2011-07-29
1
BCW61..., BCX71...
1
2
3
PNP Silicon AF Transistors
For AF input stages and driver applications
High current gain
Low collector-emitter saturation voltage
Low noise between 30 Hz and 15 kHz
Complementary types: BCW60, BCX70 (NPN)
Pb-free (RoHS compliant) package
Qualified according AEC Q101
Type Marking Pin Configuration Package
BCW61A
BCW61B
BCW61C
BCW61D
BCX71G
BCX71H
BCX71J
BCX71K
BAs
BBs
BCs
BDs
BGs
BHs
BJs
BKs
1=B
1=B
1=B
1=B
1=B
1=B
1=B
1=B
2=E
2=E
2=E
2=E
2=E
2=E
2=E
2=E
3=C
3=C
3=C
3=C
3=C
3=C
3=C
3=C
SOT23
SOT23
SOT23
SOT23
SOT23
SOT23
SOT23
SOT23
2011-07-29
2
BCW61..., BCX71...
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage
BCW61...
BCX71...
VCEO
32
45
V
Collector-base voltage
BCW61...
BCX71...
VCBO
32
45
Emitter-base voltage VEBO 5
Collector current IC100 mA
Peak collector current, tp 10 ms ICM 200
Peak base current IBM 200
Total power dissipation-
TS 71 °C
Ptot 330 mW
Junction temperature Tj150 -
Storage temperature Tst
g
-65 ... 150 °C
Thermal Resistance
Parameter Symbol Value Unit
Junction - soldering point1) RthJS 240 K/W
1For calculation of RthJA please refer to Application Note AN077 (Thermal Resistance Calculation)
2011-07-29
3
BCW61..., BCX71...
Electrical Characteristics at T
A
= 25°C, unless otherwise specified
Parameter Symbol Values Unit
min. typ. max.
DC Characteristics
Collector-emitter breakdown voltage
IC = 10 mA, IB = 0 , BCW61...
IC = 10 mA, IB = 0 , BCX71...
V(BR)CEO
32
45
-
-
-
-
V
Collector-base breakdown voltage
IC = 10 µA, IE = 0 , BCW61...
IC = 10 µA, IE = 0 , BCX71...
V(BR)CBO
32
45
-
-
-
-
Emitter-base breakdown voltage
IE = 1 µA, IC = 0
V(BR)EBO 5 - -
Collector-base cutoff current
VCB = 32 V, IE = 0
VCB = 45 V, IE = 0
VCB = 32 V, IE = 0 , TA = 150 °C, BCW61...
VCB = 45 V, IE = 0 , TA = 150 °C, BCX71...
ICBO
-
-
-
-
-
-
-
-
0.02
0.02
20
20
µA
Emitter-base cutoff current
VEB = 4 V, IC = 0
IEBO - - 20 nA
DC current gain1)
IC = 10 µA, VCE = 5 V, hFE-grp. A/G
IC = 10 µA, VCE = 5 V, hFE-grp. B/H
IC = 10 µA, VCE = 5 V, hFE-grp. C/J
IC = 10 µA, VCE = 5 V, hFE-grp. D/K
IC = 2 mA, VCE = 5 V, hFE-grp. A/G
IC = 2 mA, VCE = 5 V, hFE-grp. B/H
IC = 2 mA, VCE = 5 V, hFE-grp. C/J
IC = 2 mA, VCE = 5 V, hFE-grp. D/K
IC = 50 mA, VCE = 1 V, hFE-grp. A/G
IC = 50 mA, VCE = 1 V, hFE-grp. B/H
IC = 50 mA, VCE = 1 V, hFE-grp. C/J
IC = 50 mA, VCE = 1 V, hFE-grp. D/K
hFE
20
30
40
100
120
180
250
380
60
80
100
110
140
200
300
460
170
250
350
500
-
-
-
-
-
-
-
-
220
310
460
630
-
-
-
-
-
2011-07-29
4
BCW61..., BCX71...
DC Electrical Characteristics
Parameter Symbol Values Unit
min. typ. max.
