1/22Novemb er 200 4
M27C512
512 Kbit (64K x8) UV EPROM and OTP EPROM
FEATURES SUMMARY
5V ± 10% SUPPLY VOLTAGE in READ
OPERATION
ACCESS TIME: 45ns
LOW POWER “CMOS” CONSUMPTION:
Active Current 30mA
Standby Cur re nt 100µA
PROGRAMM ING VOLT AGE: 12.75V ± 0.25V
PROGRAMMING TIMES of AROUND 6sec.
ELECTRONIC SIGNATURE
Manufactu rer Code : 20h
Device Code : 3Dh
PACKAGES
Lead-Free Versions
Figure 1. Packages
1
28
FDIP28W (F)
28
1
PDIP28 (B)
PLCC32 (C)
TSOP28 (N)
8 x 13.4 mm
M27C512
2/22
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 4. LCC Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DEVICE OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Two Line Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
System Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. Programming Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
PRESTO IIB Programming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Program Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Program Verify. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ERASURE OPERATION (APPLIES FOR UV EPROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 7. Testing Input Output Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 8. AC Testing Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 6. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 7. Read Mode DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 8. Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 9. Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 9. Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 10. Programming Mode DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 11. Margin Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10.Margin Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 12. Programming Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 11.Programming and Verify Modes AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3/22
M27C512
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12.FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline. . . . . . . . . . . . 16
Table 13. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data . . . . 16
Figure 13.PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline. . . . . . . . . . . . . . . . . . . . 17
Table 14. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data . . . . . . . . . . . . 17
Figure 14.PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline . . . . . . . . . . . . . . . . . 18
Table 15. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data . . . . . . . . . . 18
Figure 15.TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Outline . . . . . . . . 19
Table 16. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Mechanical Data 19
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 17. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 18. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
M27C512
4/22
SUMMARY D ESCRIPTION
The M27C512 is a 512 Kbit EPROM offered in the
two ranges UV (ultra violet erase) and OTP (one
time programmable). It is ideally suited for applica-
tions where fast turn-around and pattern experi-
mentation are important requirements and is
organized as 65536 by 8 bits.
The FDIP28W (window ceramic frit-seal package)
has transparent lid which allows the user to ex-
pose the chip to ultraviolet light to erase the bit pat-
tern. A new pattern can then be written to the
device by following the programming procedure.
For applications where the content is programmed
only one time and erasure is not required, the
M27C512 is offered in PDIP28, PLCC32 and
TSOP28 (8 x 13.4 mm) packages.
In addition to the standard versions, the packages
are also available in Lead-free versions, in compli-
ance with J EDEC Std J-STD-020B, the ST ECO-
PACK 7191395 Specification, and the RoHS
(Restriction of Hazardous Substances) directive.
Figure 2. Logic Diagram
Table 1. Signal Names
A0-A15 Address Inputs
Q0-Q7 Data Outputs
EChip Enable
GVPP Output En ab le / Prog ra m Sup pl y
VCC Supply Voltage
VSS Ground
NC Not Connected Internally
DU Don’t Use
AI00761B
16
Q0-Q7
VCC
M27C512
GVPP
VSS
8
A0-A15
E
5/22
M27C512
Figure 3. DIP Connections
Figure 4. LCC Connections
Figure 5. TSOP Connections
A1
A0
Q0
A7
A4
A3
A2
A6
A5
A13
A10
A8
A9
Q7
A14
A11
GVPP
E
Q5Q1
Q2 Q3VSS Q4
Q6
A12
A15 VCC
AI00762
M27C512
8
1
2
3
4
5
6
7
9
10
11
12
13
14 16
15
28
27
26
25
24
23
22
21
20
19
18
17
AI00763
A13
A8
A10
Q4
17
A0
NC
Q0
Q1
Q2
DU
Q3
A6
A3
A2
A1
A5
A4
9
A14
A9
1
A15
A11
Q6
A7
Q7
32
DU
VCC
M27C512
A12
NC
Q5
GVPP
E
25
VSS
A1
A0
Q0
A5
A2
A4
A3
A9
A11 Q7
A8
GVPP E
Q5
Q1
Q2
Q3
Q4
Q6
A13
A14
A12
A6
A15
VCC
A7
AI00764B
M27C512
28
1
22
78
14
15
21
VSS
A10
M27C512
6/22
DEVICE OPERAT ION
The modes of operations of the M27C512 are list-
ed in the Operating Modes table. A single power
supply is required in the read mode. All inputs are
TTL levels except for GVPP and 12V on A9 for
Electronic Signature.
