TAR5S15~TAR5S50
2007-11-01
1
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TAR5S15~TAR5S50
Point Regulators (Low-Dropout Regulator)
The TAR5Sxx Series is comprised of general-purpose bipolar single-power-supply devices incorporating a
control pin which can be used to turn them ON/OFF.
Overtemperature and overcurrent protection circuits are built
in to the devices’ output circuit.
Features
Low stand-by current
Overtemperature/overcurrent protection
Operation voltage range is wide.
Maximum output current is high.
Difference between input voltage and output voltage is low.
Small package.
Ceramic capacitors can be used.
Pin Assignment s (top view)
Overtemperature protection and overcurrent protection functions are not necessary guarantee of operating
ratings below the absolute maximum ratings.
Do not use devices under conditions in which their absolute maximum ratings will be exceeded.
Weight: 0.014 g (typ.)
1 3 2
VIN
NOISE
4
GND
VOUT
CONTROL
5
TAR5S15~TAR5S50
2007-11-01
2
List of Products Number and Marking Marking on the Product
Products No. Marking Products No. Marking
TAR5S15 1V5 TAR5S33 3V3
TAR5S16 1V6 TAR5S34 3V4
TAR5S17 1V7 TAR5S35 3V5
TAR5S18 1V8 TAR5S36 3V6
TAR5S19 1V9 TAR5S37 3V7
TAR5S20 2V0 TAR5S38 3V8
TAR5S21 2V1 TAR5S39 3V9
TAR5S22 2V2 TAR5S40 4V0
TAR5S23 2V3 TAR5S41 4V1
TAR5S24 2V4 TAR5S42 4V2
TAR5S25 2V5 TAR5S43 4V3
TAR5S26 2V6 TAR5S44 4V4
TAR5S27 2V7 TAR5S45 4V5
TAR5S28 2V8 TAR5S46 4V6
TAR5S29 2V9 TAR5S47 4V7
TAR5S30 3V0 TAR5S48 4V8
TAR5S31 3V1 TAR5S49 4V9
TAR5S32 3V2 TAR5S50 5V0
Absolute Maximum Ratings (Ta = 25°C)
Characteristics Symbol Rating Unit
Supply voltage VIN 15 V
Output current IOUT 200 mA
200 (Note 1)
Power dissipation PD 380 (Note 2) mW
Operation temperature range Topr 40 to 85 °C
Storage temperature range Tstg 55 to 150 °C
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly
even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute
maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test
report and estimated failure rate, etc).
Note 1: Unit Ratintg
Note 2: Mounted on a glass epoxy circuit board of 30 × 30 mm. Pad dimension of 50 mm2
3 V 0
Example: TAR5S30 (3.0 V output)
TAR5S15~TAR5S50
2007-11-01
3
TAR5S15~TAR5S22
Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA,
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Tj = 25°C)
Characteristics Symbol Test Condition Min Typ. Max Unit
Output voltage VOUT Please refer to the Output Voltage Accuracy table.
Line regulation Regline VOUT + 1 V
<
=
VIN
<
=
15 V,
IOUT = 1 mA 3 15 mV
Load regulation Regload 1 mA
<
=
IOUT
<
=
150 mA 25 75 mV
IB1 IOUT = 0 mA 170
Quiescent current IB2 I
OUT = 50 mA 550 850 μA
Stand-by current IB (OFF) V
CT = 0 V 0.1 μA
Output noise voltage VNO VIN = VOUT + 1 V, IOUT = 10 mA,
10 Hz
<
=
f
<
=
100 kHz,
CNOISE = 0.01 μF, Ta = 25°C 30 μVrms
Temperature coefficient TCVO 40°C
<
=
Topr
<
=
85°C 100 ppm/°C
Input voltage VIN 2.4 15 V
Ripple rejection R.R. VIN = VOUT + 1 V, IOUT = 10 mA,
CNOISE = 0.01 μF, f = 1 kHz,
VRipple = 500 mVp-p, Ta = 25°C 70 dB
Control voltage (ON) VCT (ON) 1.5 V
IN V
Control voltage (OFF) VCT (OFF) 0.4 V
Control current (ON) ICT (ON) V
CT = 1.5 V 3 10 μA
Control current (OFF) ICT (OFF) V
CT = 0 V 0 0.1 μA
TAR5S23~TAR5S50
Electrical Characteristic (unless otherwise specified, VIN = VOUT + 1 V, IOUT = 50 mA,
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Tj = 25°C)
Characteristics Symbol Test Condition Min Typ. Max Unit
Output voltage VOUT Please refer to the Output Voltage Accuracy table.