Characteristics
Collector-emitter saturation voltage1)
IC = 10 mA, IB = 0.25 mA
IC = 50 mA, IB = 1.25 mA
VCEsat
-
-
0.12
0.2
0.25
0.55
V
Base emitter saturation voltage1)
IC = 10 mA, IB = 0.25 mA
IC = 50 mA, IB = 1.25 mA
VBEsat
-
-
0.7
0.83
0.85
1.05
Base-emitter voltage1)
IC = 10 µA, VCE = 5 V
IC = 2 mA, VCE = 5 V
IC = 50 mA, VCE = 1 V
VBE(ON)
-
0.55
-
0.52
0.65
0.78
-
0.75
-
1Pulse test: t < 300µs; D < 2%
2011-07-29
5
BCW61..., BCX71...
AC Characteristics
Transition frequency
IC = 20 mA, VCE = 5 V, f = 100 MHz
fT- 250 - MHz
Collector-base capacitance
VCB = 10 V, f = 1 MHz
Ccb - 1.5 - pF
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz
Ceb - 8 -
Short-circuit input impedance
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. A/B
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. B/H
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. C/J
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. D/K
h11e
-
-
-
-
2.7
3.6
4.5
7.5
-
-
-
-
k
Open-circuit reverse voltage transf. ratio
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. A/B
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. B/H
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. C/J
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. D/K
h12e
-
-
-
-
1.5
2
2
3
-
-
-
-
10-4
Short-circuit forward current transf. ratio
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. A/B
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. B/H
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. C/J
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. D/K
h21e
-
-
-
-
200
260
330
520
-
-
-
-
-
Open-circuit output admittance
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. A/B
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. B/H
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. C/J
IC = 2 mA, VCE = 5 V, f = 1 kHz, hFE-grp. D/K
h22e
-
-
-
-
18
24
30
50
-
-
-
-
µS
Noise figure
IC = 200 µA, VCE = 5 V, f = 1 kHz,
f = 200 Hz, RS = 2 k, hFE-grp. A/K
F- 2 - dB
2011-07-29
6
BCW61..., BCX71...
DC current gain hFE = ƒ(IC)
VCE = 5 V
10
EHP00351BCW 61/BCX 71
-2 2
10mA
0
10
3
10
5
5
10
-1
10
0
10
1
C
FE
h
Ι
1
10
2
10
˚C
100
5
25
˚C
-50
˚C
Collector-emitter saturation voltage
IC = ƒ(VCEsat), hFE = 40
0
10
EHP00349BCW 61/BCX 71
CEsat
V
V 0.5
-1
10
0
10
1
2
10
5
5
Ι
C
mA
0.1 0.2 0.3 0.4
˚C
100
25
˚C
-50
˚C
Base-emitter saturation voltage
IC = ƒ(VBEsat), hFE = 40
0
10
EHP00348BCW 61/BCX 71
BE sat
V
0.6 V 1.2
-1
10
0
10
1
2
10
5
5
Ι
C
mA
0.2 0.4 0.8
˚C
25
100
˚C
-50
˚C
Collector current IC = ƒ(VBE)
VCE = 5 V
0
10
EHP00350BCW 61/BCX 71
BE
V
0.5 V 1.0
-2
10-1
100
2
10
5
5
Ι
CmA
5
1
10
˚C
100 25 -50
˚C ˚C
2011-07-29
7
BCW61..., BCX71...
Collector cutoff current ICBO = ƒ(TA)
VCB = VCEmax
0
10
EHP00352BCW 61/BCX 71
A
T
150
-1
4
10
Ι
CBO
nA
50 100
0
10
1
10
3
10
C
typ
max
10
2
Transition frequency fT = ƒ(IC)
VCE = parameter in V, f = 2 GHz
10
EHP00347BCW 61/BCX 71
03
10mA
1
10
3
10
5
5
10
1
10
2
10
2
C
T
fMHz
Ι
55
Collector-base capacitance Ccb = ƒ(VCB)
Emitter-base capacitance Ceb = ƒ(VEB)
0 4 8 12 16 V22
VCB(VEB)
0
1
2
3
4
5
6
7
8
9
10
pF
12
CCB(CEB)
CCB
CEB
Total power dissipation Ptot = ƒ(TS)
0 15 30 45 60 75 90 105 120 °C 150
TS
0
30
60
90
120
150
180
210
240
270
300
mW
360
Ptot
2011-07-29
8
BCW61..., BCX71...
