI => nERROR 2.2 ESM 1.15 Reset n/a ESM 1.27 VIM Memory parity error User/Privilege VOLTAGE MONITOR VMON out of voltage range n/a CPU SELFTEST (LBIST) CPU Selftest (LBIST) error Copyright (c) 2012-2015, Texas Instruments Incorporated User/Privilege System Information and Electrical Specifications Submit Documentation Feedback 103 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 6-36. Reset/Abort/Error Sources (continued) ERROR SOURCE SYSTEM MODE ERROR RESPONSE ESM HOOKUP group.channel ESM 1.37 PIN MULTIPLEXING CONTROL Mux configuration error User/Privilege POWER DOMAIN CONTROL PSCON compare error User/Privilege ESM 1.38 PSCON self-test error User/Privilege ESM 1.39 eFuse CONTROLLER eFuse Controller Autoload error User/Privilege ESM => nERROR 3.1 eFuse Controller - Any bit set in the error status register User/Privilege ESM 1.40 eFuse Controller self-test error User/Privilege ESM 1.41 ESM => NMI => nERROR 2.24 WINDOWED WATCHDOG WWD Nonmaskable Interrupt exception n/a ERRORS REFLECTED IN THE SYSESR REGISTER Power-Up Reset Oscillator fail / PLL slip (2) n/a Reset n/a n/a Reset n/a Watchdog exception n/a Reset n/a CPU Reset (driven by the CPU STC) n/a Reset n/a Software Reset n/a Reset n/a External Reset n/a Reset n/a (2) Oscillator fail/PLL slip can be configured in the system register (SYS.PLLCTL1) to generate a reset. 6.20 Digital Windowed Watchdog This device includes a digital windowed watchdog (DWWD) module that protects against runaway code execution. The DWWD module allows the application to configure the time window within which the DWWD module expects the application to service the watchdog. A watchdog violation occurs if the application services the watchdog outside of this window, or fails to service the watchdog at all. The application can choose to generate a system reset or a nonmaskable interrupt to the CPU in case of a watchdog violation. The watchdog is disabled by default and must be enabled by the application. Once enabled, the watchdog can only be disabled upon a system reset. 104 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.21 Debug Subsystem 6.21.1 Block Diagram The device contains an ICEPICK module to allow JTAG access to the scan chains. Boundary Scan I/F TRST TMS TCK RTCK TDI TDO Boundary Scan BSR/BSDL Debug ROM1 Debug APB Secondary Tap 0 DAP APB Mux AHB-AP POM ICEPICK_C to SCR1 via A2A from PCR1/Bridge APB slave Cortex R4F ETM TPIU RTP TAP 0 Secondary Tap 1 DMM TAP 1 Secondary Tap 2 AJSM Figure 6-21. Debug Subsystem Block Diagram NOTE The ETM, RTP and DMM exist in silicon, but are not supported in the PGE package. 6.21.2 Debug Components Memory Map Table 6-37. Debug Components Memory Map MODULE NAME FRAME CHIP SELECT CoreSight Debug ROM FRAME ADDRESS RANGE FRAME ACTUAL SIZE SIZE RESPONSE FOR ACCESS TO UNIMPLEMENTED LOCATIONS IN FRAME START END CSCS0 0xFFA00000 0xFFA00FFF 4KB 4KB Reads: 0, writes: no effect Cortex-R4F Debug CSCS1 0xFFA01000 0xFFA01FFF 4KB 4KB Reads: 0, writes: no effect ETM-R4 CSCS2 0xFFA02000 0xFFA02FFF 4KB 4KB Reads: 0, writes: no effect CoreSight TPIU CSCS3 0xFFA03000 0xFFA03FFF 4KB 4KB Reads: 0, writes: no effect 6.21.3 JTAG Identification Code The JTAG ID code for this device is the same as the device ICEPick Identification Code. Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 105 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 6-38. JTAG ID Code SILICON REVISION ID Rev A 0x0B8A002F Rev B 0x2B8A002F Rev C 0x3B8A002F Rev D 0x4B8A002F 6.21.4 Debug ROM The Debug ROM stores the location of the components on the Debug APB bus: Table 6-39. Debug ROM table 106 ADDRESS DESCRIPTION VALUE 0x000 pointer to Cortex-R4F 0x00001003 0x001 ETM-R4 0x00002003 0x002 TPIU 0x00003003 0x003 POM 0x00004003 0x004 end of table 0x00000000 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.21.5 JTAG Scan Interface Timings Table 6-40. JTAG Scan Interface Timing (1) NO. (1) PARAMETER MIN fTCK TCK frequency (at HCLKmax) fRTCK RTCK frequency (at TCKmax and HCLKmax) 1 td(TCK -RTCK) Delay time, TCK to RTCK 2 tsu(TDI/TMS - RTCKr) Setup time, TDI, TMS before RTCK rise (RTCKr) 3 th(RTCKr -TDI/TMS) 4 th(RTCKr -TDO) 5 td(TCKf -TDO) Delay time, TDO valid after RTCK fall (RTCKf) MAX UNIT 12 MHz 10 MHz 24 ns 26 ns Hold time, TDI, TMS after RTCKr 0 ns Hold time, TDO after RTCKf 0 ns 12 ns Timings for TDO are specified for a maximum of 50pF load on TDO TCK RTCK 1 1 TMS TDI 2 3 TDO 4 5 Figure 6-22. JTAG Timing Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 107 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 6.21.6 Advanced JTAG Security Module This device includes an Advanced JTAG Security Module (AJSM) which provides maximum security to the memory content of the device by letting users secure the device after programming. Flash Module Output OTP Contents (example) H L H ... ... L Unlock By Scan Register Internal Tie-Offs (example only) L L H H L H H L H H L L UNLOCK 128-bit comparator Internal Tie-Offs (example only) H L L H H L L H Figure 6-23. AJSM Unlock The device is unsecure by default by virtue of a 128-bit visible unlock code programmed in the OTP address 0xF0000000.The OTP contents are XOR-ed with the "Unlock By Scan" register contents. The outputs of these XOR gates are again combined with a set of secret internal tie-offs. The output of this combinational logic is compared against a secret hard-wired 128-bit value. A match results in the UNLOCK signal being asserted, so that the device is now unsecure. A user can secure the device by changing at least one bit in the visible unlock code from 1 to 0. Changing a 0 to 1 is not possible because the visible unlock code is stored in the One Time Programmable (OTP) flash region. Also, changing all the 128 bits to zeros is not a valid condition and will permanently secure the device. Once secured, a user can unsecure the device by scanning an appropriate value into the "Unlock By Scan" register of the AJSM module. The value to be scanned is such that the XOR of the OTP contents and the Unlock-By-Scan register contents results in the original visible unlock code. The Unlock-By-Scan register is reset only upon asserting power-on reset (nPORRST). A secure device only permits JTAG accesses to the AJSM scan chain via the Secondary Tap # 2 of the ICEPick module. All other secondary taps, test taps and the boundary scan interface are not accessible in this state. 108 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.21.7 Embedded Trace Macrocell (ETM-R4) The device contains a ETM-R4 module with a 32-bit internal data port. The ETM-R4 module is connected to a TPIU with a 32-bit data bus; the TPIU provides a 35-bit (32-bit data, 3-bit control) external interface for trace. The ETM-R4 is CoreSight compliant and follows the ETM v3 specification; for more details see ARM CoreSight ETM-R4 TRM specification. 6.21.7.1 ETM TRACECLKIN Selection The ETM clock source can be selected as either VCLK or the external ETMTRACECLKIN pin. The selection is done by the EXTCTLOUT[1:0] control bits of the TPIU; the default is '00'. The address of this register is TPIU base address + 0x404. Before you begin accessing TPIU registers, TPIU should be unlocked via coresight key and 1 or 2 should be written to this register. Table 6-41. TPIU / TRACECLKIN Selection EXTCTLOUT[1:0] TPIU/TRACECLKIN 00 tied-zero 01 VCLK 10 ETMTRACECLKIN 11 tied-zero 6.21.7.2 Timing Specifications tl(ETM) th(ETM) tr(ETM) tf(ETM) tcyc(ETM) Figure 6-24. ETMTRACECLKOUT Timing Table 6-42. ETMTRACECLK Timing PARAMETER MIN MAX UNIT tcyc(ETM) Clock period t(HCLK) * 4 ns tl(ETM) Low pulse width 20 ns th(ETM) High pulse width 20 ns tr(ETM) Clock and data rise time 3 ns tf(ETM) Clock and data fall time 3 ns Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 109 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Figure 6-25. ETMDATA Timing Table 6-43. ETMDATA Timing PARAMETER MIN MAX UNIT td(ETMTRACECLKH-ETMDATAV) Delay time, ETM trace clock high to ETM data valid 1.5 7 ns td(ETMTRACECLKl-ETMDATAV) Delay time, ETM trace clock low to ETM data valid 1.5 7 ns NOTE The ETMTRACECLK and ETMDATA timing is based on a 15-pF load and for ambient temperature lower than 85C. 110 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.21.8 RAM Trace Port (RTP) The RTP provides the ability to datalog the RAM contents of the TMS570 devices or accesses to peripherals without program intrusion. It can trace all data write or read accesses to internal RAM. In addition, it provides the capability to directly transfer data to a FIFO to support a CPU-controlled transmission of the data. The trace data is transmitted over a dedicated external interface. 6.21.8.1 Features The RTP offers the following features: * Two modes of operation - Trace Mode and Direct Data Mode - Trace Mode * Nonintrusive data trace on write or read operation * Visibility of RAM content at any time on external capture hardware * Trace of peripheral accesses * 2 configurable trace regions for each RAM module to limit amount of data to be traced * FIFO to store data and address of data of multiple read/write operations * Trace of CPU and/or DMA accesses with indication of the master in the transmitted data packet - Direct Data Mode * Directly write data with the CPU or trace read operations to a FIFO, without transmitting header and address information * Dedicated synchronous interface to transmit data to external devices * Free-running clock generation or clock stop mode between transmissions * Up to 100 Mbps/pin transfer rate for transmitting data * Pins not used in functional mode can be used as GIOs 6.21.8.2 Timing Specifications tl(RTP) tr th(RTP) tf tcyc(RTP) Figure 6-26. RTPCLK Timing Table 6-44. RTPCLK Timing PARAMETER MIN tcyc(RTP) Clock period, prescaled from HCLK; must not be faster than HCLK / 2 th(RTP) tl(RTP) MAX UNIT 11 (= 90 MHz) ns High pulse width ((tcyc(RTP))/2) - ((tr+tf)/2) ns Low pulse width ((tcyc(RTP))/2) - ((tr+tf)/2) ns Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 111 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Figure 6-27. RTPDATA Timing Table 6-45. RTPDATA Timing PARAMETER MIN MAX UNIT td(RTPCLKH-RTPSYNCV) Delay time, RTPCLK high to RTPSYNC valid -5 4 ns td(RTPCLKH-RTPDATAV) Delay time, RTPCLK high to RTPDATA valid -5 4 ns tena(RTP) tdis(RTP) 1 2 3 4 d1 d2 d3 5 6 7 8 9 10 11 12 13 14 15 16 HCLK HCLK RTPCLK RTPCLK RTPnENA RTPENA RTPSYNC RTPSYNC RTPDATA RTPDATA d5 d4 d6 d7 d8 Divide by 1 Figure 6-28. RTPnENA Timing Table 6-46. RTPnENA Timing PARAMETER tdis(RTP) time RTPnENA must go high before what would be the next RTPSYNC, to ensure delaying the next packet tena(RTP) time after RTPnENA goes low before a packet that has been halted, resumes 112 MIN MAX 3tc(HCLK) + tr(RTPSYNC) + 12 4tc(HCLK) + tr(RTPSYNC) System Information and Electrical Specifications Submit Documentation Feedback UNIT ns 5tc(HCLK) + tr(RTPSYNC) + 12 ns Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.21.9 Data Modification Module (DMM) The Data Modification Module (DMM) provides the capability to modify data in the entire 4-GB address space of the TMS570 devices from an external peripheral, with minimal interruption of the application. 