Line regulation Regline VOUT + 1 V
<
=
VIN
<
=
15 V,
IOUT = 1 mA 3 15 mV
Load regulation Regload 1 mA
<
=
IOUT
<
=
150 mA 25 75 mV
IB1 IOUT = 0 mA 170
Quiescent current IB2 I
OUT = 50 mA 550 850 μA
Stand-by current IB (OFF) V
CT = 0 V 0.1 μA
Output noise voltage VNO VIN = VOUT + 1 V, IOUT = 10 mA,
10 Hz
<
=
f
<
=
100 kHz,
CNOISE = 0.01 μF, Ta = 25°C 30 μVrms
Dropout volatge VIN VOUT
IOUT = 50 mA 130 200 mV
Temperature coefficient TCVO 40°C
<
=
Topr
<
=
85°C 100 ppm/°C
Input voltage VIN VOUT
+ 0.2 V 15 V
Ripple rejection R.R. VIN = VOUT + 1 V, IOUT = 10 mA,
CNOISE = 0.01 μF, f = 1 kHz,
VRipple = 500 mVp-p, Ta = 25°C 70 dB
Control voltage (ON) VCT (ON) 1.5 V
IN V
Control voltage (OFF) VCT (OFF) 0.4 V
Control current (ON) ICT (ON) V
CT = 1.5 V 3 10 μA
Control current (OFF) ICT (OFF) V
CT = 0 V 0 0.1 μA
TAR5S15~TAR5S50
2007-11-01
4
Output Voltage Accuracy
(VIN = VOUT + 1 V, IOUT = 50 mA, CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF, Tj = 25°C)
Product No. Symbol Min Typ. Max Unit
TAR5S15 1.44 1.5 1.56
TAR5S16 1.54 1.6 1.66
TAR5S17 1.64 1.7 1.76
TAR5S18 1.74 1.8 1.86
TAR5S19 1.84 1.9 1.96
TAR5S20 1.94 2.0 2.06
TAR5S21 2.04 2.1 2.16
TAR5S22 2.14 2.2 2.26
TAR5S23 2.24 2.3 2.36
TAR5S24 2.34 2.4 2.46
TAR5S25 2.43 2.5 2.57
TAR5S26 2.53 2.6 2.67
TAR5S27 2.63 2.7 2.77
TAR5S28 2.73 2.8 2.87
TAR5S29 2.83 2.9 2.97
TAR5S30 2.92 3.0 3.08
TAR5S31 3.02 3.1 3.18
TAR5S32 3.12 3.2 3.28
TAR5S33 3.21 3.3 3.39
TAR5S34 3.31 3.4 3.49
TAR5S35 3.41 3.5 3.59
TAR5S36 3.51 3.6 3.69
TAR5S37 3.6 3.7 3.8
TAR5S38 3.7 3.8 3.9
TAR5S39 3.8 3.9 4.0
TAR5S40 3.9 4.0 4.1
TAR5S41 3.99 4.1 4.21
TAR5S42 4.09 4.2 4.31
TAR5S43 4.19 4.3 4.41
TAR5S44 4.29 4.4 4.51
TAR5S45 4.38 4.5 4.62
TAR5S46 4.48 4.6 4.72
TAR5S47 4.58 4.7 4.82
TAR5S48 4.68 4.8 4.92
TAR5S49 4.77 4.9 5.03
TAR5S50
VOUT
4.87 5.0 5.13
V
TAR5S15~TAR5S50
2007-11-01
5
Application Note
1. Recommended Application Circuit
The figure above shows the recommended configuration for using a point regulator. Insert a capacitor for
stable input/output operation. If the control function is not to be used, Toshiba recommend that the control pin
(pin 1) be connected to the VCC pin.
