050-7622 Rev A 10-2005
APT100GN60LDQ4(G)
TYPICAL PERFORMANCE CURVES
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 4mA)
Gate Threshold Voltage (VCE = VGE, IC = 1mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 125°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2
Gate-Emitter Leakage Current (VGE = ±20V)
Intergrated Gate Resistor
Symbol
V(BR)CES
VGE(TH)
VCE(ON)
ICES
IGES
RG(int)
Units
Volts
µA
nA
Symbol
VCES
VGE
IC1
IC2
ICM
SSOA
PD
TJ,TSTG
TL
APT100GN60LDQ4(G)
600
±30
229
135
300
300A @ 600V
625
-55 to 175
300
UNIT
Volts
Amps
Watts
°C
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current 8 @ TC = 25°C
Continuous Collector Current 8 @ TC = 110°C
Pulsed Collector Current 1
Switching Safe Operating Area @ TJ = 175°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
APT Website - http://www.advancedpower.com
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low VCE(ON) and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and
a slightly positive VCE(ON) temperature coefficient. A built-in gate resistor ensures
extremely reliable operation, even in the event of a short circuit fault. Low gate charge
simplifies gate drive design and minimizes losses.
600V Field Stop
Trench Gate: Low VCE(on)
Easy Paralleling
6µs Short Circuit Capability
Intergrated Gate Resistor: Low EMI, High Reliability
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MIN TYP MAX
600
5.0 5.8 6.5
1.05 1.45 1.85
1.87
50
TBD
600
2
600V
APT100GN60LDQ4
APT100GN60LDQ4G*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
®
C
E
G
TO-264
050-7622 Rev A 10-2005
APT100GN60LDQ4(G)
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452)
8 Continuous current limited by package pin temperature to 100A.
APT Reserves the right to change, without notice, the specifications and information contained herein.
THERMAL AND MECHANICAL CHARACTERISTICS
UNIT
°C/W
gm
MIN TYP MAX
.21
.33
6.1
Characteristic
Junction to Case (IGBT)
Junction to Case (DIODE)
Package Weight
Symbol
RθJC
RθJC
WT
DYNAMIC CHARACTERISTICS
Symbol
Cies
Coes
Cres
VGEP
Qg
Qge
Qgc
SSOA
SCSOA
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
Test Conditions
Capacitance
VGE = 0V, VCE = 25V
f = 1 MHz
Gate Charge
VGE = 15V
VCE = 300V
IC = 100A
TJ = 175°C, RG = 4.37, VGE =
15V, L = 100µH,VCE = 600V
VCC = 600V, VGE = 15V,
TJ = 125°C, RG = 4.37
Inductive Switching (25°C)
VCC = 400V
VGE = 15V
IC = 100A
RG = 1.07
TJ = +25°C
Inductive Switching (125°C)
VCC = 400V
VGE = 15V
IC = 100A
RG = 1.07
TJ = +125°C
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge 3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Switching Safe Operating Area
Short Circuit Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4
Turn-on Switching Energy (Diode) 5
Turn-off Switching Energy 6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy 4 4
Turn-on Switching Energy (Diode) 55
Turn-off Switching Energy 66
MIN TYP MAX
6000
560
200
9.5
600
45
340
300
6
31
65
310
55
4750
5095
2675
31
65
350
85
5000
6255
3300
UNIT
pF
V
nC
A
µs
ns
µJ
ns
µJ
050-7622 Rev A 10-2005
APT100GN60LDQ4(G)
TYPICAL PERFORMANCE CURVES