Read Mode
The M27C512 has two control functions, both of
which must be logically active in order to obtain
data at the out puts. Chip Ena ble (E) is the power
control and should be used for device selection.
Output Enable (G) is the output control and should
be used to gate data to the output pins, indepen-
dent of device selection. Assuming that the ad-
dresses are stable, the address access time
(tAVQV) is equal to the delay from E to output
(tELQV). Data is avai lable at the output after a delay
of tGLQV from the fall ing edg e of G , ass umi ng that
E has been low and the addresses have been sta-
ble for at least tAVQV-tGLQV.
Standby Mode
The M27C512 has a standby mode which reduces
the active current from 30mA to 100µA The
M27C512 is placed in the standby mode by apply-
ing a CMOS high signal to the E input. When in the
standby mode, the outputs are in a high imped-
ance state, independent of the GVPP input.
Table 2. Operating Modes
Note: X = VIH or VIL, VID = 12V ± 0.5V.
Table 3. Electronic Signature
Two Line Output Control
Because EPROMs are usually used in larger
memory arrays, the product features a 2 line con-
trol function which accommodates the use of mul-
tiple memory connection. The two line control
function allows:
a. the lowest possible memory power
dissipation,
b. complete assurance that output bus
contention will not occur.
For the most efficient use of these two control
lines, E should be decoded and used as the prima-
ry device selecting function, while G should be
made a common connection to all devices in the
array and connected to the READ line from the
system control bus. This ensures that all deselect-
ed memory devices are in their low power standby
mode and that the output pins are only active
when data is required from a particular memory
device.
System Considerations
The power switching characteristics of Advanced
CMOS EPROMs require careful decoupling of the
devices. The supply current, ICC, has three seg-
ments that are of interest to the sy stem designer:
the standby current level, th e active current le vel,
and transient current peaks that are produced by
the falling and rising edges of E. The magnitude of
the transient current peaks is dependent on the
capacitive and inductive loading of the device at
the output. The associated transient voltage peaks
ca n be suppressed by complying with the two line
output control and by properly selected decoupling
capacitors. It is recommended that a 0.1µF ceram-
ic capacitor be used on every device between VCC
and VSS. T his s hou ld b e a high fr eq uen cy c apaci -
tor of low inherent inductance and should be
placed as close to the device as possible. In addi-
Mode E GVPP A9 Q7-Q0
Read VIL VIL X Data Out
Output Dis ab le VIL VIH XHi-Z
Program VIL Pulse VPP XData In
Program Inhibit VIH VPP XHi-Z
Standby VIH XXHi-Z
Electronic Signature VIL VIL VID Codes
Identifier A0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Hex Data
Manufacturer’s Code VIL 00100000 20h
Device Code VIH 00111101 3Dh
7/22
M27C512
tion, a 4.7µ F bul k electrolytic capacitor s hould be
used betw een VCC a nd V SS for ev ery eight devi c-
es. The b u lk capacitor s hou ld be located n ear the
power supply connection point.The purpose of the
bulk capacitor is to overcome the voltage drop
caused by the inductive effects of PCB traces.
Figure 6. Programming Flowchart
Programming
When delivered (and after each erasure for UV
EPROM), all bits of the M27C512 are in the '1'
state. Data is introduced by selectively program-
ming '0's into the desired bit locations. Although
only '0's will be programmed, both '1's and '0's can
be present in the data word. The only way to
change a '0' to a '1' is by die exposure to ultraviolet
light (UV EPROM). The M27C512 is in the pro-
gramming m ode whe n VPP input i s at 12 .75V a nd
E is pulsed to VIL. The data to be programmed is
applied to 8 bits in parallel to the data output pins.
