Industrial Power Control
Data Sheet
Rev. 2.0, 2015-06-01
1EDI20N12AF
Single Channel MOSFET and GaN HEMT Gate Driver IC
1EDI20N12AF
1EDI EiceDRIVER™ Compact
Edition 2015-06-01
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2015 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Data Sheet 3 Rev. 2.0, 2015-06-01
Trademarks of Infineon Technologies AG
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™,
CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™,
MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™,
PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™,
SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™,
TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of
Diodes Zetex Limited.
Last Trademarks Update 2010-10-26
Revision History
Page or Item Subjects (major changes since previous revision)
Rev. 2.0, 2015-06-01
p17 dynamic parameter update
Rev. 1.03, 2014-10-14
all pages parameter completion
Rev. 1.02, 2014-02-14
p 8 application diagram
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Data Sheet 4 Rev. 2.0, 2015-06-01
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.1 Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.2 Active Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.3 Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Non-Inverting and Inverting Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Driver Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.1 Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.2 Logic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.3 Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.4 Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.5 Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.6 Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Timing Diagramms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1 Reference Layout for Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.2 Printed Circuit Board Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table of Contents
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Data Sheet 5 Rev. 2.0, 2015-06-01
Figure 1 Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2 Block Diagram 1EDI20N12AF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 3 PG-DSO-8-51 (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4 Application Example Bipolar Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5 Application Example Unipolar Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6 Propagation Delay, Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 7 Typical Switching Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 8 UVLO Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 9 PG-DSO-8-51 (Plastic (Green) Dual Small Outline Package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 10 Reference Layout for Thermal Data (Copper thickness 35 μm) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
List of Figures
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Data Sheet 6 Rev. 2.0, 2015-06-01
Table 1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3 Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4 Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 5 Logic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 6 Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 7 Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 8 Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9 Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
List of Tables
ED-
Compact
1EDI EiceDRIVER™ Compact
Single Channel MOSFET and GaN HEMT Gate Driver IC 1EDI20N12AF
Data Sheet 7 Rev. 2.0, 2015-06-01
1Overview
Main Features
Single channel isolated Gate Driver
Input to output isolation voltage up to 1200 V
For high voltage power FETs
4 A typical peak current at rail-to-rail outputs
Separate source and sink outputs
Product Highlights
Galvanically isolated Coreless Transformer Driver
Low input to output capacitive coupling
Suitable for operation at high ambient temperature
Wide input voltage operating range
ideally suited for driving cascoded or normally-off Gallium Nitride
HEMTs
Typical Application
AC and Brushless DC Motor Drives
High Voltage PFC, DC/DC-Converter and DC/AC-Inverter
Induction Heating Resonant Application
UPS-Systems
Welding
Solar MPPT boost converter
Description
The 1EDI20N12AF is a galvanically isolated single channel FET driver in a PG-DSO-8-51 package that provides
output currents of at least 2 A at separated output pins.
The input logic pins operate on a wide input voltage range from 3 V to 15 V using CMOS threshold levels to
support even 3.3 V microcontroller.
Data transfer across the isolation barrier is realized by the Coreless Transformer Technology.
The undervoltage lockout (UVLO) functions for both input and output chip and an active shutdown feature are
included to always guarantee safe operation.
Product Name Gate Drive Current (min) Package
1EDI20N12AF ±2.0 A MOSFET level optimized PG-DSO-8-51
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Overview
Data Sheet 8 Rev. 2.0, 2015-06-01
Figure 1 Typical Application
OUT+
OUT+
Control
EiceDRIVER
TM
1EDI20N12AF
EiceDRIVER
TM
1EDI20N12AF
IN+
IN+
IN-
IN-
GND1
VCC1 VCC2,H
VCC2,L
GND2,L
GND2,H
GND1
VCC1
OUT-
OUT-
DC
DC
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Block Diagram
Data Sheet 9 Rev. 2.0, 2015-06-01
2 Block Diagram
Figure 2 Block Diagram 1EDI20N12AF
IN+
IN-
GND1
VCC1
2
3
4
1
6
7
5
8
VCC2
OUT-
OUT+
GND2
input
filter
TX
UVLO
&
active
filter
input
filter
GND1
VCC1
UVLO
RX
&
Shoot
through
protection
VCC2
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Pin Configuration and Functionality
Data Sheet 10 Rev. 2.0, 2015-06-01
3 Pin Configuration and Functionality
3.1 Pin Configuration
Figure 3 PG-DSO-8-51 (top view)
3.2 Pin Functionality
VCC1
Logic input supply voltage with wide operating range (3.3 V o 15 V).