2. Power Dissipation
The power dissipation for board-mounted TAR5Sxx Series devices (rated at 380 mW) is measured using a
board whose size and pattern are as shown below. When incorporating a device belonging to this series into
your design, derate the power dissipation as far as possible by reducing the levels of parameters such as input
voltage, output current and ambient temperature. Toshiba recommend that these devices should typically be
derated to 70%~80% of their absolute maximum power dissipation value.
Thermal Resistance Evaluation Board
Circuit board material: glass epoxy,
Circuit board dimension:30 mm × 30 mm,
Copper foil pad area: 50 mm2 (t = 0.8 mm)
COUT
CIN
CNOISE
VIN V
OUT
CONTROL GND NOISE
V
IN
5
NOISE
4
1 3
GND
2
V
OUT
CONTROL
0.01 μF
1 μF
10 μF
Control Level Operation
HIGH ON
LOW OFF
TAR5S15~TAR5S50
2007-11-01
6
3. Ripple Rejection
The devices of the TAR5Sxx Series feature a circuit with an excellent ripple rejection characteristic. Because
the circuit also features an excellent output fluctuation characteristic for sudden supply voltage drops, the
circuit is ideal for use in the RF blocks incorporated in all mobile telephones.
4. NOISE Pin
TAR5Sxx Series devices incorporate a NOISE pin to reduce output noise voltage. Inserting a capacitor
between the NOISE pin and GND reduces output noise. To ensure stable operation, insert a capacitor of
0.0047 μF or more between the NOISE pin and GND.
The output voltage rise time varies according to the capacitance of the capacitor connected to the NOISE
pin.
Ripple Rejection f
TAR5S28 Input Transient Response
Frequency f (Hz)
Time t (ms)
Ripple rejection (dB)
0
10 100 1 k 10 k 100 k 300 k
10
20
30
40
50
60
70
80
10 μF
2.2 μF
1 μF
VIN = 4.0 V, CNOISE = 0.01 μF,
CIN = 1 μF, Vripple = 500 mVpp,
Iout = 10 mA, Ta = 25°C
CNOISE VN
Turn On Waveform
NOISE capacitance CNOISE (F)
Time t (ms)
Control voltage
VCT (ON) (V)
Output noise voltage VN (μV)
0
10
20
30
40
50
60
0.001 μ 0.01 μ 1.0 μ
TAR5S50
0.1 μ
TAR5S30
TAR5S15
CIN = 1 μF, Cout = 10 μF,
Iout = 10 mA, Ta = 25°C
Output voltage
VOUT (V)
01 45 8 10
Input voltage
2.8 V
2 3 6 7 9
Output voltage
3.1 V
3.4 V
Ta = 25°C, CIN = 1 μF,
Cout = 10 μF, CNOISE = 0.01 μF,
VIN: 3.4 V 3.1 V, Iout = 50 mA
4010 20
0
1
2
3
1
2
10 0 9030
0
60 50 80 70
Output voltage waveform
Control voltage waveform
CNOISE = 0.01 μF
1 μF
0.33 μF
0.1 μF
CIN = 1 μF, Cout = 10 μF,
Iout = 50 mA, Ta = 25°C
TAR5S15~TA R5S50
2007-11-01
7
5. Example of Characteristics when Ceramic Capacitor is Used
Shown below is the stable operation area, where the output voltage does not oscillate, evaluated using a
Toshiba evaluation circuit. The equivalent series resistance (ESR) of the output capacitor and output current
determines this area. TAR5Sxx Series devices operate stably even when a ceramic capacitor is used as the
output capacitor.