The levels required for the address and data in-
puts are TTL. VCC is specified to be 6.25V ±
0.25V. The M27C512 can use PRESTO IIB Pro-
gramming Algorithm that drastically reduces the
program min g tim e (ty pic all y less tha n 6 sec on ds) .
Nevertheles s to a chieve com patibi lity with all p ro-
gramming equipments, PRESTO Programming
Algorithm can be used as well.
PRESTO IIB Programming Algorithm
PRESTO IIB Programming Algorithm allows the
whole array to be progr ammed with a gu arante ed
margin, in a typical time of 6.5 seconds. This can
be achieved with STMicroelectronics M27C512
due to several design innovations described in the
M27C512 datasheet to improve programming effi-
ciency and to provide adequate margin for reliabil-
ity. Before starting the programming the internal
MARGIN MODE circuit is set in order to guarantee
that each cell is programmed with enough margin.
Then a sequence of 100µs program pulses are ap-
plied to each byte unti l a correc t verify occurs. No
overprogram pulses are applied since the verify in
MARGIN MODE provides the necessary margin.
Program Inhibit
Programming of multiple M27C512s in parallel
with different data is also easily accomplished. Ex-
cept for E, all like inputs including GVPP of t he pa r-
allel M27C512 may be common. A TTL low level
pulse applied to a M27C512's E input, with VPP at
12.75V, will program that M27C512. A high level E
input inhibits the other M27C512s from being pro-
grammed.
Program Ve rify
A verify (read) should be performed on the pro-
grammed bits to determine that they were correct-
ly pr og ra m me d . T h e ver i f y i s ac co mp l ished with G
at VIL. Data should be ve rifi ed wit h tELQV after the
falling edge of E.
Electronic Signature
The Electronic Signature (ES) mode allows the
reading out of a binar y co de from an EP RO M that
will identify its manufacturer and type. This mode
is intend ed for us e by progr amming eq uipment to
aut oma tica lly m atc h th e dev ice t o be pr og ram med
with its corresponding programming algorithm.
The ES mode is functional in the 25° C ± 5°C am -
bient temperature range that is required when pro-
gramming the M27C512. To activate the ES
mode, the programming equipment must force
11.5V to 12.5V on address line A9 of the
M27C512. Two identifier bytes may then be se-
quenced from the device outputs by toggling ad-
dress line A0 from VIL to VIH. All other address
lines mu st be he ld at VIL during El ectronic Signa -
ture mode . Byte 0 (A0 = VIL) represents the man -
ufacturer code and byte 1 (A0 = VIH) the device
identifier code. For the STMicroelectronics
M27C512, these two identifier bytes are given in
Table 3. and can be read-out on outputs Q7 to Q0.
AI00738B
n = 0
Last
Addr
VERIFY
E = 100µs Pulse
++n
= 25 ++ Addr
VCC = 6.25V, VPP = 12.75V
FAIL
CHECK ALL BYTES
1st: VCC = 6V
2nd: VCC = 4.2V
YES
NO
YES
NO
YES
NO
SET MARGIN MODE
RESET MARGIN MODE
M27C512
8/22
ERASURE OPER ATION (APPLIES FOR UV EPROM)
The erasure characteristics of the M27C512 is
such that erasure begins when the cells are ex-
posed to light with wavelengths shorter than ap-
proximately 4000 Å. It should be noted that
sunlight and some type of fluorescent lamps have
wavelengt hs in the 3000 -4 000 Å ra nge .
Research shows that constant exposure to room
level fluorescent lighting could erase a typical
M27C512 in about 3 years, while it would take ap-
proximately 1 week to cause erasure when ex-
posed to direct sunlight. If the M27C512 is to be
exposed to these types of lighting conditions for
extended periods of time, it is suggested that
opaque labels be put over the M27C512 window to
prevent un intent ional e rasu re. The rec ommend ed
erasure procedure for the M27C512 is exposure to
short wave ultraviolet light which has wavelength
2537 Å. The integrated dose (i.e. UV intensity x
exposure time) for erasure should be a minimum
of 15 W-s ec/cm2. The erasure time with this dos-
age is approximately 15 to 20 minutes using an ul-
traviolet lamp with 12000 µW/cm2 power rating.
