Hardware Design Guide, Revision 1
May 26, 2006
TMXF28155 Supermapper
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
1 Introduction
The last issue of this data sheet was Octo be r 13 , 2003 . A cha ng e his to ry ca n be found in Section 9, Change History, on
page 63. Red change bars have been installed on all text, figures, and tables that were added or changed. All changes to
the text are highlig hted in red. Changes within figu res, and the figure title itself, ar e highlighted in red, if feasible. Fo rmatting
or grammatical changes have not been highlighted. Deleted sections, paragraphs, figures, or tables will be specifically
mentioned.
This document is based on the June 2002 Supermapper data sheet with some clarifications. The documentation package
for the TMXF28155 Supermapper 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 system chip consists of the follow-
ing documents:
The Supermapper Family Register Description and the Supermapper Family System Design Guide. These two docu-
ments are available on a password-protected website.
The Supermapper Product Des cription , and the Supermapper Hardware Design Guide (this document). These two doc-
uments are available on the public website shown below.
To access related docum ents, including the do cuments mentio ned above, please go to the following public website, or con-
tact your Agere representative (see the last page of this document).
http://www.agere.com/enterprise_metro_access/mappers_muxes.html
This document describe s the hardware interfaces to the Age re Systems Inc. TMXF28155 Supermapper device. Information
relevant to the us e of th e de vice in a boa r d desig n is covered. Pin descriptions, dc electrical characteristics, timing
diagrams, ac timing parameters, packaging, and operating con d i tion s ar e inc luded.
Figure 1-1. Supermapper Block Diagram and High-Level Interface Definition
High Speed IF
M13
MUX
TMUX
STS3/
STM1/
STS1/
AU-3
FRM
x28/x21
DS1/J1/E1
x28/x21
VT/TU
VTMPR
XC
DS1/J1/E1
DS2
DS3
TPG/TPM
x28/x21
DS1/E1
DJA
CDR
SPEMPR
STS1/AU3/AU4
MPU
Interface & Control
System Interfaces
Switching Modes:
8PSB - x672 DS0/ E0
4CHI - x672 DS0 /E0
Transport Modes:
4DS1/J1/E1 (X 29) - x28/x21 + prot.
4DS2 - x7 + prot.
NSMI Modes:
4DS1/J1/E1 x28/x21
4DS3 - x1
4STS1 - x1
(x1) DS3
Multifunction System I/O
Telecom Bus
(to 2 addition al Supermappers)
155.52 Mbits/s STS-3/STM-1
51.84 Mbits/s STS-1/AU-3
MSP 1 + 1
155.52 Mbits /s STS-3/STM-1
51.84 Mbits/s STS-1/AU-3
Clock/Sync
LOPOH
TOAC POAC
MPU IF
DS2
AIS Clk
10
TCB & TDL
RCB & RDL
6
6
6
8
4
47
6148
6
30 DS3 PLL IF
8PLL Interface
DS1 & E1
XClks
2
EHB 10/17/03 Supermapper
2
1
Table of Contents
Contents Page
2Agere Systems Inc.
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
1 Introduction ........................................................................................................................................................................1
2 Pin Information ...................................................................................................................................................................6
2.1 456-Pin PBGA Pin Diagram ........................................................................................................................................6
2.2 Pin Assignments for 456-Pin PBGA by Pin Number Order .........................................................................................7
2.3 Pin Assignments for 456-Pin PBGA by Signal Name ............... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .......................10
2.4 Pin Descriptions ..... ................... ... .................... ... ................... ... .... ................... ... .......................................................13
2.4.1 High-Speed I/O Pin Descriptions .....................................................................................................................13
2.4.2 Protection Switch I/O Pin Description ..............................................................................................................14
2.4.3 Telecom Bus (Low-Speed I/O) Pin Description ................................................................................................14
2.4.4 TOAC and POAC ............... ... .................... ................... .................... ... ................... ..........................................17
2.4.5 Miscellaneous Signals ........... .... ................... ... .................... ... ... ................... .... ................................................18
2.4.6 DS3 Port ................... .... ................... ................... .................... ................... .......................................................18
2.4.7 Low-Order Path Overhead Access Channel ....................................................................................................21
2.4.8 Framer PLL .............. .... ................... ................... .................... ... ................... ....................................................25
2.4.9 Test Pins ............... ... .................... ................... ... .................... ................... .......................................................28
3 Pin Assignment Matrix .....................................................................................................................................................30
4 Electrical Characteristics .................................................................................................................................................33
4.1 Absolute Maximum Ratings .......................................................................................................................................33
4.2 Thermal Parameters (Definitions and Values) . ..........................................................................................................33
4.3 Reliability ........................ ... .................... ... ... .................... ... ................... .... ... .............................................................34
4.4 Handling Precautions ..... ... .................... ... ... .... ................... ... ... .... ................... ... ... .... ................................................35
4.5 Operating Conditions ......... .... ... ... ... .... ... ... ................... .... ... ... .................... ... ... ... ... ....................................................35
4.5.1 Power Consumption .............. .... ... ... ... .... ................... ... .................... ... ... ................... .... ...................................35
4.6 Logic Interface Characteristic s ..................................................................................................................................36
4.7 LVDS Interface Charact eristic s ................ ... .... ... ... ... ... .... ... ................... .... ... ................... ... .......................................37
5 Timing Characteristics .....................................................................................................................................................38
5.1 TMUX Block Timing ...................................................................................................................................................38
5.2 DS3 Timing ............... ... ... ... .... ... ................... .... ................... ... ... .................... ... ..........................................................42
5.3 M13 Timing ............... ... ... ... .... ... ................... .... ................... ... ... .................... ... ..........................................................43
5.4 VT Mapper Timing .....................................................................................................................................................44
5.4.1 VT Mapper Lower-Order Path Overhead Interface Timing .............. ... ... ... .................... ... ... ... ... .... ... ... .............44
5.5 Concentration Highway (CHI) Timing ........................................................................................................................45
5.6 Parallel System Bus Timing .......................................................................................................................................46
5.7 NSMI Timing (6-Pin) (to/from Framer) ............................. ... ... ... .... ... ... ... .... ... ... ... ... .... ................................................47
5.8 NSMI Timing (7-Pin) (to/from Framer) ............................. ... ... ... .... ... ... ... .... ... ... ... ... .... ................................................47
5.9 CHI Interface Timing ....... ... .... ... ... .................... ... ... ... .................... ... ... ... .................... ... .............................................48
5.10 PSB Interface Timing ...............................................................................................................................................49
5.11 Framer DS1/E1 Interface Timing .............................................................................................................................50
5.12 DJA DS1/E1 Interface Timing ..................................................................................................................................51
5.13 M13 DS1/E1 Interface Timing .................................................................................................................................52
5.14 Microprocessor Interface Timing .............................................................................................................................53
5.14.1 Synchronous Mode ........................................................................................................................................53
5.14.2 Asynchronous Mode ......................................................................................................................................55
5.15 General-Purpose Interface Timing ..........................................................................................................................58
6 Telecom Bus Operation ...................................................................................................................................................59
6.1 Introduction ........ .... ... ................... .................... ................... ................... ....................................................................59
6.2 Telecom Bus Pin Descriptions ............................ ............................. ............................. .............................................59
6.3 Telecom Bus Timing Diagrams ... .................... ... ... ... ... .... ... ................... .... ... ... ... ... .... ... .............................................60
7 Ordering Information .... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .................... ... ... .... ... .............................................................61
8 Outline Diagram ...............................................................................................................................................................62
8.1 456-Pin PBGA ....... ... ................... ... .... ................... ... .................... ... ... ................... .... ................................................62
9 Change History ................................................................................................................................................................63
9.1 Navigating Through an Adobe Acrobat ® Document ................................................................................................63
Table of Contents (continued)
Tables Page
Agere Systems Inc . 3
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Table 2-1. Pin/Name..... .... ... ... ... ... .... ... ................... .... ... ... ................... .... ... ... ................... ......................................................7
Table 2-2. Pin Assignments for 456-Pin PBGA by Signal Name ... ................... .................... ................... .............................10
Table 2-3. High-Speed I/O Pin Descriptions.........................................................................................................................13
Table 2-4. Protection Switch I/O Pin Description........ ... ................... .................... ................... .............................................14
Table 2-5. Telecom Bus (Low-Speed I/O) Pin Description...................................................................................................15
Table 2-6. TOAC and POAC................................................................................................................................................17
Table 2-7. Miscellaneous Signals.........................................................................................................................................18
Table 2-8. DS3 Port..............................................................................................................................................................19
Table 2-9. DS3 Port C-Bit and Datalink Access............... ... .................... ... ... ................... .... ................................................19
Table 2-10. M13 Multiplexer/Demultiplexer Receive Section...............................................................................................20
Table 2-11. Reference Clocks................... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ................... .... ... .............................................20
Table 2-12. Low-Order Path Overhead Access Channel.....................................................................................................21
Table 2-13. Multifunction System Interface..........................................................................................................................22
Table 2-14. Framer PLL ...... ... ................... .... ................... ... .................... ... ... ................... .... ................................................25
Table 2-15. Microprocessor Interfaces................ ... .... ... ... ... .................... ... ... ... .... ... ... ..........................................................26
Table 2-16. General-Purpose Interface................................................................................................................................27
Table 2-17. Test Pins ....... ... ... ... ... .... ... ... ... .... ... ... ... .... ................... ... ... .... ................... ... ... ....................................................28
Table 2-18. LVDS Control Pins ........ ... ... ... .... ... ... ... .... ................... ... ... .... ... ... ... .... ................... .............................................29
Table 2-19. Analog Power and Ground Signals............................ ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ................................29
Table 3-1. Pin Matrix ............................................................................................................................................................30
Table 4-1. Absolute Maximum Ratings.................................................................................................................................33
Table 4-2. Thermal Parameter Values .................................................................................................................................34
Table 4-3. Reliability Data ....................................................................................................................................................34
Table 4-4. Handling Precaution..................... ... ... ... .... ... ... ... .................... ... ... ... .... ................... .............................................35
Table 4-5. Recommended Operating Conditions................... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ................................35
Table 4-6. Power Consumption............................................................................................................................................35
Table 4-7. Logic Interface Characteristics............................................................................................................................36
Table 4-8. LVDS Interface Characteristics...........................................................................................................................37
Table 5-1. High-Speed Input Clock Specifications...............................................................................................................38
Table 5-2. Output Clock Specifications ................................................................................................................................39
Table 5-3. Input Timing Specifications .................................................................................................................................40
Table 5-4. Output Timing Specifications...............................................................................................................................41
Table 5-5. DS3 Input Clock Specifications ...........................................................................................................................42
Table 5-6. Input Timing Specifications .................................................................................................................................42
Table 5-7. Output Timing Specifications...............................................................................................................................42
Table 5-8. M13 Clock Specifications....................................................................................................................................43
Table 5-9. Input Timing Specifications .................................................................................................................................43
Table 5-10. Output Timing Specifications.............................................................................................................................43
Table 5-11. VT Mapper Receive Path Overhead Detailed Timing .......................................................................................44
Table 5-12. CHI Transmit Timing Characteristics.................................................................................................................45
Table 5-13. CHI Receive Timing Characteristics..................................................................................................................45
Table 5-14. PSB Interface Transmit Timing Characteristics.................................................................................................46
Table 5-15. PSB Interface Receive Timing Characteristics..................................................................................................46
Table 5-16. NSMI Input/Output Clock Specifications ...........................................................................................................47
Table 5-17. Input Timing Specifications .... .... .......................................................................................................................47
Table 5-18. Output Timing Specifications.............................................................................................................................47
Table 5-19. NSMI Output Clock Specifications ....................................................................................................................47
Table 5-20. NSMI Input Timing Specifications .....................................................................................................................48
Table 5-21. NSMI Output Timing Specifications...................................................................................................................48
Table 5-22. CHI Interface Clock Specifications....................................................................................................................48
Table 5-23. CHI Interface Input Timing Specifications.........................................................................................................48
Table 5-24. CHI Interface Output Timing Specifications ............... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ................................48
Table 5-25. PSB Interface Clock Specifications...................................................................................................................49
Table 5-26. PSB Interface Input Timing Specifications........................................................................................................49
Table 5-27. PSB Interface Output Timing Specifications .....................................................................................................49
Table of Contents (continued)
Tables Page
4Agere Systems Inc.
Hardware Design Guide, Revision 1
May 26, 2006
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
TMXF28155 Supermapper
Table 5-28. Framer DS1/E1 Interface Clock Specifications.................................................................................................50
Table 5-29. Framer DS1/E1 Interface Input Timing Specifications ......................................................................................50
Table 5-30. Framer DS1/E1 Interface Output Timing Specifications....................................................................................50
Table 5-31. DJA DS1/E1 Interface Clock Specifications .....................................................................................................51
Table 5-32. DJA DS1/E1 Interface Input Timing Specifications...........................................................................................51
Table 5-33. DJA DS1/E1 Interface Output Timing Specifications ........................................................................................51
Table 5-34. M13 DS1/E1 Interface Clock Specifications ....... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... . ............................52
Table 5-35. M13 DS1/E1 Interface Input Timing Specifications...........................................................................................52
Table 5-36. M13 DS1/E1 Interface Output Timing Specifications........................................................................................52
Table 5-37. Microprocessor Interface Synchronous Write Cycle Specifications ..................................................................53
Table 5-38. Microprocessor Interface Synchronous Read Cycle Specifications........ ... ... .... ... ... ... .... ... ... ... ... .... ... ................54
Table 5-39. Microprocessor Interface Asynchronous Write Cycle Specifications ......... ... .... ... ... ... .... ... ... ... ... .... ... ... .............56
Table 5-40. Microprocessor Interface Asynchronous Read Cycle Specifications ................................................................58
Table 5-41. Input Timing Specifications .... .... .......................................................................................................................58
Table 5-42. Output Timing Specifications.............................................................................................................................58
Table 6-1. Telecom Bus Pins ...............................................................................................................................................59
Table 9-1. Document Changes.............................................................................................................................................63
Table of Contents (continued)
Figures Page
Agere Systems Inc . 5
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Figure 1-1. Supermapper Block Diagram and High-Level Interface Definition..... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ..................1
Figure 2-1. Pin Diagram of 456-Pin PBGA (Bottom View) .....................................................................................................6
Figure 2-2. Protection Switch ....... .... ... ... ... .................... ... ... ... .... ... ... .................... ... ... ... ... .... ................................................14
Figure 2-3. DS1/E1 to DXC Block Diagram............ .... ... ... ... .................... ................... ................... .... ...................................21
Figure 4-1. Single-Ended Input Specification.......................................................................................................................36
Figure 5-1. Generic Clock Timing.........................................................................................................................................38
Figure 5-2. Generic Interfac e Data Timing.................... ... ... ... .... ... ................... .................... ................................................40
Figure 5-3. DS3DATAOUTCLK Timing.................. .... ... ... ... ... .................... ... ... .... ... ... ... ... .... ... ... ... .... ...................................42
Figure 5-4. VT Mapper Transmit Path Overhead Detailed Timing.......................................................................................44
Figure 5-5. VT Mapper Receive Path Overhead Detailed Timing........... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .......................44
Figure 5-6. CHI Transmit I/O Timing ....................................................................................................................................45
Figure 5-7. CHI Receive I/O Timing .... ... .................... ... ... ... ... .................... ... ... .... ................... ... ..........................................45
Figure 5-8. Parallel System Bus Interface Transmit I/O Timing ...........................................................................................46
Figure 5-9. Parallel System Bus Interface Receiv e I/O Timing ..... ... .................... ... ... ................... .... ...................................46
Figure 5-10. Microprocessor Interface Synchronous Write Cycle (MPMODE (Pin AD17) = 1)............................................53
Figure 5-11. Microprocessor Interface Synchronous Read Cycle (MPMODE (Pin AD17) = 1)............................................54
Figure 5-12. Microprocessor Interface Asynchronous Write Cycle Description (MPMODE (Pin AC18) = 0).......................55
Figure 5-13. Microprocessor Interface Asynchronous Read Cycle (MPMODE (Pin AC18) = 0)..........................................57
Figure 6-1. Receive Telecom Bus Timing Diagram for STS-3/STM-1 Signals. .... ... ... ... ... .................... ... ... ... .... ... ... .............60
Figure 6-2. Transmit Telecom Bus Timing Diagram for STS-3/STM-1 Signals....................................................................60
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
66 Agere Systems Inc.
2 Pin Information
2.1 456-Pin PBGA Pin Diagram
The TMXF28155 Supermapper is housed in a 456-pin plastic ball grid array. Figure 2-1 shows the ball assignment viewed
from the top of the package. The pins are spaced on a 1.0 mm pitch.
