19-1392; Rev 2; 3/10 2.5, Dual, SPST, CMOS Analog Switches The MAX4607/MAX4608/MAX4609 dual analog switches feature low on-resistance of 2.5 max. On-resistance is matched between switches to 0.5 max and is flat (0.5 max) over the specified signal range. Each switch can handle rail-to-rail analog signals. The off-leakage current is only 2.5nA max at +85C. These analog switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automatic test equipment or applications where current switching is required. They have low power requirements, require less board space, and are more reliable than mechanical relays. The MAX4607 has two normally closed (NC) switches, the MAX4608 has two normally open (NO) switches, and the MAX4609 has one NC and one NO switch. These switches operate from a single supply of +4.5V to +36V or from dual supplies of 4.5V to 20V. All digital inputs have +0.8V and +2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility when using dual 15V or a single +12V supply. Features Low On-Resistance (2.5 max) Guaranteed RON Match Between Channels (0.5 max) Guaranteed RON Flatness over Specified Signal Range (0.5 max) Rail-to-Rail Signal Handling Guaranteed ESD Protection > 2kV per Method 3015.7 Single-Supply Operation: +4.5V to +36V Dual-Supply Operation: 4.5V to 20V TTL/CMOS-Compatible Control Inputs Ordering Information PART MAX4607CSE Applications Reed Relay Replacement PBX, PABX Systems Test Equipment Audio-Signal Routing Communication Systems Avionics MAX4607CPE MAX4607ESE MAX4607EPE TEMP. RANGE 0C to +70C 0C to +70C -40C to +85C -40C to +85C PIN-PACKAGE 16 Narrow SO 16 Plastic DIP 16 Narrow SO 16 Plastic DIP Ordering Information continued at end of data sheet. ______________________Pin Configurations/Functional Diagrams/Truth Tables TOP VIEW N.C. 1 16 NC1 N.C. 1 16 NO1 N.C. 1 16 IN1 2 15 N.C. N.C. 3 14 COM1 V- 4 13 V+ GND 5 12 VL GND 5 12 VL GND 5 N.C. 6 11 COM2 N.C. 6 11 COM2 N.C. 6 IN2 7 10 N.C. IN2 7 10 N.C. IN2 N.C. 8 9 MAX4607 NC2 IN1 2 15 N.C. N.C. 3 14 COM1 V- 4 13 V+ N.C. MAX4608 9 8 SO/DIP NO2 NO1 IN1 2 15 N.C. N.C. 3 14 COM1 V- 4 13 V+ 12 VL 11 COM2 7 10 N.C. 8 9 NC2 N.C. SO/DIP MAX4609 SO/DIP LOGIC SWITCH LOGIC SWITCH LOGIC SWITCH 1 SWITCH 2 0 1 ON OFF 0 1 OFF ON 0 1 OFF ON ON OFF ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. 1 MAX4607/MAX4608/MAX4609 General Description MAX4607/MAX4608/MAX4609 2.5, Dual, SPST, CMOS Analog Switches ABSOLUTE MAXIMUM RATINGS V+ to GND ..............................................................-0.3V to +44V V- to GND ...............................................................+0.3V to -44V V+ to V-...................................................................-0.3V to +44V VL to GND ........................................(GND - 0.3V) to (V+ + 0.3V) All Other Pins to GND (Note 1) .............(V- - 0.3V) to (V+ + 0.3V) Continuous Current (COM_, NO_, NC_).........................100mA Peak Current (COM_, NO_, NC_) (pulsed at 1ms, 10% duty cycle)................................ 300mA Continuous Power Dissipation (TA = +70C) Narrow SO (derate 8.70mW/C above +70C) .............696mW Plastic DIP (derate 10.53mW/C above +70C) ...........842mW Operating Temperature Ranges MAX460_C_E ......................................................0C to +70C MAX460_E_E ...................................................-40C to +85 C Storage Temperature Range .............................