The M27C512 should be placed within 2.5 cm (1
inch) o f the lamp tubes duri ng the eras ure. Some
lamps hav e a fi lt er on th eir tub es whi ch sho ul d be
removed before erasure.
9/22
M27C512
MAXIMUM RATING
Stressing the device outside the ratings listed in
Table 4. may cause permanent damage to the de-
vice. Th ese are s tress r atings only, and oper ation
of the device at these, or any other conditions out-
side those indicated in the Operating sections of
this specification, is not implied. Exposure to Ab-
solute Maximum Rating conditions for extended
periods may affect de vice r eliability . Refer al so to
the STM icroelec tronics SURE P rogram and other
relevant quality documents.
Table 4. Absolute Maximum Ratings
Note: 1. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assermbly), the ST ECOPACK® 7191395 specification,
and the European directive on Res trictions on Haz ardous Substances (RoHS) 2002/95/EU.
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC
voltage on Output is VCC +0.5V with possible over shoot to VCC +2V f or a period less than 20ns.
3. Depends on range.
Symbol Parameter Value Unit
TAAm bie nt Op era tin g Temperatur e (3) –40 to 125 °C
TBIAS Temperature Under Bias –50 to 125 °C
TSTG Storage Temperature –65 to 150 °C
TLEAD Lead Temperature during Soldering (note 1) °C
VIO (2) Input or Output Voltage (except A9) –2 to 7 V
VCC Supply Voltage –2 to 7 V
VA9 (2) A9 Voltage –2 to 13.5 V
VPP Program Supply Voltage –2 to 14 V
M27C512
10/22
DC AND AC PARA METERS
This section summarizes the operating and mea-
suremen t cond itions, and the D C and A C ch arac -
teristics of the device. The parameters in the DC
and AC Characteristic tables that follow are de-
rived from tests performed under the Measure-
ment Conditions summarized in the relevant
tables. De si gne rs s ho uld c heck tha t th e op er ati ng
conditio ns in their circ uit match the meas urement
conditions when relying on the quoted parame-
ters.