5-8931(F)
Figure 2-1. Pin Diagram of 456-Pin PBGA (Bottom View)
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
A1
BALL
CORNER
12345678910 11 12 1314 15 16 17 18 19
20
21 22
23
24 25 26
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 7
2.2 Pin Assignments for 456-Pin PBGA by Pin Number Order
Table 2-1. Pin/Name
Pin Signal Name
A1 VDD
A2 VSS
A3 LINERXDATA17
A4 LINERXDATA18
A5 VDD
A6 VSS
A7 LINERXDATA21
A8 LINERXSYNC23
A9 LINERXCLK24
A10 VDD
A11 VSS
A12 LINERXDATA27
A13 LINERXSYNC29
A14 LINETXDATA1
A15 LINETXSYNC3
A16 VSS
A17 VDD
A18 LINETXCLK6
A19 LINETXDATA7
A20 LINETXSYNC9
A21 VSS
A22 VDD
A23 LINETXSYNC12
A24 LINETXSYNC13
A25 VSS
A26 VDD
B1 VSS
B2 LINERXCLK15
B3 LINERXSYNC18
B4 LINERXSYNC19
B5 LINERXSYNC20
B6 LINERXDATA20
B7 LINERXSYNC22
B8 LINERXCLK23
B9 LINERXDATA24
B10 LINERXDATA25
B11 LINERXDATA26
B12 LINERXSYNC28
B13 LINERXCLK29
B14 LINETXCLK1
B15 LINETXDATA2
B16 LINETXSYNC4
B17 LINETXSYNC5
B18 LINETXSYNC6
B19 LINETXCLK7
B20 LINETXDATA8
B21 LINETXSYNC10
B22 LINETXDATA10
B23 LINETXDATA11
B24 LINETXDATA12
B25 LINETXCLK13
B26 VSS
C1 LINERXSYNC15
C2 LINERXDATA14
C3 LINERXCLK17
C4 LINERXCLK18
C5 LINERXCLK19
C6 LINERXCLK20
C7 LINERXCLK21
C8 LINERXDATA22
C9 LINERXSYNC24
C10 LINERXCLK25
C11 LINERXCLK26
C12 LINERXCLK27
C13 LINERXDATA28
C14 LINETXSYNC2
C15 LINETXCLK3
C16 LINETXCLK4
C17 LINETXCLK5
C18 LINETXDATA6
C19 LINETXSYNC8
C20 LINETXCLK9
C21 LINETXCLK10
C22 LINETXCLK11
C23 LINETXCLK12
C24 LINETXCLK14
C25 LINETXSYNC15
C26 LINETXDATA14
D1 LINERXSYNC14
D2 LINERXDATA13
D3 LINERXCLK14
D4 VSS
D5 LINERXDATA19
D6 LINERXSYNC21
D7 LINERXCLK22
D8 LINERXDATA23
D9 LINERXSYNC25
D10 LINERXSYNC26
D11 LINERXSYNC27
D12 LINERXCLK28
D13 LINERXDATA29
D14 LINETXSYNC1
D15 LINETXCLK2
D16 LINETXDATA3
Table 2-1. Pin/Name
Pin Signal Name D17 LINETXDATA4
D18 LINETXDATA5
D19 LINETXSYNC7
D20 LINETXCLK8
D21 LINETXDATA9
D22 LINETXSYNC11
D23 VSS
D24 LINETXCLK15
D25 LINETXSYNC16
D26 LINETXDATA15
E1 VDD
E2 LINERXDATA12
E3 LINERXCLK13
E4 LINERXSYNC13
E5 VDD
E6 LINERXSYNC17
E7 VSS
E8 TDLDATA
E9 TDLCLK
E10 DS2AISCLK
E11 VDD
E12 TCBDATA
E13 TCBCLK
E14 TCBSYNC
E15 RCBDATA
E16 VDD
E17 RCBCLK
E18 RCBSYNC
E19 RDLCLK
E20 VSS
E21 LINETXDATA13
E22 VDD
E23 LINETXDATA16
E24 LINETXCLK16
E25 LINETXSYNC17
E26 VDD
F1 VSS
F2 LINERXSYNC12
F3 LINERXCLK12
F4 LINERXDATA11
F5 LINERXDATA15
F22 LINETXSYNC14
F23 LINETXSYNC18
F24 LINETXCLK17
F25 LINETXDATA17
F26 VSS
G1 LINERXSYNC11
Table 2-1. Pin/Name
Pin Signal Name G2 LINERXDATA10
G3 LINERXCLK11
G4 LINERXCLK10
G5 VSS
G22 VSS
G23 LINETXCLK19
G24 LINETXCLK18
G25 LINETXSYNC19
G26 LINETXDATA18
H1 LINERXDATA9
H2 LINERXCLK9
H3 LINERXSYNC10
H4 LINERXSYNC9
H5 LINERXDATA16
H22 RDLDATA
H23 LINETXDATA20
H24 LINETXDATA19
H25 LINETXCLK20
H26 LINETXSYNC20
J1 LINERXCLK8
J2 LINERXSYNC8
J3 LINERXDATA8
J4 LINERXDATA7
J5 LINERXCLK16
J22 DS3DATAINCLK
J23 LINETXSYNC22
J24 LINETXSYNC21
J25 LINETXDATA21
J26 LINETXCLK21
K1 VDD
K2 LINERXSYNC7
K3 LINERXCLK7
K4 LINERXDATA6
K5 LINERXSYNC16
K22 DS3NEGDATAIN
K23 LINETXSYNC23
K24 LINETXCLK22
K25 LINETXDATA22
K26 VDD
L1 VSS
L2 LINERXSYNC6
L3 LINERXCLK6
L4 LINERXDATA5
L5 VDD
L11 VSS
L12 VSS
L13 VSS
Table 2-1. Pin/Name
Pin Signal Name
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
88 Agere Systems Inc.
L14 VSS
L15 VSS
L16 VSS
L22 VDD
L23 LINETXSYNC24
L24 LINETXCLK23
L25 LINETXDATA23
L26 VSS
M1 LINERXSYNC5
M2 LINERXDATA4
M3 LINERXCLK5
M4 LINERXCLK4
M5 SCAN_MODE
M11 VSS
M12 VSS
M13 VSS
M14 VSS
M15 VSS
M16 VSS
M22 DS3POSDATAIN
M23 LINETXCLK25
M24 LINETXCLK24
M25 LINETXSYNC25
M26 LINETXDATA24
N1 LINERXDATA3
N2 LINERXCLK3
N3 LINERXSYNC4
N4 LINERXSYNC3
N5 SCAN_EN
N11 VSS
N12 VSS
N13 VSS
N14 VSS
N15 VSS
N16 VSS
N22 DS3DATAOUTCLK
N23 LINETXDATA26
N24 LINETXDATA25
N25 LINETXCLK26
N26 LINETXSYNC26
P1 LINERXSYNC2
P2 LINERXCLK2
P3 LINERXDATA1
P4 LINERXDATA2
P5 IDDQ
P11 VSS
P12 VSS
P13 VSS
P14 VSS
Table 2-1. Pin/Name
Pin Signal Name P15 VSS
P16 VSS
P22 DS3NEGDATAOUT
P23 LINETXSYNC27
P24 LINETXSYNC28
P25 LINETXCLK27
P26 LINETXDATA27
R1 RLSDATA7
R2 LINERXSYNC1
R3 RLSDATA6
R4 LINERXCLK1
R5 TCK
R11 VSS
R12 VSS
R13 VSS
R14 VSS
R15 VSS
R16 VSS
R22 DS3POSDATAOUT
R23 LINETXCLK28
R24 LINETXCLK29
R25 LINETXDATA28
R26 LINETXSYNC29
T1 VSS
T2 RLSDATA4
T3 RLSDATA3
T4 RLSDATA5
T5 VDD
T11 VSS
T12 VSS
T13 VSS
T14 VSS
T15 VSS
T16 VSS
T22 VDD
T23 LINETXDATA29
T24 RSTN
T25 PMRST
T26 VSS
U1 VDD
U2 RLSDATA1
U3 RLSDATA0
U4 RLSDATA2
U5 TDI
U22 PHASEDETDOWN
U23 DTN
U24 PAR1
U25 PAR0
U26 VDD
Table 2-1. Pin/Name
Pin Signal Name V1 RLSSPE
V2 RLSPAR
V3 RLSJ0J1V1
V4 RLSCLK
V5 TDO
V22 PHASEDETUP
V23 DATA0
V24 DATA3
V25 DATA1
V26 DATA2
W1 TLSDATA6
W2 TLSDATA7
W3 TLSDATA5
W4 RLSV1
W5 TMSN
W22 TXDATAEN
W23 DATA4
W24 DATA7
W25 DATA5
W26 DATA6
Y1 TLSDATA2
Y2 TLSDATA3
Y3 TLSDATA1
Y4 TLSDATA4
Y5 VSS
Y22 VSS
Y23 DATA8
Y24 DATA11
Y25 DATA9
Y26 DATA10
AA1 VSS
AA2 TLSCLK
AA3 TLSPAR
AA4 TLSDATA0
AA5 RTOACSYNC
AA22 ADDR13
AA23 DATA12
AA24 DATA14
AA25 DATA13
AA26 VSS
AB1 VDD
AB2 TLSSPE
AB3 TLSV1
AB4 TLSJ0J1V1
AB5 VDD
AB6 TTOACCLK
AB7 VSS
AB8 TRSTN
AB9 IC3STATEN
Table 2-1. Pin/Name
Pin Signal Name AB10 CTAPRH
AB11 VDD
AB12 VSSA_CDR
AB13 CTAPRP
AB14 LOPOHVALIDIN
AB15 LOPOHCLKOUT
AB16 VDD
AB17 LOPOHDATAOUT
AB18 LOPOHVALIDOUT
AB19 RXDATAEN
AB20 VSS
AB21 MODE2_PLL
AB22 VDD
AB23 ADDR19
AB24 INTN
AB25 DATA15
AB26 VDD
AC1 RLSSYNC52
AC2 RLSC52
AC3 TLSC52
AC4 VSS
AC5 TPOACSYNC
AC6 AUTO_AIS1
AC7 RHSCP
AC8 THSSYNCP
AC9 VDDA_CDR
AC10 RPSC155P
AC11 REF10
AC12 TPSC155P
AC13 LOPOHCLKIN
AC14 LOPOHDATAIN
AC15 ETOGGLE
AC16 TSTMUX0
AC17 E1XCLK
AC18 CSN
AC19 ADDR0
AC20 ADDR4
AC21 ADDR8
AC22 ADDR12
AC23 VSS
AC24 ADDR17
AC25 APS_INTN
AC26 ADDR18
AD1 RTOACCLK
AD2 TLSSYNC52
AD3 RTOACDATA
AD4 RPOACDATA
AD5 TPOACDATA
AD6 AUTO_AIS3
Table 2-1. Pin/Name
Pin Signal Name
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 9
AD7 RHSFSYNCN
AD8 RHSCN
AD9 THSSYNCN
AD10 RPSD155P
AD11 RPSC155N
AD12 REF14
AD13 TPSC155N
AD14 ECSEL
AD15 TSTSFTLD
AD16 DS1XCLK
AD17 MPMODE
AD18 DSN
AD19 ADDR3
AD20 ADDR7
AD21 ADDR10
AD22 VDDD_PLL
AD23 VSSS_PLL
AD24 CLKIN_PLL
Table 2-1. Pin/Name
Pin Signal Name AD25 ADDR16
AD26 ADDR15
AE1 VSS
AE2 TTOACDATA
AE3 RPOACCLK
AE4 TPOACCLK
AE5 LOSEXT
AE6 AUTO_AIS2
AE7 RHSDN
AE8 THSCN
AE9 THSDN
AE10 RPSD155N
AE11 CTAPTH
AE12 RESLO
AE13 TPSD155N
AE14 BYPASS
AE15 EXDNUP
AE16 TSTMUX1
Table 2-1. Pin/Name
Pin Signal Name AE17 MPCLK
AE18 ADSN
AE19 ADDR1
AE20 ADDR5
AE21 ADDR9
AE22 ADDR11
AE23 VDDS_PLL
AE24 MODE1_PLL
AE25 ADDR14
AE26 VSS
AF1 VDD
AF2 VSS
AF3 TTOACSYNC
AF4 RPOACSYNC
AF5 VDD
AF6 VSS
AF7 RHSDP
AF8 THSCP
Table 2-1. Pin/Name
Pin Signal Name AF9 THSDP
AF10 VDD
AF11 VSS
AF12 RESHI
AF13 TPSD155P
AF14 TSTPHASE
AF15 TSTMODE
AF16 VSS
AF17 VDD
AF18 RWN
AF19 ADDR2
AF20 ADDR6
AF21 VSS
AF22 VDD
AF23 VSSA_PLL
AF24 MODE0_PLL
AF25 VSS
AF26 VDD
Table 2-1. Pin/Name
Pin Signal Name
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
1010 Agere Systems Inc.
2.3 Pin Assignments for 456-Pin PBGA by Signal Name
Table 2-2. Pin Assignments for 456-Pin PBGA by Signal Name
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
ADDR0 AC19 CTAPRP AB13 ECSEL AD14 LINERXCLK24 A9
ADDR1 AE19 CTAPTH AE11 ETOGGLE AC15 LINERXCLK25 C10
ADDR2 AF19 DATA0 V23 EXDNUP AE15 LINERXCLK26 C11
ADDR3 AD19 DATA1 V25 IC3STATEN AB9 LINERXCLK27 C12
ADDR4 AC20 DATA2 V26 IDDQ P5 LINERXCLK28 D12
ADDR5 AE20 DATA3 V24 INTN AB24 LINERXCLK29 B13
ADDR6 AF20 DATA4 W23 LINERXCLK1 R4 LINERXDATA1 P3
ADDR7 AD20 DATA5 W25 LINERXCLK2 P2 LINERXDATA2 P4
ADDR8 AC21 DATA6 W26 LINERXCLK3 N2 LINERXDATA3 N1
ADDR9 AE21 DATA7 W24 LINERXCLK4 M4 LINERXDATA4 M2
ADDR10 AD21 DATA8 Y23 LINERXCLK5 M3 LINERXDATA5 L4
ADDR11 AE22 DATA9 Y25 LINERXCLK6 L3 LINERXDATA6 K4
ADDR12 AC22 DATA10 Y26 LINERXCLK7 K3 LINERXDATA7 J4
ADDR13 AA22 DATA11 Y24 LINERXCLK8 J1 LINERXDATA8 J3
ADDR14 AE25 DATA12 AA23 LINERXCLK9 H2 LINERXDATA9 H1
ADDR15 AD26 DATA13 AA25 LINERXCLK10 G4 LINERXDATA10 G2
ADDR16 AD25 DATA14 AA24 LINERXCLK11 G3 LINERXDATA11 F4
ADDR17 AC24 DATA15 AB25 LINERXCLK12 F3 LINERXDATA12 E2
ADDR18 AC26 DS1XCLK AD16 LINERXCLK13 E3 LINERXDATA13 D2
ADDR19 AB23 DS2AISCLK E10 LINERXCLK14 D3 LINERXDATA14 C2
ADSN AE18 DS3DATAINCLK J22 LINERXCLK15 B2 LINERXDATA15 F5
APS_INTN AC25 DS3DATAOUTCLK N22 LINERXCLK16 J5 LINERXDATA16 H5
AUTO_AIS1 AC6 DS3NEGDATAIN K22 LINERXCLK17 C3 LINERXDATA17 A3
AUTO_AIS2 AE6 DS3NEGDATAOUT P22 LINERXCLK18 C4 LINERXDATA18 A4
AUTO_AIS3 AD6 DS3POSDATAIN M22 LINERXCLK19 C5 LINERXDATA19 D5
BYPASS AE14 DS3POSDATAOUT R22 LINERXCLK20 C6 LINERXDATA20 B6
CLKIN_PLL AD24 DSN AD18 LINERXCLK21 C7 LINERXDATA21 A7
CSN AC18 DTN U23 LINERXCLK22 D7 LINERXDATA22 C8
CTAPRH AB10 E1XCLK AC17 LINERXCLK23 B8 LINERXDATA23 D8
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 11
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
LINERXDATA24 B9 LINETXCLK7 B19 LINETXDATA19 H24 LOPOHCLKOUT AB15
LINERXDATA25 B10 LINETXCLK8 D20 LINETXDATA20 H23 LOPOHDATAIN AC14
LINERXDATA26 B11 LINETXCLK9 C20 LINETXDATA21 J25 LOPOHDATAOUT AB17
LINERXDATA27 A12 LINETXCLK10 C21 LINETXDATA22 K25 LOPOHVALIDIN AB14
LINERXDATA28 C13 LINETXCLK11 C22 LINETXDATA23 L25 LOPOHVALIDOUT AB18
LINERXDATA29 D13 LINETXCLK12 C23 LINETXDATA24 M26 LOSEXT AE5
LINERXSYNC1 R2 LINETXCLK13 B25 LINETXDATA25 N24 MODE0_PLL AF24
LINERXSYNC2 P1 LINETXCLK14 C24 LINETXDATA26 N23 MODE1_PLL AE24
LINERXSYNC3 N4 LINETXCLK15 D24 LINETXDATA27 P26 MODE2_PLL AB21
LINERXSYNC4 N3 LINETXCLK16 E24 LINETXDATA28 R25 MPCLK AE17
LINERXSYNC5 M1 LINETXCLK17 F24 LINETXDATA29 T23 MPMODE AD17
LINERXSYNC6 L2 LINETXCLK18 G24 LINETXSYNC1 D14 PAR0 U25
LINERXSYNC7 K2 LINETXCLK19 G23 LINETXSYNC2 C14 PAR1 U24
LINERXSYNC8 J2 LINETXCLK20 H25 LINETXSYNC3 A15 PHASEDETDOWN U22
LINERXSYNC9 H4 LINETXCLK21 J26 LINETXSYNC4 B16 PHASEDETUP V22
LINERXSYNC10 H3 LINETXCLK22 K24 LINETXSYNC5 B17 PMRST T25
LINERXSYNC11 G1 LINETXCLK23 L24 LINETXSYNC6 B18 RCBCLK E17
LINERXSYNC12 F2 LINETXCLK24 M24 LINETXSYNC7 D19 RCBDATA E15
LINERXSYNC13 E4 LINETXCLK25 M23 LINETXSYNC8 C19 RCBSYNC E18
LINERXSYNC14 D1 LINETXCLK26 N25 LINETXSYNC9 A20 RDLCLK E19
LINERXSYNC15 C1 LINETXCLK27 P25 LINETXSYNC10 B21 RDLDATA H22
LINERXSYNC16 K5 LINETXCLK28 R23 LINETXSYNC11 D22 REF10 AC11
LINERXSYNC17 E6 LINETXCLK29 R24 LINETXSYNC12 A23 REF14 AD12
LINERXSYNC18 B3 LINETXDATA1 A14 LINETXSYNC13 A24 RESHI AF12
LINERXSYNC19 B4 LINETXDATA2 B15 LINETXSYNC14 F22 RESLO AE12
LINERXSYNC20 B5 LINETXDATA3 D16 LINETXSYNC15 C25 RHSCN AD8
LINERXSYNC21 D6 LINETXDATA4 D17 LINETXSYNC16 D25 RHSCP AC7
LINERXSYNC22 B7 LINETXDATA5 D18 LINETXSYNC17 E25 RHSDN AE7
LINERXSYNC23 A8 LINETXDATA6 C18 LINETXSYNC18 F23 RHSDP AF7
LINERXSYNC24 C9 LINETXDATA7 A19 LINETXSYNC19 G25 RHSFSYNCN AD7
LINERXSYNC25 D9 LINETXDATA8 B20 LINETXSYNC20 H26 RLSC52 AC2
LINERXSYNC26 D10 LINETXDATA9 D21 LINETXSYNC21 J24 RLSCLK V4
LINERXSYNC27 D11 LINETXDATA10 B22 LINETXSYNC22 J23 RLSDATA0 U3
LINERXSYNC28 B12 LINETXDATA11 B23 LINETXSYNC23 K23 RLSDATA1 U2
LINERXSYNC29 A13 LINETXDATA12 B24 LINETXSYNC24 L23 RLSDATA2 U4
LINETXCLK1 B14 LINETXDATA13 E21 LINETXSYNC25 M25 RLSDATA3 T3
LINETXCLK2 D15 LINETXDATA14 C26 LINETXSYNC26 N26 RLSDATA4 T2
LINETXCLK3 C15 LINETXDATA15 D26 LINETXSYNC27 P23 RLSDATA5 T4
LINETXCLK4 C16 LINETXDATA16 E23 LINETXSYNC28 P24 RLSDATA6 R3
LINETXCLK5 C17 LINETXDATA17 F25 LINETXSYNC29 R26 RLSDATA7 R1
LINETXCLK6 A18 LINETXDATA18 G26 LOPOHCLKIN AC13 RLSJ0J1V1 V3
Table 2-2. Pin Assignments for 456-Pin PBGA by Signal Name (continued)