VGS(TH), THRESHOLD VOLTAGE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A)
(NORMALIZED)
IC, DC COLLECTOR CURRENT(A) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
300
250
200
150
100
50
0
300
250
200
150
100
50
0
3.0
2.5
2.0
1.5
1.0
0.5
0
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 5 10 15 20 25 30
0 2 4 6 8 10 12 14 0 100 200 300 400 500 600 700
8 10 12 14 16 0 25 50 75 100 125 150 175
-50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 175
350
300
250
200
150
100
50
0
16
14
12
10
8
6
4
2
0
3.0
2.5
2.0
1.5
1.0
0.5
0
300
250
200
150
100
50
0
VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C) FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V) GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics FIGURE 4, Gate Charge
VGE, GATE-TO-EMITTER VOLTAGE (V) TJ, Junction Temperature (°C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 6, On State Voltage vs Junction Temperature
TJ, JUNCTION TEMPERATURE (°C) TC, CASE TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature FIGURE 8, DC Collector Current vs Case Temperature
15V
9V
8V
7V
10V
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC = 200A
IC = 100A
IC = 50A
TJ = 125°C
TJ = 25°C
TJ = -55°C
VGE = 15V
11V
12V
TJ = 175°C
VCE = 480V
VCE = 300V
VCE = 120V
IC = 100A
TJ = 25°C
Lead Temperature
Limited
Lead Temperature
Limited
13V
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 5 10 15 20 25 30
0 2 4 6 8 10 12 14 0 100 200 300 400 500 600 700
8 10 12 14 16 0 25 50 75 100 125 150 175
-50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 175
VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C) FIGURE 2, Output Characteristics (TJ = 125°C)
VGE, GATE-TO-EMITTER VOLTAGE (V) GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics FIGURE 4, Gate Charge
VGE, GATE-TO-EMITTER VOLTAGE (V) TJ, Junction Temperature (°C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 6, On State Voltage vs Junction Temperature
TJ, JUNCTION TEMPERATURE (°C) TC, CASE TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature FIGURE 8, DC Collector Current vs Case Temperature
IC = 200A
IC = 100A
IC = 50A
TJ = 125°C
TJ = 25°C
TJ = -55°C
TJ = 175°C
050-7622 Rev A 10-2005
APT100GN60LDQ4(G)
VGE =15V,TJ=125°C
VGE =15V,TJ=25°C
VCE = 400V
RG = 1.0
L = 100µH
SWITCHING ENERGY LOSSES (mJ) EON2, TURN ON ENERGY LOSS (mJ) tr, RISE TIME (ns) td(ON), TURN-ON DELAY TIME (ns)
SWITCHING ENERGY LOSSES (mJ) EOFF, TURN OFF ENERGY LOSS (mJ) tf, FALL TIME (ns) td (OFF), TURN-OFF DELAY TIME (ns)
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current FIGURE 10, Turn-Off Delay Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current FIGURE 12, Current Fall Time vs Collector Current
ICE, COLLECTOR TO EMITTER CURRENT (A) ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current FIGURE 14, Turn Off Energy Loss vs Collector Current
RG, GATE RESISTANCE (OHMS) TJ, JUNCTION TEMPERATURE (°C)
FIGURE 15, Switching Energy Losses vs. Gate Resistance FIGURE 16, Switching Energy Losses vs Junction Temperature
VCE = 400V
VGE = +15V
RG = 1.0
RG = 1.0, L = 100µH, VCE = 400V
VCE = 400V
TJ = 25°C, or 125°C