IN+ Non Inverting Driver Input
IN+ non-inverted control signal for driver output if IN- is set to low. (Output sourcing active at IN+ = high and
IN- = low)
Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN+. An internal
pull-down-resistor favors off-state.
Table 1 Pin Configuration
Pin No. Name Function
1 VCC1 Positive Logic Supply
2 IN+ Non-Inverting Driver Input (active high)
3 IN- Inverting Driver Input (active low)
4 GND1 Logic Ground
5 VCC2 Positive Power Supply Output Side
6 OUT+ Driver Source Output
7 OUT- Driver Sink Output
8 GND2 Power Ground
1
2
3
4
8
7
6
5
VCC1
IN+
IN-
GND1
GND2
OUT-
OUT+
VCC2
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Pin Configuration and Functionality
Data Sheet 11 Rev. 2.0, 2015-06-01
IN- Inverting Driver Input
IN- inverted control signal for driver output if IN+ is set to high. (Output sourcing active at IN- = low and IN+ = high)
Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN-. An internal
pull-up-resistor favors off-state.
GND1
Ground connection of input circuit.
VCC2
Positive power supply pin of output driving circuit. A proper blocking capacitor has to be placed close to this supply
pin.
OUT+ Driver Source Output
Driver output pin sourcing current to turn on external switch transistor. During on-state the driving output is
switched to VCC2. Switching of this output is controlled by IN+ and IN-, resp.. This output will also be turned off
at an UVLO event.
During turn off the OUT+ terminal is able to sink approx. 100 mA.
OUT- Driver Sink Output)
Driver output pin sinking current to turn off external switch transistor. During off-state the driving output is switched
to GND2. Switching of this output is controlled by IN+ and IN-, resp.. In case of UVLO an active shut down keeps
the output low.
GND2 Reference Ground
Reference ground of the output driving circuit.
In case of a bipolar supply (positive and negative voltage with respect to switch source potential) this pin is
connected to the negative supply voltage.
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Functional Description
Data Sheet 12 Rev. 2.0, 2015-06-01
4 Functional Description
4.1 Introduction
The 1EDI EiceDRIVER™ Compact is a general purpose gate driver. Basic control and protection features support
fast and easy design of highly reliable systems.
The galvanic isolation between input logic and driver output is achieved by utilizing on-chip Coreless Transformer
Technology. The wide input range supports the direct connection of various signal sources like DSPs and
microcontrollers.
The separated rail-to-rail driver outputs simplify gate resistor selection, save an external high current bypass diode
and improve dV/dt control.
Figure 4 Application Example Bipolar Supply
4.2 Supply
The driver can operate over a wide supply voltage range, either unipolar or bipolar.
With bipolar supply the driver is typically operated with a positive voltage of 12 V at VCC2 and a negative voltage
of -8V at GND2 relative to the source potential as seen in Figure 4. Negative supply can help to prevent a
dynamic turn on.
For unipolar supply configuration the driver is typically supplied with a positive voltage of 12 V at VCC2. In this
case, careful evaluation for turn off gate resistor selection is recommended to avoid dynamic turn on (see
Figure 5).