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
1212 Agere Systems Inc.
Signal Name Pin Signal Name Pin Signal Name Pin Signal Name Pin
RLSPAR V2 TLSPAR AA3 VDD AB11 VSS N12
RLSSPE V1 TLSSPE AB2 VDD AB16 VSS N13
RLSSYNC52 AC1 TLSSYNC52 AD2 VDD AB22 VSS N14
RLSV1 W4 TLSV1 AB3 VDD AB26 VSS N15
RPOACCLK AE3 TMSN W5 VDD AF1 VSS N16
RPOACDATA AD4 TPOACCLK AE4 VDD AF5 VSS P11
RPOACSYNC AF4 TPOACDATA AD5 VDD AF10 VSS P12
RPSC155N AD11 TPOACSYNC AC5 VDD AF17 VSS P13
RPSC155P AC10 TPSC155N AD13 VDD AF22 VSS P14
RPSD155N AE10 TPSC155P AC12 VDD AF26 VSS P15
RPSD155P AD10 TPSD155N AE13 VDDA_CDR AC9 VSS P16
RSTN T24 TPSD155P AF13 VDDD_PLL AD22 VSS R11
RTOACCLK AD1 TRSTN AB8 VDDS_PLL AE23 VSS R12
RTOACDATA AD3 TSTMODE AF15 VSS A2 VSS R13
RTOACSYNC AA5 TSTMUX0 AC16 VSS A6 VSS R14
RWN AF18 TSTMUX1 AE16 VSS A11 VSS R15
RXDATAEN AB19 TSTPHASE AF14 VSS A16 VSS R16
SCAN_EN N5 TSTSFTLD AD15 VSS A21 VSS T1
SCAN_MODE M5 TTOACCLK AB6 VSS A25 VSS T11
TCBCLK E13 TTOACDATA AE2 VSS B1 VSS T12
TCBDATA E12 TTOACSYNC AF3 VSS B26 VSS T13
TCBSYNC E14 TXDATAEN W22 VSS D4 VSS T14
TCK R5 VDD A1 VSS D23 VSS T15
TDI U5 VDD A5 VSS E7 VSS T16
TDLCLK E9 VDD A10 VSS E20 VSS T26
TDLDATA E8 VDD A17 VSS F1 VSS Y5
TDO V5 VDD A22 VSS F26 VSS Y22
THSCN AE8 VDD A26 VSS G5 VSS AA1
THSCP AF8 VDD E1 VSS G22 VSS AA26
THSDN AE9 VDD E5 VSS L1 VSS AB7
THSDP AF9 VDD E11 VSS L11 VSS AB20
THSSYNCN AD9 VDD E16 VSS L12 VSS AC4
THSSYNCP AC8 VDD E22 VSS L13 VSS AC23
TLSC52 AC3 VDD E26 VSS L14 VSS AE1
TLSCLK AA2 VDD K1 VSS L15 VSS AE26
TLSDATA0 AA4 VDD K26 VSS L16 VSS AF2
TLSDATA1 Y3 VDD L5 VSS L26 VSS AF6
TLSDATA2 Y1 VDD L22 VSS M11 VSS AF11
TLSDATA3 Y2 VDD T5 VSS M12 VSS AF16
TLSDATA4 Y4 VDD T22 VSS M13 VSS AF21
TLSDATA5 W3 VDD U1 VSS M14 VSS AF25
TLSDATA6 W1 VDD U26 VSS M15 VSSA_CDR AB12
TLSDATA7 W2 VDD AB1 VSS M16 VSSA_PLL AF23
TLSJ0J1V1 AB4 VDD AB5 VSS N11 VSSS_PLL AD23
Table 2-2. Pin Assignments for 456-Pin PBGA by Signal Name (continued)
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 13
2.4 Pin Descriptions
2.4.1 High-Speed I/O Pin Descriptions
The high-speed I/O consists of five LVDS signals (10 pins) that connect the Supermapper to an external OC-3 optoelec-
tronic device. It exchanges an STS-3 or STM-1 signal between the TMUX and an OC-3 transceiver. The Supermapper is
capable of recovering a clock from the receive data, or it can accept a clock recovered externally by the optoelectronic
device. If internal clock recovery is used, the Supermapper uses THSCP/N as a reference.
The high-speed I/O may also run at 51.84 Mbits/s in applications that terminate an STS-1 or EC-1 signal. In this case, the
(electrical) line signals are typically terminated by a line interface unit (LIU) chip. The operating speed of the hig h-speed I/O
is determined by bit TMUX_STS1MODE in register TMUX_RCV_TX_MODE.
Table 2-3. High-Speed I/O Pin Descriptions
Pin Symbol Type I/O Description
AF7,
AE7 RHSDP
RHSDN LVDS I Receive High-Speed Data. 155.52 Mbits/s serial data input in STS-3 or STM-1
format, or 51.84 Mbits/s data in STS-1 format. If RHSD is not used (in a slave
Supermapper, for example), the P input should be pulled high through a 1 k
resistor and the N input pulled low through a 1 k resistor. RHSD is typically pro-
vided by an OC-3 transceiver, an STS-1 line interface u nit, or a higher-orde r (e.g.,
STS-12) demultiplexing chip.
AC7,
AD8 RHSCP
RHSCN LVDS I Receive High-Speed Clock. 155.52 MHz or 51.84 MHz clock for STS-3 or
STS-1 input data. Typically supplied by an external OC-3 optoelectronic device,
or an STS-1/EC-1 line interface unit, synchronous with RHSD. If the internal clock
recovery (CDR) feature is enabled, RHSC is not required and should be con-
nected to a 1 k resistor to VDD (RHSCP input) and VSS (RHSCN input).
AF8,
AE8 THSCP
THSCN LVDS I Transmit High-Speed Clock. Transmit 155.52 MHz or 51.84 MHz clock. Master
clock for the transmit sections of the TMUX, telecom bus, SPE, and VT mappers.
THSC is also used as a reference clock for the receive CDR, if it is being used.
Note: A 155 MHz THSC is required when using the CDR in 51 Mbits/s mode.
AC8,
AD9 THSSYNCP
THSSYNCN LVDS I Transmit High-Speed Frame Synchronization. An optional input that may be
used to specify the position of the transmit STS-3, STM-1, or STS-1 frame.
THSSYNC marks the position of bit 1 of the A1 byte, i.e., the first bit of the over-
head in the THSD output. If THSSYNC is not used, the P input should be pulled
high through a 1 k resistor , and the N input pulled low through a 1 k resist or. A
typical application for this pin may be to synchronize a group of Supermappers so
that their STS-3 outputs may be multiplexed into an STS-12 signal.
AF9,
AE9 THSDP
THSDN LVDS O Transmit High-Speed Data. Transmit output for STS-3, STM-1, or STS-1 serial
data. Typically connected to an OC-3 transceiver or an LIU, if operating in STS-1
mode. May also be conne cted to a highe r-or der multiplexin g device, for example,
STS-12.
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
1414 Agere Systems Inc.
2.4.2 Protection Switch I/O Pin Description
The protection switch I/O pro vides additiona l copies of the high -speed interface signals so that various protection schemes
may be implemented. The protection interface may be used when the high-speed interface is operating in both STS-3 and
STS-1 modes. If the protection port is not used, the input clock and data may be left unconnected, or tied to power ( P
inputs) or ground (N inputs) through 1 kresistors. Unused protection outputs should be left unconnected.
Table 2-4. Protection Switch I/O Pin Description
Figure 2-2. Protection Switch
2.4.3 Telecom Bus (Low-Speed I/O) Pin Description
The telecom bus on the Supermapper is used for interconnecting STS-1 signals. It has two 8-bit data buses, one for
upstream da ta and one for downstream data, plus clock and frame indication signals for each bus. The telecom bus can
operate at 19.44 MHz (space for three STS-1 signals) or 6.48 MHz (space for 1 STS-1 signal).
Supermappers in OC-3 applications are typically connected using the telecom bus, and the bus is configured to operate at
19.44 MHz.
Pin Symbol Type I/O Description
AD10,
AE10 RPSD155P
RPSD155N LVDS I Receive Protection Data. Receive side high-speed serial data input from pro-
tection bo ar d.
AC10,
AD11 RPSC155P
RPSC155N LVDS I Receive Prote ction Clock. Receive side high-speed clock input from protection
board.
AF13,
AE13 TPSD155P
TPSD155N LVDS O Transmit Protection Data. Transmit side high-speed serial data output to pro-
tection bo ar d.
AC12,
AD13 TPSC155P
TPSC155N LVDS O Transmit Protection Clock. T ransmit side high- speed clock output to protection
board.
STS-3 TRANSMIT
FRAMER
STS-3 RECEIVE
FRAMER
RPSMUXSEL1
HIGH-SPEED
PROTECTION
INPUT HIGH-SPEED
PROTECTION
OUTPUT
HIGH-SPEED I/O
TPSMUXSEL2
TPSMUXSEL3
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 15
Table 2-5. Telecom Bus (Low-Speed I/O) Pin Description
Pin Symbol Type I/O Description
R1, R3, T4,
T2, T3, U4,
U2, U3
RLSDATA[7:0] LVCMOS I/O Receive Low-Speed Data [7:0], Parallel Data Bus. Used to connect
the downstream STS-1 signals from the master to the slave devices.
In master mode, RLSDATA is an output bus, 8 bits wid e. It cont ains all
the received data for distribution to the two slave devices. Connect to
RLSDATA[7:0] on the slave devices. In slave mode, these pins are
inputs and should be connected to the RLSDATA[7:0] outputs on the
master. RLSDATA contains three byte-interleav ed STS-1 time slots.
The slot used by each SPE mapper in the slaves and the master
device is determined by programing the SPE_RSTS3TMSLOT regis-
ter bits.
V4 RLSCLK LVCMOS I/O Receive Low-Speed Clock. This is a 19.44 MHz or 6.48 MHz clock
for the receive low-speed data bits. In master mode, this is a
19.44 MHz output clock for distribution to the two slave devices. Con-
nect to RLSCLK on the slaves, RLSCLK is an input signal on slave
devices. RLSC52, RLSSYNC52, and RLSCLK must come from the
same clocking source.
Note: As outputs, these pins have 6 mA drive capability.
V2 RLSPAR LVCMOS I/O Receive Low-Speed Parity. Receive data parity bit, may be config-
ured for odd or even parity ge nerated on RLSDATA[7:0]. The default is
odd parity; it may be set to even by setting bit 2 of the register
0x4001B. An output in master mode and an input in slave mode. Con-
nect the RSLPAR (output) on the master to the RLSPAR (input) pins
on the slaves.
V1 RLSSPE LVCMOS I/O Receive Low-Speed SPE Marker. Receive synchronous payload
envelope timing indicator. It is high while there is SPE data on the
RLSDATA[7:0] output bus (master mode). Connect to RLSSPE on the
slaves. RLSSPE is an input on slave devices.
V3 RLSJ0J1V1 LVCMOS I/O Receive Low-Speed J0/J1/V1 Marker. On the master device, this is
an output that is high while J0-1, J1 (1, 2, and 3), and V1 (1, 2, and 3)
bytes are present on the RLSDATA bus. Connect to RLSJ0J1V1 on
the slaves, which is an input.
W4 RLSV1 LVCMOS I/O Receive Low-Speed V1 Marker. Receive V1 timing indicator. On the
master, this is an output that is high while the V1 bytes (1, 2, and 3)
are present on RLSDATA[7:0] output bus. Connect to RLSV1 on the
slaves. It is high every VT multiframe ( superframe). Connect to RLSV1
(input) on the slaves.
W2, W1,
W3, Y4, Y2,
Y1, Y3, AA4
TLSDATA[7:0] LVCMOS I/O Transmit Low-Speed Data [7:0]. This parallel data bus is used to
connect the upstream STS-1 sign als from the sl av e de vice s to th e
master device. In master mode, TLSDATA is an 8 bit wide input bus
and cont ains all the transmit STS-1 data from the slave devices. In
slave mode, these pins are outputs and should be connected to the
TLSDATA[ 7:0 ] inp u ts on the master. TLS DATA contains three byte -
interleaved STS-1 time slots. The slot used by each SPE mapper in
the slaves and the master device is determined by programing the
SPE_TSTS3TMSLOT register bits.
AA2 TLSCLK LVCMOS I/O Transmit Low-Speed Clock. This is a 19.44 MHz or 6.48 MHz clock
for the TLSDATA[7:0] bits. TLSCLK is an output on a master Super-
mapper and an input on a slave. TLSC52, TLSSYNC52, and TLSCLK
must come from the same clocking source, (sho uld be connected
together between master and slave devices).
Note: As outputs, these pins have 6 mA drive capability.
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
1616 Agere Systems Inc.
Pin Symbol Type I/O Description
AA3 TLSPAR LVCMOS I/O Transmit Low-Speed Parity. This parity bit is ge nerated on the
TLSDATA[7:0] . This is an output from the slave device and input to
the master device. May be configured for odd or even parity genera-
tion and checking.
AB2 TLSSPE LVCMOS I/O Transmit Low-Speed SPE Marker. . High while the STS-1 payloads
are present on the TLSDATA[7:0] bus. Low while the STS-1 overhead
is present on the TLSDATA[7:0] bus. An output from the master and
input on the slaves. (Should be connected between master and slave
devices)
AB4 TLSJ0J1V1 LVCMOS I/O Transmit Low-Speed J0/J1/V1 Marker. Transmit J0, J1, or V1 timing
indicator. High while the J0, J1, or V1 bits are present on the TLS-
DATA[7:0] bus. An output on the master and input on slaves.
AB3 TLSV1 LVCMOS I/O Transmit Low-Speed V1 Marker. Transmit V1 timing indicator. High
while the V1 bits are pr esent on the TLSDATA[7:0] bus. An output on
the master and input on slaves. The V1 position is fixed from the
maser device. It is high every VT m ultiframe (sup erfr ame). (Should be
connected between master and slave devices).
AC2 RLSC52 LVCMOS I/O Receive Low-Speed Clock. This is an output on the master and an
input on the slave. This is synchronous to the 51.84 MHz clock. This
clock is used by SPEMPR and VTMPR internally. (Should be con-
nected between master and slave devices).
Note: As outputs, these pins have 6 mA drive capability.
AC1 RLSSYNC52 LVCMOS I/O Receive Low-Speed Sync. This is an output on the master and an
input on the slave. This is synchronous to the 51.84 MHz clock. This
clock is used by SPEMPR and VTMPR internally. (Should be con-
nected between master and slave devices).
AC3 TLSC52 LVCMOS I/O Transmit Low-Speed Clock. This is an output on the master and an
input on the slave. This is synchronous to the 51.84 MHz clock.
(Should be connected between master and slave devices).
Note: TLSC52 can be used as the master clock for the DS1/E1 framer,
see register 0x00012. In this ca se, this clock should be provided
even if the TMUX, SPE and/or VT mappers are not used.
AD2 TLSSYNC52 LVCMOS I/O Transmit Low-Speed Sync. This is an output on the master and an
input on the slave. This is synchronous to the 51.84 MHz clock.
Should be connected between master and slave devices).
Table 2-5. Telecom Bus (Low-Speed I/O) Pin Description (continued)
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 17
2.4.4 TOAC and POAC
The transport and path overhead access channels (TOAC and POAC) allow parts of the SONET/SDH overhead to be
examined externally (receive direction) or overwritten (transmit directio n) through serial dat a ports. Ea ch port has clock and
data lines and a synchronization signal that marks the last bit of the frame so that the rest of the overhead bytes can be
identified.
The receive T OAC and POAC channels contain all of th e respective overhea ds bytes. The transm it channels contain sp ace
for all the overhead bytes, but whether th ey are actually transmitted depends on how the device is programmed. Some
overhead bytes cannot be mo dified; some may be mo dified only through the CPU port; some may be modified only through
the overhead access channels; and some may be modified either through the CPU port, or through the overhead access
channels.
Table 2-6. TOAC and POAC
Pin Symbol Type I/O Description
Transmit Overhead Access Channel (TOAC)
AD1 RTOACCLK LVCMOS O Receive TOAC Clock. Receive side serial access channel clock out-
put for the transp ort overhead bytes.
AD3 RTOACDATA LVCMOS O Receive TOAC Data . Receive side serial access channel data output
for the transport overhead bytes.
AA5 RTOACSYNC LVCMOS O Receive TOAC Synchronization. Receive side sync output for
TOAC cha nnel. Active-high during the LSB of the last byte.
AB6 TTOACCLK LVCMOS O Transmit TOAC Clock. Transmit side serial access channel clock
output for the transport overhead bytes.
AE2 TTOACDATA LVCMOS I
Pull-down T ransmit T OAC Dat a. T ransmit side serial access channel data input
for the transport overhead bytes.
AF3 TTOACSYNC LVCMOS O Transmit TOAC Synchronization. Tr ansmit side sync output for
TOAC channel. Active-high during the LSB of the last byte.
Path Overhead Access Channel (POAC)
AE3 RPOACCLK LVCMOS O Receive POAC Clock. Receive side serial access channel clock out-
put for the path overhead bytes.
AD4 RPOACDATA LVCMOS O Receive POAC Data. Receive side serial access channel data output
for the path overhead bytes.
AF4 RPOACSYNC LVCMOS O Receive POAC Synchronization. Receive side sync output for
POAC channel. Active-high during the last bit of the last byte of the
POAC frame.
AE4 TPOACCLK LVCMOS O Transmit POAC Clock. Transmit side serial access channel clock
output for the path overhead bytes.
AD5 TPOACDATA LVCMOS I
Pull-down T ransmit POAC Data . T ransmit side serial access channel dat a input
for the path overhead bytes.
AC5 TPOACSYNC LVCMOS O Transmit POAC Synchronization. Transmit side sync output for
POAC channel. Active-high during the last bit of the last byte.
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
1818 Agere Systems Inc.
2.4.5 Misc el la n eo u s Sign als
Table 2-7. Miscellaneous Signals
2.4.6 DS3 Port
If a DS3 output is required in a Supermapper application and the DS3 signal has been recovered (demapped) from an
STS-1, then it is necessary to smooth the DS3 recovered clock. The DS3 clock extracted from the STS-1 clock will have
considerable jitter introduced when the SONET overhead is removed and pointer adjustments are made. A phase-locked
loop is recommended for this purpose. The Supermapper contains a phase comparator that can be used in conjunction
with an external low-pass filter and voltage-controlled crystal oscillator to implement the PLL.