If a ceramic capacitor is used as the output capacitor and the ripple frequency is 30 kHz or more, the ripple
rejection differs from that when a tantalum capacitor is used. This is shown below.
Toshiba recommend that users check that devices operate stably under the intended conditions of use.
Examples of safe operating area characteristics
Evaluation Circuit for Stable Operating Area
Ripple Rejection Characteristic (f = 10 kHz~300 kHz)
(TAR5S15) Stable Operating Area
Output current IOUT (mA)
(TAR5S50) Stable Operating Area
(TAR5S28) Stable Operating Area
Output current IOUT (mA)
Output current IOUT (mA)
Equivalent series resistance ESR (Ω)
Equivalent series resistance ESR (Ω)
Equivalent series resistance ESR (Ω)
Ripple rejection (dB)
(TAR5S30) Ripple Rejection – f
Frequency f (Hz)
TAR5S**
GND
CIN
Ceramic
VIN
=
VOUT
+1 V
CONTROL
CNOISE = 0.01 μF
ROUT
ESR
COUT
Ceramic
Capacitors used for evaluation
Made by Murata CIN: GRM40B105K
COUT: GRM40B105K/GRM40B106K
30
0
10
20
40
70
50
60 Ceramic
2.2 μF
10 k 300 k 100 k
Ceramic 10 μF Tantalum10 μF
Tantalum 2.2 μF
Tantalum 1 μF
Ceramic
1 μF
@VIN = 4.0 V, CNOISE = 0.01 μF,
CIN = 1 μF, Vripple = 500 mVp-p,
Iout = 10 mA, Ta = 25°C
1000 k
80 40
0.02
0.1
1
10
100
0 20 15060 120 100 140
@VIN = 2.5 V, CNOISE = 0.01 μF,
CIN = 1 μF, Cout = 1 μF~10 μF,
Ta = 25°C
Stable Operating Area
80 40
0.02
0.1
1
10
100
020 15060 120 100 140
@VIN = 6.0 V, CNOISE = 0.01 μF,
CIN = 1 μF, Cout = 1 μF~10 μF,
Ta = 25°C
Stable Operating Area
80 40
0.02
0.1
1
10
100
0 20 15060 120 100 140
@VIN = 3.8 V, CNOISE = 0.01 μF,
CIN = 1 μF, Cout = 1 μF~10 μF,
Ta = 25°C
Stable Operating Area
TAR5S15~TA R5S50
2007-11-01
8
Output voltage VOUT (V)
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S15) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S18) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S20) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S21) IOUT – VOUT
Output current IOUT (mA)
(TAR5S22) IOUT – VOUT
Output current IOUT (mA)
(TAR5S23) IOUT – VOUT
Output voltage VOUT (V)
1.4
1.5
1.6 VIN = 2.5 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
1.7
1.8
1.9 VIN = 2.8 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
1.9
2.0
2.1 VIN = 3.0 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
2.0
2.1
2.2 VIN = 3.1 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
2.1
2.2
2.3 VIN = 3.2 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
2.2
2.3
VIN = 3.3 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
TAR5S15~TA R5S50
2007-11-01
9
Output current IOUT (mA)
(TAR5S27) IOUT – VOUT
Output voltage VOUT (V)
VIN = 3.7 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
2.6
2.7
2.8
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S30) IOUT – VOUT
Output voltage VOUT (V)
VIN = 3.8 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
2.7
2.8
2.9
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S25) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S31) IOUT – VOUT
Output voltage VOUT (V)
VIN = 3.9 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
2.8
2.9
3
0 50 100 150
Ta = 85°C
25
40
2.4
2.5
2.6 VIN = 2.6 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
Output current IOUT (mA)
(TAR5S28) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S29) IOUT – VOUT
Output voltage VOUT (V)
VIN = 4.0 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
2.9
3.0
3.1
0 50 100 150
Ta = 85°C
25
40
3.0
3.1
3.2 VIN = 4.1 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
TAR5S15~TA R5S50
2007-11-01
10
Output current IOUT (mA)
(TAR5S32) IOUT – VOUT
Output voltage VOUT (V)
Output current IOUT (mA)
(TAR5S33) IOUT – VOUT
Output voltage VOUT (V)
VIN = 4.3 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
3.2
3.3
3.4
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S45) IOUT – VOUT
Output voltage VOUT (V)
VIN = 5.5 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
4.4
4.5
4.6
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S50) IOUT – VOUT