Figure 5 Application Example Unipolar Supply
GND1
IN+
IN-
VCC1
OUT+
VCC2
GND2
OUT-
+5V
SGND
IN
+12V
10R
100 n
3R3
-8V
0V
GND1
IN+
IN-
VCC1
OUT+
VCC2
GND2
OUT-
+5V
SGND
IN
+12V
10 R
100 n
3R3
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Functional Description
Data Sheet 13 Rev. 2.0, 2015-06-01
4.3 Protection Features
4.3.1 Undervoltage Lockout (UVLO)
To ensure correct switching the device is equipped with an undervoltage lockout for input and output
independently. Operation starts only after both VCC levels have increased beyond the respective VUVLOH levels
(see also Figure 8).
If the power supply voltage VVCC1 of the input chip drops below VUVLOL1 a turn-off signal is sent to the output chip
before power-down. The switch is turned off and the signals at IN+ and IN- are ignored until VVCC1 reaches the
power-up voltage VUVLOH1 again.
If the power supply voltage VVCC2 of the output chip goes down below VUVLOL2 the switch is again turned off and
signals from the input chip are ignored until VVCC2 reaches the power-up voltage VUVLOH2 again.
Note: VVCC2 is always referred to GND2; the output UVLO function thus depends on the total supply voltage.
4.3.2 Active Shut-Down
The Active Shut-Down feature ensures a safe off-state if the output chip is not connected to the power supply, The
gate is clamped at OUT- to GND2.
4.3.3 Short Circuit Clamping
During short circuit the gate voltage tends to rise because of the feedback via the Miller capacitance. An additional
protection circuit connected to OUT+ limits this voltage to a value slightly higher than the supply voltage. A
maximum current of 500 mA may be fed back to the supply through this path for 10 μs. If higher currents are
expected or tighter clamping is desired external Schottky diodes may be added.
4.4 Non-Inverting and Inverting Inputs
There are two possible input modes to control the switch. In the non-inverting mode IN+ controls the driver output
while IN- is set to low. In the inverting mode IN- controls the driver output while IN+ is set to high, see Figure 7. A
minimum input pulse width is required to filter occasional glitches.
4.5 Driver Outputs
The output driver section uses MOSFETs to provide a rail-to-rail output. This feature permits that tight control of
gate voltage during on-state and short circuit can be maintained as long as the driver’s supply is stable. Due to
the low internal voltage drop, switching behaviour is predominantly governed by the gate resistor. Furthermore, it
reduces the power to be dissipated in the driver.
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Electrical Parameters
Data Sheet 14 Rev. 2.0, 2015-06-01
5 Electrical Parameters
5.1 Absolute Maximum Ratings
Note: Absolute maximum ratings are defined as absolute limits, i.e. exceeding them may lead to destruction of the
integrated circuit.
Table 2 Absolute Maximum Ratings
Parameter Symbol Values Unit Note /
Test Condition
Min. Max.
Power supply output side VVCC2 -0.3 40 V 1)
1) With respect to GND2.
Gate driver output VOUT VGND2-0.3 VVCC2+0.3 V
Positive power supply input side VVCC1 -0.3 18.0 V
Logic input voltages (IN+,IN-) VLogicIN -0.3 18.0 V
Input to output isolation voltage VISO -1200 1200 V
Junction temperature TJ-40 150 °C
Storage temperature TS-55 150 °C
Power dissipation (Input side) PD, IN –25mW
2) @TA = 25°C
2) See Figure 10 for reference layouts for these thermal data. Thermal performance may change significantly with layout and
heat dissipation of components in close proximity.
Power dissipation (Output side) PD, OUT 400 mW 2) @TA = 25°C
Thermal resistance (Input side) RTHJA,IN 145 K/W 2) @TA = 85°C
Thermal resistance (Output side) RTHJA,OUT 165 K/W 2) @TA = 85°C
ESD capability VESD,HBM 2 kV Human Body
Model3)
3) According to EIA/JESD22-A114-C (discharging a 100 pF capacitor through a 1.5 k series resistor).