Pin Symbol Type I/O Description
AE5 LOSEXT LVCMOS I
Pull-up Loss of Signal External. External loss of signal input. If external clock
and data recovery is used on the high-speed I/O port, it may be con-
nected to this input, which can be configured to assert the LOS register
bit normally associated with the internal LOS detection in the internal
CDR block. The polar ity of LOS ma y be pro gra mm e d ac tive -h ig h or
low; see register TMUX_RHS_CTL, bit TMUX_LOSEXT_LEVEL.
AD6, AE6,
AC6 AUTO_AIS LVCMOS I/O AIS Enable [3:1]. Control signal for automatic AIS insertion on each
STS1. The STS-1 AIS is applied downstream on the telecom bus, i.e., it
is an output from masters and an in put to slaves. If the Supermapper is
configured as a master, then there is no need to do anything as the
AUTO_AIS is an output. If the Supermapper is configured as a slave
(i.e., if the TMUX is not used), then those slave devices should have
their AUTO_AIS pulled down to ground. For STS-3 applications where
there are thre e Supermappers, the AUTO_AIS should be conn ect ed
appropriately between master and slave devices. For STS-1 applica-
tions where there is one Supermapper in master mode, the AUT O_AIS
should be unconnected. For STS-1 applications where one Supermap-
per is in slave mode, the AUTO_AIS should be pulled low.
AD7 RHSFSYNCN LVCMOS O Receive High-Speed Frame Synchronization. Receive side frame
sync output indicating the frame location of the high-speed data input.
May be used as an 8 kHz timing refere nce for ne twor k synchroniza tio n
to the receive high-speed data input (STS-3 or STS-1).
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 19
Table 2-8. DS3 Port
Table 2-9. DS3 Port C-Bit and Datalink Access
Pin Symbol Type I/O Description
V22 PHASEDETUP LVCMOS O Phas e Detector Up. Pha se err or sign al ou t to external filter and
VCXO. This output will generate an error signal when the VCXO
output is slower than the reference signal.
U22 PHASEDETDOWN LVCMOS O Phase Detec tor Down. Phase err or si gnal out to external filter an d
VCXO. This output will generate an error signal when the VCXO
output is faster that the reference signal.
R22 DS3POSDATAOUT LVCMOS O Positive Data Output. Serial DS3 positive dat a out to LIU when the
DS3 output port is operating in dual-rail mode. Nonreturn-to-zero
DS3 data outpu t when the DS3 output is operating in single-ended
mode.
P22 DS3NEGDATAOUT LVCMOS O Negative Data Output. Serial DS3 negative data output to LIU
when the DS3 port is operating in dual-rail mode. In single-rail
mode, this output is not used and may be left unconnected.
N22 DS3DATAOUTCLK LVCMOS I
Pull-down DS3 Data Out Clock. 44.736 MHz DS3 clock input. If the Super-
mapper is being used to map DS3 data to and from STS-1, then this
clock should be supplied by the external VCXO that is associated
with the DS3 clock recovery PLL. In other DS3 modes (e.g., M13),
this input will be supplied by an external crystal oscillator.
M22 DS3POSDATAIN LVCMOS I
Pull-down Positive Dat a Input. If the DS3 p ort is configured in d ual-rail mode,
then this input is serial positive dat a from an external DS3 LIU. If the
DS3 port is configured in single-rail mode, then this input is serial
nonreturn-to-zero data from the external LIU.
K22 DS3NEGDATAIN LVCMOS I
Pull-down Negative Data In. In dual-rail mode, this is negative data from an
external DS3 LIU. In single-rail mode, it may be connected to the
bipolar violation output of the external DS3 LIU, left unconnected, or
tied to ground.
J22 DS3DATAINCLK LVCMOS I
Pull-down DS3 Dat a In Clock. This is a 44.736 MHz clock inpu t from the clock
recovery in the ex te rnal DS3 LIU.
Pin Symbol Type I/O Description
E14 TCBSYNC LVCMOS O Transmit C-Bit Sync. In the C-bit parity mode, 10 C-bits may optionally be
input for multiplexing into the transmit DS3 frame through the TCBDATA
input. The TCBSYNC output is low, except during the rising edge of
TCBCLK that is used to input C2.
E13 TCBCLK LVCMOS O T ransmit C-Bit Clock. A gapped clock (nomin ally 93.983 kHz) for accepting
selected C-bits on input M13_CBDATA.
E12 TCBDATA LVCMOS I
Pull-down Transmit C-Bit Dat a. In the C-bit p arity mode, the network require ment s bit
(C2) and the un used C-bits (C4, C5, C6, C16, C17, C18, C19, C20, and
C21) may optionally be input for multiplexing into the transmit DS3 frame
through this input.
E9 TDLCLK LVCMOS O Transmit Data Link Clock. A gapped clock (nominally 28.195 kHz) for
accepting path maintenance data link C-bits on input TDLDATA.
E8 TDLDATA LVCMOS I
Pull-down Transmit Dat a Link Data. The path maintenance data link C-bits (C13,
C14, and C15) may option ally be input for multiplexing into the transmit DS3
frame through this input.
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
2020 Agere Systems Inc.
Reference clocks, used internally in the jitter attenuation and AIS generation processes are defined. Note that these are
typically supplied by free-running crystal oscillators.
.
Table 2-10. M13 Multiplexer/Demultiplexer Receive Section
Pin Symbol Type I/O Description
E18 RCBSYNC LVCMOS O Receive C-Bit Sync. Ten C-bit s are output on RCBDATA after they are demulti-
plexed from the received DS3 signal. The RCBSYNC output is low, except dur-
ing the rising edge of RCBDATA that is used to output C2.
E17 RCBCLK LVCMOS O Receive C-Bit Clock. A gapped clock (nominally 93.983 kHz) for outputting
selected C-bits on RCBDATA.
E15 RCBDATA LVCMOS O Receive C-Bit Data. The received network requirements bit (C2) and the
received unused C-bits (C4, C5, C6, C16, C17, C18, C19, C20, and C21) are
output after they are demultiplexed from the received DS3 signal.
E19 RDLCLK LVCMOS O Receive Dat a Link Clock. A gapped clock (nominally 28.195 kHz) for outputting
path maintenance da ta link C-bits on RDLDATA.
H22 RDLDATA LVCMOS O Receive Data Link Data. The receive d path maintenance dat a link C-bits (C13,
C14, and C15) that are demultiplexed from the received DS3 signal.
Table 2-11. Reference Clocks
Pin Symbol Type I/O Description
AC17 E1XCLK LVCMOS I
Pull-down E1 X Clock. This clock signal is used by the E1 test pattern generator (i.e.,
to generate E1 AIS (all 1s), as a reference to the E1 DJA, and as a clock
source for the E1 test patter n generator and test p attern moni tor. This input
may be provided by a 2.048 MHz, a 32.768 MHz, or a 65.536 MHz ± 50
ppm free-running crystal oscillator, or clocking chip. For the E1 DJA, an
input of 32.768 MHz or 65.536 MHz must be used.
AD16 DS1XCLK LVCMOS I
Pull-down DS1 X Clock. This clock signal is used for three purposes: to gener ate
DS1 AIS (all 1s), as a reference to the DS1 DJA, and as a clock sour ce fo r
the DS1 test pattern generator and test pattern monitor. This input may be
provided by a 1.544 MHz, a 24.704 MHz, or a 49.408 MHz ± 32 ppm free-
running crystal oscillator, or clocking chip. For the DS1 DJA, an input of
24.704 MHz or 49.408 MHz must be used.
E10 DS2AISCLK LVCMOS I
Pull-down DS2 AIS Clock. See separate DS2/E2 application note for use in DS2
mode.
VC11 AIS Clock. A 1.664 MHz clock input. In the VT mapper mode, this
clock is used to generate VC11 AIS. The clock is used when VC11 is sent
from the LINETXDATA[30:1] outputs.
The 1.664 MHz clock is for a VC11 payload. There are 27 bytes per VT1.5
in each STS-1 frame, excluding the VT overhead (1 byte),
26 bytes/125 µs = 1.664 Mbits/s. (VC11 rate is 1.728 Mbits/s.)
If used, this input can be provided by a free-running crystal oscillator, or a
clocking chip.
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 21
2.4.7 Low-Order Path Overhead Access Channel
Each VT has a low-order path overhead, and this interface allows access to all LOPOH bits for all VTs. Note that the pur-
pose of doing this is slightly dif f erent from the tran sport a nd p ath over head acce ss. These are u sed to cr oss couple the bit s
between links in a protection scheme, rather than provide access for examination or modification of the ove rhead, although
that is possible too.
Table 2-12. Low-Order Path Overhead Access Channel
Figure 2-3. DS1/E1 to DXC Block Diagram
Pin Symbol Type I/O Description
Transmit Direction
AC13 LOPOHCLKIN LVCMOS I Pull-down Low-Order Path Overhead Clock. 6.48 MHz clock supplied from
external circuit s that provide the low-order path overhead data.
AC14 LOPOHDATAIN LVCMOS I Pull-down Low-Order Path Overhead Data. The following parts of the low-
order (VT) overhead are presented at this pin: communication
channel bits ( O bits), V5, J2, Z6/N2, Z7, and K4 byte.
AB14 LOPOHVALIDIN LVCMOS I Pull-down Low-Order Path Ov erhead Dat a Input V alid. This signal is a mask
that indicates the location of the over hea d bytes in LOPOHDATAIN.
Receive Directio n
AB15 LOPOHCLKOUT LVCMOS O Low-Order Path Overhead Clock. 6.48 MHz clock supplied to
external circuit s that receive the low-order path overhead data.
AB17 LOPOHDATAOUT LVCMOS O Low-Order Path Overhead Data. Line and path REI, RDI, O bits,
V5, J2, Z6/N2, and Z7/K4 byte.
AB18 LOPOHVALIDOUT LVCMOS O Low-Order Path Overhead Data Output Valid. This signal is a
mask that indicates the location of the overhead bytes in
LOPOHDATAOUT.
VT MAPPER VT MAPPER
LOPOH
OUTPUTS
LOPOH
INPUTS
LOPOH
OUTPUTS
LOPOH
INPUTS
TELECOM BUS
DS1/E1 TO DXC
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
2222 Agere Systems Inc.
Table 2-13. Multifunction System Interface
Pin Symbol Type I/O Description
C13, A12, B11, B10,
B9, D8, C8, A7, B6,
D5, A4, A3, H5, F5,
C2, D2, E2, F4, G2,
H1, J3, J4, K4, L4,
M2, N1, P4, P3
LINERXDATA[28:1] LVCMOS I
Pull-down Line Receive Data [28:1]. Configurable inputs to
the internal cross connect. The use de pends on the
application. Gene rally, these input s are used for the
received positive-rail or single-rail DS1/E1 line data
input. If operating in dual-rail mode, the negative rail
will be expected on LINERXSYNC[28:1]. Using
dual-rail mode implies that the internal B8ZS or
HDB3 decoders are enabled, and line code viola-
tions can be detected and counted inside the
Supermapper.
These data inputs may be assigned, using the
cross connect block, to the DS1 or E1 inputs on the
VT mapper, M13 or DS1/E1 framers. It is also pos-
sible to use the inputs for DS2 data, in which case
they may be assign ed to the M23 mu ltip le xer
inputs.
D13 LINERXDATA29 LVCMOS I
Pull-down Receive Data 29. Configurable input to the internal
cross connect. May be used as an additio nal line
receive data input, for a prot ection channel. Other
possible uses are as follows:
Global transmit line clock input. Externally supplied
1.544 MHz or 2.048 MHz low jitter clock phase-
locked to the TDM system clock. Used for transmit
line clock on the DS1/E1 framer. This is not nor-
mally used because the DS1/E1 framer has a PLL
that can generate a 1.544 MHz/2.048 MHz clock
from the TDM system clock (CHI clock). This
applies in PSB and CHI modes.
Receive data input. If NSMI mode is used, this will
be a 51.84 Mbit s/s serial data input.
D12, C12, C1 1, C10,
A9, B8, D7, C7, C6,
C5, C4, C3, J5, B2,
D3, E3, F3, G3, G4,
H2, J1, K3, L3, M3,
M4, N2, P2, R4
LINERXCLK[28:1] LVCMOS I/O
Pull-down Receive Cloc k [2 8: 1] . Configurable inputs/o utputs
to the internal cross connect. Typically a line clock
associated with th e cor re sp o ndi ng LIN ERXDATA
input. It can therefore be running at DS1, E1, or
DS2 rate. The cross connect is used to assign
these inputs to the VT mapper, M13, or DS1/E1
framer.
B13 LINERXCLK29 LVCMOS I/O
Pull-down Receive Cloc k 29 . May be used as additional
receive clock input for a DS1/E1 protection channel.
Also has special use as a master clock. In CHI
mode, it is the receive clock input (2.048 MHz,
4.096 MHz, 8.192 MHz, or 16.384 MHz). In PSB
mode, it is the receive clock input (19.44 MHz). In
NSMI mode, it is the receive clock input
(51.84 MHz).
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 23
Pin Symbol Type I/O Description
B12, D11, D10, D9,
C9, A8, B7, D6, B5,
B4, B3, E6, K5, C1,
D1, E4, F2, G1, H3,
H4, J2, K2, L2, M1,
N3, N4, P1, R2
LINERXSYNC[28:1] LVCMOS I Line Receive Synchronous[28:1]. Multifunction
input. Channel assignment may be configured
through the internal cross connect. Ca n be used as
the negative rail of a DS1/E1 signal in conjunction
with LINERXDATA[28:1], when operating in dual-
rail mode. In CHI mode, these inputs are used for
receive TDM highways that may run at 2.048,
4.096, or 8.192 Mbits/s. In parallel system bus
mode, the receive system data bus inputs are
assigned to LINERXSYNC 16:1. The PSB is a
16-bit wide bus that operates at 19.44 MHz.
A13 LINERXSYNC29 LVCMOS I/O Line Receive Synchronous 29. Multifunction
input. Channel assignment may be configured
through the internal cross connect. Ca n be used as
the negative rail of a DS1/E1 signal in conjunction
with LINERXDATA 29, when operating in dual-rail
mode.
In CHI and PSB modes, this input is used as the
receive system frame synchronization input. In
NSMI mode, it is the receive control input.
R25, P26, N23, N24,
M26, L25, K25, J25,
H23, H24, G26, F25,
E23, D26, C26, E21,
B24, B23, B22, D21,
B20, A19, C18, D18,
D17, D16, B15, A14
LINETXDATA[28:1] LVCMOS I/O Line Transmit Data [28:1] Configurable outputs
from the internal cross connect. Used for transmit
positive-rail or single-rail DS1/E1 line data outputs.
May be connected to the DS1/E1 outputs from the
VT mapper, M13 MUX, or DS1/E1 framer line out-
puts. May also be used as DS2 outputs.
T23 LINETXDATA29 LVCMOS O Line Transmit Data 29. Configurable output from
the internal cross connect. An extra DS1 or E1
transmit port that may be used for pr otection or as a
timing reference output. In NSMI mode, it will be a
serial data output (51.84 Mbits/s).
R23, P25, N25, M23,
M24, L24, K24, J26,
H25, G23, G24, F24,
E24, D24, C24, B25,
C23, C22, C21, C20,
D20, B19, A18, C17,
C16, C15, D15, B14
LINETXCLK[28:1] LVCMOS I/O Line Transmit Clock [28: 1]. Co nf igu ra b le ou tp uts
from the internal cross co nnect. Can be used as the
clock signals for LINETXDATA[28:1] in DS1, E1,
and DS2 modes.
R24 LINETXCLK29 LVCMOS I/O Line T ransmit Clock 2 9. Configurable output to the
internal cross connect for the protection or timing
reference channel. Also used a s the transmit global
system clock input for CHI (2.048 MHz, 4.096 MHz,
8.192 MHz, or 16.384 MHz), PSB (19.44 MHz) . In
NSMI mode, it will be an output (51.84 MHz).
Table 2-13. Multifunction System Interface (continued)
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
2424 Agere Systems Inc.
Pin Symbol Type I/O Description
P24, P23, N26, M25,
L23, K23, J23, J24,
H26, G25, F23, E25,
D25, C25, F22, A24,
A23, D22, B21, A20,
C19, D19, B18, B17,
B16, A15, C14, D14
LINETXSYNC[28:1] LVCMOS I/O Line Transmit Synchronous [28:1]. Configurable
inputs/outputs to the internal cross connect. An out-
put when used as the negative rail of a DS1 or E1
output port operating in dual-rail mode. In CHI
mode, these pins may be u sed as outp ut TDM high-
ways. In PSB mode, bits 16:1 are used for the
transmit data bus, and bi ts 28:17 are not used.
These pins may also be used as DS2 I/O to/from
the M12 block as follows: 7:1—Tx data out.
14:8—Tx clock in. 21:16—Rx data in. 28:22—Rx
clock in.
R26 LINETXSYNC29 LVCMOS I/O Line Transmit Synchronous 29. Configurable
input/output to the inter nal cross connect. An output
when used as the negative rail of a DS1 or E1 out-
put port operatin g in du al- ra il mo de . In CHI and
PSB modes, it is used as the transmit system frame
synchroniza tion inpu t. In NSMI mode, it is the tra ns-
mit control output.
AB19 RXDATAEN LVCMOS O NSMI Receive Enable. Receive data enable for
NSMI mode.
FRM NSMI is not used.
M13 NSMI indicates location of OH insertion for
DS3 frames
W22 TXDATAEN LVCMOS O NMSI Transmit Enable. Transmit data enable for
NSMI mode.
FRM NSMI transmit control frame sync. It is used to
indicate framer requests for bytes for a particular
link.
M13 NSMI indicates location of DS3 OH bytes.
Table 2-13. Multifunction System Interface (continued)
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 25
2.4.8 Framer PLL
The DS1/E1 framer has a phase-locked loop that may be used to generate a transmit line cloc k at 1.544 MHz or
2.048 MHz. The reference signal for this PLL may be chosen from a number of possible sources, all typically synchronized
to the system clock (CHI transmit/receive clock, for example). In order to ensure reliab le performance , this PLL has it s own
isolated power pins. The PLL also has a number of test control pins that are used for factory testing only.
