DESCRIPTION
The
μ
PC8178TK is a silicon monolithic integrated circuit designed as amplifier for mobile communications. This IC
can realize low current consumption with external chip inductor which can not be realized on internal 50 Ω
wide band matched IC.
μ
PC8178TK adopts 6-pin lead-less minimold package using same chip as the conventional
μ
PC8178TB in 6-pin super minimold.
TK suffix IC which is smaller package than TB suffix IC contributes to reduce mounting space by 50 %.
This IC is manufactured using our 30 GHz fmax UHS0 (Ultra High Speed Process) silicon bipolar process.
FEATURES
Low current consumption : ICC = 1.9 mA TYP. @ VCC = 3.0 V
V : egatlov ylppuS CC = 2.4 to 3.3 V
Excellent isolation : ISL = 40 dB TYP. @ f = 1.0 GHz
zHG 9.1 = f @ .PYT Bd 14 = LSI
zHG 4.2 = f @ .PYT Bd 24 = LSI
G : niag rewoP P = 11.0 dB TYP. @ f = 1.0 GHz
G P = 11.0 dB TYP. @ f = 1.9 GHz
G P = 11.0 dB TYP. @ f = 2.4 GHz
Gain 1 dB compression output power : PO (1 dB) = 5.5 dBm TYP. @ f = 1.0 GHz
P O (1 dB) = 8.0 dBm TYP. @ f = 1.9 GHz
P O (1 dB) = 8.0 dBm TYP. @ f = 2.4 GHz
Operating frequency : 0.1 to 2.4 GHz (Output port LC matching)
High-density surface mounting : 6-pin lead-less minimold package (1.5 × 1.3 × 0.55 mm)
)eulav dradnatS( gm 3 : thgiew thgiL
APPLICAION
Buffer amplifiers on 0.1 to 2.4 GHz mobile communications system
DATA SHEET
Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.
The information in this document is subject to change without notice. Before using this document, please confirm that
this is the latest version.
Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices
representative for availability and additional information.
BIPOLAR ANALOG INTEGRATED CIRCUIT
μ
PC8178TK
SILICON MMIC LOW CURRENT AMPLIFIER
FOR MOBILE COMMUNICATIONS
Document No. PU10063EJ02V0DS (2nd edition)
Date Published March 2005 CP(K)
The mark shows major revised points.
ORDERING INFORMATION
Part Number Order Number Package Marking Supplying Form
µ
PC8178TK-E2
µ
PC8178TK-E2-A 6-pin lead-less minimold
(1511) (Pb-Free) Note
6B • Embossed tape 8 mm wide
• Pin 1, 2, 3 face the perforation side of the tape
• Qty 5 kpcs/reel
Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact
your nearby sales office.
Remark To order evaluation samples, contact your nearby sales office.
Part number for sample order:
µ
PC8178TK
PRODUCT LINE-UP (TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 )
Parameter 1.0 GHz output port
matching frequency
1.66 GHz output port
matching frequency
1.9 GHz output port
matching frequency
2.4 GHz output port
matching frequency
Marking
Part No.
ICC
(mA)
GP
(dB)
ISL
(dB)
PO(1dB)
(dBm)
GP
(dB)
ISL
(dB)
PO(1dB)
(dBm)
GP
(dB)
ISL
(dB)
PO(1dB)
(dBm)
GP
(dB)
ISL
(dB)
PO(1dB)
(dBm)
µ
PC8178TB 1.9 11.0 39.0 4.0 11.5 40.0 7.0 11.5 38.0 7.5 C3B
µ
PC8178TK 1.9 11.0 40.0 5.5 11.0 41.0 8.0 11.0 42.0 8.0 6B
µ
PC8179TB 4.0 13.5 44.0 +3.0 15.5 42.0 +1.5 15.5 41.0 +1.0 C3C
µ
PC8128TB 2.8 12.5 39.0 4.0 13.0 39.0 4.0 13.0 37.0 4.0 C2P
µ
PC8151TB 4.2 12.5 38.0 +2.5 15.0 36.0 +1.5 15.0 34.0 +0.5 C2U
µ
PC8152TB 5.6 23.0 40.0 4.5 19.5 38.0 8.5 17.5 35.0 8.5 C2V
Remarks 1. Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.
2. To know the associated product, please refer to each latest data sheet.
Data Sheet PU10063EJ02V0DS
2
µ
PC8178TK
SYSTEM APPLICATION EXAMPLE
Location examples in digital cellular
RX
Low Noise Tr.
SW
TX
÷N PLL
PLL
I
Q
I
Q
DEMOD.
90˚
PA
φ
These ICs can be added to your system around parts, when you need more isolation or gain. The application
herein, however, shows only examples, therefore the application can depend on your kit evaluation.