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Electrical Parameters
Data Sheet 15 Rev. 2.0, 2015-06-01
5.2 Operating Parameters
Note: Within the operating range the IC operates as described in the functional description. Unless otherwise
noted all parameters refer to GND1.
5.3 Electrical Characteristics
Note: The electrical characteristics include the spread of values in supply voltages, load and junction temperatures
given below. Typical values represent the median values at TA = 25°C. Unless otherwise noted all voltages
are given with respect to their respective GND (GND1 for pins 1 to 3, GND2 for pins 5 to 7).
5.3.1 Voltage Supply
Table 3 Operating Parameters
Parameter Symbol Values Unit Note /
Test Condition
Min. Max.
Power supply output side VVCC2 10 35 V 1)
1) With respect to GND2.
Power supply input side VVCC1 3.1 17 V
Logic input voltages (IN+,IN-) VLogicIN -0.3 17 V
Switching frequency fsw –4.0MHz
2) 3)
2) do not exceed max. power dissipation
3) Parameter is not subject to production test - verified by design/characterization
Ambient temperature TA-40 125 °C
Thermal coefficient, junction-top Ψth,jt –4.8K/W
3) @TA = 85°C
Common mode transient immunity
(CMTI)
|dVISO/dt| 100 kV/μs3) @ 1000 V
Table 4 Voltage Supply
Parameter Symbol Values Unit Note /
Test Condition
Min. Typ. Max.
UVLO threshold input
chip
VUVLOH1 –2.853.1V
VUVLOL1 2.55 2.75 V
UVLO hysteresis input
chip (VUVLOH1 - VUVLOL1)
VHYS1 90 100 mV
UVLO threshold output
chip (MOSFET Supply)
VUVLOH2 9.1 10.0 V
VUVLOL2 8.0 8.5 V
UVLO hysteresis output
chip (VUVLOH2 - VUVLOL2)
VHYS2 550 600 mV
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Electrical Parameters
Data Sheet 16 Rev. 2.0, 2015-06-01
5.3.2 Logic Input
Note: Unless stated otherwise VCC1 = 5.0V
5.3.3 Gate Driver
Quiescent current input
chip
IQ1 –0.651.0mAVVCC1 = 5 V
IN+ = High,
IN- = Low
=>OUT = High
Quiescent current output
chip
IQ2 –1.22.0mAVVCC2 = 15 V
IN+ = High,
IN- = Low
=>OUT = High
Table 5 Logic Input
Parameter Symbol Values Unit Note /
Test Condition
Min. Typ. Max.
IN+,IN- low input voltage VIN+L,VIN-L 30 % of VCC1
IN+,IN- high input voltage VIN+H,VIN-H 70––%of VCC1
IN+,IN- low input voltage VIN+L,VIN-L ––1.5V
IN+,IN- high input voltage VIN+H,VIN-H 3.5––V
IN- input current IIN- –70200μAVIN- = GND1
IN+ input current IIN+ –70200μAVIN+ = VCC1
Table 6 Gate Driver
Parameter Symbol Values Unit Note /
Test Condition
Min. Typ. Max.
High level output peak
current (source)
1EDI20N12AF
IOUT+,PEAK
2.0 4.0
–A
1)
IN+ = High,
IN- = Low,
VVCC2 = 15 V
1) voltage across the device V(VCC2 - OUT+) or V(OUT- - GND2) < VVCC2.
Low level output peak
current (sink)
1EDI20N12AF
IOUT-,PEAK
2.0 3.5
–A
1)
IN+ = Low,
IN- = Low,
VVCC2 = 15 V
Table 4 Voltage Supply (cont’d)
Parameter Symbol Values Unit Note /
Test Condition
Min. Typ. Max.
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Electrical Parameters
Data Sheet 17 Rev. 2.0, 2015-06-01
5.3.4 Short Circuit Clamping
5.3.5 Dynamic Characteristics
Dynamic characteristics are measured with VVCC1 = 5 V and VVCC2 = 15 V.