The PLL is active when fr amer bi t FRM_PLL_BYPAS = 0. When FRM_PLL_BYPAS = 1, the PLL is bypa ssed and an exter-
nal clock at the system interface is used as the line clock. An exam ple would be when the framers are programmed for a
CHI interface at 2.048 MHz and the frames are programmed for E1, the PLL may be bypassed and the CHI system clock
may be used as the line clock.
Table 2-14. Framer PLL
Pin Symbol Type I/O Description
AD24 CLKIN_PLL LVCMOS I
Pull-down Clock In PLL. Phase locked-loop reference clock input. Fre-
quency should be consistent with the MODE_PLL pins in the
PLL Mode1 t able below. A 1.544 MHz/2.048 MHz clock for DS1 /
E1 transmit outputs is generated synchronous to this clock.
AB21, AE24,
AF24 MODE[2:0]_PLL LVCMOS I
Pull-down PLL Mode 1. PLL control input 1. The PLL mode inputs should
be hardwired to the logic levels shown in the table below,
depending on the frequency of the reference supplied to
CLKIN_PLL.
Mode[2:0] CLKIN_PLL Mode[2:0] CLKIN_PLL
000 Reserved 100 16.384 MHz
001 51.84 MHz 101 8.192 MHz
010 26.62 MHz 110 4.096 MHz
011 19.44 MHz 111 2.048 MHz
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
2626 Agere Systems Inc.
Table 2-15. Microproces sor Interfaces
Pin Symbol Type I/O Description
AE17 MPCLK LVCMOS I Processor Clock. This is the synchronous microprocessor clock
(when MPMODE = 1). Th e maximum clock frequency is 60 MHz. This
clock is required to properly sample address, data, and control sig-
nals from the microprocessor in both asynchronous and synchron ous
modes of operation. This clock must be within the range of 16 MHz—
60 MHz.
AD17 MPMODE LVCMOS I Control Port Mode. If the microprocessor interface is synchronous,
MPMODE should be high. If the microprocessor interface is asyn-
chronous, MPMODE should be set to 0.
AC18 CSN LVCMOS I
Pull-up Chip Select. Active-lo w chip select. For synchronous mode, it should
be stable beyond a certain setup time before the rising clock edge
when ADSN is active. For asynchronous mode, it should be stable
before DSN is asserted.
AE18 ADSN LVCMOS I Address Strobe. Active-low address strobe that is a 1 MPCL K cycle
wide pulse for synchronous mode and active for the entire read/write
cycle for asynchronous mode. Address bus signals, ADDR[19:0], are
transparently latched into Supermapper when ADSN is low. The
address bus should remain valid for the duration of ADSN.
AF18 RWN LVCMOS I Read/Write Cy cl e Sel ec ti o n. RWN is set high for a read operation,
or set low for write operation.
AD18 DSN LVCMOS I Data Strobe. DSN is not used for synchro nous mode. For asynchro-
nous mode, write oper ation, DSN becomes acti ve after da ta is st able.
For read operation, it is similar to ADSN.
AB23, AC26,
AC24, AD25,
AD26, AE25,
AA22, AC22,
AE22, AD21,
AE21, AC21,
AD20, AF20,
AE20, AC20,
AD19, AF19,
AE19, AC19
ADDR[19:0] LVCMOS I Address [19:0]. ADDR19 is the most significant and ADDR0 the
least significant bit for addressing all the internal Supermapper regis-
ters during CPU access cycles.
Note: The Supermapper is little-endian; the least significant byte is
stored in the lowest address and the most significant byte is
stored in the highest address. Care must be exercised in con-
nection to microprocessors that use big-endian byte ordering.
AB25, AA24,
AA25, AA23,
Y24, Y26,
Y25, Y23,
W24, W26,
W25, W23,
V24, V26,
V25, V23
DATA[15:0] LVCMOS I/O Dat a [15:0]. Data bus for all tr ansfers betwee n the CPU and the inter-
nal Supermapper registers. The pins are inputs during write cycles
and outputs during read cycles. DATA15 is the MSB, and DATA0 is
the LSB.
U24, U25 PAR[1:0] LVCMOS I/O CPU Port Parity [1:0]. Byte-wide p arity bits for data. PAR[1] is the
parity for DATA[15:8], and PAR[0] is the parity for DATA[7:0].
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 27
Table 2-16. General-Purpose Interface
Pin Symbol Type I/O Description
U23 DTN LVCMOS O
Open
Drain
Dat a T ransfer Acknowledge. In synchronous CPU mode, DTN goes
low at the fourth cycle for write or the fifth cycle for read , resulting in a
fixed two wait-states for writes and three wait-states for reads. In
asynchronous CPU mode, after qualification of ADSN and DSN by
the MPCLK clock, DTN goes low for two MPCLK clock cycles for
writes and three MPCLK clock cycles for reads. DTN goes high with
the rising edge of ASDN.
AB24 INTN LVCMOS O
Open
Drain
Interrupt. Supermapper interrupt request, active-low.This is an open-
drain output and should be connected to an external pull-up resistor.
AC25 APS_INTN LVCMOS O
Open
Drain
APS Interrupt. Automatic protection switch interrupt request, active-
low. This an open-drain output and should be connected to an exter-
nal pull-up resistor.
Pin Symbol Type I/O Description
T24 RSTN LVCMOS I
Pull-up Reset. Global reset, active-low. Initializes all internal registers to their
default state.
T25 PMRST LVCMOS I/O
Pull-down Performance Monitor Reset. May be configured as an input and then
used to directly res et all the cou n te rs as so ciat ed wi th DS1/E1 per fo r-
mance monitoring. If an internal PM reset is used, PMRST is config-
ured as an output that indicates when a PM reset occurred.
R5 TCK LVCMOS I Test Clock. This signal provides timing for the boundary scan and TAP
controller. This signal should be static, except during boundary-scan
testing.
P5 IDDQ LVCMOS I
Pull-up Do not connect.
U5 TDI LVCMOS I
Pull-up Test Data In. Data input for the boundary scan; sampled on the rising
edge of TCK.
W5 TMSN LVCMOS I
Pull-up Test Mode Select (Active-Low). Controls boundary-scan test opera-
tions. TMSN is sampled on the rising edge of TCK.
AB8 TRSTN LVCMOS I
Pull-down Test Reset (Active-Low). This signal is an asynchronou s rese t fo r the
TAP controller.
V5 TDO LVCMOS O Test Data Out. Updated on the falling edge of TCK. The TDO output is
high impedance, except when scanning out test data.
AB9 IC3STATEN LVCMOS I
Pull-up Global Output Enable. All output and bidirectional buffers will be high
impedance when this input is low. Normally pulled high internally.
Table 2-15. Microprocessor Interfaces (continued)
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
2828 Agere Systems Inc.
2.4.9 Test Pins
These pins are for factory test purposes only and must be connected properly. They are used to establish special configu-
rations for testing, inserting test data, etc. For normal operation, they should be left uncon nected; each is equipped with a
pull-up or pull-down to the inactive (normal operation) state.
Table 2-17. Test Pins
Pin Symbol Type I/O Description
N5 SCAN_EN LVCMOS I
Pull-down Test Only. Scan enable (active-high).
M5 SCAN_MODE LVCMOS I
Pull-down Test Only. Serial scan input for testing (active-high).
AE14 BYPASS LVCMOS I
Pull-down Test Only. Enables functional bypassing of the clock synthesis with a
test clock (active-high).
AF14 TSTPHASE LVCMOS I
Pull-down Test Only. Controls bypass of 32 PLL-generated phases with 32 low-
speed phases, generated by test logic (active-high).
AD14 ECSEL LVCMOS I
Pull-down Test Only. Enables external test control of 155 MHz clock phase
selection through ETOGGLE and EXDNUP inputs (active-high).
AC15 ETOGGLE LVCMOS I
Pull-down Test Only. Moves 155 MHz clock selection one phas e pe r po sitiv e
pulse > 20 ns. Active + pulse.
AE15 EXDNUP LVCMOS I
Pull-down Test Only. Direction of phase changes.
0 = down.
1 = up.
AF15 TSTMODE LVCMOS I
Pull-down Test Only. Enables CDR test mode.
AD15 TSTSFTLD LVCMOS I
Pull-down Test Only. Enables CDR test mode shift register.
AE16,
AC16 TSTMUX[1:0] LVCMOS O Test Only. CDR test mode output.
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 29
Table 2-18. LVDS Control Pins
Pin Symbol Type I/O Description
AF12
AE12 RESHI
RESLO LVCMOS I Resistor 1, 2. A 100 1% resistor should be conn ected between these two
pins as a referenc e fo r the LVDS input buffer termination .
AC11 REF10 LVCMOS I Voltag e Re fe ren c e 1. 1.0 V reference voltage input.
AD12 REF14 LVCMOS I Voltage Reference 2. 1.4 V reference voltage input.
AB10 CTAPRH LVCMOS Center Tap 1. For RHSD P/N and RHSC P/N. An optional 0.1 µF capacitor
connected between CTAP pin and ground will improve the common-mode
rejection of the LVDS input buffers.
AE11 CTAPTH LVCMOS Ce nt er Tap 2. For THSD P/N and THSC P/N. An optional 0.1 µF capacitor
connected between CTAP pin and ground will improve the common-mode
rejection of the LVDS input buffers.
AB13 CTAPRP LVCMOS Center Tap 3. For RPSD155 P/N and RPSC155 P/N. An optional 0.1 µF
capacitor conne cted between CTAP pin and ground will improve the com-
mon-mode rejection of the LVDS input buffers.
Table 2-19. Analog Power and Ground Signals
Pin Symbol Type Name/Description
AC9 VDDA_CDR CDR Power. 3.3 V power supply for the internal CDR. Good engineering
practice needs to be applied to minimize noise on this pin.
AB12 VSSA_CDR CDR Ground. Isolated ground for the internal CDR.
AE23 VDDS_PLL Analog VDD for PLL. 3.3 V power supply for the framer’s PLL. Good engi-
neering practice needs to be applied.
AF23 VSSA_PLL Analog PLL Ground. Analog ground for PLL.
AD22 VDDD_PLL Digital PLL Powe r. Digital 3.3 V for PLL. Good engineering practice needs
to be applied to minimize noise on this pin.
AD23 VSSS_PLL Digital Ground for PLL. Digital ground for PLL. Good engineering practice
needs to be applied.
30 Agere Systems Inc.
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
3 Pin Assignment Matrix
Table 3-1. Pin Matrix
ABCDEFGHJ
1VDD VSS LINERXSYNC15 LINERXSYNC14 VDD VSS LINERXSYNC11 LINERXDATA9 LINERXCLK8
2V
SS LINERXCLK15 LINERXDATA14 LINERXDATA13 LINERXDATA12 LINERXSYNC12 LINERXDATA10 LINERXCLK9 LINERXSYNC8
3 LINERXDATA17 LINERXSYNC18 LINERXCLK17 LINERXCLK14 LINERXCLK13 LINERXCLK12 LINERXCLK11 LINERXSYNC10 LINERXDATA8
4 LINERXDATA18 LINERXSYNC19 LINERXCLK18 VSS LINERXSYNC13 LINERXDATA11 LINERXCLK10 LINERXSYNC9 LINERXDATA7
5V
DD LINERXSYNC20 LINERXCLK19 LINERXDATA19 VDD LINERXDATA15 VSS LINERXDATA16 LINERXCLK16
6V
SS LINERXDATA20 LINERXCLK20 LINERXSYNC21 LINERXSYNC17
7 LINERXDATA21 LINERXSYNC22 LINERXCLK21 LINERXCLK22 VSS ——
8 LINERXSYNC23 LINERXCLK23 LINERXDATA22 LINERXDATA23 TDLDATA
9 LINERXCLK24 LINERXDATA24 LINERXSYNC24 LINERXSYNC25 TDLCLK
10 VDD LINERXDATA25 LINERXCLK25 LINERXSYNC26 DS2AISCLK
11 VSS LINERXDATA26 LINERXCLK26 LINERXSYNC27 VDD ——
12 LINERXDATA27 LINERXSYNC28 LINERXCLK27 LINERXCLK28 TCBDATA
13 LINERXSYNC29 LINERXCLK29 LINERXDATA28 LINERXDATA29 TCBCLK
14 LINETXDATA1 LINETXCLK1 LINETXSYNC2 LINETXSYNC1 TCBSYNC
15 LINETXSYNC3 LINETXDATA2 LINETXCLK3 LINETXCLK2 RCBDATA
16 VSS LINETXSYNC4 LINETXCLK4 LINETXDATA3 VDD ——
17 VDD LINETXSYNC5 LINETXCLK5 LINETXDATA4 RCBCLK
18 LINETXCLK6 LINETXSYNC6 LINETXDATA6 LINETXDATA5 RCBSYNC
19 LINETXDATA7 LINETXCLK7 LINETXSYNC8 LINETXSYNC7 RDLCLK
20 LINETXSYNC9 LINETXDATA8 LINETXCLK9 LINETXCLK8 VSS ——
21 VSS LINETXSYNC10 LINETXCLK10 LINETXDATA9 LINETXDATA13
22 VDD LINETXDATA10 LINETXCLK11 LINETXSYNC11 VDD LINETXSYNC14 VSS RDLDATA DS3DATAINCLK
23 LINETXSYNC12 LINETXDATA11 LINETXCLK12 VSS LINETXDATA16 LINETXSYNC18 LINETXCLK19 LINETXDATA20 LINETXSYNC22
24 LINETXSYNC13 LINETXDATA12 LINETXCLK14 LINETXCLK15 LINETXCLK16 LINETXCLK17 LINETXCLK18 LINETXDATA19 LINETXSYNC21
25 VSS LINETXCLK13 LINETXSYNC15 LINETXSYNC16 LINETXSYNC17 LINETXDATA17 LINETXSYNC19 LINETXCLK20 LINETXDATA21
26 VDD VSS LINETXDATA14 LINETXDATA15 VDD VSS LINETXDATA18 LINETXSYNC20 LINETXCLK21
Agere Systems Inc. 31
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
KLMNPRTUV
1VDD VSS LINERXSYNC5 LINERXDATA3 LINERXSYNC2 RLSDATA7 VSS VDD RLSSPE
2 LINERXSYNC7 LINERXSYNC6 LINERXDATA4 LINERXCLK3 LINERXCLK2 LINERXSYNC1 RLSDATA4 RLSDATA1 RLSPAR
3 LINERXCLK7 LINERXCLK6 LINERXCLK5 LINERXSYNC4 LINERXDATA1 RLSDATA6 RLSDATA3 RLSDATA0 RLSJ0J1V1
4 LINERXDATA6 LINERXDATA5 LINERXCLK4 LINERXSYNC3 LINERXDATA2 LINERXCLK1 RLSDATA5 RLSDATA2 RLSCLK
5 LINERXSYNC16 VDD SCAN_MODE SCAN_EN IDDQ TCK VDD TDI TDO
6———
7———
8———
9———
10———
11 VSS VSS VSS VSS VSS VSS ——
12 VSS VSS VSS VSS VSS VSS ——
13 VSS VSS VSS VSS VSS VSS ——
14 VSS VSS VSS VSS VSS VSS ——
15 VSS VSS VSS VSS VSS VSS ——
16 VSS VSS VSS VSS VSS VSS ——
17———
18———
19———
20———
21———
22 DS3NEGDATAIN VDD DS3POSDATAIN DS3DATAOUTCLK DS3NEGDATAOUT DS3POSDATAOUT VDD PHASEDETDOWN PHASEDETUP
23 LINETXSYNC23 LINETXSYNC24 LINETXCLK25 LINETXDATA26 LINETXSYNC27 LINETXCLK28 LINETXDATA29 DTN DATA0
24 LINETXCLK22 LINETXCLK23 LINETXCLK24 LINETXDATA25 LINETXSYNC28 LINETXCLK29 RSTN PAR1 DATA3
25 LINETXDATA22 LINETXDATA23 LINETXSYNC25 LINETXCLK26 LINETXCLK27 LINETXDATA28 PMRST PAR0 DATA1
26 VDD VSS LINETXDATA24 LINETXSYNC26 LINETXDATA27 LINETXSYNC29 VSS VDD DATA2
Table 3-1. Pin Matrix (continued)
32 Agere Systems Inc.
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
W Y AA AB AC AD AE AF
1 TLSDATA6 TLSDATA2 VSS VDD RLSSYNC52 RTOACCLK VSS VDD
2 TLSDATA7 TLSDATA3 TLSCLK TLSSPE RLSC52 TLSSYNC52 TTOACDATA VSS
3 TLSDATA5 TLSDATA1 TLSPAR TLSV1 TLSC52 RTOACDATA RPOACCLK TTOACSYNC
4 RLSV1 TLSDATA4 TLSDATA0 TLSJ0J1V1 VSS RPOACDATA TPOACCLK RPOACSYNC
5TMSN V
SS RTOACSYNC VDD TPOACSYNC TPOACDATA LOSEXT VDD
6 TTOACCLK AUTO_AIS1 AUTO_AIS3 AUTO_AIS2 VSS
7— VSS RHSCP RHSFSYNCN RHSDN RHSDP
8 TRSTN THSSYNCP RHSCN THSCN THSCP
9 IC3STATEN VDDA_CDR THSSYNCN THSDN THSDP
10 CTAPRH RPSC155P RPSD155P RPSD155N VDD
11 VDD REF10 RPSC155N CTAPTH VSS
12 VSSA_CDR TPSC155P REF14 RESLO RESHI
13 CTAPRP LOPOHCLKIN TPSC155N TPSD155N TPSD155P
14 LOPOHVALIDIN LOPOHDATAIN ECSEL BYPASS TSTPHASE
15 LOPOHCLKOUT ETOGGLE TSTSFTLD EXDNUP TSTMODE
16 VDD TSTMUX0 DS1XCLK TSTMUX1 VSS
17 LOPOHDATAOUT E1XCLK MPMODE MPCLK VDD
18 LOPOHVALIDOUT CSN DSN ADSN RWN
19 RXDATAEN ADDR0 ADDR3 ADDR1 ADDR2
20 VSS ADDR4 ADDR7 ADDR5 ADDR6
21 MODE2_PLL ADDR8 ADDR10 ADDR9 VSS
22 TXDATAEN VSS ADDR13 VDD ADDR12 VDDD_PLL ADDR11 VDD
23 DATA4 DATA8 DATA12 ADDR19 VSS VSSS_PLL VDDS_PLL VSSA_PLL
24 DATA7 DATA11 DATA14 INTN ADDR17 CLKIN_PLL MODE1_PLL MODE0_PLL
25 DATA5 DATA9 DATA13 DATA15 APS_INTN ADDR16 ADDR14 VSS
26 DATA6 DATA10 VSS VDD ADDR18 ADDR15 VSS VDD
Table 3-1. Pin Matrix (continued)
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 33
4 Electrical Characteristics
4.1 Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress
ratings only. Functional opera tion of the device is not implied at these or any other con ditions in excess of those given in the
operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect
device reliability.