Output voltage VOUT (V)
VIN = 6.0 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
4.9
5.0
5.1
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S35) IOUT – VOUT
Output voltage VOUT (V)
VIN = 4.5 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
3.4
3.5
3.6
0 50 100 150
Ta = 85°C
25
40
Output current IOUT (mA)
(TAR5S48) IOUT – VOUT
Output voltage V
OUT (V)
VIN = 5.8 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
4.7
4.8
4.9
0 50 100 150
Ta = 85°C
25
40
3.1
3.2
3.3 VIN = 4.2 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 50 100 150
Ta = 85°C
40
25
TAR5S15~TA R5S50
2007-11-01
11
Bias current IB (mA)
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S15) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S18) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S20) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S21) IB – VIN
Input voltage VIN (V)
(TAR5S22) IB – VIN
Input voltage VIN (V)
(TAR5S23) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
TAR5S15~TA R5S50
2007-11-01
12
Input voltage VIN (V)
(TAR5S27) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
Input voltage VIN (V)
(TAR5S30) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
Input voltage VIN (V)
(TAR5S25) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S31) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S28) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
Input voltage VIN (V)
(TAR5S29) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
TAR5S15~TA R5S50
2007-11-01
13
Input voltage VIN (V)
(TAR5S32) IB – VIN
Bias current IB (mA)
Input voltage VIN (V)
(TAR5S33) IB – VIN
Bias current IB (mA)
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S45) IB – VIN
Bias current IB (mA)
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S50) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S35) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
Input voltage VIN (V)
(TAR5S48) IB – VIN
Bias current IB (mA)
CIN = 1 μF, COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
0
5
10
0 5 10 15
IOUT = 150 mA
100 50 1
TAR5S15~TA R5S50
2007-11-01
14
Output voltage VOUT (V)
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S15) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S18) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S20) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S21) VOUT – VIN
Input voltage VIN (V)
(TAR5S22) VOUT – VIN
Input voltage VIN (V)
(TAR5S23) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
TAR5S15~TA R5S50
2007-11-01
15
Input voltage VIN (V)
(TAR5S27) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S30) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S25) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S31) VOUT – VIN
Output voltage VOUT (V)
Input voltage VIN (V)
(TAR5S28) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S29) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
TAR5S15~TA R5S50
2007-11-01
16
Input voltage VIN (V)
(TAR5S33) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S32) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S45) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S50) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S48) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
Input voltage VIN (V)
(TAR5S35) VOUT – VIN
Output voltage VOUT (V)
0 5 10 15
0
3
6
1
2
4
5
IOUT = 1 mA, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
TAR5S15~TA R5S50
2007-11-01
17
Output voltage VOUT (V)
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S15) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S18) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S20) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S21) VOUT – Ta
Ambient temperature Ta (°C)
(TAR5S22) VOUT – Ta
Ambient temperature Ta (°C)
(TAR5S23) VOUT – Ta
Output voltage VOUT (V)
50
1.4 25 0 25 100 75 50
1.45
1.5
1.55
1.6
VIN = 2.5 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
