CAT25010, CAT25020, CAT25040
www.onsemi.com
5
Pin Description
SI: The serial data input pin accepts op−codes, addresses
and data. In SPI modes (0,0) and (1,1) input data is latched
on the rising edge of the SCK clock input.
SO: The serial data output pin is used to transfer data out of
the device. In SPI modes (0,0) and (1,1) data is shifted out
on the falling edge of the SCK clock.
SCK: The serial clock input pin accepts the clock provided
by the host and used for synchronizing communication
between host and CAT25010/20/40.
CS: The chip select input pin is used to enable/disable the
CAT25010/20/40. When CS is high, the SO output is
tri−stated (high impedance) and the device is in Standby
Mode (unless an internal write operation is in progress).
Every communication session between host and
CAT25010/20/40 must be preceded by a high to low transition
and concluded with a low to high transition of the CS input.
WP: The write protect input pin will allow all write
operations to the device when held high. When WP pin is
tied low all write operations are inhibited.
HOLD: The HOLD input pin is used to pause transmission
between host and CAT25010/20/40, without having to
retransmit the entire sequence at a later time. To pause,
HOLD must be taken low and to resume it must be taken
back high, with the SCK input low during both transitions.
When not used for pausing, the HOLD input should be tied
to VCC, either directly or through a resistor.
Functional Description
The CAT25010/20/40 devices support the Serial
Peripheral Interface (SPI) bus protocol, modes (0,0) and
(1,1). The device contains an 8−bit instruction register. The
instruction set and associated op−codes are listed in Table 9.
Reading data stored in the CAT25010/20/40 is
accomplished by simply providing the READ command and
an address. Writing to the CAT25010/20/40, in addition to
a WRITE command, address and data, also requires
enabling the device for writing by first setting certain bits in
a Status Register, as will be explained later.
After a high to low transition on the CS input pin, the
CAT25010/20/40 will accept any one of the six instruction
op−codes listed in Table 9 and will ignore all other possible
8−bit combinations. The communication protocol follows
the timing from Figure 2.
Table 9. INSTRUCTION SET (Note 13)
Instruction Opcode Operation
WREN 0000 0110 Enable Write Operations
WRDI 0000 0100 Disable Write Operations
RDSR 0000 0101 Read Status Register
WRSR 0000 0001 Write Status Register
READ 0000 X011 Read Data from Memory
WRITE 0000 X010 Write Data to Memory
13.X = 0 for CAT25010, CAT25020. X = A8 for CAT25040
Figure 2. Synchronous Data Timing
CS
SCK
SI
SO
tCNH
tCSS tWH tWL
tSU
tH
HI−Z
VALID
IN
VALID
OUT
tCSH
tRI
tFI
tVtV
tHO
tCNS
tCS
HI−Z
tDIS
Status Register
The Status Register, as shown in Table 10, contains a
number of status and control bits.
The RDY (Ready) bit indicates whether the device is busy
with a write operation. This bit is automatically set to 1 during
an internal write cycle, and reset to 0 when the device is ready
to accept commands. For the host, this bit is read only.
The WEL (Write Enable Latch) bit is set/reset by the
WREN/WRDI commands. When set to 1, the device is in a
Write Enable state and when set to 0, the device is in a Write
Disable state.
The BP0 and BP1 (Block Protect) bits determine which
blocks are currently write protected. They are set by the user
with the WRSR command and are non−volatile. The user is
allowed to protect a quarter, one half or the entire memory,
by setting these bits according to Table 11. The protected
blocks then become read−only.