Data Sheet PU10063EJ02V0DS 3
µ
PC8178TK
PIN CONNECTIONS
Pin No. Pin Name
1 INPUT
2 GND
3 GND
4 OUTPUT
5 GND
1
2
3
6
6B
(Top View)
5
4
6
5
4
1
(Bottom View)
2
3
6 VCC
PIN EXPLANATION
Pin
No.
Pin
Name
Applied
Voltage
(V)
Pin
Voltage
(V)Note
Function and Applications Internal Equivalent Circuit
1 INPUT 0.90 Signal input pin. A internal
matching circuit, configured with
resisters, enables 50 connection
over a wide band. This pin must
be coupled to signal source with
capacitor for DC cut.
2
3
5
GND 0 Ground pin. This pin should be
connected to system ground with
minimum inductance. Ground
pattern on the board should be
formed as wide as possible.
All the ground pins must be con-
nected together with wide ground
pattern to decrease impedance
defference.
4 OUTPUT Voltage
as same
as VCC
through
external
inductor
Signal output pin. This pin is de-
signed as collector output. Due to
the high impedance output, this pin
should be externally equipped with
LC matching circuit to next stage.
For L, a size 1 005 chip inductor
can be chosen.
6 VCC 2.4 to 3.3 Power supply pin. This pin should
be externally equipped with bypass
capacitor to minimize its
impedance.
2
35
6
4
1
Note Pin voltage is measured at VCC = 3.0 V.
Data Sheet PU10063EJ02V0DS
4
µ
PC8178TK
ABSOLUTE MAXIMUM RATINGS
Parameter Symbol Test Conditions Ratings Unit
Supply Voltage VCC TA = +25°C, Pin 4, Pin 6 3.6 V
Circuit Current ICC TA = +25°C 15 mA
Power Dissipation PD TA = +85°C Note 232 mW
Operating Ambient Temperature TA 40 to +85 °C
Storage Temperature Tstg 55 to +150 °C
Input Power Pin TA = +25°C +5 dBm
Note Mounted on double-sided copper-clad 50 × 50 × 1.6 mm epoxy glass PWB
RECOMMENDED OPERATING RANGE
Parameter Symbol MIN. TYP. MAX. Unit Remarks
Supply Voltage VCC 2.4 3.0 3.3 V The same voltage should be applied to
pin 4 and pin 6.
Operating Ambient Temperature TA 40 +25 +85 °C
ELECTRICAL CHARACTERISTICS
(Unless otherwise specified, TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 , at LC matched frequency)
Parameter Symbol Test Conditions MIN. TYP. MAX. Unit
Circuit Current ICC No signal 1.4 1.9 2.4 mA
Power Gain GP f = 1.0 GHz, Pin = 30 dBm
f = 1.9 GHz, Pin = 30 dBm
f = 2.4 GHz, Pin = 30 dBm
9.0
9.0
9.0
11.0
11.0
11.0
13.0
13.5
13.5
dB
Isolation ISL f = 1.0 GHz, Pin = 30 dBm
f = 1.9 GHz, Pin = 30 dBm
f = 2.4 GHz, Pin = 30 dBm
35.0
36.0
37.0
40.0
41.0
42.0
dB
Gain 1 dB Compression Output
Power
PO(1 dB) f = 1.0 GHz
f = 1.9 GHz
f = 2.4 GHz
8.0
11.0
11.5
5.5
8.0
8.0
dBm
Noise Figure NF f = 1.0 GHz
f = 1.9 GHz
f = 2.4 GHz
5.5
5.5
5.5
7.0
7.0
7.0
dB
Input Return Loss RLin f = 1.0 GHz, Pin = 30 dBm
f = 1.9 GHz, Pin = 30 dBm
f = 2.4 GHz, Pin = 30 dBm
4.0
5.0
6.5
7.0
8.0
9.5
dB
Data Sheet PU10063EJ02V0DS 5
µ
PC8178TK
TEST CIRCUITS
<1> f = 1.0 GHz
Strip Line : 5 mm
IN OUT
L
1
4
2, 3, 5
6
1
C
1
C
2
C
3
C
5
Output port matching circuit
C
4
C
6
DUT
V
CC
Strip Line : 1 mm
<2> f = 1.9 GHz
IN OUT
L1
4
2, 3, 5
6
1
C1C2C3
C6
Output port matching circuit
C5C4
C7
DUT
VCC
Strip Line : 7 mm
<3> f = 2.4 GHz
IN OUT
L2
4
2, 3, 5
6
1
C1C2
C5
Output port matching circuit
C4C3
C6
DUT
VCC
Strip Line : 3 mm
Strip Line : 4 mm
L1
Data Sheet PU10063EJ02V0DS