1.7 25 0 25 100 75 50
1.75
1.8
1.85
1.9
VIN = 2.8 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
1.9 25 0 25 100 75 50
1.95
2.0
2.05
2.1
VIN = 3.0 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
2.0 25 0 25 100 75 50
2.05
2.1
2.15
2.2
VIN = 3.1 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
2.1 25 0 25 100 75 50
2.15
2.2
2.25
2.3
VIN = 3.2 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
2.2 25 0 25 100 75 50
2.25
2.3
2.35
2.4
VIN = 3.3 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
TAR5S15~TA R5S50
2007-11-01
18
Ambient temperature Ta (°C)
(TAR5S25) VOUT – Ta
Output voltage VOUT (V)
50
2.4 25 0 25 100 75 50
2.45
2.5
2.55
2.6
VIN = 3.5 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
Ambient temperature Ta (°C)
(TAR5S27) VOUT – Ta
Output voltage VOUT (V)
50
2.6 25 0 25 100 75 50
2.65
2.7
2.75
2.8
VIN = 3.7 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
Ambient temperature Ta (°C)
(TAR5S30) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S31) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S28) VOUT – Ta
Output voltage VOUT (V)
50
2.7 25 0 25 100 75 50
2.75
2.8
2.85
2.9
VIN = 3.8 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
IOUT = 50 mA
100 150
Ambient temperature Ta (°C)
(TAR5S29) VOUT – Ta
Output voltage VOUT (V)
50
2.8 25 0 25 100 75 50
2.85
2.9
2.95
3.0
VIN = 3.9 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
2.9 25 0 25 75 50
2.95
3.0
3.05
3.1
VIN = 4 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
IOUT = 50 mA
100
100 150
50
3.0 25 0 25 100 75 50
3.05
3.1
3.15
3.2
VIN = 4.1 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
TAR5S15~TA R5S50
2007-11-01
19
Ambient temperature Ta (°C)
(TAR5S32) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S33) VOUT – Ta
Output voltage VOUT (V)
50
3.2 25 0 25 75 50
3.25
3.3
3.35
3.4
VIN = 4.3 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100
100 150
Ambient temperature Ta (°C)
(TAR5S45) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S50) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S35) VOUT – Ta
Output voltage VOUT (V)
Ambient temperature Ta (°C)
(TAR5S48) VOUT – Ta
Output voltage VOUT (V)
50
4.4 25 0 25 100 75 50
4.45
4.5
4.55
4.6
VIN = 5.5 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
3.4 25 0 25 100 75 50
3.45
3.5
3.55
3.6
VIN = 4.5 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
50
4.9 25 0 25 100 75 50
4.95
5
5.05
5.1
VIN = 6 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
IOUT = 50 mA
100
150
50
4.7 25 0 25 100 75 50
4.75
4.8
4.85
4.9
VIN = 5.8 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF Pulse width = 1 ms
IOUT = 50 mA
100
150
50
3.1 25 0 25 100 75 50
3.15
3.2
3.25
3.3
VIN = 4.2 V, CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF, Pulse width = 1 ms
IOUT = 50 mA
100 150
TAR5S15~TA R5S50
2007-11-01
20
50 25 0 25 100 75 50
0
0.1
0.2
0.3
0.4
0.5
0.6 CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
IOUT = 150 mA
100
50
10
1
Ambient temperature Ta (°C)
IB – Ta
Bias current I
B (mA)
Ambient temperature Ta (°C)
(TAR5S23~TAR5S50) VIN - VOUT – Ta
Dropout voltage VIN - VOUT (V)
Output current IOUT (mA)
(TAR5S23~TAR5S50) VIN - VOUT – IOUT
Dropout voltage VIN - VOUT (V)
Output current IOUT (mA)
IB – IOUT
Bias current IB (mA)
Time t (ms)
Turn On Waveform
Output voltage
VOUT (V)
Time t (ms)
Turn Off Waveform
Output voltage
VOUT (V)
50 25 0 25 100 75 50
0
0.5
1
1.5
2
2.5
3 VIN = VOUT + 1 V, CIN = 1 μF,
COUT = 10 μF, CNOISE = 0.01 μF
Pulse width = 1 ms
IOUT = 150 mA
100
50
10
1
0 50 100 150
Ta = 25°C
85
40
0
0.1
0.2
0.3
0.4
0.5 CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01μF
Pulse width = 1 ms
VIN = VOUT + 1 V,
VCT (ON) = 1.5 0 V, CIN = 1 μF,
COUT = 10 μF, CNOISE = 0.01 μF
0 1
Control voltage waveform
Output voltage waveform
2
3
0
1
0
1
2
3
2
3
0
1
0
1
2
3
VIN = VOUT + 1 V,
VCT (ON) = 0 1.5 V, CIN = 1 μF,
COUT = 10 μF, CNOISE = 0.01 μF
0 1
Ta = 25°C
85
40
Control voltage waveform
