LESHAN RADIO COMPANY, LTD.
O8–1/4
1
3
2
MMBT2907LT1
MMBT2907ALT1
CASE 318–08, STYLE 6
SOT–23 (TO–236AB)
General Purpose Transistor
PNP Silicon
MAXIMUM RATINGS
Rating Symbol 2907 2907A Unit
Collector–Emitter V oltage V CEO –40 –60 Vdc
Collector–Base V oltage V CBO –60 Vdc
Emitter–Base V oltage V EBO –5.0 Vdc
Collector Current — Continuous I C–600 mAdc
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Total Device Dissipation FR– 5 Board, (1) PD225 mW
TA = 25°C
Derate above 25°C 1.8 mW/°C
Thermal Resistance, Junction to Ambient RθJA 55 6 °C/W
Total Device Dissipation PD300 mW
Alumina Substrate, (2) TA = 25°C
Derate above 25°C 2.4 mW/°C
Thermal Resistance, Junction to Ambient RθJA 417 °C/W
Junction and Storage Temperature TJ , Tstg –55 to +150 °C
DEVICE MARKING
MMBT2907LT1 = M2B, MMBT2907ALT1 = 2F
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)
Characteristic Symbol Min Max Unit
OFF CHARACTERISTICS
Collector–Emitter Breakdown V oltage(3) V (BR)CEO Vdc
(I C = –10 mAdc, I B = 0) MMBT2907 –40
MMBT2907A –60
Collector–Emitter Breakdown V oltage(I C = –10 µAdc, I E = 0) V (BR)CBO –60 Vdc
Emitter–Base Breakdown V oltage(I E = –10 µAdc, I C = 0) V (BR)EBO –5.0 Vdc
Collector Cutoff Current( V CB = –30Vdc, I BE(OFF) = –0.5Vdc) I CEX –50 nAdc
Collector Cutoff Current I CBO µAdc
( V CB = –50Vdc, I E = 0) MMBT2907 –0.020
MMBT2907A –0.010
( V CB = –50Vdc, I E = 0, T A =125°C ) MMBT2907 –20
MMBT2907A –10
Base Current( V CE = –30Vdc, V EB(off)= –0.5Vdc ) I B –50 nAdc
1. FR–5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
3. Pulse Test: Pulse Width
<
300 µs, Duty Cycle
<
2.0%.
2
EMITTER
3
COLLECTOR
1
BASE
Value
LESHAN RADIO COMPANY, LTD.
O8–2/4
MMBT2907LT1 MMBT2907ALT1
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) (Continued)
Characteristic Symbol Min Max Unit
ON CHARACTERISTICS
DC Current Gain hFE ––
(I C = –0.1mAdc, V CE = –10 Vdc) MMBT2907 35 ––
MMBT2907A 75 ––
(I C =–1.0mAdc, V CE = –10 Vdc) MMBT2907 50 ––
MMBT2907A 100 ––
(I C = –10 mAdc, V CE = –10Vdc) MMBT2907 75 ––
MMBT2907A 100 ––
(I C = –150mAdc, V CE =–10 Vdc)(3) MMBT2907 –– ––
MMBT2907A 100 300
(I C = –500mAdc, V CE =–10 Vdc)(3) MMBT2907 30 ––
MMBT2907A 50 ––
Collector–Emitter Saturation V oltage(3) VCE(sat) Vdc
(I C = –150mAdc, I B = –15 mAdc) –– –0.4
(I C = –500 mAdc, I B = –50 mAdc) –– –1.6
Base–Emitter Saturation V oltage(3) V BE(sat) Vdc
(I C = –150mAdc, I B = –15 mAdc) –– –1.3
(I C = –500mAdc, I B = –50 mAdc) –– –2.6
SMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product(3),(4) f T200 –– MHz
(I C = –50mAdc, V CE= –20Vdc, f = 100MHz)
Output Capacitance
(V CB = –10 Vdc, I E = 0, f = 1.0 MHz) C obo –– 8.0 pF
Input Capacitance C ibo –– 30 pF
(V EB = –2.0Vdc, I C = 0, f = 1.0 MHz)
SWITCHING CHARACTERISTICS
Turn–On T ime (V CC = –30 Vdc, t on —45
Delay T ime I C = –150 mAdc, I B1 = –15 mAdc) t d—10ns
Rise T ime t r—40
Fall T ime (V CC = –6.0 Vdc, t f—30
Storage T ime I C = –150 mAdc,I B1 = I B2 = 15 mAdc) t s—80ns
T urn–Of f Time t off 100
3. Pulse Test: Pulse Width
<
300 µs, Duty Cycle
<
2.0%.
4. f T is defined as the frequency at which |h f e | extrapolates to unity.
Figure 1. Delay and Rise Time Test Circuit
0 0
–16 V
200 ns
50
1.0 k
200
–30 V
T O OSCILLOSCOPE
RISE TIME
<
5.0 ns
+15 V –6.0 V
1.0 k 37
50 1N916
1.0 k
200 ns
–30 V
TO OSCILLOSCOPE
RISE TIME
<
5.0 ns
INPUT
Z O= 50
PRF = 150 PPS
RISE TIME
<
2.0 ns
P.W.