6.21.9.1 Features The DMM module has the following features: * Acts as a bus master, thus enabling direct writes to the 4-GB address space without CPU intervention * Writes to memory locations specified in the received packet (leverages packets defined by trace mode of the RAM trace port (RTP) module * Writes received data to consecutive addresses, which are specified by the DMM module (leverages packets defined by direct data mode of RTP module) * Configurable port width (1, 2, 4, 8, 16 pins) * Up to 100 Mbit/s pin data rate * Unused pins configurable as GPIO pins 6.21.9.2 Timing Specifications tl(DMM) tr th(DMM) tf tcyc(DMM) Figure 6-29. DMMCLK Timing Table 6-47. Timing Requirements for DMMCLK MIN MAX UNIT tcyc(DMM) Cycle time, DMMCLK period tc(HCLK) * 2 ns th(DMM) Pulse duration, DMMCLK high ((tcyc(DMM))/2) - ((tr+tf)/2) ns tl(DMM) Pulse duration, DMMCLK low ((tcyc(DMM))/2) - ((tr+tf)/2) ns tssu(DMM) tsh(DMM) DMMSYNC DMMCLK DMMDATA tdsu(DMM) tdh(DMM) Figure 6-30. DMMDATA Timing Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 113 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 6-48. Timing Requirements for DMMDATA MIN MAX UNIT tssu(DMM) SYNC active to clk falling edge setup time 2 ns tsh(DMM) clk falling edge to SYNC inactive hold time 3 ns tdsu(DMM) DATA to clk falling edge setup time 2 ns tdh(DMM) clk falling edge to DATA hold time 3 ns HCLK DMMCLK DMMSYNC DMMDATA D00 D01 D10 D11 D20 D21 D30 D31 D40 D41 D50 DMMnENA Figure 6-31. DMMnENA Timing Figure 6-31 shows a case with 1 DMM packet per 2 DMMCLK cycles (Mode = Direct Data Mode, data width = 8, port width = 4) where none of the packets received by the DMM are sent out, leading to filling up of the internal buffers. The DMMnENA signal is shown asserted, after the first two packets have been received and synchronized to the HCLK domain. Here, the DMM has the capacity to accept packets D4x, D5x, D6x, D7x. Packet D8 would result in an overflow. Once DMMnENA is asserted, the DMM expects to stop receiving packets after 4 HCLK cycles; once DMMnENA is deasserted, the DMM can handle packets immediately (after 0 HCLK cycles). 114 System Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 6.21.10 Boundary Scan Chain The device supports IEEE1149.1-compliant boundary scan for testing pin-to-pin compatibility. The boundary scan chain is connected to the Boundary Scan Interface of the ICEPICK module. Device Pins (conceptual) RTCK TDI TDO IC E P ICK TRST TMS TCK Boundary Scan Interface Boundary Scan TDI TDO BSDL Figure 6-32. Boundary Scan Implementation (Conceptual Diagram) Data is serially shifted into all boundary-scan buffers via TDI, and out via TDO. Copyright (c) 2012-2015, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback 115 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 7 Peripheral Information and Electrical Specifications 7.1 Peripheral Legend Table 7-1. Peripheral Legend ABBREVIATION 7.2 FULL NAME MibADC Analog To Digital Converter CCM-R4F CPU Compare Module - CortexR4F CRC Cyclic Redundancy Check DCAN Controller Area Network DCC Dual Clock Comparator DMA Direct Memory Access DMM Data Modification Module EMIF External Memory Interface ESM Error Signaling Module ETM-R4F Embedded Trace Macrocell - CortexR4F FTU FlexRay Transfer Unit GPIO General-Purpose Input/Output HTU High End Timer Transfer Unit I2C Inter-Integrated Circuit LIN Local Interconnect Network MIBSPI Multibuffer Serial Peripheral Interface N2HET Platform High-End Timer POM Parameter Overlay Module RTI Real-Time Interrupt Module RTP RAM Trace Port SCI Serial Communications Interface SPI Serial Peripheral Interface VIM Vectored Interrupt Manager Multibuffered 12-Bit Analog-to-Digital Converter The multibuffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are given with respect to ADREFLO unless otherwise noted. Table 7-2. MibADC Overview DESCRIPTION 116 VALUE Resolution 12 bits Monotonic Assured Output conversion code 00h to FFFh [00 for VAI ADREFLO; FFF for VAI ADREFHI] Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 7.2.1 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Features * * * * * * * * * * * * * * 7.2.2 10-/12-bit resolution ADREFHI and ADREFLO pins (high and low reference voltages) Total Sample/Hold/Convert time: 600 ns Typical Minimum at 30 MHz ADCLK One memory region per conversion group is available (event, group 1, group 2) Allocation of channels to conversion groups is completely programmable Memory regions are serviced either by interrupt or by DMA Programmable interrupt threshold counter is available for each group Programmable magnitude threshold interrupt for each group for any one channel Option to read either 8-bit, 10-bit or 12-bit values from memory regions Single or continuous conversion modes Embedded self-test Embedded calibration logic Enhanced power-down mode - Optional feature to automatically power down ADC core when no conversion is in progress External event pin (ADEVT) programmable as general-purpose I/O Event Trigger Options The ADC module supports 3 conversion groups: Event Group, Group1 and Group2. Each of these 3 groups can be configured to be hardware event-triggered. In that case, the application can select from among 8 event sources to be the trigger for a group's conversions. 7.2.2.1 Default MIBADC1 Event Trigger Hookup Table 7-3. MIBADC1 Event Trigger Hookup Event # Source Select Bits For G1, G2 Or Event (G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0]) Trigger 1 000 ADEVT 2 001 N2HET1[8] 3 010 N2HET1[10] 4 011 RTI compare 0 interrupt 5 100 N2HET1[12] 6 101 N2HET1[14] 7 110 GIOB[0] 8 111 GIOB[1] NOTE For ADEVT, N2HET1 and GIOB trigger sources, the connection to the MibADC1 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by configuring the function as output onto the pad (via the mux control), or by driving the function from an external trigger source as input. If the mux control module is used to select different functionality instead of the ADEVT, N2HET1[x] or GIOB[x] signals, then care must be taken to disable these signals from triggering conversions; there is no multiplexing on the input connections. NOTE For the RTI compare 0 interrupt source, the connection is made directly from the output of the RTI module. That is, the interrupt condition can be used as a trigger source even if the actual interrupt is not signaled to the CPU. Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 117 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 7.2.2.2 www.ti.com Alternate MIBADC1 Event Trigger Hookup Table 7-4. Alternate MIBADC1 Event Trigger Hookup EVENT # SOURCE SELECT BITS FOR G1, G2 OR EVENT (G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0]) 1 000 ADEVT 2 001 N2HET2[5] 3 010 N2HET1[27] 4 011 RTI compare 0 interrupt 5 100 N2HET1[17] 6 101 N2HET1[19] 7 110 N2HET1[11] 8 111 N2HET2[13] TRIGGER The selection between the default MIBADC1 event trigger hook-up versus the alternate event trigger hookup is done by multiplexing control module register 30 bits 0 and 1. If 30[0] = 1, then the default MibADC1 event trigger hook-up is used. If 30[0] = 0 and 30[1] = 1, then the alternate MibADC1 event trigger hook-up is used. NOTE For ADEVT trigger source, the connection to the MibADC1 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by configuring ADEVT as an output function on to the pad (via the mux control), or by driving the ADEVT signal from an external trigger source as input. If the mux control module is used to select different functionality instead of the ADEVT signal, then care must be taken to disable ADEVT from triggering conversions; there is no multiplexing on the input connection. NOTE For N2HETx trigger sources, the connection to the MibADC1 module trigger input is made from the input side of the output buffer (at the N2HETx module boundary). This way, a trigger condition can be generated even if the N2HETx signal is not selected to be output on the pad. NOTE For the RTI compare 0 interrupt source, the connection is made directly from the output of the RTI module. That is, the interrupt condition can be used as a trigger source even if the actual interrupt is not signaled to the CPU. 118 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 7.2.2.3 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Default MIBADC2 Event Trigger Hookup Table 7-5. MIBADC2 Event Trigger Hookup EVENT # SOURCE SELECT BITS FOR G1, G2 OR EVENT (G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0]) 1 000 AD2EVT 2 001 N2HET1[8] 3 010 N2HET1[10] 4 011 RTI compare 0 5 100 N2HET1[12] 6 101 N2HET1[14] 7 110 GIOB[0] 8 111 GIOB[1] TRIGGER NOTE For AD2EVT, N2HET1 and GIOB trigger sources, the connection to the MibADC2 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by configuring the function as output onto the pad (via the mux control), or by driving the function from an external trigger source as input. If the mux control module is used to select different functionality instead of the AD2EVT, N2HET1[x] or GIOB[x] signals, then care must be taken to disable these signals from triggering conversions; there is no multiplexing on the input connections. NOTE For the RTI compare 0 interrupt source, the connection is made directly from the output of the RTI module. That is, the interrupt condition can be used as a trigger source even if the actual interrupt is not signaled to the CPU. 7.2.2.4 Alternate MIBADC2 Event Trigger Hookup Table 7-6. Alternate MIBADC2 Event Trigger Hookup EVENT # SOURCE SELECT BITS FOR G1, G2 OR EVENT (G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0]) 1 000 AD2EVT 2 001 N2HET2[5] 3 010 N2HET1[27] 4 011 RTI compare 0 5 100 N2HET1[17] 6 101 N2HET1[19] 7 110 N2HET1[11] 8 111 N2HET2[13] TRIGGER The selection between the default MIBADC2 event trigger hook-up versus the alternate event trigger hookup is done by multiplexing control module register 30 bits 0 and 1. If 30[0] = 1, then the default MibADC2 event trigger hook-up is used. If 30[0] = 0 and 30[1] = 1, then the alternate MibADC2 event trigger hook-up is used. Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 119 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com NOTE For AD2EVT trigger source, the connection to the MibADC2 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by configuring AD2EVT as an output function on to the pad (via the mux control), or by driving the AD2EVT signal from an external trigger source as input. If the mux control module is used to select different functionality instead of the AD2EVT signal, then care must be taken to disable AD2EVT from triggering conversions; there is no multiplexing on the input connections. NOTE For N2HETx trigger sources, the connection to the MibADC2 module trigger input is made from the input side of the output buffer (at the N2HETx module boundary). This way, a trigger condition can be generated even if the N2HETx signal is not selected to be output on the pad. NOTE For the RTI compare 0 interrupt source, the connection is made directly from the output of the RTI module. That is, the interrupt condition can be used as a trigger source even if the actual interrupt is not signaled to the CPU. 120 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 7.2.3 SPNS164C - APRIL 2012 - REVISED APRIL 2015 ADC Electrical and Timing Specifications Table 7-7. MibADC Recommended Operating Conditions PARAMETER MIN MAX (1) UNIT V ADREFHI A-to-D high-voltage reference source ADREFLO VCCAD ADREFLO A-to-D low-voltage reference source VSSAD (1) ADREFHI V VAI Analog input voltage ADREFLO ADREFHI V IAIK Analog input clamp current (2) (VAI < VSSAD - 0.3 or VAI > VCCAD + 0.3) -2 2 (1) (2) mA For VCCAD and VSSAD recommended operating conditions, see Section 5.4. Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels. Table 7-8. MibADC Electrical Characteristics Over Full Ranges of Recommended Operating Conditions PARAMETER MAX UNIT See Figure 7-1 250 ADC sample switch onresistance See Figure 7-1 250 Cmux Input mux capacitance See Figure 7-1 16 pF Csamp ADC sample capacitance See Figure 7-1 13 pF IAIL Analog off-state input leakage current VCCAD = 3.6 V maximum Rmux Analog input mux onresistance Rsamp Analog off-state input leakage current IAIL IAOSB1 IAOSB2 IAOSB1 (1) (1) (1) ADC1 Analog on-state input bias current ADC2 Analog on-state input bias current ADC1 Analog on-state input bias current DESCRIPTION/CONDITIONS VCCAD = 5.5 V maximum VCCAD = 3.6 V maximum VCCAD = 3.6 V maximum VCCAD = 5.5 V maximum VSSAD VIN < VSSAD + 100 mV -300 200 VSSAD + 100 mV VIN VCCAD - 200 mV -200 200 VCCAD - 200 mV < VIN VCCAD -200 500 VSSAD VIN < VSSAD + 300 mV -1000 250 VSSAD + 300 mV VIN VCCAD - 300 mV -250 250 VCCAD - 300 mV < VIN VCCAD -250 1000 VSSAD VIN < VSSAD + 100 mV -8 2 VSSAD + 100 mV < VIN < VCCAD - 200 mV -4 2 VCCAD - 200 mV < VIN < VCCAD -4 12 VSSAD VIN < VSSAD + 100 mV -7 2 VSSAD + 100 mV VIN VCCAD - 200 mV -4 2 VCCAD - 200 mV < VIN VCCAD -4 10 VSSAD VIN < VSSAD + 300 mV -10 3 VSSAD + 300 mV VIN VCCAD - 300 mV -5 3 VCCAD - 300 mV < VIN VCCAD -5 14 VSSAD VIN < VSSAD + 300 mV -8 3 VSSAD + 300 mV VIN VCCAD - 300 mV -5 3 VCCAD - 300 mV < VIN VCCAD -5 12 IAOSB2 (1) ADC2 Analog on-state input bias current VCCAD = 5.5 V maximum IADREFHI ADREFHI input current ADREFHI = VCCAD, ADREFLO = VSSAD ICCAD (1) Static supply current MIN Normal operating mode ADC core in power down mode nA nA A A A A 3 mA 15 mA 5 A If a shared channel is being converted by both ADC converters at the same time, the on-state leakage is equal to IAOSL1 + IAOSL2 Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 121 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Rext www.ti.com Pin VS1 Smux Rmux Smux Rmux IAOSB Cext On-State Bias Current Rext Pin VS2 IAIL Cext IAIL IAIL Off-State Leakages Rext Pin Smux Rmux Ssamp Rsamp VS24 IAIL Csamp Cmux Cext IAIL IAIL Figure 7-1. MibADC Input Equivalent Circuit Table 7-9. MibADC Timing Specifications PARAMETER tc(ADCLK) (1) td(SH) (2) MIN Cycle time, MibADC clock Delay time, sample and hold time td(PU-ADV) Delay time from ADC power on until first input can be sampled NOM MAX UNIT 0.033 s 0.2 s 1 s 12-BIT MODE td(c) Delay time, conversion time 0.4 s td(SHC) (3) Delay time, total sample/hold and conversion time 0.6 s Delay time, conversion time 0.33 s Delay time, total sample/hold and conversion time 0.53 s 10-BIT MODE td(c) td(SHC) (1) (2) (3) 122 (3) The MibADC clock is the ADCLK, generated by dividing down the VCLK by a prescale factor defined by the ADCLOCKCR register bits 4:0. The sample and hold time for the ADC conversions is defined by the ADCLK frequency and the ADSAMP register for each conversion group. The sample time needs to be determined by accounting for the external impedance connected to the input channel as well as the ADC's internal impedance. This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, for example, the prescale settings. Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 7-10. MibADC Operating Characteristics Over Full Ranges of Recommended Operating Conditions PARAMETER CR ZSET FSET DESCRIPTION/CONDITIONS MIN NOM MAX UNIT Conversion range over which specified accuracy is maintained ADREFHI - ADREFLO Zero Scale Offset Difference between the first ideal transition (from code 000h to 001h) and the actual transition 10-bit mode 1 LSB (1) 12-bit mode 2 LSB (2) Difference between the range of the measured code transitions (from first to last) and the range of the ideal code transitions 10-bit mode 2 LSB 12-bit mode 3 LSB Full Scale Offset 3 5.5 V EDNL Differential nonlinearity error Difference between the actual step width and the ideal value. (See Figure 76) 10-bit mode 1.5 LSB 12-bit mode 2 LSB EINL Integral nonlinearity error Maximum deviation from the best straight line through the MibADC. MibADC transfer characteristics, excluding the quantization error. 10-bit mode 2 LSB 12-bit mode 2 LSB Maximum value of the difference between an analog value and the ideal midstep value. 10-bit mode 2 LSB 12-bit mode 4 LSB ETOT (1) (2) Total unadjusted error 210 12 1 LSB = (ADREFHI - ADREFLO)/ 1 LSB = (ADREFHI - ADREFLO)/ 2 for 10-bit mode for 12-bit mode Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 123 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 7.2.4 www.ti.com Performance (Accuracy) Specifications 7.2.4.1 MibADC Nonlinearity Errors The differential nonlinearity error shown in Figure 7-2 (sometimes referred to as differential linearity) is the difference between an actual step width and the ideal value of 1 LSB. 0 ... 110 Digital Output Code 0 ... 101 0 ... 100 0 ... 011 Differential Linearity Error (-1/2 LSB) 1 LSB 0 ... 010 Differential Linearity Error (-1/2 LSB) 0 ... 001 1 LSB 0 ... 000 0 1 3 4 2 Analog Input Value (LSB) 5 12 NOTE A: 1 LSB = (ADREFHI - ADREFLO)/2 Figure 7-2. Differential Nonlinearity (DNL) Error 124 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 The integral nonlinearity error shown in Figure 7-3 (sometimes referred to as linearity error) is the deviation of the values on the actual transfer function from a straight line. 0 ... 111 0 ... 110 Ideal Transition Digital Output Code 0 ... 101 Actual Transition 0 ... 100 At Transition 011/100 (-1/2 LSB) 0 ... 011 0 ... 010 End-Point Lin. Error 0 ... 001 At Transition 001/010 (-1/4 LSB) 0 ... 000 0 1 2 3 4 5 6 7 Analog Input Value (LSB) 12 NOTE A: 1 LSB = (ADREFHI - ADREFLO)/2 Figure 7-3. Integral Nonlinearity (INL) Error Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 125 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 7.2.4.2 www.ti.com MibADC Total Error The absolute accuracy or total error of an MibADC as shown in Figure 7-4 is the maximum value of the difference between an analog value and the ideal midstep value. 0 ... 111 0 ... 110 Digital Output Code 0 ... 101 0 ... 100 Total Error At Step 0 ... 101 (-1 1/4 LSB) 0 ... 011 0 ... 010 Total Error At Step 0 ... 001 (1/2 LSB) 0 ... 001 0 ... 000 0 1 2 3 4 5 6 7 Analog Input Value (LSB) 12 NOTE A: 1 LSB = (ADREFHI - ADREFLO)/2 Figure 7-4. Absolute Accuracy (Total) Error 126 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 7.3 SPNS164C - APRIL 2012 - REVISED APRIL 2015 General-Purpose Input/Output The GPIO module on this device supports two ports, GIOA and GIOB. The I/O pins are bidirectional and bit-programmable. Both GIOA and GIOB support external interrupt capability. 