Output voltage waveform
Control voltage
V
CT (ON) (V)
Control voltage
VCT (O N) (V)
VIN = VOUT + 1 V,
CIN = 1 μF, COUT = 10 μF,
CNOISE = 0.01 μF
Pulse width = 1 ms
0
0.5
1.0
1.5
2.0
2.5
0 50 100 150
Ta = 25°C
85
40
TAR5S15~TA R5S50
2007-11-01
21
Ambient temperature Ta (°C)
PD – Ta
Power dissipation PD (mW)
40
0 0 40 120 80
100
200
300
400
Circuit board material: g l ass epoxy,
Circuit board dimention:
30 mm × 30 mm,
pad area: 50 mm2 (t = 0.8 mm)
Unit
Frequency f (Hz)
VN – f
Output noise voltage VN (μV/
Hz
)
VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 μF,
COUT = 10 μF, CNOISE = 0.01 μF,
10 Hz < f < 100 kHz, Ta = 25°C
10
1
0.1
0.01
0.001
10 100 1 k 10 k 100 k
Frequency f (Hz)
Ripple Rejection – f
Ripple rejection (dB)
0
10
20
60
70
80
30
40
50
10 100 1 k 10 k 100 k 1000 k
VIN = VOUT + 1 V, IOUT = 10 mA, CIN = 1 μF,
COUT = 10 μF, CNOISE = 0.01 μF,
VRipple = 500 mVp-p, T a = 25°C
TAR5S15 (1.5 V)
TAR5S30 (3.0 V)
TAR5S50 (5.0 V)
TAR5S45 (4.5 V)
TAR5S35 (3.5 V)
TAR5S25 (2.5 V)
TAR5S15~TA R5S50
2007-11-01
22
Package Dimensions
Weight: 0.014 g (typ.)
TAR5S15~TA R5S50
2007-11-01
23
RESTRICTIONS ON PRODUCT USE
Toshiba Corporation, and its subsidiaries and affiliates (collectively “TOSHIBA”), reserve the right to make changes to the information
in this document, and related hardware, software and systems (collectively “Product”) without notice.
This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with
TOSHIBA’s written permission, reproduction is permissible only if reproduction is without alteration/omission.
Though TOSHIBA works continually to improve Product’s quality and reliability, Product can malfunction or fail. Customers are
responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and
systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily
injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must
also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document,
the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the “TOSHIBA
Semiconductor Reliability Handbook” and (b) the instructions for the application that Product will be used with or for. Customers are
solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the
appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any
information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other
referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO
LIABILITY FOR CUSTOMERS’ PRODUCT DESIGN OR APPLICATIONS.
Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring
equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document.
Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or
reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious
public impact (“Unintended Use”). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used
in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling
equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric
power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this
document.
Do not disassemble, analyze, reverse-engineer, alter, modify, t ranslate or copy Product, whether in whole or in part.
Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
applicable laws or regulations.
The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any
infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to
any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMEN T.
Do not use or otherwise make available Product or related software or technology for any military purposes, including without
limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
technology products (mass destruction weapons). Product and related software and technology may be controlled under the
Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product
or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulat ions.
Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances,
including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of
noncompliance with applicable laws and regulations.