-65C to +160C Lead Temperature (soldering, 10s) .................................+300C Soldering Temperature (reflow) PDIP lead(Pb)-free ........................................................+260C PDIP containing lead(Pb)..............................................+240C SO lead(Pb)-free ...........................................................+260C SO containing lead(Pb).................................................+240C Note 1: Signals on NC_, NO_, COM_, or IN_, exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current rating. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS--Dual Supplies (V+ = +15V, V- = -15V, VL = +5V, VIN_H = +2.4V, VIN_L = +0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS V+ V ANALOG SWITCH Input Voltage Range (Note 3) COM_ to NO_, COM_ to NC_ On-Resistance COM_ to NO_, COM_ to NC_ On-Resistance Match Between Channels (Note 4) VCOM_, VNO_, VNC_ V- RON ICOM_ = 10mA, VNO_ or VNC_ = 10V RON ICOM_ = 10mA, VNO_ or VNC_= -5V, 0, 5V TA = +25C 1.6 TA = TMIN to TMAX 2.5 3 TA = +25C 0.05 0.4 TA = TMIN to TMAX 0.5 COM_ to NO_, COM_ to NC_ On-Resistance Flatness (Note 5) RFLAT(ON) ICOM_ = 10mA, VNO_ or VNC_ = 10V TA = +25C 0.1 Off-Leakage Current (NO_ or NC_) (Note 6) INO_, INC_ VCOM_ = 10V, VNO_ or VNC_ = 10V TA = +25C -0.5 TA = TMIN to TMAX -2.5 COM Off-Leakage Current (Note 6) ICOM_(OFF) VCOM_ = 10V, VNO_ or VNC_ = 10V TA = +25C -0.5 TA = TMIN to TMAX -2.5 COM On-Leakage Current (Note 6) VCOM_ = 10V, VNO_ or VNC_= 10V, or unconnected TA = +25C -1 ICOM_(ON) TA = TMIN to TMAX -10 TA = TMIN to TMAX 0.4 0.5 0.01 0.5 2.5 0.01 0.5 2.5 0.02 nA nA 1 nA 10 LOGIC INPUT Input Current with Input Voltage High IIN_H IN_ = 2.4V, all others = 0.8V -0.500 0.001 0.500 A Input Current with Input Voltage Low IIN_L IN_ = 0.8V, all others = 2.4V -0.500 0.001 0.500 A Logic Input High Voltage VIN_H 2.4 1.7 Logic Input Low Voltage VIN_L 2 1.7 _______________________________________________________________________________________ V 0.8 V 2.5, Dual, SPST, CMOS Analog Switches (V+ = +15V, V- = -15V, VL = +5V, VIN_H = +2.4V, VIN_L = +0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 20.0 V POWER SUPPLY Power-Supply Range 4.5 TA = +25C Positive Supply Current I+ TA = +25C I- 0.001 0.5 5 -0.5 5 0.001 0.5 A TA = +25C IGND -0.5 5 VIN = 0 or 5V TA = TMIN to TMAX Ground Current 5 A TA = +25C IL 0.5 VIN = 0 or 5V TA = TMIN to TMAX Logic Supply Current 0.001 A TA = TMIN to TMAX Negative Supply Current -0.5 VIN = 0 or 5V 5 -0.5 5 0.001 0.5 VIN = 0 or 5V A TA = TMIN to TMAX 5 5 SWITCH DYNAMIC CHARACTERISTICS Turn-On Time tON VCOM_ = 10V, Figure 2, TA = +25C 110 ns Turn-Off Time tOFF VCOM_ = 10V, Figure 2, TA = +25C 150 ns CL = 1.0nF, VGEN = 0, RGEN = 0, Figure 3, TA = +25C 450 Charge Injection Q pC Off-Isolation (Note 7) VISO RL = 50, CL = 5pF, f = 1MHz, Figure 4, TA = +25C -60 dB Crosstalk (Note 8) VCT RL = 50, CL = 5pF, f = 1MHz, Figure 5, TA = +25C -66 dB 65 pF NC_ or NO_ Capacitance COFF f = 1MHz, Figure 6, TA = +25C COM_ Off-Capacitance CCOM f = 1MHz, Figure 6, TA = +25C 65 pF On-Capacitance CCOM f = 1MHz, Figure 7, TA = +25C 290 pF _______________________________________________________________________________________ 3 MAX4607/MAX4608/MAX4609 ELECTRICAL CHARACTERISTICS--Dual Supplies (continued) MAX4607/MAX4608/MAX4609 2.5, Dual, SPST, CMOS Analog Switches ELECTRICAL CHARACTERISTICS--Single Supply (V+ = +12V, V- = 0, VL = +5V, VIN_H = +2.4V, VIN_L = +0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS V+ V ANALOG SWITCH Input Voltage Range (Note 3) COM_ to NO_, COM_ to NC_ On-Resistance VCOM_, VNO_, VNC_ GND RON ICOM_ = 10mA, VNO_ or VNC_ = 10V COM_ to NO_, COM_ to NC_ On-Resistance Match Between Channels (Note 4) RON ICOM_ = 10mA, VNO_ or VNC_ = 10V COM_ to NO_, COM_ to NC_ On-Resistance Flatness (Note 5) RFLAT(ON) TA = +25C 3 TA = TMIN to TMAX TA = +25C 0.05 TA = +25C 0.4 TA = TMIN to TMAX ICOM_ = 10mA, VNO_ or VNC_ = 3V, 6V, 0V 6 7 0.5 0.05 1.1 TA = TMIN to TMAX 1.2 Off-Leakage Current (NO_ or NC_) (Notes 6, 9) INO_ INC_ VCOM_ = 1V, 10V, VNO_ or VNC_ = 1V, 10V TA = +25C -0.5 TA = TMIN to TMAX -2.5 COM Off-Leakage Current (Notes 6, 9) VCOM_ = 10V, 1V VNO_ or VNC_ = 1V, 10V TA = +25C -0.5 ICOM_(OFF) TA = TMIN to TMAX -2.5 COM On-Leakage Current (Notes 6, 9) VCOM_ = 1V, 10V, VNO_ or VNC_= 1V, 10V, or unconnected TA = +25C -1 ICOM_(ON) TA = TMIN to TMAX -10 0.01 0.5 nA 2.5 0.01 0.5 nA 2.5 0.01 1 nA 10 LOGIC INPUT Input Current with Input Voltage High IIN_H IN_ = 2.4V, all others = 0.8V -0.500 0.001 0.500 A Input Current with Input Voltage Low IIN_L IN_ = 0.8V, all others = 2.4V -0.500 0.001 0.500 A Logic Input High Voltage VIN_H 2.4 1.7 Logic Input Low Voltage VIN_L 4 1.7 _______________________________________________________________________________________ V 0.8 V 2.5, Dual, SPST, CMOS Analog Switches (V+ = +12V, V- = 0, VL = +5V, VIN_H = +2.4V, VIN_L = +0.8V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS +36.0 V POWER SUPPLY Power-Supply Range +4.5 Positive Supply Current I+ VIN = 0 or 5V Logic Supply Current IL VIN = 0 or 5V IGND VIN = 0 or 5V Ground Current TA = +25C TA = TMIN to TMAX TA = +25C TA = TMIN to TMAX TA = +25C TA = TMIN to TMAX -0.5 0.001 5 -0.5 5 0.001 5 -0.5 0.5 0.5 5 0.001 5 0.5 5 A A A SWITCH DYNAMIC CHARACTERISTICS Turn-On Time tON VCOM_ = 10V, Figure 2, TA = +25C 110 ns Turn-Off Time tOFF VCOM_ = 10V, Figure 2, TA = +25C 130 ns CL = 1.0nF, VGEN = 0, RGEN = 0, Figure 3, TA = +25C 50 pC RL = 50, CL = 5pF, f = 1MHz, Figure 5, TA = +25C 66 dB Charge Injection Q Crosstalk (Note 8) VCT NC or NO Capacitance C(OFF) f = 1MHz, Figure 6, TA = +25C 105 pF COM Off-Capacitance C(COM) f = 1MHz, Figure 6, TA = +25C 105 pF On-Capacitance C(COM) f = 1MHz, Figure 7, TA = +25C 185 pF Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet. Note 3: Guaranteed by design. Note 4: RON = RON(MAX) - RON(MIN) Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range. Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at +25C. Note 7: Off-isolation = 20log10 [VCOM / (VNC or VNO)], VCOM = output, VNC or VNO = input to off switch. Note 8: Between any two switches. Note 9: Leakage testing at single supply is guaranteed by testing with dual supplies. _______________________________________________________________________________________ 5 MAX4607/MAX4608/MAX4609 ELECTRICAL CHARACTERISTICS--Single Supply (continued) Typical Operating Characteristics (TA = +25C, unless otherwise noted.) 