6
µ
PC8178TK
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD
<1> f = 1.0 GHz
VCC
C
1
C
5
C
4
C
3
L
1
OUT
IN
PC8178TK
µ
Top View
Mounting direction
6B
C
6
V
CC
C
2
(1) 42 × 35 × 0.4 mm polyimide board, double-sided copper clad
(2) Back side: GND pattern
(3) Gold plated on pattern
(4) { : Through holes
COMPONENT LIST
Form Symbol Value Type code Maker
Chip capacitor C1, C3 1 000 pF GRM40CH102J50PT murata
C2 0.75 pF GRM39CKR75C50PT murata
C4 20 pF GRM39CH200J50PT murata
C5 10 pF GRM39CH100D50PT murata
Feed-though Capacitor C6 1 000 pF DFT301-801 × 7R102S50 murata
Chip inductor L1 12 nH LL1608-FH12N TOKO
Data Sheet PU10063EJ02V0DS 7
µ
PC8178TK
<2> f = 1.9 GHz
VCC
C
1
C
5
C
4
C
6
C
2
C
3
L
1
OUT
IN
PC8178TK
µ
Top View
Mounting direction
6B
C
7
V
CC
(1) 42 × 35 × 0.4 mm polyimide board, double-sided copper clad
(2) Back side: GND pattern
(3) Gold plated on pattern
(4) { : Through holes
COMPONENT LIST
Form Symbol Value Type code Maker
Chip capacitor C1, C3, C5, C6 1 000 pF GRM40CH102J50PT murata
C2 0.5 pF GRM39CKR5C50PT murata
C4 8 pF GRM39CH080D50PT murata
Feed-though Capacitor C7 1 000 pF DFT301-801 × 7R102S50 murata
Chip inductor L1 2.7 nH LL1608-FH2N7S TOKO
Data Sheet PU10063EJ02V0DS
8
µ
PC8178TK
<3> f = 2.4 GHz
VCC
C
1
C
4
C
3
C
5
C
2
L
2
OUT
IN
PC8178TK
µ
Top View
Mounting direction
6B
C
6
V
CC
L
1
(1) 42 × 35 × 0.4 mm polyimide board, double-sided copper clad
(2) Back side: GND pattern
(3) Gold plated on pattern
(4) { : Through holes
COMPONENT LIST
Form Symbol Value Type code Maker
Chip capacitor C1, C2, C4, C5 1 000 pF GRM40CH102J50PT murata
C3 10 pF GRM39CH100D50PT murata
Feed-though Capacitor C6 1 000 pF DFT301-801 × 7R102S50 murata
Chip inductor L1 2.7 nH LL1608-FH2N7S TOKO
L2 1.8 nH LL1608-FH1N8S TOKO
Data Sheet PU10063EJ02V0DS 9
µ
PC8178TK
TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)
00
0.5
0.5
1.0
1.0
1.5
1.5
2.0
2.0
2.5
2.5
3.0
3.0 3.5 4.0
–40°C
T
A
= +25°C
+50°C
+85°C
–20°C
Circuit Current I
CC
(mA)
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
Supply Voltage V
CC
(V)
Remark The graph indicates nominal characteristics.
Data Sheet PU10063EJ02V0DS
10
µ
PC8178TK
f = 1.0 GHz MATCHING
2
4
6
8
10
12
14
16
18
20
2
4
6
8
10
12
–14
16
18
20
2
4
6
8
10
12
14
16
18
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
0
0
S
21
-FREQUENCY S
22
-FREQUENCY
S21 log MAG 2 dB/ REF
0
dB 1 :
11.235
dB
S11 log MAG 2 dB/ REF 0 dB 1 : –
6.9156
dB
S22 log MAG 2 dB/ REF
0
dB 1 : –
16.86
dB
1
1
1: 63.219
64.27
2.4764 pF
1: 54.049
12.43
12.804 pF
1
3.0 V
2.4 V
2.7 V
V
CC
= 3.3 V
3.3 V
3.0 V
V
CC
= 2.4 V
2.7 V
1
1
VCC = 2.4 V
2.7 V
3.0 V
3.3 V
0
MARKER 1
1.0 GHz
MARKER 1
1.0 GHz
P
in
= 30 dBm,
MARKER 1
f = 1.0 GHz
V
CC
= 3.0 V,
I
CC
= 2.11 mA
P
in
=
30 dBm
V
CC
= 3.0 V,
I
CC
= 2.11 mA
P
in
=
30 dBm
P
in
= 30 dBm,
MARKER 1
f = 1.0 GHz
P
in
= 30 dBm,
MARKER 1
f = 1.0 GHz
20
S
11
-FREQUENCY S
22
-FREQUENCY
S
11
-FREQUENCY S
12
-FREQUENCY
20
25
30
35
40
45
50
55
60
65
START 100.000 000 MHz STOP 3 100.000 000 MHz
S12 log MAG 5 dB/ REF –
20
dB 1 : –
40.104
dB
1
P
in
= 30 dBm,
MARKER 1
f = 1.0 GHz
70
VCC = 2.4 V
2.7 V
3.0 V
3.3 V
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS 11