RG = 1.0
L = 100µH
40
35
30
25
20
15
10
5
0
250
200
150
100
50
0
25
20
15
10
5
0
45
40
35
30
25
20
15
10
5
0
500
400
300
200
100
0
140
120
100
80
60
40
20
0
8
7
6
5
4
3
2
1
0
25
20
15
10
5
0
VGE = 15V
TJ = 125°C, VGE = 15V
TJ = 25 or 125°C,VGE = 15V
TJ = 25°C, VGE = 15V
TJ = 125°C
TJ = 25°C
VCE = 400V
VGE = +15V
RG = 1.0
TJ = 125°C
TJ = 25°C
VCE = 400V
VGE = +15V
RG = 1.0
VCE = 400V
VGE = +15V
TJ = 125°C
0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225
0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225
0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225
0 5 10 15 20 0 25 50 75 100 125
RG = 1.0, L = 100µH, VCE = 400V
Eon2,200A
Eoff,200A
Eon2,100A
Eoff,100A Eon2,50A
Eoff,50A
Eon2,200A
Eoff,200A
Eon2,100A
Eoff,100A
Eon2,50A
Eoff,50A
050-7622 Rev A 10-2005
APT100GN60LDQ4(G)
TYPICAL PERFORMANCE CURVES
0.25
0.20
0.15
0.10
0.05
0
ZθJC, THERMAL IMPEDANCE (°C/W)
0.3
D = 0.9
0.7
SINGLE PULSE
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-5 10-4 10-3 10-2 10-1 1.0
10,000
5,000
1,000
500
100
350
300
250
200
150
100
50
0
C, CAPACITANCE (PF)
IC, COLLECTOR CURRENT (A)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 17, Capacitance vs Collector-To-Emitter Voltage Figure 18,Minimim Switching Safe Operating Area
0 10 20 30 40 50 0 100 200 300 400 500 600 700
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
10 30 50 70 90 110 130 150
FMAX, OPERATING FREQUENCY (kHz)
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 1.0
100
50
10
4
0.5
0.1
0.05
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
Pdiss - Pcond
Eon2 + Eoff
fmax2 =
Pdiss = TJ - TC
RθJC
Peak TJ = PDM x ZθJC + TC
Duty Factor D = t1/t2
t2
t1
PDM
Note:
Coes
Cres
Cies
0.949
0.116
0.00708
0.244
Power
(watts)
RC MODEL
Junction
temp. (°C)
Case temperature. (°C)
050-7622 Rev A 10-2005
APT100GN60LDQ4(G)
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 23, Turn-off Switching Waveforms and Definitions
TJ = 125°C
Collector Current
Collector Voltage
Gate Voltage
Switching Energy
5%
10%
td(on)
90%
10%
tr
5%
TJ = 125°C
Collector Voltage
Collector Current
Gate Voltage
Switching Energy
0
90%
td(off)
10%
tf
90%
APT100DQ60
I
C
A
D.U.T.
V
CE
Figure 21, Inductive Switching Test Circuit
V
CC
050-7622 Rev A 10-2005
APT100GN60LDQ4(G)
TYPICAL PERFORMANCE CURVES
ZθJC, THERMAL IMPEDANCE (°C/W)
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0
0.5
SINGLE PULSE
0.1
0.3
0.7
0.05
Peak TJ = PDM x ZθJC + TC
Duty Factor D = t1/t2
t2
t1
PDM
Note:
D = 0.9
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 108°C, Duty Cycle = 0.5)
RMS Forward Current (Square wave, 50% duty)
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
Symbol
IF(AV)
IF(RMS)
IFSM
Symbol
VF
Characteristic / Test Conditions
IF = 100A
Forward Voltage IF = 200A
IF = 100A, TJ = 125°C
STATIC ELECTRICAL CHARACTERISTICS
UNIT
Amps
UNIT
Volts
MIN TYP MAX
1.6 2.2
2.05
1.28
APT100GN60LDQ4
100
156
1000
DYNAMIC CHARACTERISTICS
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MIN TYP MAX
- 34
- 160
- 290
- 5 -
- 220
- 1530
- 13 -
- 100
- 2890
- 44
UNIT
ns
nC
Amps
ns
nC
Amps
ns
nC
Amps
Characteristic
Reverse Recovery Time