4.2 Thermal Parameters (Definitions and Values)
System and circuit board level performance depends not only on device electrical characteristics, but also on device thermal
characteristics. The thermal characteristics frequently determine the li mits of circuit boar d or system performan ce, and they
can be a major co st adder or cost avoida nce factor. When the die tempera ture is kept below 125 °C, temperatur e activated
failure mechanisms are minimized . The ther mal par am eters that Agere p rovid es for its p ackage s help th e chip and system
designer choose the best package for their applications, including allowing the system designer to thermally design and in-
tegrate their syste m s.
It should be noted that all the pa rameters listed below are affected, to varying degree s, by package design (including paddle
size) and choice of materials, the amount of copper in the test board or system board, and system airflow.
ΘJA—Junction to Air Thermal Resistance
ΘJA is a number used to express the thermal performance of a part under JEDEC standard natural convection conditions.
ΘJA is calculated using the following formula:
ΘJA = (TJ – Tamb)/P; wh ere P = powe r
ΘJMA—Junction to Moving Air Thermal Resistance
ΘJMA is effectively identical to ΘJA but represents performance of a part mounted on a JEDEC four layer board inside a wind
tunnel with forced air convection. ΘJMA is reported at airflows of 200 lft./min and 500 lft./min, which roughly correspond to
1 m/s and 2.5 m/s (respectively). ΘJMA is calculated using the following formula:
ΘJMA = (TJ – Tamb)/P
ΘJC—Junction to Case Thermal Resistance
ΘJC is the thermal resistance from junction to the top of the case. Th is num ber is de te rmined by for cing n early 10 0% of the
heat generated in the die out the top of the package by lowering the top case temperature. This is done by placing the top
of the package in contact with a copper slug kept at room temperature using a liquid refrigeration unit. ΘJC is calculated using
the following formula:
ΘJC = (TJ – TC)/P
Table 4-1. Absolute Maximum Ratings
Parameter Symbol Min Max Unit
dc Supply Voltage Range VDD –0.5 4.6 V
Storage Temperature Range Tstg –65 125 °C
Maximum Voltage (digital input pins) 5.25 V
Minimum Voltage (digital input pins) –0.3 V
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
3434 Agere Systems Inc.
ΘJB—Junction to Board Thermal Resistance
ΘJB is the thermal resistance from junction to board. This number is determined by forcing th e heat gener ated in the die out
of the package through the leads or balls by lowering the board temperature and insulating the package top. This is done
using a special fixture, which keeps the board in contact with a water chilled copper slug around the perimeter of the package
while insulating the package top. ΘJB is calculated using the following formula:
ΘJB = (TJ – TB)/P
ΨJT
ΨJT correlates the junction temperature to the case tempe rature. It is generally used by the customer to infer the junction
temperature while the part is ope rating in their system. It is not considered a true th ermal resistance. ΨJT is calculated using
the following formula:
ΨJT = (TJ – TC)/P
4.3 Reliability
Product reliability can be calculated as the probability that the product will perform under normal operating conditions for a
set period of time. Factors influencing the reliability of a product cover a range of variables, including design and manufac-
turing. The failure rate of a product is given as the number of units failing per unit time. This failure rate is known as FIT,
which is as follows:
1 FIT = 1 failure/1x109 hours.
Another unit used for failure rate is known as MTBF, which is 1/FIT. Many assumptions are made when calculating the failure
rate for a product, such as the average junction temperature and activation energy. The assumptions made for calculating
FIT and MTBF are shown inTable 4-3:
Table 4-2. Thermal Parameter Values
Parameter Temperature °C/Watt
ΘJA 15.1
ΘJMA (1 m/s) 11.8
ΘJMA (2.5 m/s) 10.3
ΘJC 4.2
ΘJB 10.1
ΨJT 1.0
Table 4-3. Reliability Data
Junction Temperature FIT (Per 1x109 Device Hours) MTBF Activation Energy
55 °C 34 2.9x107 hours 0.7eV
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 35
4.4 Handling Precautions
Although electrost atic discharge (ESD) protectio n cir cuitr y ha s been d esign ed into this device, pr oper prec autions must be
taken to avoid exposure to ESD and electrical overstress (EOS) during all handling, assembly, and test operations. Agere
employs both a human-body model (HBM) and a charged-device model (CDM) qualification requirement in order to deter-
mine ESD susceptibility limits and protection design evaluation. ESD voltage thresholds are dependent on the circuit
parameters used in each of the models, as defined by JEDEC's JESD22-A114 (HBM) and JESD22-C101 (CDM) stan-
dards.
4.5 Operating Conditions
The following tables list the voltages required for proper operation of the TMXF28155 device, along with their tolerances.
Table 4-5. Recommended Operating Conditions
* Internal reference voltage is used if SMPR_LVDS_RE F_SEL = 1, or else external voltage is used.
4.5.1 Power Consumption
* When measuring power consumption of the Supermapper, the following blocks are powered on: TMUX, SPEMPR, VTMPR, DJA, FRAMER.
MPCLK = 25 MHz.
Table 4-4. Handling Precaution
Device Minimum HBM Threshold Minimum CDM Threshold
Corner Non-Corner
TMXF28155 2000 V 500 V 500 V
Parameter Symbol Min Typ Max Unit
Power VDD 3.14 3.3 3.47 V
Ground VSS —0.0 V
1.0 V: LVDS Reference* LVDS_REF10 1.0 V
1.4 V: LVDS Reference* LVDS_REF14 1.4 V
Ambient Operating Temperature Range TA–40 85 °C
Table 4-6. Power Consumption
Parameter Typical Power* Unit
VDD = 3.5 V, TA = 25 °C 3.185 W
VDD = 3.3 V, TA = 25 °C 2.772 W
VDD = 3.0 V, TA = 25 °C 2.190 W
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
3636 Agere Systems Inc.
4.6 Logic Interface Characteristics
Table 4-7. Logic Interface Characteristics
The input specification for the remaining (nonbalanced) inputs are specified in Figure 4-1.
5-6032(F)r.2
Figure 4-1. Single-Ended Input Specification
Parameter Symbol Test Conditions Min Max Unit
Output Current:
Low
High IOL
IOH
4.0
4.0 mA
mA
Output Voltage:
Low
High VOL
VOH
VSS
VDD – 0.5 0.5
3.465 V
V
Input Capacitance CI— —1.5pF
Input Leakage IL——1.0µA
Input Voltage, High VIH —VDD – 1.0 5.25 V
Input Voltage, Low VIL —VSS 1.0 V
V
IH
tF
tR
VIL
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 37
4.7 LVDS Interface Characteristics
Table 4-8. LVDS Interface Characteristics
.
* Buffer will not produce output transition when input is open-circuited.
Parameter Symbol Test Conditions Min Typ Max Unit
Input Buffer Parameters
Input Voltage Range, VIA or VIB VIVGPD < 925 mV, dc—1 MHz 0.0 1.2 2.4 V
Input Differential Threshold VIDTH VGPD < 925 mV, 311 MHz –100 100 mV
Input Differential Hysteresis VHYST (+VIDTH) – (–VIDTH)—*mV
Receiver Differential Input
Impedance RIN With build-in term in atio n ,
center-tapped 80 100 130
Output Buffer Parameters
Output Voltage:
Low (VOA or VOB)
High (VOA or VOB)VOL
VOH RLOAD = 100 ± 1%
RLOAD = 100 ± 1%
0.925
1.475
V
V
Output Differential Voltage VOD RLOAD = 100 ± 1% 0.25 0.40 V
Output Offset Voltage VOS RLOAD = 100 ± 1% 1.125 1.275 V
Output Impedance, Single Ended ROVCM = 1.0 V and 1.4 V 40 50 60
RO Mismatch Betwe en A and B ROVCM = 1.0 V and 1.4 V 10 %
Change in Differential Voltage
Between Complementary States VOD RLOAD = 100 ± 1% 25 mV
Change in Output Offset Voltage
Between Complementary States VOS RLOAD = 100 ± 1% 25 mV
Output Current ISA, ISB Driver shorted to VSS 6.8 24 mA
Output Current ISAB Drivers shorted together 12 mA
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
3838 Agere Systems Inc.
5 Timing Characteristics
5.1 TMUX Block Timing
The TMUX (STS-N/STM-1) timi ng parameters can be grouped separately for clocks, inputs, and outputs . Table 5-1 shows
the input clock specifications for this device. The rise and fall times refer to the transition times from 10% to 90% of full
swing.
For definitions of the signal names, see Section 2, Pin Information, on page 8.
Table 5-1. High-Speed Input Clock Specifications
Note: When the true and complement inputs are floating, the input buffer will not oscillate.
5-9077(F)
Figure 5-1. Generic Clock Timing
Symbol Parameter Signal Name 155 Clock 51 Clock Unit
Min Nominal Max Min Nominal Max
FCK Operating
Frequency THSCP/N 155.52 ± 30 ppm 51.84 ± 50 ppm MHz
RHSCP/N 155.52 ± 30 ppm 51.84 ± 50 ppm MHz
RPSC155P/N 155.52 ± 30 ppm MHz
tCK Clock Period THSCP/N 6.43 ± 0.4% 19.29 ± 0.4% ns
RHSCP/N 6.43 ± 0.5% 19.29 ± 0.5% ns
RPSC155P/N 6.43 ± 0.5% ns
tCLKHI Clock Pulse
High Time THSCP/N 2.5 3.9 7.8 11.6 ns
RHSCP/N 2.5 3.9 7.8 11.6 ns
RPSC155P/N 2.5 3.9 ns
tR Rise Time THSCP/N 1.5 5.0 ns
RHSCP/N 1.5 5.0 ns
RPSC155P/N 1.5 ns
tF Fall Time THSCP/N 1.5 5.0 ns
RHSCP/N 1.5 5.0 ns
RPSC155P/N 1.5 ns
tCLKHI
tF
tR
tCK
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 39
The output clock specifications are shown in Table 5-2.
Table 5-2. Output Clock Specifications
* The specifications for the table are with all loopbacks disabled.
Note: Any of the telecom signals being used as inputs (slave Supermapper) need to meet these same output clock specifi-
cations.
Signal Name Reference CLK*Frequency Clock Pulse High
Time (tCLKHI)Test
Condition Max Rise
Ti me (tR)Max Fall
Time (tF)Unit
TLSCLK THSCP/N 19.44 MHz 24.43—27.00 CL = 50 pF 3.5 3.5 ns
TTOACCLK THSCP/N 5.184 MHz 91.62—101.30 CL = 15 pF 3.5 3.5 ns
RLSCLK RHSCP/N or
Internal CDR Cloc k 19.44 MHz 24.43—27.00 CL = 50 pF 3.5 3.5 ns
RTOACCLK RHSCP/N or
Internal CDR Cloc k 5.184 MHz 91.62—101.30 CL = 15 pF 3.5 3.5 ns
TPSC155P/N THSCP/N 155.5 MHz 3.119—3.311 CL = 15 pF 1.5 1.5 ns
TPOACCLK THSCP/N 5.184 MHz 91.62—101.30 CL = 15 pF 3.5 3.5 ns
RPOACCLK RHSCP/N 5.184 MHz 91.62—101.30 CL = 15 pF 3.5 3.5 ns
TLSC52 THSCP/N 51.84 MHz 9.162—10.130 CL = 30 pF 3.0 3.0 ns
RLSC52 RHSCP/N 51.84 MHz 9.162—10.130 CL = 30 pF 3.0 3.0 ns
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
4040 Agere Systems Inc.
Table 5-3. Input Timing Specifications
* Register 0x00010, bit 2, SMPR_RETIME_CKLK_EDGE.
Figure 5-2. Generic Interface Data Timing
Input Name Reference CLK Min Setup Time (tS) Min Hold Time (tH)Unit
Transmit Signals
THSSYNCP/N THSC 3.5 0.0 ns
TLSDATA[7:0] TLSCLK 5.0 0.0 ns
TLSPAR TLSCLK 5.0 0.0 ns
TLSSPE TLSCLK 5.0 0.0 ns
TLSJ0J1V1 TLSCLK 5.0 0.0 ns
TLSV1 TLSCLK 5.0 0.0 ns
TLSSYNC52 TLSC52 4.0 2.5 ns
TTOACDATA TTOACCLK 10.0 3.5 ns
TPOACDATA TPOACCLK 10.0 1.0 ns
Receive Signals
RHSDP/N RHSCP/N ↑↓*2.0 0.0 ns
RPSD155P/N RPSC155P/N2.0 0.0 ns
RLSDATA[7:0] RLSCLK 4.0 0.0 ns
RLSPAR RLSCLK 4.0 0.0 ns
RLSSPE RLSCLK 4.0 0.0 ns
RLSJ0J1V1 RLSCLK 4.0 0.0 ns
RLSV1 RLSCLK 4.0 0.0 ns
RLSSYNC52 RLSC52 4.0 3.0 ns
Miscellaneous Signals
LOSEXT NA ASYNC ASYNC
AUTO_AIS[3:1] NA ASYNC ASYNC
CLOCK
DATA
CLOCK
DATA
tSU tH
tPD
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 41
Table 5-4. Output Timing Specifications
* Register 0x00010, bit 1, SMPR_TELECOMBUS_EDGE.
† Propagation delay skew, tPLH – tPHL, is ± 200 ps. Negative propagation delay indicates that output comes out ahead of reference clock.
Output Name Reference CLK Test
Conditions Propagation DelayUnit
tPD
Min Max
Transmit Signals
THSDP/N THSCP/N CL = 15 pF 2.6 8.0 ns
TPSD155P/N TPSC155P/NCL = 15 pF 0.6 2.9 ns
TLSDATA[7:0] TLSCLK ↑↓*CL = 50 pF 4.0 12.0 ns
TLSPAR TLSCLK ↑↓*CL = 50 pF 4.0 12.0 ns
TLSSPE TLSCLK CL = 50 pF 4.0 10.5 ns
TLSJ0J1V1 TLSCLK CL = 50 pF 4.0 10.5 ns
TLSV1 TLSCLK CL = 50 pF 4.0 10.5 ns
TLSSYNC52 TLSC52 CL = 30 pF 0.0 2.0 ns
TTOACSYNC TTOACCLK CL = 15 pF –2.0 30.0 ns
TPOACSYNC TPOACCLK CL = 15 pF –2.0 30.0 ns
Receive Signals
RLSDATA[7:0] RLSCLK CL = 50 pF 5.5 12.0 ns
RLSPAR RLSCLK CL = 50 pF 5.5 12.0 ns
RLSSPE RLSCLK CL = 50 pF 5.5 12.0 ns
RLSJOJ1V1 RLSCLK CL = 50 pF 5.5 12.0 ns
RLSVI RLSCLK CL = 50 pF 5.5 12.0 ns
RLSSYNC52 RLSC52 CL = 30 pF 0.5 3.0 ns
RTOACSYNC RTOACCLK CL = 15 pF –2.0 30.0 ns
RTOACDATA RTOACCLK CL = 15 pF –2.0 30.0 ns
RPOACSYNC R POACCLK CL = 15 pF –2.0 30.0 ns
RPOACDATA RPOACCLK CL = 15 pF –2.0 30.0 ns
RHSFSYNCN RLSCLK CL = 30 pF –1.0 8.0 ns
Miscellaneous Signals
AUTO_AIS[3:1] NA ASYNC ASYNC
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
4242 Agere Systems Inc.
5.2 DS3 Timing
Table 5-5. DS3 Input Clock Specifications
.
Figure 5-3. DS3DATAOUTCLK Timing
Table 5-6. Input Timing Specifications
* Register 0x100A1, bit 0, M13_RDS3_EDGE. Register 0x30019, bit 5, SPE_TDS3CLK_EDGE.
Table 5-7. Output Timing Specifications
Note: The up arrow applies to the SPE block, which means the DS3 output from SPE is clocked out on a fixed rising edge
of DS3DATAOUTCLK. The down arrow applie s to the M13 block, which means the DS3 outp ut from M13 is clocked out on
a fixed falling edge of DS3DATAOUTCLK.
Symbol Parameter Signal Name Min Max Unit
FCK Clock Frequency DS3DATAINCLK
DS3DATAOUTCLK 44.736 ± 50 ppm MHz
tCK Clock Period DS3DATAINCLK
DS3DATAOUTCLK 22.353 ns
tCLKHI Clock Pulse High Time DS3DATAINCLK
DS3DATAOUTCLK 6
616
12 ns
ns
tRRise Time DS3DATAINCLK
DS3DATAOUTCLK 02ns
tFFall Time DS3DATAINCLK
DS3DATAOUTCLK 02ns
Input Name Reference CLK Min Setup Time (tS) Min Hold Time (tH) Unit
DS3POSDATAIN DS3DATAINCLK ↑↓* 40ns
DS3NEGDATAIN DS3DATAINCLK ↑↓*4 0 ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
DS3POSDATAOUT DS3DATAOUTCLK CL = 15 pF 2 6.5 ns
DS3NEGDATAOUT DS3DATAOUTCLK CL = 15 pF 2 6.5 ns
tCLKHI
tCK
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 43
5.3 M13 Timing
Table 5-8. M13 Clock Specifications
Table 5-9. Input Timing Specifications
Table 5-10. Output Timing Specifications
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency TCBCLK
TDLCLK
E1XCLK
DS1XCLK
DS2AISCLK
RCBCLK
RDLCLK
2.048
1.544
93.983 gapped
28.195 gapped
32.768
24.704
6.312
93.983
28.195
65.536
49.408
kHz
kHz
MHz
MHz
MHz
kHz
kHz
tCLKHI Clock Pulse
High Time TCBCLK
TDLCLK
RCBCLK
RDLCLK
212.19
212.19
212.19
212.19
223.53
223.53
223.53
223.53
250.77
250.77
250.77
250.77
ns
ns
ns
ns
tRRise Time TCBCLK
TDLCLK
E1XCLK
DS1XCLK
DS2AISCLK
RCBCLK
RDLCLK
0
0
0
0
0
0
0
3
3
3
3
3
3
3
ns
ns
ns
ns
ns
ns
ns
tFFall Time TCBCLK
TDLCLK
E1XCLK
DS1XCLK
DS2AISCLK
RCBCLK
RDLCLK
0
0
0
0
0
0
0
3
3
3
3
3
3
3
ns
ns
ns
ns
ns
ns
ns
Input Name Reference CLK Setup Time (tS)Hold Time (tH)Unit
Min Max Min Max
TCBDATA TCBCLK 50 0 ns
TDLDATA TDLCLK 50 0 ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
TCBSYNC TCBCLK CL = 15 pF 0.5 10 ns
RCBSYNC RCBCLK CL = 15 pF 0.5 10 ns
RCBDATA RCBCLK CL = 15 pF 0.5 10 ns
RDLDATA RDLCLK CL = 15 pF 2 10 ns
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
4444 Agere Systems Inc.
5.4 VT Mapper Timing
5.4.1 VT Mapper Lower-Order Path Overhead Interface Timing
Table 5-11. VT Mapper Receive Path Overhead Detailed Timing
* tSD, tHD ⇒ LOPOH_CLK ↓.
tSV, tHV ⇒ LOPOH_CLK ↓.
tPDV, tPDD ⇒ LOPOH_CLK ↑.