µ
PC8178TK
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
TA =
40°C
+
25°C
+
85°C
T
A
=
40°C
+
25°C
+
85°C
0
2
4
6
8
10
12
14
16
18
20
0
–2
–4
–6
–8
–10
–12
–14
–16
–18
–20
0
–2
–4
–6
–8
–10
–12
–14
–16
–18
–20
1
1
1
T
A
=
40
°
C
+25
°
C
+85
°
C
S
21
-FREQUENCY
S
11
-FREQUENCY S
12
-FREQUENCY
S
22
-FREQUENCY
S
21
log MAG 2 dB/ REF
0
dB 1 :
11.053
dB S
22
log MAG 2 dB/ REF
0
dB 1 : –
13.758
dB
S
11
log MAG 2 dB/ REF
0
dB 1 : –
6.8297
dB
Pin =
30 dBm, VCC = 3.0 V
MARKER 1
f = 1.0 GHz
Pin =
30 dBm, VCC = 3.0 V
MARKER 1
f = 1.0 GHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
T
A
= –40
°
C
–20
–25
–30
–35
–40
–45
–50
–55
–60
–65
–70
1
S
12
log MAG 5 dB/ REF –
20
dB 1 : –
39.127
dB
Pin = 30 dBm, VCC = 3.0 V
MARKER 1
f = 1.0 GHz
+85
°
C
+25
°
C
Pin =
30 dBm, VCC = 3.0 V
MARKER 1
f = 1.0 GHz
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS
12
µ
PC8178TK
V
CC
= 3.3 V
3.0 V 2.4 V
2.7 V
5
10
0
–5
–10
–15
–20
–25
20
10
0
–30
–40
–50
–60
–70
–80
–10
–20
20
10
0
–30
–40
–50
–60
–70
–80
–10
–20
–30
5
10
0
–5
–10
–15
–20
–25
–30
010
–10
–20
–30
20
10
0
–30
–40
–50
–60
–70
–80
–10
–20
–30
20
10
0
–30
–40
–50
–60
–70
–80
–10
–20
–30
0
–10
–20
0
–10
–20
010
–10
–20
+25°C
T
A
= –40°C
+85°C
OIP
3
= 5.0 dBm
OIP
3
= 4.2 dBm
OIP
3
= 5.3 dBm
0
–10
–20
–30 0
–10
–20
IM
3 (des)
P
out (des)
P
out (undes)
IM
3 (undes)
P
out (des)
P
out (undes)
IM
3 (des)
IM
3 (undes)
IM
3 (des)
IM
3 (undes)
P
out (des)
P
out (undes)
P
out (des)
P
out (undes)
IM
3 (des)
V
CC
= 3.0 V
f = 1.0 GHz
OIP
3
= 3.5 dBm
V
CC
= 2.4 V
f1 = 1 000 MHz
f2 = 1 001 MHz
V
CC
= 3.3 V
f1 = 1 000 MHz
f2 = 1 001 MHz
IM
3 (undes)
V
CC
= 3.0 V
f1 = 1 000 MHz
f2 = 1 001 MHz
V
CC
= 2.7 V
f1 = 1 000 MHz
f2 = 1 001 MHz
f = 1.0 GHz
Output Power P
out
(dBm)
OUTPUT POWER vs. INPUT POWER
Input Power P
in
(dBm)
Output Power P
out
(dBm)
OUTPUT POWER vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
Input Power P
in
(dBm)
OUTPUT POWER, IM3 vs. INPUT POWER
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS 13
µ
PC8178TK
20
10
0
–30
–40
–50
–60
–70
–80
–10
–20
20
10
0
–30
–40
–50
–60
–70
–80
–10
–20
–30
20
10
0
–30
–40
–50
–60
–70
–80
–10
–20
–30
0
–10
–20
–30 0
–10–15 –5
–20–25
0
6.5
6
5.5
5
4.5
4
2 2.5 3 3.5 4
–10
–15 –5
–20–25
IM
3 (undes)
P
out (undes)
P
out (des)
IM
3 (des)
IM
3 (des)
IM
3 (undes)
P
out (undes)
P
out (des)
P
out (undes)
P
out (des)
IM
3 (des)
IM
3 (undes)
0
–10
–15 –5
–20–25
0
10
20
30
40
50
60
2.4 V
2.7 V
V
CC
= 3.0 V
3.3 V
OIP
3
= 5.0 dBm
f = 1.0 GHz
–40°C
T
A
= +85°C
V
CC
= 3.0 V
f1 = 1 000 MHz
f2 = 1 001 MHz
OIP
3
= 3.0 dBm
V
CC
= 3.0 V
T
A
= –40°C
f1 = 1 000 MHz
f2 = 1 001 MHz
OIP
3
= 5.0 dBm
V
CC
= 3.0 V
T
A
= +85°C
f1 = 1 000 MHz
f2 = 1 001 MHz
f1 = 1 000 MHz
f2 = 1 001 MHz
+25°C
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM
3
vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM
3
vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM
3
vs. INPUT POWER
Input Power P
in
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
3RD ORDER INTERMODULATION DISTORTION
vs. OUTPUT POWER OF EACH TONE
Output Power of Each Tone P
out (each)
(dBm)
Noise Figure NF (dB)
NOISE FIGURE vs. SUPPLY VOLTAGE
