02/12/09
www.irf.com 1
HEXFET® Power MOSFET
Benefits
lOptimized for Logic Level Drive
lVery Low RDS(ON) at 4.5V VGS
lSuperior R*Q at 4.5V VGS
lImproved Gate, Avalanche and Dynamic dV/dt
Ruggedness
lFully Characterized Capacitance and Avalanche
SOA
lEnhanced body diode dV/dt and dI/dt Capability
l Lead-Free
Applications
l DC Motor Drive
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
S
D
G
PD - 97370
IRLS4030PbF
IRLSL4030PbF
GDS
Gate Drain Source
V
DSS
100V
R
DS
(
on
)
typ. 3.4m
max. 4.3m
I
D
180A
D2Pak
IRLS4030PbF
TO-262
IRLSL4030bF
GD
S
GDS
Absolute Maximum Ratings
Symbol Parameter Units
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V
I
D
@ T
C
= 100°C Continuous Drain Current, V
GS
@ 10V A
I
DM
Pulsed Drain Current c
P
D
@T
C
= 25°C Maximum Power Dissipation W
Linear Derating Factor W/°C
V
GS
Gate-to-Source Voltage V
dv/dt Peak Diode Recovery eV/ns
T
J
Operating Junction and °C
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Avalanche Characteristics
E
AS (Thermally limited)
Single Pulse Avalanche Energy dmJ
I
AR
Avalanche Current cA
E
AR
Repetitive Avalanche Energy fmJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
R
θJC
Junction-to-Case jk ––– 0.40 °C/W
R
θJA
Junction-to-Ambient (PCB Mount) ij ––– 40
300
Max.
180
130
730
305
See Fig. 14, 15, 22a, 22b
370
21
-55 to + 175
± 16
2.5
IRLS/SL4030PbF
2www.irf.com
Notes:
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.05mH
RG = 25, IAS = 110A, VGS =10V. Part not recommended for use
above this value .
ISD 110A, di/dt 1330A/µs, VDD V(BR)DSS, TJ 175°C.
Pulse width 400µs; duty cycle 2%.
S
D
G
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10 Material). For
recommended footprint and soldering techniquea refer to applocation
note # AN- 994 echniques refer to application note #AN-994.
Rθ is measured at TJ approximately 90°C.
RθJC value shown is at time zero.
Static @ T
J
= 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage 100 ––– ––– V
V(BR)DSS
/
TJ Breakdown Voltage Temp. Coefficient ––– 0.10 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 3.4 4.3 m
––– 3.6 4.5
VGS(th) Gate Threshold Voltage 1.0 ––– 2.5 V
IDSS Drain-to-Source Leakage Current ––– ––– 20
––– ––– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 100
Gate-to-Source Reverse Leakage ––– ––– -100
RG(int) Internal Gate Resistance ––– 2.1 –––
Dynamic @ T
J
= 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 320 ––– ––– S
QgTotal Gate Charge ––– 87 130
Qgs Gate-to-Source Charge ––– 27 –––
Qgd Gate-to-Drain ("Miller") Charge ––– 45 –––
Qsync Total Gate Charge Sync. (Qg - Qgd)––– 42 –––
td(on) Turn-On Delay Time ––– 74 –––
trRise Time ––– 330 –––
td(off) Turn-Off Delay Time ––– 110 –––
tfFall Time ––– 170 –––
Ciss Input Capacitance ––– 11360 –––
Coss Output Capacitance ––– 670 –––
Crss Reverse Transfer Capacitance ––– 290 –––
Coss eff. (ER) Effective Output Capacitance (Energy Related)
h
––– 760 –––
Coss eff. (TR) Effective Output Capacitance (Time Related)g––– 1140 –––
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
ISContinuous Source Current
(Body Diode)
ISM Pulsed Source Current
(Body Diode)c
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 50 ––– TJ = 25°C VR = 85V,
––– 60 ––– TJ = 125°C IF = 110A
Qrr Reverse Recovery Charge ––– 88 ––– TJ = 25°C di
/
dt = 100A
/
µs
f
––– 130 ––– TJ = 125°C
IRRM Reverse Recovery Current ––– 3.3 ––– A TJ = 25°C
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VGS = 4.5V, ID = 92A f
ns
nC
180
730
µA
nA
nC
ns
pF
A
––– –––
––– –––
ID = 110A
RG = 2.7
VGS = 4.5V f
VDD = 65V
ID = 110A, VDS =0V, VGS = 4.5V
TJ = 25°C, IS = 110A, VGS = 0V f
integral reverse
p-n junction diode.