7.3.1 Features The GPIO module has the following features: * Each IO pin can be configured as: - Input - Output - Open Drain * The interrupts have the following characteristics: - Programmable interrupt detection either on both edges or on a single edge (set in GIOINTDET) - Programmable edge-detection polarity, either rising or falling edge (set in GIOPOL register) - Individual interrupt flags (set in GIOFLG register) - Individual interrupt enables, set and cleared through GIOENASET and GIOENACLR registers respectively - Programmable interrupt priority, set through GIOLVLSET and GIOLVLCLR registers * Internal pullup/pulldown allows unused I/O pins to be left unconnected For information on input and output timings see Section 5.11 and Section 5.12 Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 127 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 7.4 www.ti.com Enhanced High-End Timer (N2HET) The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs, capture or compare inputs, or general-purpose I/O. It is especially well suited for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses. 7.4.1 Features The N2HET module has the following features: * Programmable timer for input and output timing functions * Reduced instruction set (30 instructions) for dedicated time and angle functions * 160 words of instruction RAM protected by parity * User defined number of 25-bit virtual counters for timer, event counters and angle counters * 7-bit hardware counters for some pins allow up to 32-bit resolution in conjunction with the 25-bit virtual counters * Up to 32 pins usable for input signal measurements or output signal generation * Programmable suppression filter for each input pin with adjustable limiting frequency * Low CPU overhead and interrupt load * Efficient data transfer to or from the CPU memory with dedicated High-End-Timer Transfer Unit (HTU) or DMA * Diagnostic capabilities with different loopback mechanisms and pin status readback functionality 7.4.2 N2HET RAM Organization The timer RAM uses 4 RAM banks, where each bank has two port access capability. This means that one RAM address may be written while another address is read. The RAM words are 96 bits wide, which are split into three 32-bit fields (program, control, and data). 7.4.3 Input Timing Specifications The N2HET instructions PCNT and WCAP impose some timing constraints on the input signals. 1 N2HETx 3 4 2 Figure 7-5. N2HET Input Capture Timings 128 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 7-11. Input Timing Requirements for the N2HET Input Capture Functionality MIN (1) NO. (2) MAX (1) (2) UNIT 1 Input signal period, PCNT or WCAP for rising edge to rising edge 2 (hr) (lr) tc(VCLK2) + 2 2 (hr) (lr) tc(VCLK2) - 2 ns 2 Input signal period, PCNT or WCAP for falling edge to falling edge 2 (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns 3 Input signal high phase, PCNT or WCAP for rising edge to falling edge (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns 4 Input signal low phase, PCNT or WCAP for falling edge to rising edge (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns (1) (2) 25 hr = High-resolution prescaler, configured using the HRPFC field of the Prescale Factor Register (HETPFR). lr = Loop-resolution prescaler, configured using the LFPRC field of the Prescale Factor Register (HETPFR). Both N2HET1 and N2HET2 have channels that are enhanced to be able to capture inputs with smaller pulse widths than that specified in Table 7-11. See Table 7-13 for a list of which pins support small pulse capture. The input capture capability for these channels is specified in Table 7-12. Table 7-12. Input Timing Requirements for N2HET Channels with Enhanced Pulse Capture NO. MIN MAX UNIT 1 Input signal period, PCNT or WCAP for rising edge to rising edge (hr) (lr) tc(VCLK2) + 2 2 (hr) (lr) tc(VCLK2) - 2 ns 2 Input signal period, PCNT or WCAP for falling edge to falling edge (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns 3 Input signal high phase, PCNT or WCAP for rising edge to falling edge 2 (hr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns 4 Input signal low phase, PCNT or WCAP for falling edge to rising edge 2 (hr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns 25 Table 7-13. Input Capture Pin Capability CHANNEL SUPPORTS 32-BIT CAPTURE ENHANCED PULSE CAPTURE N2HET1[00] Yes No N2HET1[01] Yes No N2HET1[02] Yes No N2HET1[03] Yes No N2HET1[04] Yes No N2HET1[05] Yes No N2HET1[06] Yes No N2HET1[07] Yes No N2HET1[08] Yes No N2HET1[09] Yes No N2HET1[10] Yes No N2HET1[11] Yes No N2HET1[12] Yes No N2HET1[13] Yes No N2HET1[14] Yes No N2HET1[15] Yes Yes N2HET1[16] Yes No N2HET1[17] Yes No N2HET1[18] Yes No N2HET1[19] Yes No N2HET1[20] Yes Yes Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 129 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 7-13. Input Capture Pin Capability (continued) 7.4.4 CHANNEL SUPPORTS 32-BIT CAPTURE ENHANCED PULSE CAPTURE N2HET1[21] Yes No N2HET1[22] Yes No N2HET1[23] Yes No N2HET1[24] Yes No N2HET1[25] Yes No N2HET1[26] Yes No N2HET1[27] Yes No N2HET1[28] Yes No N2HET1[29] Yes No N2HET1[30] Yes No N2HET1[31] Yes Yes N2HET2[00] Yes No N2HET2[01] No No N2HET2[02] No No N2HET2[03] No No N2HET2[04] Yes No N2HET2[05] No No N2HET2[06] Yes No N2HET2[07] No No N2HET2[08] No No N2HET2[09] No No N2HET2[10] No No N2HET2[11] No No N2HET2[12] Yes Yes N2HET2[13] No No N2HET2[14] Yes Yes N2HET2[15] No No N2HET2[16] Yes Yes N2HET2[18] No No N2HET1-N2HET2 Interconnections In some applications the N2HET resolutions must be synchronized. Some other applications require a single time base to be used for all PWM outputs and input timing captures. The N2HET provides such a synchronization mechanism. The Clk_master/slave (HETGCR.16) configures the N2HET in master or slave mode (default is slave mode). A N2HET in master mode provides a signal to synchronize the prescalers of the slave N2HET. The slave N2HET synchronizes its loop resolution to the loop resolution signal sent by the master. The slave does not require this signal after it receives the first synchronization signal. However, anytime the slave receives the resynchronization signal from the master, the slave must synchronize itself again.. N2HET1 EXT_LOOP_SYNC NHET_LOOP_SYNC N2HET2 NHET_LOOP_SYNC EXT_LOOP_SYNC Figure 7-6. N2HET1 - N2HET2 Synchronization Hookup 130 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 7.4.5 SPNS164C - APRIL 2012 - REVISED APRIL 2015 N2HET Checking 7.4.5.1 Internal Monitoring To assure correctness of the high-end timer operation and output signals, the two N2HET modules can be used to monitor each other's signals as shown in Figure 7-7. The direction of the monitoring is controlled by the I/O multiplexing control module. N2HET1[1,3,5,7,9,11] IOMM mux control signal x N2HET1[1,3,5,7,9,11] / N2HET2[8,10,12,14,16,18] N2HET1 N2HET2[8,10,12,14,16,18] N2HET2 Figure 7-7. N2HET Monitoring 7.4.5.2 Output Monitoring Using Dual Clock Comparator (DCC) N2HET1[31] is connected as a clock source for counter 1 in DCC1. This allows the application to measure the frequency of the pulse-width modulated (PWM) signal on N2HET1[31]. Similarly, N2HET2[0] is connected as a clock source for counter 1 in DCC2. This allows the application to measure the frequency of the pulse-width modulated (PWM) signal on N2HET2[0]. Both N2HET1[31] and N2HET2[0] can be configured to be internal-only channels. That is, the connection to the DCC module is made directly from the output of the N2HETx module (from the input of the output buffer). For more information on DCC see Section 6.7.3. 7.4.6 Disabling N2HET Outputs Some applications require the N2HET outputs to be disabled under some fault condition. The N2HET module provides this capability via the "Pin Disable" input signal. This signal, when driven low, causes the N2HET outputs identified by a programmable register (HETPINDIS) to be tri-stated. See the device specific technical reference manual for more details on the "N2HET Pin Disable" feature. GIOA[5] is connected to the "Pin Disable" input for N2HET1, and GIOB[2] is connected to the "Pin Disable" input for N2HET2. Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 131 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 7.4.7 www.ti.com High-End Timer Transfer Unit (HTU) A High End Timer Transfer Unit (HTU) can perform DMA type transactions to transfer N2HET data to or from main memory. A Memory Protection Unit (MPU) is built into the HTU. 7.4.7.1 * * * * * * * * * 7.4.7.2 Features CPU and DMA independent Master Port to access system memory 8 control packets supporting dual buffer configuration Control packet information is stored in RAM protected by parity Event synchronization (HET transfer requests) Supports 32- or 64-bit transactions Addressing modes for HET address (8 byte or 16 byte) and system memory address (fixed, 32 bit or 64 bit) One shot, circular and auto switch buffer transfer modes Request lost detection Trigger Connections Table 7-14. HTU1 Request Line Connection MODULES REQUEST SOURCE HTU1 REQUEST N2HET1 HTUREQ[0] HTU1 DCP[0] N2HET1 HTUREQ[1] HTU1 DCP[1] N2HET1 HTUREQ[2] HTU1 DCP[2] N2HET1 HTUREQ[3] HTU1 DCP[3] N2HET1 HTUREQ[4] HTU1 DCP[4] N2HET1 HTUREQ[5] HTU1 DCP[5] N2HET1 HTUREQ[6] HTU1 DCP[6] N2HET1 HTUREQ[7] HTU1 DCP[7] Table 7-15. HTU2 Request Line Connection 132 MODULES REQUEST SOURCE HTU2 REQUEST N2HET2 HTUREQ[0] HTU2 DCP[0] N2HET2 HTUREQ[1] HTU2 DCP[1] N2HET2 HTUREQ[2] HTU2 DCP[2] N2HET2 HTUREQ[3] HTU2 DCP[3] N2HET2 HTUREQ[4] HTU2 DCP[4] N2HET2 HTUREQ[5] HTU2 DCP[5] N2HET2 HTUREQ[6] HTU2 DCP[6] N2HET2 HTUREQ[7] HTU2 DCP[7] Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 7.5 SPNS164C - APRIL 2012 - REVISED APRIL 2015 FlexRay Interface The FlexRay module performs communication according to the FlexRay protocol specification v2.1. The sample clock bit rate can be programmed to values up to 10 Mbps. Additional bus driver (BD) hardware is required for connection to the physical layer. For communication on a FlexRay network, individual message buffers with up to 254 data bytes are configurable. The message storage consists of a single-ported message RAM that holds up to 128 message buffers. All functions concerning the handling of messages are implemented in the message handler. Those functions are the acceptance filtering, the transfer of messages between the two FlexRay Channel Protocol Controllers and the message RAM, maintaining the transmission schedule, as well as providing message status information. The register set of the FlexRay module can be accessed directly by the CPU through the VBUS interface. These registers are used to control, configure, and monitor the FlexRay channel protocol controllers, message handler, global time unit, system universal control, frame/symbol processing, network management, interrupt control, and to access the message RAM through the I/O buffer. 