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Symbol
trr
trr
Qrr
IRRM
trr
Qrr
IRRM
trr
Qrr
IRRM
Test Conditions
IF = 100A, diF/dt = -200A/µs
VR = 400V, TC = 25°C
IF = 100A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
IF = 100A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C
10-5 10-4 10-3 10-2 10-1 1.0 10
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
SINGLE PULSE
0.05
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
0.0673
0.188
0.0743
0.0182
0.361
5.17
Power
(watts)
Junction
temp (°C)
RC MODEL
Case temperature (°C)
050-7622 Rev A 10-2005
APT100GN60LDQ4(G)
TJ=125°C
VR=400V
50A
100A
200A
Duty cycle = 0.5
TJ=175°C
0 25 50 75 100 125 150 25 50 75 100 125 150 175
1 10 100 200
180
160
140
120
100
80
60
40
20
0
Qrr, REVERSE RECOVERY CHARGE IF, FORWARD CURRENT
(nC) (A)
IRRM, REVERSE RECOVERY CURRENT trr, REVERSE RECOVERY TIME
(A) (ns)
0 0.5 1.0 1.5 2.0 2.5 3.0 0 200 400 600 800 1000 1200
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
TJ = -55°C
TJ = 25°C
TJ = 125°C
TJ = 175°C
TJ=125°C
VR=400V
100A
50A
200A
300
250
200
150
100
50
0
4000
3500
3000
2500
2000
1500
1000
500
0
TJ=125°C
VR=400V 200A
100A
50A
300
250
200
150
100
50
0
60
50
40
30
20
10
0
CJ, JUNCTION CAPACITANCE Kf, DYNAMIC PARAMETERS
(pF) (Normalized to 1000A/µs)
IF(AV) (A)
Qrr
trr
Qrr
IRRM
1.2
1.0
0.8
0.6
0.4
0.2
0.0
1400
1200
1000
800
600
400
200
0
trr
VF, ANODE-TO-CATHODE VOLTAGE (V) -diF/dt, CURRENT RATE OF CHANGE(A/µs)
Figure 25. Forward Current vs. Forward Voltage Figure 26. Reverse Recovery Time vs. Current Rate of Change
-diF/dt, CURRENT RATE OF CHANGE (A/µs) -diF/dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change Figure 28. Reverse Recovery Current vs. Current Rate of Change
TJ, JUNCTION TEMPERATURE (°C) Case Temperature (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature Figure 30. Maximum Average Forward Current vs. CaseTemperature
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
050-7622 Rev A 10-2005
APT100GN60LDQ4(G)
TYPICAL PERFORMANCE CURVES
4
3
1
2
5
5
Zero
1
2
3
4
diF/dt - Rate of Diode Current Change Through Zero Crossing.
IF - Forward Conduction Current
IRRM - Maximum Reverse Recovery Current.
trr - Reverse Recovery Time, measured from zero crossing where diode
Qrr - Area Under the Curve Defined by IRRM and trr.
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
Figure 32. Diode Test Circuit
Figure 33, Diode Reverse Recovery Waveform and Definitions
0.25 IRRM
PEARSON 2878
CURRENT
TRANSFORMER
diF/dt Adjust
30µH
D.U.T.
+18V
0V
Vr
trr/Qrr
Waveform
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
e1 SAC: Tin, Silver, Copper
TO-264(L) Package Outline
Dimensions in Millimeters and (Inches)
19.51 (.768)
20.50 (.807)
19.81 (.780)
21.39 (.842)
25.48 (1.003)
26.49 (1.043)
2.29 (.090)
2.69 (.106)
0.76 (.030)
1.30 (.051)
3.10 (.122)
3.48 (.137)
4.60 (.181)
5.21 (.205)
1.80 (.071)
2.01 (.079)
2.59 (.102)
3.00 (.118)
0.48 (.019)
0.84 (.033)
2.29 (.090)
2.69 (.106)
5.79 (.228)
6.20 (.244)
2.79 (.110)
3.18 (.125)
5.45 (.215) BSC
2-Plcs.
Collector
(Cathode)
Emitter
(Anode)
Gate
Collector
(Cathode)
APT60M75L2LL