<
200 ns
INPUT
Z o = 50
PRF = 150 PPS
RISE TIME
<
2.0 ns
P.W.
<
200 ns
Figure 2. Storage and Fall Time Test Circuit
LESHAN RADIO COMPANY, LTD.
O8–3/4
I C , COLLECTOR CURREN (mA)
Figure 3. DC Current Gain
MMBT2907LT1 MMBT2907ALT1
T
J
= 125°C
h FE , NORMALIZED CURRENT GAIN
V CE , COLLECTOR– EMITTER
VOLTAGE (VOLTS)
I
C
= –1.0 mA
t
r
I B , BASE CURRENT (mA)
Figure 4. Collector Saturation Region
I C , COLLECTOR CURRENT
Figure 5. Turn–On Time
I C , COLLECTOR CURRENT (mA)
Figure 6. Turn–Off Time
t, TIME (ns)
t, TIME (ns)
25°C
–55°C
V
CE
= –1.0 V
V
CE
= –10 V
–10 mA –100 mA –500 mA
2.0 V
t
d
@ V
BE(off)
= 0 V
V
CC
= –30 V
I
C
/I
B
= 10
T
J
= 25°C t
f
t ’
s
= t
s
– 1/8 t
f
V
CC
= –30 V
I
C
/I
B
= 10
I
B1
= I
B2
T
J
= 25°C
–0.005–0.01 –0.02 –0.03 –0.05 –0.7 –0.1 –0.2 –0.3 –0.5 –0.7 –1.0 –2.0 –3.0 –5.0 –7.0 –10 –20 –30 –50
–0.1 –0.2 –0.3 –0.5 –0.7 –1.0 –2.0 –3.0 –5.0 –7.0 –10 –20 –30 –50 –70 –100 –200 –300 –500
3.0
2.0
1.0
0.7
0.5
0.3
0.2
–1.0
–0.8
–0.6
–0.4
–0.2
0
–5.0–7.0 –10 –20 –30 –50 –70 –100 –200 –300 –500
300
200
100
70
50
30
20
10
7.0
5.0
3.0
–5.0–7.0 –10 –20 –30 –50 –70 –100 –200 –300 –500
300
200
100
70
50
30
20
10
7.0
5.0
3.0
TYPICAL CHARACTERISTICS
LESHAN RADIO COMPANY, LTD.
O8–4/4
MMBT2907LT1 MMBT2907ALT1
C eb
TYPICAL SMALL–SIGNAL CHARACTERISTICS
NOISE FIGURE
V CE = 10 Vdc, T A = 2C
NF, NOISE FIGURE (dB)
f=1.0 kHz
50 100 200 500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k
I
C
= –1.0 mA, R
S
= 430
–500 µA, R S= 560
–50 µA, R S= 2.7 k
–100 µA, R S= 1.6 k
f, FREQUENCY (kHz)
Figure 7. Frequency Effects R S, SOURCE RESISTANCE ()
Figure 8. Source Resistance Effects
REVERSE VOLTAGE (VOLTS)
Figure 9. Capacitances
I C , COLLECTOR CURRENT (mA)
Figure 10. Current–Gain — Bandwidth Product
I C , COLLECTOR CURRENT (mA)
Figure 11. “On” Voltage I C , COLLECTOR CURRENT (mA)
Figure 12. Temperature Coefficients
T
J
= 25°C
f T , CURRENT– GAIN — BANDWIDTH
PRODUCT (MHz)
COEFFICIENT (mV/ ° C)
R θVB for V BE
I C = –50µA
–100 µA
–500 µA
–1.0 mA
R
S
=OPTIMUM SOURCE RESISTANCE
–0.1 –0.2 –0.3 –0.5 –1.0 –2.0 –3.0 –5.0 –10 –20 –30 –1.0 –2.0 –5.0 –10 –20 50 –100 –200 –500 –1000
–0.1 –0.2 –0.5 –1.0 –2.0 –5.0 –10 –20 –50 –100–200 –500
+0.5
0
–0.5
– 1.0
–1.5
–2.0
–2.5
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
10
8.0
6.0
4.0
2.0
0
10
8.0
6.0
4.0
2.0
0
NF, NOISE FIGURE (dB)
C cb
30
20
10
7.0
5.0
3.0
2.0
C, CAPACITANCE(pF)
400
300
200
100
80
60
40
30
20
VCE=–20 V
T J= 25°C
V
BE(sat)
@ I
C
/I
B
= 10
V
CE(sat)
@ I
C
/I
B
= 10
V
BE(on)
@ V
CE
= –10 V
R
θVC
for V
CE(sat)
–0.1 –0.2 –0.5 –1.0 –2.0 –5.0 –10 –20 –50 –100 –200 –500
–1.0
–0.8
–0.6
– 0.4
–0.2
0
V, VOLTAGE (VOLTS)