Supply Voltage V
CC
(V)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS
14
µ
PC8178TK
f = 1.9 GHz MATCHING
V
CC
= 3.0 V,
I
CC
= 2.11 mA
P
in
=
30 dBm
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
1: 33.535
44.393
1.8869 pF
1
1
MARKER 1
1.9 GHz
MARKER 1
1.9 GHz
1: 43.529
16.648
5.0314 pF
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
0
2
4
6
8
10
12
14
16
18
0
S
21
log MAG 2 dB/ REF
0
dB 1 :
11.5
dB S
22
log MAG 2 dB/ REF
0
dB 1 : –
15.578
dB
S
11
log MAG 2 dB/ REF 0 dB 1 : –
8.4012
dB
1
2.4 V
3.3 V
V
CC
= 3.0 V
2.7 V
–4
–6
–8
–10
–12
–14
–16
–18
–20
–2
1
V
CC
= 2.4 V
3.3 V
3.0 V
2.7 V
START 100.000 000 MHz STOP 3 100.000 000 MHz
0
–4
–6
–8
–10
–12
–14
–16
–18
–20
–2
V
CC
= 2.4 V
2.7 V
3.0 V
3.3 V
S
11
-FREQUENCY S
22
-FREQUENCY
S
21
-FREQUENCY
S
11
-FREQUENCY S
12
-FREQUENCY
S
22
-FREQUENCY
1
V
CC
= 3.0 V,
I
CC
= 2.11 mA
P
in
=
30 dBm
20
P
in
=
30 dBm,
MARKER 1
f = 1.9 GHz
P
in
=
30 dBm,
MARKER 1
f = 1.9 GHz
P
in
= 30 dBm,
MARKER 1 f = 1.9 GHz
S
12
log MAG 5 dB/ REF –
20
dB 1 : –
41.705
dB
1
START 100.000 000 MHz STOP 3 100.000 000 MHz
–20
–25
–30
–35
–40
–45
–50
–55
–60
–65
–70
P
in
= 30 dBm,
MARKER 1 f = 1.9 GHz
V
CC
= 2.4 V
2.7 V
3.0 V
3.3 V
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS 15
µ
PC8178TK
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
0
2
4
6
8
10
12
14
16
18
20
0
2
4
6
8
10
12
14
16
18
20
S
21
log MAG 2 dB/ REF
0
dB 1 :
11.553
dB
S
11
log MAG 2 dB/ REF
0
dB 1 : –
8.2405
dB
1
T
A
= –40°C
T
A
= –40°C
+25°C
+85°C
+85°C
+25°C
1
T
A
= –40°C
+25°C
+85°C
1
START 100.000 000 MHz STOP 3 100.000 000 MHz
0
2
4
6
8
10
12
14
16
18
20
S
22
log MAG 2 dB/ REF
0
dB 1 : –
14.437
dB
S
21
-FREQUENCY
S
11
-FREQUENCY S
12
-FREQUENCY
S
22
-FREQUENCY
P
in
= 30 dBm, V
CC
= 3.0 V
MARKER 1
f = 1.9 GHz
P
in
= 30 dBm,
V
CC
= 3.0 V,
MARKER 1 f = 1.9 GHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
–20
–25
–30
–35
–40
–45
–50
–55
–60
–65
–70
S
12
log MAG 5 dB/ REF
20
dB 1 : –
40.84
dB
P
in
= 30 dBm, V
CC
= 3.0 V
MARKER 1
f = 1.9 GHz T
A
= –40°C
+85°C
+25°C
1
P
in
= 30 dBm, V
CC
= 3.0 V
MARKER 1
f = 1.9 GHz
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS
16
µ
PC8178TK
30 010
10
20 010
10
20
5
10
0
5
10
15
20
25 30
5
10
0
5
10
15
20
25
VCC = 3.3 V
2.4 V
2.7 V
3.0 V
T
A
= 40°C
+25°C
+85°C
20
10
0
30
40
50
60
70
80
10
20
20
10
0
30
40
50
60
70
80
10
20
20
10
0
30
40
50
60
70
10
20
30
OIP
3
= 2.3 dBm
OIP3 = 1.6 dBm
OIP
3
= 2.5 dBm
OIP
3
= 0.8 dBm
P
out
(undes)
P
out
(des)
P
out
(undes)
P
out (undes)
P
out (undes)
P
out
(des)
P
out (des)
0
10
20
80
30 0
10
20 30
20
10
0
30
40
50
60
70
80
10
20
30
0
10
20
0
10
20
IM
3
(undes)
IM
3
(des)
IM
3
(undes)
IM
3 (undes)
P
out (des)
IM
3 (des)
IM
3 (undes)
IM
3
(des)
IM
3 (des)
f = 1.9 GHz
f = 1.9 GHz, V
CC
= 3.0 V
V
CC
= 3.0 V
f1 = 1 900 MHz
f2 = 1 901 MHz
V
CC
= 2.4 V
f1 = 1 900 MHz
f2 = 1 901 MHz
V
CC
= 2.7 V
f1 = 1 900 MHz
f2 = 1 901 MHz
V
CC
= 3.3 V
f1 = 1 900 MHz
f2 = 1 901 MHz
Output Power P
out
(dBm)
OUTPUT POWER vs. INPUT POWER
Input Power P
in
(dBm)
Output Power P
out
(dBm)
OUTPUT POWER vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power P
in
(dBm)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS 17
