GE Data Sheet
KW010/015/020/025 Series Power Modules
36 – 75Vdc Input; 1.2 to 5.0Vdc Output; 10 to 25A Output current
October 5, 2015 ©2012 General Electric Company. All rights reserved. Page 13
Feature Description
Remote On/Off
Two remote on/off options are available. Positive logic
turns the module on during a logic high voltage on the
ON/OFF pin, and off during a logic low. Negative logic
remote On/Off, device code suffix “1”, turns the module
off during a logic high and on during a logic low.
ON/OFF
Vin+
Vin-
Ion/off
Von/off
Vout+
TRIM
Vout-
Figure 40. Remote On/Off Implementation.
To turn the power module on and off, the user must
supply a switch (open collector or equivalent) to control
the voltage (Von/off) between the ON/OFF terminal and the
VIN(-) terminal (see Figure 40). Logic low is
0V ≤ Von/off ≤ 1.2V. The maximum Ion/off during a logic low
is 1mA, the switch should be maintain a logic low level
whilst sinking this current.
During a logic high, the typical maximum Von/off
generated by the module is 15V, and the maximum
allowable leakage current at Von/off = 5V is 1μA.
If not using the remote on/off feature:
For positive logic, leave the ON/OFF pin open.
For negative logic, short the ON/OFF pin to VIN(-).
Remote Sense
Remote sense minimizes the effects of distribution losses
by regulating the voltage at the remote-sense
connections (See Figure 41). The voltage between the
remote-sense pins and the output terminals must not
exceed the output voltage sense range given in the
Feature Specifications table:
[VO(+) – VO(–)] – [SENSE(+) – SENSE(–)] 0.5 V
Although the output voltage can be increased by both
the remote sense and by the trim, the maximum
increase for the output voltage is not the sum of both.
The maximum increase is the larger of either the remote
sense or the trim.
The amount of power delivered by the module is defined
as the voltage at the output terminals multiplied by the
output current. When using remote sense and trim, the
output voltage of the module can be increased, which at
the same output current would increase the power
output of the module. Care should be taken to ensure
that the maximum output power of the module remains
at or below the maximum rated power (Maximum rated
power = Vo,set x Io,max).
VO(+)
SENSE(+)
SENSE(–)
VO(–)
VI(+)
VI(-)
IOLOAD
CONTACT AND
DISTRIBUTION LOSS
SUPPLY II
CONTACT
RESISTANCE
Figure 41. Circuit Configuration for remote sense .
Input Undervoltage Lockout
At input voltages below the input undervoltage lockout
limit, the module operation is disabled. The module will
only begin to operate once the input voltage is raised
above the undervoltage lockout turn-on threshold,
VUV/ON.
Once operating, the module will continue to operate until
the input voltage is taken below the undervoltage turn-
off threshold, VUV/OFF.
Overtemperature Protection
To provide protection under certain fault conditions, the
unit is equipped with a thermal shutdown circuit. The
unit will shutdown if the thermal reference point Tref
(Figure 43), exceeds 125oC (typical), but the thermal
shutdown is not intended as a guarantee that the unit
will survive temperatures beyond its rating. The module
can be restarted by cycling the dc input power for at
least one second or by toggling the remote on/off signal
for at least one second. If the auto-restart option (4) is
ordered, the module will automatically restart upon cool-
down to a safe temperature.
Output Overvoltage Protection
The output over voltage protection scheme of the
modules has an independent over voltage loop to
prevent single point of failure. This protection feature
latches in the event of over voltage across the output.
Cycling the on/off pin or input voltage resets the latching
protection feature. If the auto-restart option (4) is
ordered, the module will automatically restart upon an
internally programmed time elapsing.
Overcurrent Protection
To provide protection in a fault (output overload)
condition, the unit is equipped with internal