5-9078(F)
Figure 5-4. VT Mapper Transmit Path Overhead Detailed Timing
5-9079(F)
Figure 5-5. VT Mapper Receive Path Overhead Detailed Timing
Symbol Parameter Min Max Unit
FCK Clock Frequency 6.48 6.48 MHz
tCK Clock Period 154 154 ns
tCLKHI Clock Pulse High Time 50 75 ns
tRClock Rise Time 0 3 ns
tFClock Fall Time 0 3 ns
tSD * LOPOH Data Setup Time 5 ns
tHD * LOPOH Data Hold Time 2.0 ns
tSV LOPOH Valid Signal Setup Time 5 ns
tHV LOPOH Valid Signal Hold Time 3.7 ns
tPDV Clock to LOPOH Valid Signal Out 2.0 10.0 ns
tPDD Clock to LOPOH Data Out 2.0 10.0 ns
LOPOHCLKIN
LOPOHVALIDIN
LOPOHDATAIN
t
HV
t
SV
t
SD
t
HD
t
CK
tPDV
tPDD
LOPOHCLKOUT
LOPOHVALIDOUT
LOPOHDATAOUT
tCK
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 45
5.5 Concentration Highway (CHI) Timing
Table 5-12 and Table 5-13 with Figure 5-6 and Figure 5-7, respectively, illustrate the detailed CHI timing for clock, data, and
frame synchronization.
Table 5-12. CHI Transmit Timing Characteristi cs
* Fck can be either 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz.
tS, tH, and tPD,LINETXCLK29 ↑↓ (Register 0x80050, bit 4, FRM_TFSCKE).
5-9080(F)
Figure 5-6. CHI Transmit I/O Timing
Table 5-13. CHI Receive Timing Characteristics
* FCK can be either 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz.
LINERXSYNC29 ↑↓ (Register 0x80150, bit 13, FRM_RFSCKE).
5-9081(F)
Figure 5-7. CHI Receive I/O Timing
Symbol Parameter Min Max Unit
FCK Clock Frequency* 2.048 16.384 MHz
tCK Clock Period 488.2 61.04 ns
tRClock Rise Time 0 3 ns
tFClock Fall Time 0 3 ns
tSFrame Sync Setup Time 35 ns
tHFrame Sync Hold Time 0 ns
tPDClock to CHI Data Delay 25 ns
Symbol Parameter Min Max Unit
FCK Clock Frequency* 2.048 16.384 MHz
tCK Clock Period 488.2 61.04 ns
tRClock Rise Time 0 3 ns
tFClock Fall Time 0 3 ns
tSSYNCFrame Sync Setup Time 30 ns
tHSYNCFrame Sync Hold Time 3.4 ns
tSDATACHI Data Setup Time 25 ns
tHDATACHI Data Hold Time 0 ns
LINETXCLK29
LINETXSYNC29
LINETXSYNC[28:1]
t
S
CLOCK
FRAME SYNC
DATA
t
H
1/2t
CK
t
PD
t
HDATA
LINERXCLK29
LINERXSYNC29
LINERXSYNC[28:1]
CLOCK
FRAME SYNC
DATA
t
SSYNC
t
HSYNC
t
SDATA
1/2 t
CK
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
4646 Agere Systems Inc.
5.6 Parallel System Bus Timing
Table 5-14 and Table 5-15 with Figure 5-8 and Figure 5-9, respectively, show the transmit and receive timing. In the trans-
mit direction (to the system interface), the fr ame sync is sampled and the data is clocked out on the rising edge of the clock.
In the receive direction (from the switch), the data and frame sync are sampled on the rising edge of the clock.
Table 5-14. PSB Interface Transmit Timing Characteristics
* LINETXCLK29 ↑↓ (Register 0x80050, bit 4, FRM_TFSCKE).
5-9082(F)
Figure 5-8. Parallel System Bus Interface Transmit I/O Timing
Table 5-15. PSB Interface Receive Timing Characteristics
* LINERXCLK29 ↑↓ (Register 0x80150, bit 13, FRM_RFSCKE).
5-9083(F)
Figure 5-9. Para ll el Sy st em Bu s In te rface Rec ei ve I/O Timing
Symbol Parameter Min Max Unit
FCK Clock Frequency 19.44 19.44 MHz
tCK Clock Period 51.44 51.44 ns
tRClock Rise Time 0 3 ns
tFClock Fall Time 0 3 ns
tS*Frame Sync Setup Time 8 ns
tH*Frame Sync Hold Time 0 ns
tPD*Clock to PSB Out Delay 3 10 ns
Symbol Parameter Min Max Unit
FCK Clock Frequency 19.44 19.44 MHz
tCK Clock Period 51.44 51.44 ns
tRClock Rise Time 0 3 ns
tFClock Fall Time 0 3 ns
tSSYNC* Frame Sync Setup Time 8 ns
tHSYNC* Frame Sync Hold Time 0 ns
tSDATA* PSB to Clock Setup Time 8 ns
tHDATA* PSB Hold Time from Clock 2.8 ns
DEV #0, TS #1, DEV #0, TS #1,
tPD
STUFFED TS STUFFED TS
6 (3) STUFFED TS IN DS1 (E1)
tHtS
LINETXCLK29
LINETXSYNC29
LINETXSYNC[16:1]
CLOCK
FRAME SYNC
DATA LINK #0 LINK #1
tCK
DATA SAMPL ED
tSDATA tHDATA
DEV #0, TS #1, DEV #0, TS #1,
STUFFED TS STUFFED TS
tHSYNCtSSYNC
LINERXCLK29
LINERXSYNC29
LINERXSYNC[16:1]
CLOCK
FRAME SYNC
DATA LINK #0 LINK #1
tCK
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 47
5.7 NSMI Timing (6-Pin) (to/from Framer)
Table 5-16. NSMI Input/Output Clock Specifications
Table 5-17. Input Timing Specifications
Table 5-18. Output Timing Specifications
5.8 NSMI Timing (7-Pin) (to/from Framer)
Table 5-19. NSMI Output Clock Specifications
Symbol Parameter Signal Name I/O Min Nom Max Unit
FCK Clock
Frequency LINETXCLK29
LINERXCLK29 Output
Input –50 ppm
–50 ppm 51.84
51.84 50 ppm
50 ppm MHz
MHz
tCK = 1/FCK Clock
Period LINETXCLK29
LINERXCLK29 Output
Input
19.29
19.29
ns
ns
tCKHI Clock Pulse
High Time LINETXCLK29
LINERXCLK29 Output
Input 6
6
12
12 ns
ns
tRRise Time LINETXCLK29
LINERXCLK29 Output
Input
3
3ns
ns
tFFall Time LINETXCLK29
LINERXCLK29 Output
Input
3
3ns
ns
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXDATA29 LINERXCLK29 3—0—ns
LINERXSYNC29 LINERXCLK29 3—0.5ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINETXDATA29 LINETXCLK29 CL = 15 pF 0.1 3.0 ns
LINETXSYNC29 LINETXCLK29 CL = 15 pF 0.1 5.0 ns
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency LINETXCLK29
LINERXCLK29
RXDATAEN
–50 ppm
–50 ppm
–50 ppm
51.84/44.736
51.84/44.736
51.84/44.736
50 ppm
50 ppm
50 ppm
MHz
MHz
MHz
tCK = 1/FCK Clock
Period LINETXCLK29
LINERXCLK29
RXDATAEN
19.29/22.35
19.29/22.35
19.29/22.35
ns
ns
ns
tCKHI Clock Pulse
High Time LINETXCLK29
LINERXCLK29
RXDATAEN
6
6
1/2 tck
1/2 tck
1/2 tck
ns
ns
ns
tRRise Time LINETXCLK29
LINERXCLK29
RXDATAEN
0
0
0
3
3
3
ns
ns
ns
tFFall Time LINETXCLK29
LINERXCLK29
RXDATAEN
0
0
0
3
3
3
ns
ns
ns
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
4848 Agere Systems Inc.
Table 5-20. NSMI Input Timing Specifications
Table 5-21. NSMI Output Timing Specifications
5.9 CHI Interface Timing
Table 5-23. CHI Interface Input Timing Specifications
Table 5-24. CHI Interface Output Timing Specifications
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXDATA29 LINERXCLK29 3.0 0 ns
LINERXSYNC29 LINERXCLK29 3.0 0.5 ns
Output Name Reference CLK Test Conditions Propagat ion Delay tPD Unit
Min Max
LINETXDATA29 LINETXCLK29 CL = 15 pF 0.1 3.0 ns
LINETXSYNC29 LINETXCLK29 CL = 15 pF 0.1 5.0 ns
TXDATAEN LINETXCLK29 CL = 15 pF –0.6 0.2 ns
Table 5-22. CHI Interface Clock Spec if ic at io ns
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency LINERXDATA29 –130 ppm 1.544 or 2.048 130 ppm MHz
LINERXCLK29 –50 ppm 2.048 or 4.096
or 8.192 or 16.384 50 ppm MHz
LINETXCLK29 –50 ppm 2.048 or 4.096
or 8.192 or 16.384 50 ppm MHz
tCK = 1/FCK Clock
Period LINERXDATA29
LINERXCLK29
LINETXCLK29
647.6 7 or 488 .2 8
488.28, or 244.14
or 122.07, or 61.04
488.28, or 244.14
or 122.07, or 61.04
—ns
ns
ns
ns
ns
tCKHI Clock Pulse
High Time LINERXDATA29, LINERXCLK29
LINETXCLK29 1/2 tck ns
tRRise Time LINERXDATA29, LINERXCLK29
LINETXCLK29 0—3ns
tFFall Time LINERXDATA29, LINERXCLK29
LINETXCLK29 0—3ns
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXSYNC[28:1] LINERXCLK[28:1] ↑↓ 25 0 ns
LINERXSYNC29 LINERXCLK29 ↑↓ 30 3.4 ns
LINETXSYNC29 LINETXCLK29 ↑↓ 35 1.6 ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINETXSYNC[28:1] LINETXCLK29 ↑↓ CL = 15 pF 25 ns
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 49
5.10 PSB Interface Timing
Table 5-26. PSB Interface Input Timing Specifications
Table 5-27. PSB Interface Output Timing Specifications
Table 5-25. PSB Interface Cloc k Specificatio ns
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency LINERXDATA29
LINERXCLK29
LINETXCLK29
–130 ppm
–50 ppm
–50 ppm
–50 ppm
1.544
or 2.048
19.44
19.44
130 ppm
50 ppm
50 ppm
50 ppm
MHz
MHz
MHz
MHz
tCK = 1/FCK Clock
Period LINERXDATA29
LINERXCLK29
LINETXCLK29
—647.67
or 488.28
51.44
51.44
—ns
ns
ns
ns
tCKHI Clock Pulse
High Time LINERXDATA29
LINERXCLK29
LINETXCLK29
1/2 tck
1/2 tck
1/2 tck
1/2 tck
—ns
ns
ns
ns
tRRise Time LINERXDATA29
LINERXCLK29
LINETXCLK29
0
0
0
0
3
3
3
3
ns
ns
ns
ns
tFFall Time LINERXDATA29
LINERXCLK29
LINETXCLK29
0
0
0
0
3
3
3
3
ns
ns
ns
ns
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXSYNC[16:1] LINERXCLK29 ↑↓ 8 2.8 ns
LINERXSYNC29 LINERXCLK29 ↑↓ 8—0—ns
LINETXSYNC29 LINETXCLK29 ↑↓ 8—0—ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINETXSYNC[16:1] LINETXCLK29 ↑↓ CL = 15 pF 3 10 ns
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
5050 Agere Systems Inc.
5.11 Framer DS1/E1 Interface Timing
Table 5-28. Framer DS1/E1 Interface Clock Specifications
Table 5-29. Framer DS1/E1 Interface Input Timing Specifications
Table 5-30. Framer DS1/E1 Interface Output Timing S pecifications
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency TLSC52
LINERXCLK[29:1]
LINETXCLK[29:1]
–50 ppm
–130 ppm
–50 ppm
–130 ppm
–50 ppm
51.84
1.544
or 2.048
1.544
or 2.048
50 ppm
130 ppm
50 ppm
130 ppm
50 ppm
MHz
MHz
MHz
MHz
MHz
tCK = 1/Fck Clock
Period TLSC52
LINERXCLK[29:1]
LINETXCLK[29:1]
—19.29
647.67
or 488.28
647.67
or 488.28
—ns
ns
ns
ns
ns
tCKHI Clock Pulse
High Time TLSC52
LINERXCLK[29:1]
LINETXCLK[29:1]
1/2 tck
1/2 tck
1/2 tck
—ns
ns
ns
tRRise Time TLSC52
LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
0
3
3
3
ns
ns
ns
tFFall Time TLSC52
LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
0
3
3
3
ns
ns
ns
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXDATA[29:1] LINERXCLK[29:1] ↑↓ 12.0 9.0 ns
LINERXSYNC[29:1] LINERXCLK[29:1] ↑↓ 12.0 9.0 ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINETXDATA[29:1] LINETXCLK[29:1] ↑↓ CL = 15 pF 0.5 10 ns
LINETXSYNC[29:1] LINETXCLK[29:1] ↑↓ CL = 15 pF 0.5 11 ns
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 51
5.12 DJA DS1/E1 Interface Timing
Table 5-31. DJA DS1/E1 Interface Clock Specifications
Table 5-32. DJA DS1/E1 Interface Input Timing Specifications
Table 5-33. DJA DS1/E1 Interface Output Timing Specifications
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency LINERXCLK[29:1]
LINETXCLK[29:1]
–130 ppm
–50 ppm
–130 ppm
–50 ppm
1.544
or 2.048
1.544
or 2.048
130 ppm
50 ppm
130 ppm
50 ppm
MHz
MHz
MHz
MHz
tCK = 1/Fck Clock
Period LINERXCLK[29:1]
LINETXCLK[29:1]
—647.67
or 488.28
647.67
or 488.28
—ns
ns
ns
ns
tCKHI Clock Pulse
High Time LINERXCLK[29:1]
LINETXCLK[29:1]
1/2 tck
1/2 tck
—ns
ns
tRRise Time LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
3
3
ns
ns
tFFall Time LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
3
3
ns
ns
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXDATA[29:1] LINERXCLK[29:1] ↑↓ NA NA ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINETXDATA[29:1] LINETXCLK[29:1] ↑↓ CL = 15 pF –4.0 4.0 ns
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
5252 Agere Systems Inc.
5.13 M13 DS1/E1 Interface Timing
Table 5-34. M13 DS1/E1 Interface Clock Specifications
Table 5-35. M13 DS1/E1 Interface Input Timing Specifications
Table 5-36. M13 DS1/ E1 Interface Output Timing Specifications
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency LINERXCLK[29:1]
LINETXCLK[29:1]
–130 ppm
–50 ppm
–130 ppm
–50 ppm
1.544
or 2.048
1.544
or 2.048
130 ppm
50 ppm
130 ppm
50 ppm
MHz
MHz
MHz
MHz
tCK = 1/Fck Clock
Period LINERXCLK[29:1]
LINETXCLK[29:1]
—647.67
or 488.28
647.67
or 488.28
—ns
ns
ns
ns
tCKHI Clock Pulse
High Time LINERXCLK[29:1]
LINETXCLK[29:1]
1/2 tck
1/2 tck
—ns
ns
tRRise Time LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
3
3
ns
ns
tFFall Time LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
3
3
ns
ns
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXDATA[29:1] LINERXCLK[29:1] ↑↓ 12.0 8.0 ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINETXDATA[29:1] LINETXCLK[29:1] ↑↓ CL = 15 pF –5.0 2.0 ns
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 53
5.14 Microprocessor Interface Timing
5.14.1 Synchronous Mode
The synchronous microprocessor interface mode is selected when MPMODE (pin AD17) = 1.
5-7659(F)a
Figure 5-10. Micr oprocessor Interface Synchronous Write Cycle (MPMODE (Pin AD17) = 1)
MPCLK 16 MHz minimum to 60* MHz maximum frequency.
ADDR [19:0] The address will be available throughout the entire cycle.
DATA[15:0] Data will be available during cycle T1.
RWN (Input) The read (H) write (L) signal is always high except during a write cycle.
CSN (Input) Chip select is an active-low signal.
DTN (Output)Data transfer acknowledge is active-low for one clock and then driven h igh before entering a high-impedance
state. (This is done with an I/O pad using the input as feedb ack to qualify the 3-st ate term.) DTN will become
3-stated when CSN is high. Typically, DTN is active 4 or 5 MPCLK cycles after ADSN is low.
ADSN (Input) Address strobe is active-low. ADSN must be 1 MPCLK clock period wide.
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. For example, a 9 ns setup time
would limit MPCLK to 40 MHz for reliable DTN detection.
Table 5-37. Microprocessor Interface Synchronous Write Cycle Specifications
Symbol Parameter Setup (Min) Hold (Min) Delay (Max) Unit
TCLK MPCLK 16 MHz Min—60 MHz Max Frequency ns
tWS ADDR, RWN, DATA (write) Valid to MPCLK 3.5 0 ns
tAPD MPCLK to ADDR, RWN, DATA, CSN (write) Invalid 5 ns
tCSNVS CSN Valid to MPCLK 3.5 0 ns
tADSNVS ADSN Valid to MPCLK 5.5 0 ns
tAIPD MPCLK to ADSN Invalid 5 ns
tDTNVPD MPCLK to DTN Va lid 16 ns
tDTNIPD MPCLK to DTN Invalid 16 ns
tADSNVDTF ADSN Valid to DTN Fall 1000* ns
* Certain registers in the VTMPR block have a very long acknowledge cycle ( in the order of 32 MPCK). The reason is that those registers can also be
accessed by the VTMPR lower order path overhead interface as part of SONET overhead termination functions. This interface runs at 6.48 MHz.
Therefore, the user must insert long enough delay or use the DTN signal in MPU interface to read/write these registers correctly.