Table 5. AC Measurement Conditions
Figure 7. Testing Input Output Waveform Figure 8. AC Testing Load Circuit
Table 6. Capacitance
Note: 1. TA = 25°C, f = 1MHz
2. Sampled only, not 100% tested.
High Speed Standard
Input Rise and Fall Times 10ns 20ns
Input Pulse Voltages 0 to 3V 0.4V to 2.4V
Input and Output Timing Ref. Voltages 1.5V 0.8V and 2V
AI01822
3V
High Speed
0V
1.5V
2.4V
Standard
0.4V
2.0V
0.8V
AI01823B
1.3V
OUT
CL
CL = 30pF for High Speed
CL = 100pF for Standard
CL includes JIG capacitance
3.3k
1N914
DEVICE
UNDER
TEST
Symbol P ara m ete r Test Cond itio n (1,2) Min Max Unit
CIN Input Capacitance VIN = 0V 6pF
COUT Output Ca pacitanc e VOUT = 0V 12 pF
11/22
M27C512
Table 7. Read Mode DC Characteristics
Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
2. Maximum DC voltage on Output is VCC +0.5V.
Table 8. Read Mode AC Characteristics
Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
2. Sampled only, not 100% tested.
3. Speed obtained with High Speed AC measurement conditions.
Symbol Parameter Test Condition (1) Min Max Unit
ILI Input Leakage Current 0V VIN VCC ±10 µA
ILO Output Leakage Current 0V VOUT VCC ±10 µA
ICC Supply Current E = VIL, G = VIL,
IOUT = 0mA, f = 5MHz 30 mA
ICC1 Supply Current (Standby) TTL E = VIH 1mA
ICC2 Supply Current (Standby) CMOS E > VCC – 0.2V 100 µA
IPP Program Current VPP = VCC 10 µA
VIL Input Low Voltage –0.3 0.8 V
VIH (2) Input High Voltage 2 VCC + 1 V
VOL Output Low Voltage IOL = 2.1mA 0.4 V
VOH Output High Voltage TTL IOH = –1mA 3.6 V
Output High Voltage CMOS IOH = –100µA VCC – 0.7V V
Symbol Alt Parameter Test Condition (1)
M27C512
Unit
-45 (3) -60 -70 -80
MinMaxMinMaxMinMaxMinMax
tAVQV tACC Address Valid to
Output Valid E = VIL, G = VIL 45 60 70 80 ns
tELQV tCE Chip Enable Low to
Output Valid G = VIL 45 60 70 80 ns
tGLQV tOE Output Enable Low
to Output Valid E = VIL 25 30 35 40 ns
tEHQZ (2) tDF Chip Enable Hig h
to Output Hi-Z G = VIL 025025030030ns
tGHQZ (2) tDF Output Enable
High to Output Hi-Z E = VIL 025025030030ns
tAXQX tOH Address Transition
to Output Transition E = VIL, G = VIL 0000ns
M27C512
12/22
Table 9. Read Mode AC Characteristics
Note: 1. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
2. Sampled only, not 100% tested.
Figure 9. Read Mode AC Waveforms
Symbol Alt Parameter Test Condition (1)
M27C512
Unit
-90 -10 -12 -15/-20/-25
MinMaxMinMaxMinMaxMinMax
tAVQV tACC Address Valid to
Output Valid E = VIL, G = VIL 90 100 120 150 ns
tELQV tCE Chip Enable Low to
Output Valid G = VIL 90 100 120 150 ns
tGLQV tOE Output Enable Low
to Output Valid E = VIL 40 40 50 60 ns
tEHQZ (2) tDF Chip Enable Hig h
to Output Hi-Z G = VIL 030030040050ns
tGHQZ (2) tDF Output Enable
High to Output Hi-Z E = VIL 030030040050ns
tAXQX tOH Address Transition
to Output Transition E = VIL, G = VIL 0000ns
AI00735B
tAXQX
tEHQZ
A0-A15
E
G
Q0-Q7
tAVQV
tGHQZ
tGLQV
tELQV
VALID
Hi-Z
VALID
13/22
M27C512
Table 10. Programming Mode DC Characteristics
Note: 1. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V
2. VCC must be applied simultaneously with or before VPP and removed simultaneously or af ter VPP.
Symbol Parameter Test Condition (1,2) Min Max Unit
ILI Input Leakage Current VIL VIN VIH ±10 µA
ICC Supply Cu rre nt 50 mA
IPP Program Current E = VIL 50 mA
VIL Input Low Voltage –0.3 0.8 V
VIH Input High Volt age 2 VCC + 0.5 V
VOL Output Low Voltage IOL = 2.1mA 0.4 V
VOH Output Hig h Voltage TTL IOH = –1mA 3.6 V
VID A9 Voltage 11.5 12.5 V
M27C512
14/22
Table 11. Margin Mode AC Characteristics
Note: 1. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V
2. VCC must be applied simultaneously with or before VPP and removed simultaneously or af ter VPP.
Figure 10. Margin Mode AC Waveforms
Note: A8 High level = 5V; A9 High level = 12V .