Permissible Pulse Load
Ptotmax/PtotDC = ƒ(tp)
10
EHP00345BCW 61/BCX 71
-6
0
10
5
D
=
5
101
5
102
3
10
10-5 10-4 10-3 10-2 100
s
0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
t
p
=
DT
tp
T
totmax
tot
PDC
P
p
t
h parameter he = ƒ(IC) normalized
VCE = 5V
10
EHP00353BCW 61/BCX 71
-1 1
10mA
-1
10
2
10
5
5
10
0
10
0
C
e
h
Ι
1
10
5
11e
h
12e
h
21e
h
22e
h
V
CE
= 5 V
h parameter he = ƒ(VCE) normalized
IC = 2mA
0
0
EHP00354BCW 61/BCX 71
CE
V
30
10 20
0.5
1.0
1.5
2.0
he
V
Ι
C
= 2 mA
11
h
h12
22
h
Noise figure F = ƒ(VCE)
IC = 0.2mA, RS = 2k , f = 1kHz
10
EHP00355BCW 61/BCX 71
-1 2
10V
5
100101
F
10
15
20
dB
0
CE
V
2011-07-29
9
BCW61..., BCX71...
Noise figure F = ƒ(f)
VCE = 5V, ZS = ZSopt
10
EHP00356BCW 61/BCX 71
-2 2
10kHz
5
10
-1
10
0
F
1
10
10
15
20
dB
f
0
Noise figure F = ƒ(IC)
VCE = 5V, f = 120Hz
10
EHP00357BCW 61/BCX 71
-3 1
10mA
5
10
-2
10
-1
F
0
10
10
15
20
dB
0
Ι
C
S
R
= 1 M
100 k
10 k
1 k
500
Noise figure F = ƒ(IC)
VCE = 5V, f = 1kHz
10
EHP00358BCW 61/BCX 71
-3 1
10mA
5
10-2 10-1
F
0
10
10
15
20
dB
0
Ι
C
= 1 M
S
R
100 k
10 k
1k
500
Noise figure F = ƒ(IC)
VCE = 5V, f = 10kHz
10
EHP00359BCW 61/BCX 71
-3 1
10mA
5
10-2 10-1
F
0
10
10
15
20
dB
0
Ι
C
= 1 M
RS
100 k
10 k
500
1 k
2011-07-29
10
BCW61..., BCX71...
Package SOT23
Package Outline
Foot Print
Marking Layout (Example)
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
EH
s
BCW66
Type code
Pin 1
0.8
0.9 0.91.3
0.8 1.2
0.25
M
BC
1.9
-0.05
+0.1
0.4
±0.1
2.9
0.95
C
B
0...8˚
0.2 A
0.1 MAX.
10˚ MAX.
0.08...0.15
1.3
±0.1
10˚ MAX.
M
2.4
±0.15
±0.1
1
A
0.15 MIN.
1)
1) Lead width can be 0.6 max. in dambar area
12
3
3.15
4
2.65
2.13
0.9
8
0.2
1.15
Pin 1
Manufacturer
2005, June
Date code (YM)
2011-07-29
11
BCW61..., BCX71...
Edition 2009-11-16
Published by
Infineon Technologies AG
81726 Munich, Germany
2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee
of conditions or characteristics. With respect to any examples or hints given herein,
any typical values stated herein and/or any information regarding the application of
the device, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of
intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices,
please contact the nearest Infineon Technologies Office (<www.infineon.com>).
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon
Technologies Office.
Infineon Technologies components may be used in life-support devices or systems
only with the express written approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the failure of that life-support
device or system or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.