µ
PC8178TK
20
10
0
30
40
50
60
70
80
10
20
30
20
10
0
30
40
50
60
70
80
10
20
30
20
10
0
30
40
50
60
70
80
10
20
30
0
10
20
0
10
20
0
10
20
IM
3
(undes)
IM
3
(des)
OIP3 = 2.3 dBm
OIP3 = 2.3 dBm
P
out
(undes)
P
out
(des)
Pout (undes)
Pout (des)
IM3 (undes) IM3 (des)
IM3 (undes)
IM3 (des)
Pout (des)
Pout (undes)
0
1015 5
2025
0
5
10
15
20
25
30
40
45
50
35
VCC = 3.0 V
3.3 V
2.4 V
2.7 V
f1 = 1 900 MHz
f2 = 1 901 MHz
OIP3 = 2.1 dBm
VCC = 3.0 V
f1 = 1 900 MHz
f2 = 1 901 MHz
VCC = 3.0 V
TA = 40°C
f1 = 1 900 MHz
f2 = 1 901 MHz
VCC = 3.0 V
TA = +85˚C
f1 = 1 900 MHz
f2 = 1 901 MHz
Output power Pout (dBm)
3rd Order Intermodulation Distortion IM3 (dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power Pin (dBm)
Output power Pout (dBm)
3rd Order Intermodulation Distortion IM3 (dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power Pin (dBm)
Output power Pout (dBm)
3rd Order Intermodulation Distortion IM3 (dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power Pin (dBm)
3rd Order Intermodulation Distortion IM3 (dBc)
3RD ORDER INTERMODULATION DISTORTION
vs. OUTPUT POWER OF EACH TONE
Output Power of Each Tone Pout (each) (dBm)
6.5
6
5.5
5
4.5
42 2.5 3 3.5 4
TA = +85°C
40°C
+25°C
f = 1.9 GHz
Noise Figure NF (dB)
NOISE FIGURE vs. SUPPLY VOLTAGE
Supply Voltage VCC (V)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS
18
µ
PC8178TK
f = 2.4 GHz MATCHING
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
1
MARKER 1
2.4 GHz
MARKER 1
2.4 GHz
1
1: 26.945
32.572
2.0359 pF
1: 47.047 13.205
875.69 pH
S21 log MAG 2 dB/ REF
0
dB 1 :
11.623
dB
S11 log MAG 2 dB/ REF
0
dB 1 : –
10.022
dB
1
1
V
CC
= 3.3 V
2.4 V
3.0 V
2.7 V
S22 log MAG 2 dB/ REF
0
dB 1 : –
16.424
dB
0
2
4
6
8
10
12
14
16
18
20
0
2
4
6
8
10
12
14
16
18
0
2
4
6
8
10
12
14
16
18
20
V
CC
= 2.4 V
2.7 V
3.3 V
3.0 V
1
S
11
-FREQUENCY S
22
-FREQUENCY
S
21
-FREQUENCY
S
12
-FREQUENCY
S
11
-FREQUENCY
S
22
-FREQUENCY
V
CC
= 3.0 V,
I
CC
= 2.11 mA
P
in
=
30 dBm
V
CC
= 3.0 V,
I
CC
= 2.11 mA
P
in
=
30 dBm
Pin =
30 dBm,
MARKER 1
f = 2.4 GHz
Pin =
30 dBm,
MARKER 1
f = 2.4 GHz
20
V
CC
= 2.4 V
2.7 V
3.0 V
3.3 V
Pin =
30 dBm,
MARKER 1
f = 2.4 GHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
1
S12 log MAG 5 dB/ REF –
20
dB 1 : –
41.967
dB
20
25
30
35
40
45
50
55
60
65
70
Pin =
30 dBm,
MARKER 1
f = 2.4 GHz
V
CC
= 2.4 V
2.7 V
3.0 V
3.3 V
VCC = 2.4 V
2.7 V
3.0 V
3.3 V
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS 19
µ
PC8178TK
S
11
-FREQUENCY S
12
-FREQUENCY
S
22
-FREQUENCY
S
11
log MAG 2 dB/ REF
0
dB 1 : –
10.156
dB
START 100.000 000 MHz STOP 3 100.000 000 MHz
T
A
= –40°C
+25°C
+85°C
START 100.000 000 MHz STOP 3 100.000 000 MHz
0
–2
–4
–6
–8
–10
–12
–14
–16
–18
–20
0
–2
–4
–6
–8
–10
–12
–14
–16
–18
–20
S
22
log MAG 2 dB/ REF
0
dB 1 : –
12.302
dB
1
1
–40°C
T
A
= +85°C
+25°C
P
in
= 30 dBm, V
CC
= 3.0 V
MARKER 1
f = 2.4 GHz
P
in
= 30 dBm, V
CC
= 3.0 V
MARKER 1
f = 2.4 GHz
S
21
-FREQUENCY
S
21
log MAG 2 dB/ REF
0
dB 1 :
10.851
dB
START 100.000 000 MHz STOP 3 100.000 000 MHz
0
2
4
6
8
10
12
14
16
18
20
1
T
A
= –40°C
+25°C
+85°C
P
in
= 30 dBm, V
CC
= 3.0 V
MARKER 1
f = 2.4 GHz
START 100.000 000 MHz STOP 3 100.000 000 MHz
–20
–25
–30