2.2 2.0 1.8 1.6 V+, V- = 20V V+, V- = 15V 7 TA = +25C -15 -10 -5 0 5 10 15 20 -5 0 5 10 ON/OFF-LEAKAGE CURRENT vs. TEMPERATURE TA = +25C V+ = 15V V- = -15V 1k LEAKAGE (pA) 3.0 2.5 2.0 100 ON-LEAKAGE 10 4 6 8 10 -300 -500 -40 12 -20 0 SUPPLY CURRENT vs. TEMPERATURE 40 60 80 ON/OFF TIME vs. TEMPERATURE 150 100 I- 10 0.1 0.01 120 tON 20 40 60 TEMPERATURE (C) 80 100 5 10 160 tOFF 150 15 VCOM = +10V RL = 100 CL = 35pF 130 120 110 tON 100 100 90 90 80 70 80 0 0 140 130 110 1 -5 ON/OFF TIME vs. SUPPLY VOLTAGE tOFF 140 -10 170 tON, tOFF (ns) tON, tOFF (ns) I+ VCOM = +10V RL = 100 CL = 35pF 160 1k -20 -15 100 VCOM (V) 170 MAX4607/08/09-07 10k 6 20 TEMPERATURE (C) 100k DUAL SUPPLY V+ = V- = 15V -400 VCOM (V) -40 -100 -200 MAX4607/08/09-08 2 25 OFF-LEAKAGE 1 1m 0 20 SINGLE SUPPLY V+ = 12V V- = 0 0 0.01 1.5 15 100 0.1 TA = -40C 10 CHARGE INJECTION vs. VCOM MAX4607/08/09-05 MAX4607/08/09-04 TA = +85C 5 200 Q (pC) 3.5 100k 10k 0 15 VCOM (V) ON-RESISTANCE vs. VCOM AND TEMPERATURE (SINGLE SUPPLY) ICOM = 10mA RON () -10 VCOM (V) 4.0 V+ = 24V 0 -15 VCOM (V) 4.5 V+ = 12V 1 TA = -40C 1.0 -20 4 2 1.2 1.0 5 3 1.4 1.5 V+ = 5V MAX4607/08/09-06 2.5 ICOM = 10mA 8 6 TA = +85C 2.0 RON () RON () 3.0 MAX4607/08/09-03 2.4 9 MAX4607/08/09-09 V+, V- = 5V V+, V- = 15V ICOM = 10mA RON () ICOM = 10mA MAX4607/08/09-02 2.6 MAX4607/08/09-01 4.0 3.5 ON-RESISTANCE vs. VCOM AND TEMPERATURE (SINGLE SUPPLY) ON-RESISTANCE vs. VCOM AND TEMPERATURE (DUAL SUPPLY) ON-RESISTANCE (DUAL SUPPLY) I+, I- (nA) MAX4607/MAX4608/MAX4609 2.5, Dual, SPST, CMOS Analog Switches -40 -20 0 20 40 60 TEMPERATURE (C) 80 100 10 11 12 13 14 15 16 17 18 19 20 V+ = V- (V) _______________________________________________________________________________________ 2.5, Dual, SPST, CMOS Analog Switches ON/OFF TIME vs. VCOM FREQUENCY RESPONSE 140 120 tON 100 60 -6 -4 -2 0 2 4 6 8 -180 -50 -270 -360 -60 OFF-ISOLATION -450 -80 -540 -90 -630 -100 0.01 10 -90 -40 -70 80 -10 -8 0 ON-PHASE -30 tOFF 180 190 -20 LOSS (dB) tON, tOFF (ns) 160 -10 ON-RESPONSE PHASE (C) 180 RL = 100 CL = 35pF MAX4607/08/09-11 0 MAX4607/08/09-10 200 -720 0.1 VCOM (V) 10 1 100 FREQUENCY (MHz) Pin Description PIN NAME FUNCTION MAX4607 MAX4608 MAX4609 2, 7 2, 7 2, 7 IN2, IN2 14, 11 14, 11 14, 11 COM1, COM2 16, 9 -- -- NC1, NC2 Analog Switch, Normally Closed Terminals -- 16, 9 -- NO1, NO2 Analog Switch, Normally Open Terminals -- -- 9 NC1 Analog Switch, Normally Closed Terminal -- -- 16 NO1 Analog Switch, Normally Open Terminal 4 4 4 V- 5 5 5 GND Ground 1, 3, 6, 8, 10, 15 1, 3, 6, 8, 10, 15 1, 3, 6, 8, 10, 15 N.C. No Connection. Not internally connected. Connect to GND as low impedance to improve on/off-isolation. 12 12 12 VL Logic-Supply Input 13 13 13 V+ Positive Analog-Supply Input Logic-Control Digital Inputs Analog Switch, Common Terminals Negative Analog Supply-Voltage Input. Connect to DGND for single-supply operation. _______________________________________________________________________________________ 7 MAX4607/MAX4608/MAX4609 Typical Operating Characteristics (continued) (TA = +25C, unless otherwise noted.) MAX4607/MAX4608/MAX4609 2.5, Dual, SPST, CMOS Analog Switches Applications Information Overvoltage Protection Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 44V. These protection diodes are not recommended when using a single supply. Off-Isolation at High Frequencies With the N.C. pins connected to GND, the high-frequency on-response of these parts extends from DC to above 100MHz with a typical loss of -2dB. When the switch is turned off, however, it behaves like a capacitor, and off-isolation decreases with increasing frequency. (Above 300MHz, the switch actually passes more signal turned off than turned on.) This effect is more pronounced with higher source and load impedances. Above 5MHz, circuit-board layout becomes critical, and it becomes difficult to characterize the