MPCLK
ADDR[19:0]
CSN
ADSN
RWN
DATA[15:0]
DTN
(60 MHz MAX)
(INPUT)
tADSNVS
tWS
tDTNVPD
tWS
tCSNVS
tWS
TCLK T1 T2 T3 Tn – 2 Tn – 1 Tn
tAIPD
tAPD
tAPD
tAPD
tAPD
tDTNIPD
HIGH ZHIGH Z tADSNVDTF
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
5454 Agere Systems Inc.
5-7660(F).a
Figure 5-11. Microprocessor Interface Synchronous Read Cycle (MPMODE (Pin AD17) = 1)
MPCLK 16 MHz minimum to 60* MHz maximum frequency.
ADDR [19:0] The address will be available throughout the entire cycle, and must be stable before ADSN turns high.
DATA [15:0] Read data is stable in Tn – 1.
RWN ( Input) The read (H) write (L) signal is always high during the read cycle.
CSN (Input) Chip select is an active-low signal.
DTN (Output)Data transfe r acknowledge on the host bu s interface is initiate d on T6. This signal is active for one clock and
then driven high before entering a high-impedance state. (This is done with an I/O pad using the input as
feedback to qualify the 3-state term.) Fall will become 3-stated when CS is high. Typically, DTN is active 4 or
5 MPCLK cycles after ADSN is low.
ADSN (Input) Address strobe is active-low. ADSN must be one MPCLK clock period wide.
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. For example, a 9 ns setup time
would limit MPCLK to 40 MHz for reliable DTN detection.
Table 5-38. Microprocessor Interface Synchronous Read Cycle Specifications
Symbol Parameter Setup
(Min) Hold
(Min) Delay
(Min) Delay
(Max) Unit
TCLK MPCLK 16 MHz Min—60 MHz Max Frequency ns
tAVS ADDR Valid to MPCLK 3.5 0 ns
tAPD MPCLK to ADDR Invalid 5 ns
tCSNSU CSN Active to MPCLK 3.5 0 ns
tADSNSU ADSN Valid to MPCLK 5.5 0 ns
tSNIPD MPCLK to ADSN Inactive 5 ns
tDVPD MPCLK to DTN Valid 4 16 ns
tDIPD MPCLK to DTN Invalid 4 16 ns
tDAIPD MPCLK to DATA 3-state 10 ns
tADSNVDTF ADSN Valid to DTN Fall 1000* ns
* Certain registers in the VTMPR block have a very long acknowledge cycle ( in the order of 32 MPCK). The reason is that those registers can also be
accessed by the VTMPR lower order path overhead interface as part of SONET overhead termination functions. This interface runs at 6.48 MHz.
Therefore, the user must insert long enough delay or use the DTN signal in MPU interface to read/write these registers correctly.
MPCLK
ADDR[19:0]
CSN
ADSN
RWN
(60 MHz MAX)
tADSNSU tSNIPD
tCSNSU
tAVS
T0 T1 T2 Tn – 4 Tn – 3 Tn – 2 Tn – 1 Tn
DTN
DATA[15:0]
(OUTPUT)
tDAIPD
tDTNVPD
tDTNIPD
tADSNVDTF HIGH Z
HIGH Z
tAPD
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 55
5.14.2 Asynchronous Mode
The asynchronous microprocessor interface mode is selected when MPMODE (pin AC18) = 0. Interface timing for the
asynchronous mode write cycle is given in Figure 5-12 and in Table 5-39, and for the read cycle in Figure 5-13 and in
Table 5-40.
5-7661(F).ar.1
Figure 5-12. Microprocessor Interface Asynchronous Write Cycle Description (MPMODE (Pin AC18) = 0)
ADDR [19:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available
throughout the entire cycle.
DATA [15:0] Write data is asynchronously passed from the host bus to the internal bus. Data will be available throughout
the entire cycle.
RWN (Input) The read (H) write (L) signal is always high except during a write cycle.
CSN (Input) Chip select is an active-low signal.
DTN (Output)Data transfer acknowledge (active-low). DTN is driven asynchronously based on the arrival of CSN.
DTN is driven high until the internal transaction is done. DTN is dr iven high a gain when either ADSN o r DSN
is deasserted. DTN will become 3-stated when CSN is high.
ADSN (Input) Address strobe is active-low. ADSN must be a minimum of one MPCLK clock period wide.
DSN (Input) Data strobe is active-low.
ADDR[19:0]
CSN
ADSN
DSN
RWN
DATA[15:0]
DTN
(INPUT)
tAVADSF
tDVDSF
tCSFDTR tDSFDTF
tADSRDTR tCSRDT3
tDSRDI
tDSRRWR
tDSNRAI
tADSRAI
tAICSR
tRWFDSF
tAVDSF
HIGH Z HIGH Z
tCSFDSF
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
5656 Agere Systems Inc.
Table 5-39. Microprocessor Interface Asynchronous Write Cycle S pecifications
Note: Specifications are valid for 50 MHz MPCLK with MPMODE = 0. Address strobe (ADSN) and chip select (CSN) may be connected and driven from
the same source. In this configuration, the setup and hold times for ADSN must be satisfied.
Symbol Parameter Typical Interval Max Interval Unit
tCSFDSF CSN Fall to DSN Fall 0 ns
tAICSR ADDR Invalid to CSN Rise 0 ns
tAVADSF ADDR Valid to ADSN Fall 0 ns
tADSRAI ADSN Rise to ADDR Invalid 0 ns
tAVDSF ADDR Valid to DSN Fall 0 ns
tDSNRAI DSN Rise to ADDR Invalid 0 ns
tRWFDSF RWN Fall to DSN Fall 0 ns
tDSRRWR DSN Rise to RWN Rise 0 ns
tDVDSF DATA Valid to DSN Fall 0 ns
tDSRDI DSN Rise to DATA Invalid 0 ns
tCSFDTR CSN Fall to DTN Rise 20 ns
tDSFDTF DSN Fall to DTN Fall 120 1000* ns
tADSRDTR ADSN Rise to DTN Rise 20 ns
tCSRDT3 CSN Rise to DTN 3-state 10 ns
* Certain registers in the VTMPR block have a very long acknowledge cycle ( in the order of 32 MPCK). The reason is that those registers can also be
accessed by the VTMPR lower order path overhead interface as part of SONET overhead termination functions. This interface runs at 6.48 MHz.
Therefore, the user must insert long enough delay or use the DTN signal in MPU interface to read/write these registers correctly.
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 57
5-7662(F).ar.1
Figure 5-13. Microprocessor Interface Asynchronous Read Cycle (MPMODE (Pin AC18) = 0)
ADDR [19:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available
throughout the entire cycle.
DATA [15:0] Read data on the internal bus is only valid for one clock cycle; therefore, a latch is necessary to meet the cor-
rect timing on the host bus.
RWN (Input) The read (H) write (L) signal is always high during a read cycle.
CSN (Input) Chip select is an active-low signal.
DTN (Output)Data transfer acknowledge (active-low). DTN is driven asynchronously based on the arrival of CSN, DSN,
and ADSN. DTN is driven high while the internal bus transact ion is in prog re ss . Th er e is no ne e d to provide
synchronization to outgoing signals in this mode. DTN is driven high and then placed in a high-impedance
state when either ADSN or DSN is deasserted. DTN will become 3-stated when CSN is high.
ADSN (Input) Address strobe is active-low.
DSN (Input) Data strobe is active-low.
ADDR[19:0]
CSN
ADSN
DSN
DTN
DATA[15:0]
tADSRD3
tCSRDT3
tADSRDTR
tCSFDSF
RWN
tAVADSF
tAVDSF
tAICSR
tADSRAI
tDSNRAI
tDTVDV
tDSFDTF
tCSFDTR
HIGH Z
HIGH Z
HIGH Z
HIGH Z
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
5858 Agere Systems Inc.
Table 5-40. Microprocessor Interface Asynchronous Read Cycle Specifications
1. DSN can be asserted up to 20 ns (1 clk at 50 MHz) previous to CSN.
2. ADDR can be asserted up to 60 ns (3 clk at 50 MHz) into cycle from ASDN.
3. DTN fall is variable depending on the block selected for access.
4. Leading edges of ADSN and DSN determine the Fall edge of DTN.
5. Rising edge of ADSN determines the rising edge of DTN.
6. Data toggle 20 ns (1 clk at 50 MHz) previous to CSN.
7. Certain registers in the VTMPR block have a very long acknowledge cycle ( in the order of 32 MPCK). The reason is that those registers can also be
accessed by the VTMPR lower order path overhead interface as part of SONET overhead termination functions. This interfa ce r uns at 6.48 MHz.
Therefore, the user must insert long enough delay or use the DTN signal in MPU interface to read/write these registers correctly.
Note: Specifications are valid for 50 MHz MPCLK with MPMODE = 0. Address strobe (ADSN) and chip select (CSN) may be connected and driven from
the same source. In this configuration, the setup and hold times for ADSN must be satisfied.
5.15 General-Purpose Interface Timing
Table 5-41. Input Timing Specifications
Table 5-42. Output Timing Specifications
* Propagation delay skew, tPLH – tPHL, is ±200 ps.
Symbol Parameter Typical Interval Max Interval Unit
tCSFDSF CSN Fall to DSN Fall 01—ns
tAICSR ADDR Invalid to CSN Rise 0 ns
tAVADSF ADDR Valid to ADSN Fall 0 602ns
tADSRAI ADSN Rise to ADDR Invalid 0 ns
tAVDSF ADDR Valid to DSN Fall 0 ns
tDSNRAI DSN Rise to ADDR Invalid 0 ns
tCSFDTR CSN Fall to DTN Rise 20 ns
tDSFDTF DSN Fall to DTN Fall 100 1000 3, 4, 7 ns
tADSRDTR ADSN Rise to DTN Rise 205—ns
tCSRDT3 CSN Rise to DTN 3-state 10 ns
tDTVDV DTN Valid to DATA Valid 06—ns
tADSRD3 ADSN Rise to DATA 3-state 20 ns
Input Name Reference CLK Min Setup Time (tS) Min Hold Time (tH)Unit
JTAG Signals
TDI TCLK 15.0 2.0 ns
TMSN TCLK 15.0 2.0 ns
TRSTN NA ASYNC ASYNC
SCAN_EN NA ASYNC ASYNC
SCAN_MODE NA ASYNC ASYNC
Miscellaneous Signals
RSTN NA ASYNC ASYNC
PMRST NA ASYNC ASYNC
IC3STATEN NA ASYNC ASYNC
IDDQ NA ASYNC ASYNC
Output Name Reference CLK Test Conditions Propagation Delay* (tPD)Unit
Min Max
Transmit Signals
TDO TLCK CL = 25 pF 3.0 20.0 ns
Miscellaneous Signals
PMRST NA ASYNC ASYNC
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 59
6 Telecom Bus Operation
6.1 Introduction
This section shows pin de scriptions, timing re quire ments, and timing specifications of the telecom bus.
6.2 Telecom Bus Pin Descriptions
The following is a brief description of the telecom bus pins. The complete pin description can be found in Table 2-5 on
page 17.
Table 6-1. Telecom Bus Pins
Pin Name Descripti on
RLSC52 Receive Low-S peed Clock. An output on the master and input on the slave. This clock is used internally
by the SPEMPR and the VTMPR.
RLSSYNC52 Receive Low-Speed Sync. This signal must be synchronous to the RLSC52. An output on the master
and an input on the slave. This clock is also used internally by SPEMPR and VTMPR.
RLSCLK Receive Low-Speed Clock. It is an output on the master and an input on the slave. RLSC52,
RLSSYNC52, and RLSCLK must come from the same clocking source. Their timing alignment relation-
ship is showed in Figure 6-1.
RLSSPE Receive Low-S p eed SPE Mar ker. High, while there are SPE data on the RLSDATA[7:0] output bus and
low when there are overhead bytes on the outp ut bus. It is an output on the master and input on the slave
RLSJ0J1V1 Receive Low-S peed J 0/J1/V1 Marker. The V1 part of this signal is the sa me as th e RLSV1 pin sign al. It
is an output on the master and input on the slave.
RLSV1 Receive Low-Speed V1 Marker. As noted in Figure 6-1, the V1 position depends on the H1 and the H2
pointer valu e. If th e po int er valu e is 522, this signal is high after the three J1 bytes. RLSV1 is high every
VT multiframe (superframe). It is an output on the master and an input on the slave.
RLSDATA[7:0] Receiv e L ow -Speed Data. It is an output data bus on the master and an input on the slave.
RLSPAR Receive Low-Speed Parity. Bit 2 (register 0x4001B) sets this signal for odd or even parity generation.
Bit 7 (register 0x3000B) set s this signal for odd or ev en parity check. This signal is recommended but not
necessary on the telecom bus. It is an output on the master and an input on the slave.
TLSC52 Transmit Low-Speed Clock. An output on the master and an input on the slave. This clock is used by
SPEMPR and VTMPR internally.
TLSSYNC52 Transmit Low-Speed Sync. An output on the master and an input on the slave. This clock is also used
by SPEMPR and VTMPR internally. This ia a 51.84 MHz clock.
TLSCLK Transmit Low-Speed Clock. It is an output on the master and an input on the slave. The TLSC52,
TLSSYNC52, and TLSCLK should come from the same clocking source. Their timing alignment relation-
ship is shown in Figure 6-2.
TLSSPE Transmit Low-Speed SPE Marker. When it is high, it indicates that the slave device should put the SPE
data on the TLSDATA[7:0] output bus. It is an output on the master and input on slave
TLSJ0J1V1 Transmit Low-Speed J0/J1/V1 Marker. The V1 part of this signa l is same as RLSV1 pin signal. It is an
output on the master and input on slave.
TLSV1 Transmit Low-Speed V1 Marker. The V1 position is fixed as shown in Figure 6-2. It is high every VT
multi-frame (superframe). An output on the master and input on slave.
TLSDATA[7:0] Transmit Low-Speed Data. It is an input data bus on the master and output on the slave.
TLSPAR Transmit Low-Speed Parity. Bit 9 of register 0x3001B sets this signal for odd or eve n parity generation.
Bit 0 of register 0x40033 set s this signal for odd or even par ity check. This signal is r ecommended but not
necessary on the telecom bus. It is an input on the master and an output on the slave.
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
6060 Agere Systems Inc.
6.3 Telecom Bus Timing Diagrams
The following diagrams show the telecom bus timing in the receive and the transmit direction.
Figure 6-1. Receive Telecom Bus Timing Diagram for STS-3/STM-1 Signals
Figure 6-2. Transmit Telecom Bus Timing Diagram for STS-3/STM-1 Signals
RLSC52
RLSSYNC52
RLSCLK
RLSSPE
RLSJ0J1V1
RLSV1*
RLSDATA[7:0] A1-1 A1-2 A1-3 A2-1 A2-2 A2-3 J0-1 J0-2 J0-3 J1-1 J1-2 J1-3 V1-1 V1-2 V1-3
A1** A2** J0** J1 V1
* The V1 position depends on the H1 and the H2 pointer value. In AU-4/TUG-3 mapping, there is one set of pointer values. In AU-3/TUG-2
mapping, there are three sets of pointer values. This diagram shows the V1 position when the pointer value(s) is (are) 522.
** A1, A2, and J0 bytes are not necessary to be valid bytes.
TLSC52
TLSSYNC52
TLSCLK
TLSSPE
TLSJ0J1V1
TLSV1
TLSDATA[7:0] A1-1 A1-2 A1-3 A2-1 A2-2 A2-3 J0-1 J0-2 J0-3 J1-1 J1-2 J1-3 V1-1 V1-2 V1-3
A1* A2* J0* J1 V1
* A1, A2, and J0 bytes are not necessary to be valid bytes.
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Agere Systems Inc . 61
7 Ordering Information
Device Device Code Package Temperature Comcode
Supermapper V3.1 TMXF281553BAL-3C-DB 456-pin PBGA –40 °C to +85 °C 700002098
Supermapper V3.2 TMXF281553BAL-C2-DB 456-pin PBGA –40 °C to +85 °C 700067626
TMXF28155 Supermapper Hardware Design Guide, Revision 1
155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0 May 26, 2006
6262 Agere Systems Inc.
8 Outline Diagram
8.1 456-Pin PBGA
Dimensions are in millimeters.
5-6216(F)r.1
0.56 ± 0.06 1.17 ± 0.05 2.33 ± 0.21
SEATING PLANE
SOLDER BALL
0.60 ± 0.10
0.20
PWB
MOLD
COMPOUND
35.00 ± 0.20
35.00
± 0.20
+0.70
–0.00
30.00
+0.70
–0.00
30.00
A1 BALL
IDENTIFIER ZONE
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
G
25 SPACES @ 1.27 = 31.75
P
N
M
L
K
J
H
1 2 3 4 5 6 7 8 9 10 12 14 16 18 22 24 2620
11 13 15 17 2119 23 25
F
E
D
C
B
A
CENTER ARRAY
FOR THERMAL
ENHANCEMENT
(OPTIONAL)
25 SPACES
@ 1.27 = 31.75
A1 BALL
CORNER
0.75 ± 0.15
Hardware Design Guide, Revision 1 TMXF28155 Supermapper
May 26, 2006 155/51 Mbits/s SONET/SDH xDS3/DS2/DS1/E1/DS0
Copyright © 2006 Agere Systems Inc.
All Rights Reserved
May 26, 2006
DS03-212MPIC-1 (Replaces DS03-212MPIC)
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Agere, Agere Systems, and the Agere logo are registered trademarks of Agere Systems Inc. Supermapper is a trademark of Agere Systems Inc.
For additional information, contact your A gere Systems Account Manager or the following:
INTERNET: Home: http://www.agere.com Sales: http://www.agere.com/sales
E-MAIL: docmaster@agere.com
N. AMERICA: Agere Systems Inc., Lehigh Valley Central Campus, Room 10A-301C , 1110 American Parkway NE, Allentown, PA 18109-9138
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-41 06)
ASIA: CHINA: (86) 21-54614688 (Shanghai), (86) 755-25881122 (Shenz hen), (86) 10-65391096 (Beijing)
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6741-9855, TAIWAN: (886) 2-2725-5858 (Taipei)
EUROPE: Tel. (44) 1344 865 900
9 Change History
Changes that were made to this document are listed in Table 9-1.
9.1 Navigating Through an Adobe Acrobat ® Document
If the reader displays this document in Acrobat Reader, clicking on any blue entry in the text will bring the reader to that
reference po in t.
Table 9-1. Document Changes
Change Change Change Change Change Change Change
page 21 page 22 page 23 page 24 page 34 page 42 page 61