–35
–40
–45
–50
–55
–60
–65
–70
S
12
log MAG 5 dB/ REF –
20
dB 1 : –
39.14
dB
1
P
in
= 30 dBm, V
CC
= 3.0 V
MARKER 1
f = 2.4 GHz
+85°C
T
A
= –40°C
+25°C
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS
20
µ
PC8178TK
–30
5
10
0
–5
–10
–15
–20
–25
5
10
0
–5
–10
–15
–20
–25
010
–10
–20 –30 010
–10
–20
V
CC
= 3.0 V
3.3 V
2.7 V
2.4 V
f = 2.4 GHz
TA = +85°C
–40°C
+25°C
–20
–30
–30 –20 –10 0
–30 –20 –10 0
–40
–50
–60
–70
–80
–10
0
10
20
–20
–30
–40
–50
–60
–70
–80
–10
0
0
10
20
–30
–20
–30
–40
–50
–60
–70
–80
–10
10
20
0
–20
–30
–40
–50
–60
–70
–80
–10
10
20
OIP3 = 2.1 dBm
OIP
3
= 1.4 dBm
OIP
3
= 2.6 dBm
OIP
3
= 1.0 dBm
–20 –10 0
–30 –20 –10 0
IM3 (des)
IM
3 (des)
IM3 (undes)
IM
3 (undes)
Pout (des)
P
out (des)
Pout (undes)
P
out (undes)
P
out (undes)
IM
3 (des)
IM
3 (undes)
P
out (undes)
P
out (des)
P
out (des)
IM
3 (des)
IM
3 (undes)
f = 2.4 GHz,
V
CC
= 3.0 V
VCC = 3.0 V
f1 = 2 400 MHz
f2 = 2 401 MHz
V
CC
= 2.4 V
f1 = 2 400 MHz
f2 = 2 401 MHz
V
CC
= 2.7 V
f1 = 2 400 MHz
f2 = 2 401 MHz
V
CC
= 3.3 V
f1 = 2 400 MHz
f2 = 2 401 MHz
Output Power P
out
(dBm)
OUTPUT POWER vs. INPUT POWER
Input Power P
in
(dBm)
Output Power P
out
(dBm)
OUTPUT POWER vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM3 vs. INPUT POWER
Input Power P
in
(dBm)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS 21
µ
PC8178TK
20
10
0
–30
–40
–50
–60
–70
–80
–10
–20
20
10
0
–30
–40
–50
–60
–70
–80
–10
–20
20
10
0
–30
–40
–50
–60
–70
–80
–10
–20
–30 0
–10
–20
–30 0
–10
–20
–30 0
–10
–20
P
out (undes)
P
out (des)
IM
3 (des)
IM
3 (undes)
OIP
3
= 2.1 dBm
OIP
3
= 1.1 dBm
IM
3 (des)
IM
3 (undes)
P
out (undes)
P
out (des)
IM
3 (des)
IM
3 (undes)
P
out (undes)
P
out (des)
OIP
3
= 2.2 dBm
6.5
6
5.5
5
4.5
42 2.5 3 3.5 4
+25°C
T
A
= +85°C
–40°C
f = 2.4 GHz
V
CC
= 3.0 V
f1 = 2 400 MHz
f2 = 2 401 MHz
V
CC
= 3.0 V
T
A
= –40°C
f1 = 2 400 MHz
f2 = 2 401 MHz
V
CC
= 3.0 V
T
A
= +85°C
f1 = 2 400 MHz
f2 = 2 401 MHz
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM
3
vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM
3
vs. INPUT POWER
Input Power P
in
(dBm)
Output power P
out
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
OUTPUT POWER, IM
3
vs. INPUT POWER
Input Power P
in
(dBm)
3rd Order Intermodulation Distortion IM
3
(dBc)
3RD ORDER INTERMODULATION DISTORTION
vs. OUTPUT POWER OF EACH TONE
Output Power of Each Tone P
out (each)
(dBm)
Noise Figure NF (dB)
NOISE FIGURE vs. SUPPLY VOLTAGE
Supply Voltage V
CC
(V)
0
–10–15 –5
–20–25
0
5
10
15
20
25
30
40
45
50
35
2.4 V
2.7 V
V
CC
= 3.0 V
3.3 V
f1 = 2 400 MHz
f2 = 2 401 MHz
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS
22
µ
PC8178TK
f = 3.0 GHz MATCHING
42
4
32
1
1: 67.34
63.512
1 GHz
2: 34.416
46.209
1.9 GHz
3: 27.732
34.887
2.4 GHz
4: 24.257
25.16
2.1086 pF
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
MARKER 4
3 GHz
MARKER 4
3 GHz
1
3
1: 100.98
350.69
1 GHz
2: 61.047
216.37
1.9 GHz
3: 45.648
180.84
2.4 GHz
4: 29.031
149.79
354.18 fF
S
11
-FREQUENCY S
22
-FREQUENCY
V
CC
= 3.0 V,
I
CC
= 2.11 mA
P
in
=
30 dBm,
T
A
= +25
°
C
(at L loaded)
V
CC
= 3.0 V,
I
CC
= 2.11 mA
P
in
=
30 dBm,
T
A
= +25
°
C
(at L loaded)
Remark The graphs indicate nominal characteristics.