Symbol Alt Parameter Test Cond itio n (1,2) Min Max Unit
tA9HVPH tAS9 VA9 High to VPP High s
tVPHEL tVPS VPP High to Chip Enable Low s
tA10HEH tAS10 VA10 High to Chip Enable High (Set) s
tA10LEH tAS10 VA10 Low to Chip Enable High (Reset) s
tEXA10X tAH10 Chip Enable Transition to V A10 Transition s
tEXVPX tVPH Chip Enable Transition to VPP Transition s
tVPXA9X tAH9 VPP Transition to VA9 Tran siti on s
AI00736B
tA9HVPH tVPXA9X
A8
E
GVPP
A10 Set
VCC
tVPHEL
tA10LEH
tEXVPX
tA10HEH
A9
A10 Reset
tEXA10X
15/22
M27C512
Table 12. Programming Mode AC Characteristics
Note: 1. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V
2. VCC must be applied simultaneously with or before VPP and removed simultaneously or af ter VPP.
3. Sampled only, not 100% tested.
Figure 11. Programming and Verify Modes AC Waveforms
Symbol Alt Param ete r Test Cond itio n (1,2) Min Max Unit
tAVEL tAS Add ress Valid to Chip Enable Low 2 µs
tQVEL tDS Input Valid to Chip Enable Low 2 µs
tVCHEL tVCS VCC High to Chip Enable Low s
tVPHEL tOES VPP High to Chip Enable Low s
tVPLVPH tPRT VPP Rise Time 50 ns
tELEH tPW Chip Enable Program Pulse Width (Initial) 95 105 µs
tEHQX tDH Chip Enable High to Input Transition 2 µs
tEHVPX tOEH Chip Enable High to VPP Transiti on s
tVPLEL tVR VPP Low to Chip Enable Low s
tELQV tDV Chip Enable Low to Output Valid 1 µs
tEHQZ (3) tDFP Chip Enable High to Output Hi-Z 0 130 ns
tEHAX tAH Chip Enable High to Address Transition 0 ns
AI00737
tVPLEL
PROGRAM
DATA IN
A0-A15
E
GVPP
Q0-Q7 DATA OUT
tAVEL
tQVEL
tVCHEL
tVPHEL
tEHQX
tEHVPX
tELEH
tELQV
tEHAX
tEHQZ
VERIFY
VALID
VCC
M27C512
16/22
PACKAGE MECHANICAL
Figure 12. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline
Note: Drawing is not to scale.
Table 13. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data
Symbol millimeters inches
Typ Min Max Typ Min Max
A 5.72 0.225
A1 0.51 1.40 0.020 0.055
A2 3.91 4.57 0.154 0.180
A3 3.89 4.50 0.153 0.177
B 0.41 0.56 0.016 0.022
B1 1.45 0.057
C 0.23 0.30 0.009 0.012
D 36.50 37.34 1.437 1.470
D233.02– –1.300
E 15.24 0.600
E1 13.06 13.36 0.514 0.526
e 2.54 0.100
eA 14.99 0.590
eB 16.18 18.03 0.637 0.710
L 3.18 4.10 0.125 0.161
S 1.52 2.49 0.060 0.098
7.11 0.280
α 1 1
N28 28
FDIPW-a
A3
A1
A
L
B1 B e
D
S
E1 E
N
1
C
α
eA
D2
eB
A2
17/22
M27C512
Figure 13. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline
Note: Drawing is not to scale.
Table 14. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data
Symbol millimeters inches
Typ Min Max Typ Min Max
A 4.445 0.1750
A1 0.630 0.0248
A2 3.810 3.050 4.570 0.1500 0.1201 0.1799
B 0.450 0.0177
B1 1.270 0.0500
C 0.230 0.310 0.0091 0.0122
D 36.830 36.580 37.080 1.4500 1.4402 1.4598
D2 33.020 1.3000
E 15.240 0.6000
E1 13.720 12.700 14.480 0.5402 0.5000 0.5701
e1 2.540 0.1000
eA 15.000 14.800 15.200 0.5906 0.5827 0.5984
eB 15.200 16.680 0.5984 0.6567
L 3.300 0.1299
S 1.78 2.08 0.070 0.082
α 10° 10°
N28 28
PDIP
A2
A1
A
L
B1 B e1
D
S
E1 E
N
1
C
α
eA
eB
D2
M27C512
18/22
Figure 14. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline
Note: Drawing is not to scale.