Table 7 Short Circuit Clamping
Parameter Symbol Values Unit Note /
Test Condition
Min. Typ. Max.
Clamping voltage (OUT+)
(VOUT - VVCC2)
VCLPout 0.9 1.3 V IN+ = High,
IN- = Low,
OUT = High
IOUT = 500 mA
pulse test,
tCLPmax = 10 μs)
Table 8 Dynamic Characteristics
Parameter Symbol Values Unit Note /
Test Condition
Min. Typ. Max.
Input IN to output propa-
gation delay ON
TPDON 90 115 137 ns CLOAD = 100 pF
VIN+ = 50%,
VOUT=50% @ 25°C
Input IN to output propa-
gation delay OFF
TPDOFF 100 120 143 ns
Input IN to output propa-
gation delay distortion
(TPDOFF - TPDON)
TPDISTO -15 5 25 ns
Input pulse suppression
IN+, IN-
TMININ+,
TMININ-
30 40 ns
IN input to output
propagation delay ON
variation due to temp
TPDONt ––10ns
1)CLOAD = 100 pF
VIN+ = 50%,
VOUT=50%
1) The parameter is not subject to production test - verified by design/characterization
IN input to output
propagation delay OFF
variation due to temp
TPDOFFt ––10ns
1)CLOAD = 100 pF
VIN+ = 50%,
VOUT=50%
IN input to output
propagation delay
distortion variation due to
temp (TPDOFF-TPDON)
TPDISTOt ––4ns
1)CLOAD = 100 pF
VIN+ = 50%,
VOUT=50%
Rise time TRISE 5 1020nsCLOAD = 1 nF
VL 20%, VH 80%
Fall time TFALL 4919nsCLOAD = 1 nF
VL 20%, VH 80%
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Electrical Parameters
Data Sheet 18 Rev. 2.0, 2015-06-01
5.3.6 Active Shut Down
Table 9 Active Shut Down
Parameter Symbol Values Unit Note /
Test Condition
Min. Typ. Max.
Active shut down voltage VACTSD
1)
1) Referred to GND2
–2.22.5VIOUT-/IOUT-,PEAK=0.1,
VCC2 open
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Timing Diagramms
Data Sheet 19 Rev. 2.0, 2015-06-01
6Timing Diagramms
Figure 6 Propagation Delay, Rise and Fall Time
Figure 7 Typical Switching Behavior
Figure 8 UVLO Behavior
IN+
OUT
T
PDON
50 %
50 %
T
PDOFF
20 %
80 %
T
RISE
T
FALL
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Package Outlines
Data Sheet 20 Rev. 2.0, 2015-06-01
7 Package Outlines
Figure 9 PG-DSO-8-51 (Plastic (Green) Dual Small Outline Package)
1EDI EiceDRIVER™ Compact
1EDI20N12AF
Application Notes
Data Sheet 21 Rev. 2.0, 2015-06-01
8 Application Notes
8.1 Reference Layout for Thermal Data
The PCB layout shown in Figure 10 represents the reference layout used for the thermal characterisation. Pin 4
(GND1) and pin 8 (GND2) require each a ground plane of 100 mm² for achieving maximum power dissipation. The
1EDI20N12AF is conceived to dissipate most of the heat generated through these pins.
The thermal coefficient junction-top (Ψth,jt) can be used to calculate the junction temperature at a given top case
temperature and driver power dissipation:
Figure 10 Reference Layout for Thermal Data (Copper thickness 35 μm)
8.2 Printed Circuit Board Guidelines
The following factors should be taken into account for an optimum PCB layout.
Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits.
The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained
to increase the effective isolation and to reduce parasitic coupling.
In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept
as short as possible.
TjΨth jt,PDTtop
+=
Published by Infineon Technologies AG
www.infineon.com
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Infineon:
1EDI20N12AFXUMA1 1EDI20N12AF