7.5.1 Features The FlexRay module has the following features: * Conformance with FlexRay protocol specification v2.1 * Data rates of up to 10 Mbps on each channel * Up to 128 message buffers * 8KB of message RAM for storage (for example, 128 message buffers with maximum of 48-byte data section or up to 30 message buffers with 254-byte data section) * Configuration of message buffers with different payload lengths * One configurable receive FIFO * Each message buffer can be configured as receive buffer, as transmit buffer or as part of the receive FIFO. * CPU access to message buffers through input and output buffer * FlexRay Transfer Unit (FTU) for automatic data transfer between data memory and message buffers without CPU interaction * Filtering for slot counter, cycle counter, and channel ID * Maskable module interrupts * Supports Network Management 7.5.2 Electrical and Timing Specifications Table 7-16. Timing Requirements for FlexRay Inputs MIN tpw (1) Input minimum pulse width to meet the FlexRay sampling requirement tc(AVCLK2) + 2.5 (1) MAX UNIT ns tRxAsymDelay parameter t pw Input 0.6*V CCIO 0.6*V CCIO VCCIO 0.4*VCCIO 0 0.4*V CCIO Figure 7-8. FlexRay Inputs Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 133 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Table 7-17. FlexRay Jitter Timing PARAMETER MIN MAX UNIT 98 102 ns 999 1001 ns 999.5 1000.5 ns Delay difference between rise and fall from Rx pin to sample point in FlexRay core - 2.5 ns Jitter for the 80-MHz Sample Clock generated by the PLL - 0.5 ns tTx1bit Clock jitter and signal symmetry tTx10bit FlexRay BSS (byte start sequence) to BSS tTx10bitAvg Average over 10,000 samples tRxAsymDelay tjit(SCLK) 7.5.3 FlexRay Transfer Unit The FTU can transfer data between the input buffer (IBF) and output buffer (OBF) of the communication controller and the system memory without CPU interaction. Because the FlexRay module is accessed through the FTU, the FTU must be powered up by setting bit 23 in the Peripheral Power Down Registers of the System Module before accessing any FlexRay module register. For more information on the FTU, see the TMS570LS31x/TMS570LS21x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual (SPNU499). 134 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 7.6 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Controller Area Network (DCAN) The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 Mbps. The DCAN is ideal for applications operating in noisy and harsh environments (for example, automotive and industrial fields) that require reliable serial communication or multiplexed wiring. 7.6.1 Features Features of the DCAN module include: * Supports CAN protocol version 2.0 part A, B * Bit rates up to 1 Mbps * The CAN kernel can be clocked by the oscillator for baud-rate generation. * 64 mailboxes on each DCAN * Individual identifier mask for each message object * Programmable FIFO mode for message objects * Programmable loop-back modes for self-test operation * Automatic bus on after Bus-Off state by a programmable 32-bit timer * Message RAM protected by parity * Direct access to Message RAM during test mode * CAN Rx / Tx pins configurable as general purpose IO pins * Message RAM Auto Initialization * DMA support For more information on the DCAN, see the TMS570LS31x/21x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual (SPNU499). 7.6.2 Electrical and Timing Specifications Table 7-18. Dynamic Characteristics for the DCANx TX and RX Pins PARAMETER MIN td(CANnTX) Delay time, transmit shift register to CANnTX pin (1) td(CANnRX) Delay time, CANnRX pin to receive shift register (1) MAX UNIT 15 ns 5 ns These values do not include rise/fall times of the output buffer. Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 135 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 7.7 www.ti.com Local Interconnect Network Interface (LIN) The SCI/LIN module can be programmed to work either as an SCI or as a LIN. The core of the module is an SCI. The hardware features of the SCI are augmented to achieve LIN compatibility. The SCI module is a universal asynchronous receiver-transmitter that implements the standard nonreturn to zero format. The SCI can be used to communicate, for example, through an RS-232 port or over a Kline. The LIN standard is based on the SCI (UART) serial data link format. The communication concept is single-master/multiple-slave with a message identification for multicast transmission between any network nodes. 7.7.1 LIN Features The following are features of the LIN module: * Compatible to LIN 1.3, 2.0, and 2.1 protocols * Multibuffered receive and transmit units DMA capability for minimal CPU intervention * Identification masks for message filtering * Automatic Master Header Generation - Programmable Synch Break Field - Synch Field - Identifier Field * Slave Automatic Synchronization - Synch break detection - Optional baudrate update - Synchronization Validation * 231 programmable transmission rates with 7 fractional bits * Error detection * 2 Interrupt lines with priority encoding 136 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 7.8 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Serial Communication Interface (SCI) 7.8.1 Features * * * * * * * * * * * Standard universal asynchronous receiver-transmitter (UART) communication Supports full- or half-duplex operation Standard nonreturn to zero (NRZ) format Double-buffered receive and transmit functions Configurable frame format of 3 to 13 bits per character based on the following: - Data word length programmable from 1 to 8 bits - Additional address bit in address-bit mode - Parity programmable for zero or 1 parity bit, odd or even parity - Stop programmable for 1 or 2 stop bits Asynchronous or isosynchronous communication modes Two multiprocessor communication formats allow communication between more than two devices. Sleep mode is available to free CPU resources during multiprocessor communication. The 24-bit programmable baud rate supports 224 different baud rates provide high accuracy baud rate selection. Four error flags and five status flags provide detailed information regarding SCI events. Capability to use DMA for transmit and receive data. Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 137 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 7.9 www.ti.com Inter-Integrated Circuit (I2C) The inter-integrated circuit (I2C) module is a multimaster communication module providing an interface between the TMS570 microcontroller and devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by an I2C-busTM. This module will support any slave or master I2C compatible device. 7.9.1 Features The I2C has the following features: * Compliance to the Philips I2C-bus specification, v2.1 (The I2C Specification, Philips document number 9398 393 40011) - Bit/Byte format transfer - 7-bit and 10-bit device addressing modes - General call - START byte - Multimaster transmitter/ slave receiver mode - Multimaster receiver/ slave transmitter mode - Combined master transmit/receive and receive/transmit mode - Transfer rates of 10 kbps up to 400 kbps (Phillips fast-mode rate) * Free data format * Two DMA events (transmit and receive) * DMA event enable/disable capability * Seven interrupts that can be used by the CPU * Module enable/disable capability * The SDA and SCL are optionally configurable as general-purpose I/O * Slew rate control of the outputs * Open-drain control of the outputs * Programmable pullup/pulldown capability on the inputs * Supports Ignore NACK mode NOTE This I2C module does not support: * High-speed (HS) mode * C-bus compatibility mode * The combined format in 10-bit address mode (the I2C module sends the slave address second byte every time it sends the slave address first byte) 138 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 7.9.2 SPNS164C - APRIL 2012 - REVISED APRIL 2015 I2C I/O Timing Specifications Table 7-19. I2C Signals (SDA and SCL) Switching Characteristics (1) STANDARD MODE PARAMETER FAST MODE UNIT MIN MAX MIN MAX 75.2 149 75.2 149 ns 0 100 0 400 kHz tc(I2CCLK) Cycle time, Internal Module clock for I2C, prescaled from VCLK f(SCL) SCL Clock frequency tc(SCL) Cycle time, SCL 10 2.5 s tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 s th(SCLL-SDAL) Hold time, SCL low after SDA low (for a repeated START condition) 4 0.6 s tw(SCLL) Pulse duration, SCL low 4.7 1.3 s tw(SCLH) Pulse duration, SCL high 4 0.6 s tsu(SDA-SCLH) Setup time, SDA valid before SCL high 100 ns th(SDA-SCLL) Hold time, SDA valid after SCL low (for I2C bus devices) tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 1.3 s tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) 4.0 0.6 s tw(SP) Pulse duration, spike (must be suppressed) Cb (3) Capacitive load for each bus line (1) (2) (3) 250 0 3.45 (2) 0 0.9 0 400 s 50 ns 400 pF The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down. The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL signal. Cb = The total capacitance of one bus line in pF. SDA tw(SDAH) tsu(SDA-SCLH) tw(SCLL) tw(SP) tsu(SCLH-SDAH) tw(SCLH) tr(SCL) SCL tc(SCL) tf(SCL) th(SCLL-SDAL) th(SDA-SCLL) tsu(SCLH-SDAL) th(SCLL-SDAL) Stop Start Repeated Start Stop Figure 7-9. I2C Timings Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 139 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com NOTE * * * * 140 A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW period (tw(SCLL)) of the SCL signal. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH). Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster falltimes are allowed. Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 7.10 Multibuffered / Standard Serial Peripheral Interface The MibSPI is a high-speed synchronous serial input/output port that allows a serial bit stream of programmed length (2 to 16 bits) to be shifted in and out of the device at a programmed bit-transfer rate. Typical applications for the SPI include interfacing to external peripherals, such as I/Os, memories, display drivers, and analog-to-digital converters. 7.10.1 Features Both Standard and MibSPI modules have the following features: * 16-bit shift register * Receive buffer register * 5-bit baud clock generator * SPICLK can be internally-generated (master mode) or received from an external clock source (slave mode) * Each word transferred can have a unique format * SPI I/Os not used in the communication can be used as digital input/output signals Table 7-20. MibSPI/SPI Configurations MibSPIx/SPIx I/Os MibSPI1 MIBSPI1SIMO[1:0], MIBSPI1SOMI[1:0], MIBSPI1CLK, MIBSPI1nCS[5:0], MIBSPI1nENA MibSPI3 MIBSPI3SIMO, MIBSPI3SOMI, MIBSPI3CLK, MIBSPI3nCS[5:0], MIBSPI3nENA MibSPI5 MIBSPI5SIMO[3:0], MIBSPI5SOMI[3:0], MIBSPI5CLK, MIBSPI5nCS[3:0], MIBSPI5nENA SPI2 SPI2SIMO, SPI2SOMI, SPI2CLK, SPI2nCS[1:0], SPI2nENA SPI4 SPI4SIMO, SPI4SOMI, SPI4CLK, SPI4nCS[0], SPI4nENA 7.10.2 MibSPI Transmit and Receive RAM Organization The Multibuffer RAM is comprised of 128 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a 16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer RAM can be partitioned into multiple transfer group with variable number of buffers each. 7.10.3 MibSPI Transmit Trigger Events Each of the transfer groups can be configured individually. For each of the transfer groups a trigger event and a trigger source can be chosen. A trigger event can be for example a rising edge or a permanent low level at a selectable trigger source. For example, up to 15 trigger sources are available which can be used by each transfer group. These trigger options are listed in Table 7-21 for MIBSPI1, Section 7.10.3.2 for MIBSPI3 and Section 7.10.3.3 for MibSPI5. Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 141 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 7.10.3.1 MIBSPI1 Event Trigger Hookup Table 7-21. MIBSPI1 Event Trigger Hookup EVENT # TGxCTRL TRIGSRC[3:0] TRIGGER Disabled 0000 No trigger source EVENT0 0001 GIOA[0] EVENT1 0010 GIOA[1] EVENT2 0011 GIOA[2] EVENT3 0100 GIOA[3] EVENT4 0101 GIOA[4] EVENT5 0110 GIOA[5] EVENT6 0111 GIOA[6] EVENT7 1000 GIOA[7] EVENT8 1001 N2HET1[8] EVENT9 1010 N2HET1[10] EVENT10 1011 N2HET1[12] EVENT11 1100 N2HET1[14] EVENT12 1101 N2HET1[16] EVENT13 1110 N2HET1[18] EVENT14 1111 Internal Tick counter NOTE For N2HET1 trigger sources, the connection to the MibSPI1 module trigger input is made from the input side of the output buffer (at the N2HET1 module boundary). This way, a trigger condition can be generated even if the N2HET1 signal is not selected to be output on the pad. NOTE For GIOx trigger sources, the connection to the MibSPI1 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by selecting the GIOx pin as an output pin plus selecting the pin to be a GIOx pin, or by driving the GIOx pin from an external trigger source. If the mux control module is used to select different functionality instead of the GIOx signal, then care must be taken to disable GIOx from triggering MibSPI1 transfers; there is no multiplexing on the input connections. 7.10.3.2 MIBSPI3 Event Trigger Hookup Table 7-22. MIBSPI3 Event Trigger Hookup 142 EVENT # TGxCTRL TRIGSRC[3:0] TRIGGER Disabled 0000 No trigger source EVENT0 0001 GIOA[0] EVENT1 0010 GIOA[1] EVENT2 0011 GIOA[2] EVENT3 0100 GIOA[3] EVENT4 0101 GIOA[4] EVENT5 0110 GIOA[5] EVENT6 0111 GIOA[6] EVENT7 1000 GIOA[7] EVENT8 1001 HET[8] EVENT9 1010 N2HET1[10] Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 7-22. MIBSPI3 Event Trigger Hookup (continued) EVENT # TGxCTRL TRIGSRC[3:0] TRIGGER EVENT10 1011 N2HET1[12] EVENT11 1100 N2HET1[14] EVENT12 1101 N2HET1[16] EVENT13 1110 N2HET1[18] EVENT14 1111 Internal Tick counter NOTE For N2HET1 trigger sources, the connection to the MibSPI3 module trigger input is made from the input side of the output buffer (at the N2HET1 module boundary). This way, a trigger condition can be generated even if the N2HET1 signal is not selected to be output on the pad. NOTE For GIOx trigger sources, the connection to the MibSPI3 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by selecting the GIOx pin as an output pin plus selecting the pin to be a GIOx pin, or by driving the GIOx pin from an external trigger source. If the mux control module is used to select different functionality instead of the GIOx signal, then care must be taken to disable GIOx from triggering MibSPI3 transfers; there is no multiplexing on the input connections. 7.10.3.3 MIBSPI5 Event Trigger Hookup Table 7-23. MIBSPI5 Event Trigger Hookup EVENT # TGxCTRL TRIGSRC[3:0] TRIGGER Disabled 0000 No trigger source EVENT0 0001 GIOA[0] EVENT1 0010 GIOA[1] EVENT2 0011 GIOA[2] EVENT3 0100 GIOA[3] EVENT4 0101 GIOA[4] EVENT5 0110 GIOA[5] EVENT6 0111 GIOA[6] EVENT7 1000 GIOA[7] EVENT8 1001 N2HET1[8] EVENT9 1010 N2HET1[10] EVENT10 1011 N2HET1[12] EVENT11 1100 N2HET1[14] EVENT12 1101 N2HET1[16] EVENT13 1110 N2HET1[18] EVENT14 1111 Internal Tick counter NOTE For N2HET1 trigger sources, the connection to the MibSPI5 module trigger input is made from the input side of the output buffer (at the N2HET1 module boundary). This way, a trigger condition can be generated even if the N2HET1 signal is not selected to be output on the pad. Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 143 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com NOTE For GIOx trigger sources, the connection to the MibSPI5 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by selecting the GIOx pin as an output pin + selecting the pin to be a GIOx pin, or by driving the GIOx pin from an external trigger source. If the mux control module is used to select different functionality instead of the GIOx signal, then care must be taken to disable GIOx from triggering MibSPI5 transfers; there is no multiplexing on the input connections. 144 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 7.10.4 MibSPI/SPI Master Mode I/O Timing Specifications Table 7-24. SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO = output, and SPISOMI = input) (1) (2) (3) NO. 1 PARAMETER MIN MAX 40 256tc(VCLK) tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M - tr(SPC)M - 3 0.5tc(SPC)M + 3 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M - tf(SPC)M - 3 0.5tc(SPC)M + 3 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M - tf(SPC)M - 3 0.5tc(SPC)M + 3 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M - tr(SPC)M - 3 0.5tc(SPC)M + 3 td(SPCH-SIMO)M Delay time, SPISIMO valid before SPICLK low (clock polarity = 0) 0.5tc(SPC)M - 6 td(SPCL-SIMO)M Delay time, SPISIMO valid before SPICLK high (clock polarity = 1) 0.5tc(SPC)M - 6 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 0) 0.5tc(SPC)M - tf(SPC) - 4 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 1) 0.5tc(SPC)M - tr(SPC) - 4 tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 0) tf(SPC) + 2.2 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 1) tr(SPC) + 2.2 th(SPCL-SOMI)M Hold time, SPISOMI data valid after SPICLK low (clock polarity = 0) 10 th(SPCH-SOMI)M Hold time, SPISOMI data valid after SPICLK high (clock polarity = 1) 10 tc(SPC)M Cycle time, SPICLK (4) 2 (5) 3 (5) 4 (5) 5 6 7 (5) (5) (5) 8 (6) 9 (6) (1) (2) (3) (4) (5) (6) ns ns ns ns ns CSHOLD = 0 C2TDELAY*tc(VCLK) + 2*tc(VCLK) - tf(SPICS) + tr(SPC) - 7 (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) + 5.5 CSHOLD = 1 C2TDELAY*tc(VCLK) + 3*tc(VCLK) - tf(SPICS) + tr(SPC) - 7 (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) + 5.5 Setup time CS active until SPICLK low (clock polarity = 1) CSHOLD = 0 C2TDELAY*tc(VCLK) + 2*tc(VCLK) - tf(SPICS) + tf(SPC) - 7 (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) + 5.5 CSHOLD = 1 C2TDELAY*tc(VCLK) + 3*tc(VCLK) - tf(SPICS) + tf(SPC) - 7 (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) + 5.5 Hold time SPICLK low until CS inactive (clock polarity = 0) 0.5*tc(SPC)M + T2CDELAY*tc(VCLK) + tc(VCLK) tf(SPC) + tr(SPICS) - 7 0.5*tc(SPC)M + T2CDELAY*tc(VCLK) + tc(VCLK) tf(SPC) + tr(SPICS) + 11 Hold time SPICLK high until CS inactive (clock polarity = 1) 0.5*tc(SPC)M + T2CDELAY*tc(VCLK) + tc(VCLK) tr(SPC) + tr(SPICS) - 7 0.5*tc(SPC)M + T2CDELAY*tc(VCLK) + tc(VCLK) tr(SPC) + tr(SPICS) + 11 (C2TDELAY+1) * tc(VCLK) tf(SPICS) - 29 (C2TDELAY+1)*tc(VCLK) tT2CDELAY 10 tSPIENA SPIENAn Sample point 11 tSPIENAW SPIENAn Sample point from write to buffer ns ns Setup time CS active until SPICLK high (clock polarity = 0) tC2TDELAY UNIT (C2TDELAY+2)*tc(VCLK) ns ns ns ns The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared. tc(VCLK) = interface clock cycle time = 1 / f(VCLK) For rise and fall timings, see Table 5-7. When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(VCLK) 40ns. The external load on the SPICLK pin must be less than 60pF. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17). C2TDELAY and T2CDELAY is programmed in the SPIDELAY register Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 145 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 SPISIMO 5 Master Out Data Is Valid 6 7 Master In Data Must Be Valid SPISOMI Figure 7-10. SPI Master Mode External Timing (CLOCK PHASE = 0) Write to buffer SPICLK (clock polarity=0) SPICLK (clock polarity=1) SPISIMO Master Out Data Is Valid 8 9 SPICSn 10 11 SPIENAn Figure 7-11. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0) 146 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 7-25. SPI Master Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO = output, and SPISOMI = input) (1) (2) (3) NO. 1 2 3 4 PARAMETER Cycle time, SPICLK tw(SPCH)M (4) 256tc(VCLK) Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M - tr(SPC)M - 3 0.5tc(SPC)M + 3 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M - tf(SPC)M - 3 0.5tc(SPC)M + 3 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M - tf(SPC)M - 3 0.5tc(SPC)M + 3 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M - tr(SPC)M - 3 0.5tc(SPC)M + 3 tv(SIMO-SPCH)M Valid time, SPICLK high after SPISIMO data valid (clock polarity = 0) 0.5tc(SPC)M - 6 tv(SIMO-SPCL)M Valid time, SPICLK low after SPISIMO data valid (clock polarity = 1) 0.5tc(SPC)M - 6 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 0) 0.5tc(SPC)M - tr(SPC) - 4 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 1) 0.5tc(SPC)M - tf(SPC) - 4 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 0) tr(SPC) + 2.2 tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 1) tf(SPC) + 2.2 tv(SPCH-SOMI)M Valid time, SPISOMI data valid after SPICLK high (clock polarity = 0) 10 tv(SPCL-SOMI)M Valid time, SPISOMI data valid after SPICLK low (clock polarity = 1) 10 (5) (5) (5) 6 (5) (5) ns ns CSHOLD = 0 0.5*tc(SPC)M + (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) - 7 0.5*tc(SPC)M + (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) + 5.5 CSHOLD = 1 0.5*tc(SPC)M + (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) - 7 0.5*tc(SPC)M + (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) + 5.5 Hold time SPICLK low until CS inactive (clock polarity = 0) T2CDELAY*tc(VCLK) + tc(VCLK) - tf(SPC) + tr(SPICS) 7 T2CDELAY*tc(VCLK) + tc(VCLK) - tf(SPC) + tr(SPICS) + 11 Hold time SPICLK high until CS inactive (clock polarity = 1) T2CDELAY*tc(VCLK) + tc(VCLK) - tr(SPC) + tr(SPICS) 7 T2CDELAY*tc(VCLK) + tc(VCLK) - tr(SPC) + tr(SPICS) + 11 (C2TDELAY+1)* tc(VCLK) tf(SPICS) - 29 (C2TDELAY+1)*tc(VCLK) tT2CDELAY tSPIENA SPIENAn Sample Point 11 tSPIENAW SPIENAn Sample point from write to buffer (5) (6) ns 0.5*tc(SPC)M + (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) + 5.5 10 (1) (2) (3) (4) ns 0.5*tc(SPC)M + (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) - 7 Setup time CS active until SPICLK low (clock polarity = 1) 9 (6) ns 0.5*tc(SPC)M + (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) + 5.5 tC2TDELAY ns ns 0.5*tc(SPC)M + (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) - 7 CSHOLD = 0 Setup time CS active until SPICLK high (clock polarity = 0) CSHOLD = 1 8 (6) MAX UNIT 40 5 (5) 7 MIN tc(SPC)M (C2TDELAY+2)*tc(VCLK) ns ns ns ns The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set. tc(VCLK) = interface clock cycle time = 1 / f(VCLK) For rise and fall timings, see the Table 5-7. When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(VCLK) 40ns. The external load on the SPICLK pin must be less than 60pF. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17). C2TDELAY and T2CDELAY is programmed in the SPIDELAY register Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 147 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 5 4 Master Out Data Is Valid SPISIMO 6 Data Valid 7 Master In Data Must Be Valid SPISOMI Figure 7-12. SPI Master Mode External Timing (CLOCK PHASE = 1) Write to buffer SPICLK (clock polarity=0) SPICLK (clock polarity=1) SPISIMO Master Out Data Is Valid 8 9 SPICSn 10 11 SPIENAn Figure 7-13. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1) 148 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 7.10.5 SPI Slave Mode I/O Timings Table 7-26. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = input, SPISIMO = input, and SPISOMI = output) (1) (2) (3) (4) NO. 1 2 (6) 3 (6) 4 (6) 5 (6) 6 (6) 7 PARAMETER 40 tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 0) 14 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 1) 14 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 0) 14 tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 1) 14 td(SPCH-SOMI)S Delay time, SPISOMI valid after SPICLK high (clock polarity = 0) trf(SOMI) + 20 td(SPCL-SOMI)S Delay time, SPISOMI valid after SPICLK low (clock polarity = 1) trf(SOMI) + 20 th(SPCH-SOMI)S Hold time, SPISOMI data valid after SPICLK high (clock polarity =0) 2 th(SPCL-SOMI)S Hold time, SPISOMI data valid after SPICLK low (clock polarity =1) 2 tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity = 0) 4 tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock polarity = 1) 4 th(SPCL-SIMO)S Hold time, SPISIMO data valid after SPICLK low (clock polarity = 0) 2 th(SPCH-SIMO)S Hold time, SPISIMO data valid after S PICLK high (clock polarity = 1) 2 td(SPCL-SENAH)S Delay time, SPIENAn high after last SPICLK low (clock polarity = 0) 1.5tc(VCLK) 2.5tc(VCLK)+tr(ENAn)+ 22 td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK high (clock polarity = 1) 1.5tc(VCLK) 2.5tc(VCLK)+ tr(ENAn) + 22 td(SCSL-SENAL)S Delay time, SPIENAn low after SPICSn low (if new data has been written to the SPI buffer) tf(ENAn) tc(VCLK)+tf(ENAn)+27 8 (1) (2) (3) (4) (5) (6) MAX Cycle time, SPICLK (5) (6) 9 MIN tc(SPC)S UNIT ns ns ns ns ns ns ns ns ns The MASTER bit (SPIGCR1.0) is cleared and the CLOCK PHASE bit (SPIFMTx.16) is cleared. If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8]. For rise and fall timings, see Table 5-7. tc(VCLK) = interface clock cycle time = 1 /f(VCLK) When the SPI is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)S = 2tc(VCLK) 40ns. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17). Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 149 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 5 4 SPISOMI Data Is Valid SPISOMI 6 7 SPISIMO Data Must Be Valid SPISIMO Figure 7-14. SPI Slave Mode External Timing (CLOCK PHASE = 0) SPICLK (clock polarity=0) SPICLK (clock polarity=1) 8 SPIENAn 9 SPICSn Figure 7-15. SPI Slave Mode Enable Timing (CLOCK PHASE = 0) 150 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 Table 7-27. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = input, SPISIMO = input, and SPISOMI = output) (1) (2) (3) (4) NO. PARAMETER UNIT 40 tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 0) 14 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 1) 14 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 0) 14 tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 1) 14 td(SOMI-SPCL)S Dealy time, SPISOMI data valid after SPICLK low (clock polarity = 0) trf(SOMI) + 20 td(SOMI-SPCH)S Delay time, SPISOMI data valid after SPICLK high (clock polarity = 1) trf(SOMI) + 20 th(SPCL-SOMI)S Hold time, SPISOMI data valid after SPICLK high (clock polarity =0) 2 th(SPCH-SOMI)S Hold time, SPISOMI data valid after SPICLK low (clock polarity =1) 2 tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock polarity = 0) 4 tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity = 1) 4 tv(SPCH-SIMO)S High time, SPISIMO data valid after SPICLK high (clock polarity = 0) 2 tv(SPCL-SIMO)S High time, SPISIMO data valid after SPICLK low (clock polarity = 1) 2 td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK high (clock polarity = 0) 1.5tc(VCLK) 2.5tc(VCLK)+tr(ENAn) + 22 td(SPCL-SENAH)S Delay time, SPIENAn high after last SPICLK low (clock polarity = 1) 1.5tc(VCLK) 2.5tc(VCLK)+tr(ENAn) + 22 9 td(SCSL-SENAL)S Delay time, SPIENAn low after SPICSn low (if new data has been written to the SPI buffer) tf(ENAn) tc(VCLK)+tf(ENAn)+ 27 ns 10 td(SCSL-SOMI)S Delay time, SOMI valid after SPICSn low (if new data has been written to the SPI buffer) tc(VCLK) 2tc(VCLK)+trf(SOMI)+ 28 ns 3 (6) 4 5 6 7 (6) (6) (6) (6) 8 (6) MAX Cycle time, SPICLK (5) 2 (6) (1) (2) (3) (4) (5) MIN tc(SPC)S 1 ns ns ns ns ns ns ns ns The MASTER bit (SPIGCR1.0) is cleared and the CLOCK PHASE bit (SPIFMTx.16) is set. If the SPI is in slave mode, the following must be true: tc(SPC)S (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8]. For rise and fall timings, see Table 5-7. tc(VCLK) = interface clock cycle time = 1 /f(VCLK) When the SPI is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S (PS +1)tc(VCLK) 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)S = 2tc(VCLK) 40ns. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17). Copyright (c) 2012-2015, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback 151 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 5 4 SPISOMI SPISOMI Data Is Valid 6 7 SPISIMO Data Must Be Valid SPISIMO Figure 7-16. SPI Slave Mode External Timing (CLOCK PHASE = 1) SPICLK (clock polarity=0) SPICLK (clock polarity=1) 8 SPIENAn 9 SPICSn 10 SPISOMI Slave Out Data Is Valid Figure 7-17. SPI Slave Mode Enable Timing (CLOCK PHASE = 1) 152 Peripheral Information and Electrical Specifications Submit Documentation Feedback Copyright (c) 2012-2015, Texas Instruments Incorporated TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 8 Device and Documentation Support 8.1 Device Support 8.1.1 Development Support Texas Instruments (TI) offers an extensive line of development tools for the TMS570LSxRM48Lx family of MCUs, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The following products support development: Software Development Tools * * * Code Composer StudioTM (CCS) Integrated Development Environment (IDE)- - C/C++ Compiler - Code generation tools - Assembler/Linker - FPU Optimized Libraries Application algorithms Sample applications code Hardware Development Tools * * * Development and evaluation boards JTAG-based emulators - XDS510TM class, XDS560TM emulator, XDS100v2, XDS110, XDS200 Flash programming tools For a complete listing of development-support tools, visit the Texas Instruments website at www.ti.com. 8.1.2 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all devices. Each commercial family member has one of three prefixes: TMX, TMP, or TMS (for example, TMS570LS3137). These prefixes represent evolutionary stages of product development from engineering prototypes (TMX) through fully qualified production devices (TMS). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical specifications. TMP Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification. TMS Fully-qualified production device. TMX and TMP devices are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." TMS devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. Figure 8-1 shows the numbering and symbol nomenclature for the TMS570LS31x5/21x5 . For additional information on the device nomenclature markings, see the device-specific silicon errata document listed in Section 8.2.1, Related Documentation from Texas Instruments. Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 153 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Full Part # TMS 570 Orderable Part # TMS 570 LS 31 3 5 D ZWT Q Q1 R 31 3 5 D ZWT Q Q1 R Prefix: TM TMS = Fully Qualified TMP = Prototype TMX = Samples Core Technology: 570 = Cortex R4F Architecture: LS = Dual CPUs in Lockstep (not included in orderable part #) Flash Memory Size: 31 = 3MB 21 = 2MB RAM Memory Size: 3 = 256kB 2 = 192kB Peripheral Set: 5 = FlexRay, no Ethernet Die Revision: Blank = Initial Die A = 1st Die Revision B = 2nd Die Revision C = 3rd Die Revision D = 4th Die Revision Package Type: ZWT = 337 BGA Package PGE = 144 Pin Package Temperature Range: Q = -40...+125oC Quality Designator: Q1 = Automotive Shipping Options: R = Tape and Reel Figure 8-1. TMS570LS31x5/21x5 Device Numbering Conventions 154 Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 8.2 8.2.1 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Documentation Support Related Documentation from Texas Instruments The following documents describe the TMS570LS31x5/21x5 microcontroller.. 8.3 SPNU499 TMS570LS31x/21x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the device. SPNZ195 TMS570LS31x/21x Microcontroller, Silicon Revision C, Silicon Errata describes the usage notes and known exceptions to the functional specifications for the device silicon revision C. SPNZ222 TMS570LS31x/21x Microcontroller, Silicon Revision D, Silicon Errata describes the usage notes and known exceptions to the functional specifications for the device silicon revision D. SPNA207 Calculating Equivalent Power-on-Hours for HerculesTM Safety MCUs details how to use the spreadsheet to calculate the aging effect of temperature on Texas Instruments Hercules Safety MCUs. Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 8-1. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY TMS570LS2125 Click here Click here Click here Click here Click here TMS570LS2135 Click here Click here Click here Click here Click here TMS570LS3135 Click here Click here Click here Click here Click here 8.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2ETM Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 8.5 Trademarks Code Composer Studio, XDS510, XDS560, E2E are trademarks of Texas Instruments. CoreSight is a trademark of ARM Limited. ARM, Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. I2C-bus is a trademark of NXP Semiconductors N. V. All other trademarks are the property of their respective owners. 8.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 8.7 Glossary SLYZ022 -- TI Glossary. Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 155 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com This glossary lists and explains terms, acronyms, and definitions. 156 Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com 8.8 SPNS164C - APRIL 2012 - REVISED APRIL 2015 Device Identification Code Register The device identification code register identifies several aspects of the device including the silicon version. The details of the device identification code register are shown in Table 8-2. The device identification code register value for this device is: * Rev A = 0x802AAD05 * Rev B = 0x802AAD15 * Rev C = 0x802AAD1D * Rev D = 0x802AAD25 Figure 8-2. Device ID Bit Allocation Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CP-15 UNIQUE ID TECH R-1 R-00000000010101 R-0 15 12 11 2 1 0 TECH 14 13 I/O VOLT AGE PERIPH PARITY FLASH ECC 10 9 RAM ECC 8 7 6 VERSION 5 4 3 1 0 1 R-101 R-0 R-1 R-10 R-1 R-00000 R-1 R-0 R-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 8-2. Device ID Bit Allocation Register Field Descriptions BIT 31 FIELD VALUE CP15 1 30-17 UNIQUE ID 16-13 TECH DESCRIPTION Indicates the presence of coprocessor 15 10101 CP15 present Silicon version (revision) bits. This bit field holds a unique number for a dedicated device configuration (die). Process technology on which the device is manufactured. 0101 12 I/O VOLTAGE I/O voltage of the device. 0 11 PERIPHERAL PARITY FLASH ECC Parity on peripheral memories Flash ECC 10 8 I/O are 3.3 V Peripheral Parity 1 10-9 F021 RAM ECC Program memory with ECC Indicates if RAM memory ECC is present. 1 ECC implemented 7-3 REVISION Revision of the device. 2-0 101 The platform family ID is always 0b101 Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 157 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 8.9 www.ti.com Die Identification Registers The two die ID registers at addresses 0xFFFFFF7C and 0xFFFFFF80 form a 64-bit die ID with the information as shown in Table 8-3. Table 8-3. Die-ID Registers ITEM NUMBER OF BITS BIT LOCATION X Coord. on Wafer 12 0xFFFFFF7C[11:0] Y Coord. on Wafer 12 0xFFFFFF7C[23:12] Wafer # 8 0xFFFFFF7C[31:24] Lot # 24 0xFFFFFF80[23:0] Reserved 8 0xFFFFFF80[31:24] 8.10 Module Certifications The following communications modules have received certification of adherence to a standard. 158 Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 8.10.1 FlexRayTM Certifications Figure 8-3. FlexRay Certification for ZWT Package Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 159 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com Figure 8-4. FlexRay Certification for PGE Package 160 Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 8.10.2 DCAN Certification Figure 8-5. DCAN Certification Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 161 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 8.10.3 LIN Certification 8.10.3.1 LIN Master Mode Figure 8-6. LIN Certification - Master Mode 162 Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 8.10.3.2 LIN Slave Mode - Fixed Baud Rate Figure 8-7. LIN Certification - Slave Mode - Fixed Baud Rate Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback 163 TMS570LS3135, TMS570LS2135, TMS570LS2125 SPNS164C - APRIL 2012 - REVISED APRIL 2015 www.ti.com 8.10.3.3 LIN Slave Mode - Adaptive Baud Rate Figure 8-8. LIN Certification - Slave Mode - Adaptive Baud Rate 164 Device and Documentation Support Copyright (c) 2012-2015, Texas Instruments Incorporated Submit Documentation Feedback TMS570LS3135, TMS570LS2135, TMS570LS2125 www.ti.com SPNS164C - APRIL 2012 - REVISED APRIL 2015 9 Mechanical Packaging and Orderable Information 9.1 Packaging Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright (c) 2012-2015, Texas Instruments Incorporated Mechanical Packaging and Orderable Information Submit Documentation Feedback 165 PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2018 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (C) Device Marking (4/5) TMS5702125DPGEQQ1 ACTIVE LQFP PGE 144 60 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 TMS570LS 2125DPGEQQ1 TMS5702135DPGEQQ1 ACTIVE LQFP PGE 144 60 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 TMS570LS 2135DPGEQQ1 TMS5702135DZWTQQ1 ACTIVE NFBGA ZWT 337 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 125 TMS570LS 2135DZWTQQ1 TMS5703135DPGEQQ1 ACTIVE LQFP PGE 144 60 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 125 TMS570LS 3135DPGEQQ1 TMS5703135DZWTQQ1 ACTIVE NFBGA ZWT 337 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 125 TMS570LS 3135DZWTQQ1 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 27-Jul-2018 Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE OUTLINE ZWT0337A NFBGA - 1.4 mm max height SCALE 0.950 PLASTIC BALL GRID ARRAY 16.1 15.9 B A BALL A1 CORNER 16.1 15.9 1.4 MAX C SEATING PLANE 0.45 TYP 0.35 BALL TYP 0.12 C 14.4 TYP SYMM (0.8) TYP W 14.4 TYP V U T R P N M L K J H G F E D C (0.8) TYP SYMM 337X 0.55 0.45 0.15 0.05 C A B C B A 0.8 TYP BALL A1 CORNER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0.8 TYP 4223381/A 02/2017 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. www.ti.com EXAMPLE BOARD LAYOUT ZWT0337A NFBGA - 1.4 mm max height PLASTIC BALL GRID ARRAY (0.8) TYP 337X ( 0.4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 A B C (0.8) TYP D E F G H J SYMM K L M N P R T U V W SYMM LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE:7X 0.05 MAX ( 0.4) METAL METAL UNDER SOLDER MASK 0.05 MIN EXPOSED METAL SOLDER MASK OPENING EXPOSED METAL ( 0.4) SOLDER MASK OPENING SOLDER MASK DEFINED NON-SOLDER MASK DEFINED (PREFERRED) SOLDER MASK DETAILS NOT TO SCALE 4223381/A 02/2017 NOTES: (continued) 3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99). www.ti.com EXAMPLE STENCIL DESIGN ZWT0337A NFBGA - 1.4 mm max height PLASTIC BALL GRID ARRAY ( 0.4) TYP (0.8) TYP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 A (0.8) TYP B C D E F G H J SYMM K L M N P R T U V W SYMM SOLDER PASTE EXAMPLE BASED ON 0.15 mm THICK STENCIL SCALE:7X 4223381/A 02/2017 NOTES: (continued) 4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. www.ti.com MECHANICAL DATA MTQF017A - OCTOBER 1994 - REVISED DECEMBER 1996 PGE (S-PQFP-G144) PLASTIC QUAD FLATPACK 108 73 109 72 0,27 0,17 0,08 M 0,50 144 0,13 NOM 37 1 36 Gage Plane 17,50 TYP 20,20 SQ 19,80 22,20 SQ 21,80 0,25 0,05 MIN 0- 7 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040147 / C 10/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2018, Texas Instruments Incorporated Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Texas Instruments: TMS5702125CPGEQQ1 TMS5702125CZWTQQ1 TMS5702125BPGEQQ1 TMS5702125DZWTQQ1 TMS5702125DPGEQQ1