Table 15. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data
Symbol millimeters inches
Typ Min Max Typ Min Max
A 3.18 3.56 0.125 0.140
A1 1.53 2.41 0.060 0.095
A2 0.38 0.015
B 0.33 0.53 0.013 0.021
B1 0.66 0.81 0.026 0.032
CP 0.10 0.004
D 12.32 12.57 0.485 0.495
D1 11.35 11.51 0.447 0.453
D2 4.78 5.66 0.188 0.223
D3 7.62 0.300
E 14.86 15.11 0.585 0.595
E1 13.89 14.05 0.547 0.553
E2 6.05 6.93 0.238 0.273
E310.16– –0.400
e 1.27 0.050
F 0.00 0.13 0.000 0.005
R 0.89 0.035
N32 32
PLCC-A
D
E3 E1 E
1 N
D1
D3
CP
B
E2
e
B1
A1
A
R
0.51 (.020)
1.14 (.045)
F
A2
E2
D2 D2
19/22
M27C512
Figure 15. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Outline
Note: Drawing is not to scale
Table 16. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Mechanical Data
millimeters inches
Symbol Typ Min Max Typ Min Max
A 1.250 0.0492
A1 0.200 0.0079
A2 0.950 1.150 0.0374 0.0453
B 0.170 0.270 0.0067 0.0106
C 0.100 0.210 0.0039 0.0083
CP 0.100 0.0039
D 13.200 13.600 0.5197 0.5354
D1 11.700 11.900 0.4606 0.4685
e 0.550 0.0217
E 7.900 8.100 0.3110 0.3189
L 0.500 0.700 0.0197 0.0276
α 5°
N28 28
TSOP-a
D1
E
1N
CP
B
e
A2
A
N/2
D
DIE
C
LA1 α
M27C512
20/22
PART NUMBERING
Table 17. Ordering Information Scheme
Note: 1. High Speed, see AC Charact eristics section for furthe r information.
For a list of available options (speed, package,
etc.) or for further information on any aspect of this device, please c ontact yo ur neare st ST Sal es Of-
fice.
Example: M27C512 -70 X C 1 TR
Device Type
M27
Supply Voltage
C = 5V
Device Function
512 = 512 Kbit (64Kb x8)
Speed
-45 (1) = 45 ns
-60 = 60 ns
-70 = 70 ns
-80 = 80 ns
-90 = 90 ns
-10 = 100 ns
-12 = 120 ns
-15 = 150 ns
-20 = 200 ns
-25 = 250 ns
VCC Tolerance
blank = ± 10%
X = ± 5%
Package
F = FDIP28W
B = PDIP28
C = PLCC32
N = TSOP28: 8 x 13.4 mm
Temperature Range
1 = 0 to 70 °C
3 = –40 to 125 °C
6 = –40 to 85 °C
Options
Blank = Standard Packing
TR = Tape and Reel Packing
E = Lead-free and RoHS Package, Standard Packing
F = Lead-free and RoHS Package, Tape and Reel Packing
21/22
M27C512
REVISION HISTORY
Table 18. Revision History
Date Version Revision Details
November 1998 1.0 First Issue
25-Sep-2000 1.1 AN620 Reference removed
02-Apr-2001 1.2 FDIP28W mechanical dimensions changed (Table 13.)
29-Aug-2002 1.3 Package mechanical data clarified for PDIP28 (Table 14.),
PLCC32 (Table 15., Figure 14.) and TSOP28 (Table 16., Figure 15.)
08-Nov-2004 2.0 Details of ECOPACK lead-free package options added.
Additional Burn-in option removed
M27C512
22/22
Informatio n furnis hed is believ ed to be a ccurate and reli able. Howe ver, STMic roelectr onics assumes no r esponsib ility for th e consequences
of use of such information nor for any infrin gement of patent s or other rights of third parties which ma y result from it s use . N o license is grant ed
by implication or otherwise under any patent or patent rights of STMicroelectro nic s. Specifications mentioned in this publication are subject
to change wi thout notic e. T his pub licat ion su persed es and repl aces all info rmat ion previou sly su pplie d. STMicroele ctro nics prod ucts ar e not
authorize d for use as crit ical components in life support devices or systems witho ut express written approval of STMicroelectronics.
The ST logo is a regis tered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronic s gro up of companies
Australia - Belgium - Brazil - Canada - China - Czech Repu blic - Finland - France - Germany - Hong Kong - Indi a - Israel - Italy - Japan -
Malaysia - Ma lta - Morocco - Singap ore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com