Data Sheet PU10063EJ02V0DS 23
µ
PC8178TK
PACKAGE DIMENSIONS
6-PIN LEAD-LESS MINIMOLD (1511) (UNIT: mm)
0.48±0.050.48±0.05
1.5±0.1
1.3±0.05
1.1±0.1
0.55±0.03
0.11+0.1
–0.05 0.16±0.05
0.9±0.10.2±0.1
(Bottom View)
(Top View)
Data Sheet PU10063EJ02V0DS
24
µ
PC8178TK
NOTE ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor should be attached to VCC line.
(4) The inductor (L) should be attached between output and VCC pins. The L and series capacitor (C) values
should be adjusted for applied frequency to match impedance to next stage.
(5) The DC capacitor must be attached to input pin.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered and mounted under the following recommended conditions. For soldering
methods and conditions other than those recommended below, contact your nearby sales office.
Soldering Method Soldering Conditions Condition Symbol
Infrared Reflow Peak temperature (package surface temperature) : 260°C or below
Time at peak temperature : 10 seconds or less
Time at temperature of 220°C or higher : 60 seconds or less
Preheating time at 120 to 180°C : 120±30 seconds
Maximum number of reflow processes : 3 times
Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below
IR260
Wave Soldering Peak temperature (molten solder temperature) : 260°C or below
Time at peak temperature : 10 seconds or less
Preheating temperature (package surface temperature) : 120°C or below
Maximum number of flow processes : 1 time
Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below
WS260
Partial Heating Peak temperature (terminal temperature) : 350°C or below
Soldering time (per side of device) : 3 seconds or less
Maximum chlorine content of rosin flux (% mass) : 0.2%(Wt.) or below
HS350
Caution Do not use different soldering methods together (except for partial heating).
Data Sheet PU10063EJ02V0DS 25
µ
PC8178TK
When the product(s) listed in this document is subject to any applicable import or export control laws and regulation of the authority
having competent jurisdiction, such product(s) shall not be imported or exported without obtaining the import or export license.
M8E 00. 4 - 0110
The information in this document is current as of March, 2005. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd.
and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for
NEC (as defined above).
Data Sheet PU10063EJ02V0DS
26
µ
PC8178TK
NEC Compound Semiconductor Devices Hong Kong Limited
E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)
Hong Kong Head Office
Taipei Branch Office
Korea Branch Office
TEL: +852-3107-7303
TEL: +886-2-8712-0478
TEL: +82-2-558-2120
FAX: +852-3107-7309
FAX: +886-2-2545-3859
FAX: +82-2-558-5209
NEC Electronics (Europe) GmbH http://www.ee.nec.de/
TEL: +49-211-6503-0 FAX: +49-211-6503-1327
California Eastern Laboratories, Inc. http://www.cel.com/
TEL: +1-408-988-3500 FAX: +1-408-988-0279
0406
NEC Compound Semiconductor Devices, Ltd. http://www.ncsd.necel.com/
E-mail: salesinfo@ml.ncsd.necel.com (sales and general)
techinfo@ml.ncsd.necel.com (technical)
Sales Division TEL: +81-44-435-1588 FAX: +81-44-435-1579
For further information, please contact
µ
PC8178TK