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 5mAc
VGS = 10V, ID = 110A f
VDS = VGS, ID = 250µA
VDS = 100V, VGS = 0V
VDS = 100V, VGS = 0V, TJ = 125°C
MOSFET symbol
showing the
VDS = 50V
Conditions
VGS = 4.5V f
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 80V h
VGS = 0V, VDS = 0V to 80V g
Conditions
VDS = 25V, ID = 110A
ID = 110A
VGS = 16V
VGS = -16V
IRLS/SL4030PbF
www.irf.com 3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
12345
VGS, Gate-to-Source Voltage (V)
1.0
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 175°C
VDS = 50V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100120140160180
TJ , Junction Temperature (°C)
0.0
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 110A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 20406080100
QG, Total Gate Charge (nC)
0.0
1.0
2.0
3.0
4.0
5.0
VGS, Gate-to-Source Voltage (V)
VDS= 80V
VDS= 50V
ID= 110A
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
4.5V
3.5V
3.0V
2.7V
BOTTOM 2.5V
60µs PULSE WIDTH
Tj = 25°C
2.5V
0.1 110 100 1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
2.5V
60µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
4.5V
3.5V
3.0V
2.7V
BOTTOM 2.5V
IRLS/SL4030PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 11. Typical COSS Stored Energy
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
0.0 0.5 1.0 1.5 2.0 2.5
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
20
40
60
80
100
120
140
160
180
200
ID, Drain Current (A)
-60 -40 -20 020 40 60 80 100120140160180
TJ , Temperature ( °C )
90
95
100
105
110
115
120
125
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
Id = 5mA
-20 0 20 40 60 80 100 120
VDS, Drain-to-Source Voltage (V)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
Energy (µJ)
0 1 10 100 1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
Tc = 25°C
Tj = 175°C
Single Pulse
100µsec
1msec
10msec
DC
25 50 75 100 125 150 175
Starting TJ
, Junction Temperature (°C)
0
200
400
600
800
1000
1200
1400
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 17A
40A
BOTTOM 110A
IRLS/SL4030PbF
www.irf.com 5
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 14. Typical Avalanche Current vs.Pulsewidth
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.0477 0.000071
0.1631 0.000881
0.1893 0.007457
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci τi/Ri
Ci= τi/Ri
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
1000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
∆Τj = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming
Tj = 150°C and
Tstart =25°C (Single Pulse)
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
250
300
350
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 110A
IRLS/SL4030PbF
6www.irf.com
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
Fig. 20 - Typical Stored Charge vs. dif/dt
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
0.0
0.5
1.0
1.5
2.0
2.5
VGS(th), Gate threshold Voltage (V)
ID = 250µA
ID = 1.0mA
ID = 1.0A
0200 400 600 800 1000
diF /dt (A/µs)
80
160
240
320
400
480
560
640
720
800
QRR (A)
IF = 73A
VR = 85V
TJ = 25°C
TJ = 125°C
0200 400 600 800 1000
diF /dt (A/µs)
80
160
240
320
400
480
560
640
720
800
880
QRR (A)
IF = 110A
VR = 85V
TJ = 25°C
TJ = 125°C
0200 400 600 800 1000
diF /dt (A/µs)
0
5
10
15
20
25
30
35
IRRM (A)
IF = 110A
VR = 85V
TJ = 25°C
TJ = 125°C
0200 400 600 800 1000
diF /dt (A/µs)
0
5
10
15
20
25
30
35
40
IRRM (A)
IF = 73A
VR = 85V
TJ = 25°C
TJ = 125°C
IRLS/SL4030PbF
www.irf.com 7
Fig 23a. Switching Time Test Circuit Fig 23b. Switching Time Waveforms
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Fig 24a. Gate Charge Test Circuit Fig 24b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Inductor Current
D.U.T. VDS
ID
IG
3mA
VGS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
VDD
VGS
IRLS/SL4030PbF
8www.irf.com
D2Pak (TO-263AB) Part Marking Information
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
'$7(&2'(
<($5
:((.
$ $66(0%/<6,7(&2'(
5(&7,),(5
,17(51$7,21$/ 3$57180%(5
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
)6
,17+($66(0%/</,1(/
$66(0%/('21::
7+,6,6$1,5)6:,7+
/27&2'( ,17(51$7,21$/
/2*2
5(&7,),(5
/27&2'(
$66(0%/< <($5
3$57180%(5
'$7(&2'(
/,1(/
:((.
25
)6
/2*2
$66(0%/<
/27&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IRLS/SL4030PbF
www.irf.com 9
TO-262 Part Marking Information
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
/2*2
5(&7,),(5
,17(51$7,21$/
/27&2'(
$66(0%/<
/2*2
5(&7,),(5
,17(51$7,21$/
'$7(&2'(
:((.
<($5
3$57180%(5
$ $66(0%/<6,7(&2'(
25
352'8&7237,21$/
3 '(6,*1$7(6/($')5((
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/<
3$57180%(5
'$7(&2'(
:((.
/,1(&
/27&2'(
<($5
$66(0%/('21::
,17+($66(0%/</,1(&
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IRLS/SL4030PbF
10 www.irf.com
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/09
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.