response of the switch independent of the circuit. The graphs shown in the Typical Operating Characteristics were taken using a 50 source and load connected with BNC connectors to a circuit board deemed "average;" that is, designed with isolation in mind, but not using strip-line or other special RF circuit techniques. For critical applications above 5MHz, use the MAX440, MAX441, and MAX442, which are fully characterized up to 160MHz. +15V MAX4607 MAX4608 MAX4609 D1 V+ * * * * NO_ COM_ VD2 -15V * INTERNAL PROTECTION DIODES Figure 1. Overvoltage Protection Using External Blocking Diodes Test Circuits/Timing Diagrams MAX4607 MAX4608 MAX4609 SWITCH V COM_ INPUT +5V +15V VL COM_ VO RL 100 IN_ LOGIC INPUT SWITCH OUTPUT V+ NO_ OR NC_ GND LOGIC INPUT 50% 0V CL 35pF t OFF VO V- 0 -15V REPEAT TEST FOR EACH SWITCH. FOR LOAD CONDITIONS, SEE ELECTRICAL CHARACTERISTICS. CL INCLUDES FIXTURE AND STRAY CAPACITANCE. RL VO = VCOM RL + RON ( ) t r < 20ns t f < 20ns +3V SWITCH OUTPUT 0V 0.9V0 t ON LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES THAT HAVE THE OPPOSITE LOGIC SENSE. Figure 2. Switching-Time Test Circuit 8 0.9V0 _______________________________________________________________________________________ 2.5, Dual, SPST, CMOS Analog Switches MAX4607 MAX4608 MAX4609 RGEN +5V +15V VL V+ VO VO COM NC OR NO VO VIN CL V GEN GND OFF V- IN -15V VIN ON OFF VIN = +3V OFF ON OFF Q = (V O )(C L ) VIN DEPENDS ON SWITCH CONFIGURATION; INPUT POLARITY DETERMINED BY SENSE OF SWITCH. Figure 3. Charge-Injection Test Circuit C +15V +5V V+ VL SIGNAL GENERATOR 0dBm MAX4607 MAX4608 MAX4609 SIGNAL GENERATOR 0dBm COM 0 or 2.4V IN COM ANALYZER 0 or 2.4V V- RL +15V +5V V+ VL COM1 50 NO1 0 or 2.4V COM2 GND C MAX4607 MAX4608 MAX4609 IN2 IN1 N02 ANALYZER NC OR NO GND C V- RL N.C. C -15V -15V Figure 4. Off-Isolation Test Circuit Figure 5. Crosstalk Test Circuit _______________________________________________________________________________________ 9 MAX4607/MAX4608/MAX4609 Test Circuits/Timing Diagrams (continued) MAX4607/MAX4608/MAX4609 2.5, Dual, SPST, CMOS Analog Switches Test Circuits/Timing Diagrams (continued) C +15V +5V V+ VL COM MAX4607 MAX4608 MAX4609 C +15V +5V V+ VL COM MAX4607 MAX4608 MAX4609 CAPACITANCE METER IN 0 or 2.4V CAPACITANCE METER IN NC OR NO NC OR NO f = 1MHz GND V- GND C Figure 6. Switch Off-Capacitance Test Circuit Figure 7. Switch On-Capacitance Test Circuit Ordering Information (continued) PART MAX4608CPE MAX4608ESE MAX4608EPE MAX4609CSE MAX4609CPE MAX4609ESE MAX4609EPE 10 TEMP. RANGE 0C to +70C 0C to +70C -40C to +85C -40C to +85C 0C to +70C 0C to +70C -40C to +85C -40C to +85C PIN-PACKAGE 16 Narrow SO 16 Plastic DIP 16 Narrow SO 16 Plastic DIP 16 Narrow SO 16 Plastic DIP 16 Narrow SO 16 Plastic DIP C V- -15V -15V MAX4608CSE 0 or 2.4V f = 1MHz Chip Information TRANSISTOR COUNT: 100 Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 16 PDIP P16+4 21-0043 16 SO S16+8 21-0041 ______________________________________________________________________________________ 2.5, Dual, SPST, CMOS Analog Switches REVISION NUMBER REVISION DATE 2 3/10 DESCRIPTION Updated the maximum limits of the COM_ to NO_, COM_ to NC_ On-Resistance Flatness parameter in the Electrical Characteristics--Single Supply table. PAGES CHANGED 4 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 11 (c) 2010 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX4607/MAX4608/MAX4609 Revision History