MTC-20276
Single Chip ISDN NT
2B1Q (INTQ)
Data Sheet
Rev. 2.3 - October 1999
Key Features
Fully integrated basic rate U
to S/T ISDN NT device
Pin compatible with MTC-
20277 INTT (4B3T)
Full compliance with the
applicable ETSI and
ITU requirements
Minimal external components
< 355mW power consump-
tion, 3.3V operating voltage
Fully integrated Embedded
Operations Channel handling
Advanced 0.5µ CMOS
mixed analog/digital
process technology
-40°C to +85°C or 0 to 70°C
operating ranges
44 pin PQFP
Applications
Standard ISDN NT1 applica-
tions (stand-alone mode)
Advanced NT with analog
line interfaces (“NT1+”)
Micro-PABX
Data network gateways
Pair gain systems
Data terminals
CTI
‘U’ interface ‘S’ interface
Digital Expansion and Test logic
Crystal
Oscillator
Power-on
Reset
TX TX
RX RX
JTAG
test
access
SPI and
Aux. test
access
Dual GCI access
and expansion
port
Analog
Support
Functions
(S-bus mode)
Power Supply
Optional Expanded functions
(Analog lines, data
interfaces,...)
4-wire / 2 wire
network
Uk0 S0
MTC-20276 INTQ
Fig.1: MTC-20276 Application Block Diagram
General Description
The MTC-20276 INTQ integrates all
of the communications functions re-
quired in a Basic Rate ISDN Network
Terminator on a single monolithic inte-
grated circuit. It provides activation/
deactivation on chip and does not
require an external microprocessor.
The INTQ is designed for the 2B1Q
line-code on the U-interface and is pin
compatible with the MTC-20277 INTT,
which performs identical functions but
with the 4B3T U-interface line code.
The MTC-20276 includes a GCI
expansion port, to allow extended
functions to be added (e.g. interfaces
to existing analog terminal equipment
by means of the MTK-40131 Short-
Haul POTS chipset).
Ordering Information
Part number Package Code Temp.
MTC-20276PC-I 44 pin PLCC PC44 -40 /+85°C
MTC-20276PC-C 44 pin PLCC PC44 0 /+70°C
2
MTC-20276 INTQ
The MTC-20276 has a number of test
access ports to facilitate system or pro-
duction testing. One of these ports is
configured as a dual GCI interface,
which operates in one of two modes.
In Mode 0 (GMode = logic 0), the
GCI port allows the data flow between
the 'U' and the 'S' ports to be optional-
ly monitored.
This is the “stand alone” mode, which
is the normal mode for simple NT1
applications. No additional micro-
processor or other control device is
required in this mode.
Mode 1 (GMode = logic1) allows sep-
arate access to the 'U' and the 'S'
ports, for use by an external GCI com-
patible controller device. In this mode,
the chip supports additional
features required by extended NT
modules (“NT1+”) such as interfaces
to existing analog equipment, or
advanced data communication gate-
ways.
The application section describes the
circuit configuration of the MTC-
20276 in its stand alone mode, for
conventional NT1 applications.
(Figure 4)
Figure 2 below shows the system
concept of an MTC-20276/77 in an
“NT1+” application, in combination
with the MTK-40131 “SH-POTS” chip-
set for short-haul analog telephone
lines.
MTC-2028xx is one of a family of inter-
face and controller devices which cover
a wide range of applications, e.g. MTC-
20280 for ISDN NT+ or small PABX
applications
MTC-20276 complies with relevant
ANSI and ETSI specifications.
ETSI ETS 300 297
ETSI ETS 300 012
ETSI ETR 80
ANSI T1.601
ITU I.430
ITU G.961
* GCI (General Circuit Interface), is an
interface specification developed jointly
by Alcatel, Italtel, GPT and Siemens,
and can be obtained from Alcatel
Microelectronics.
US - bus
MTC-
30132
SH-LIC
MTK-40131
SH-POTS chipset
Analog Line 1
Analog Line 2
MTC-
30132
SH-LIC
Power
Supply
mains
GCI
GCI
MTC-
20232
CODSP
“NT1+” Box
MTC-2028x
Series
Controller for
ISDN
Terminal
Adapters
MTC-20276/7
INT
Analog
FAX
Answering Machine Analog Telephone
Digital TelephonePC / POS Terminal
ISDN Line Connection
Existing Analog Installation
S
RS 232
Fig.2: Concept of an NT1+ Configuration for 2 Analog Lines
NT and Extended NT
Functions (“NTplus”)
Standards Compliance
3
MTC-20276 INTQ
Table of Content
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
NT and Extended NT Functions (“NTplus”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Standards Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Electrical Characteristics
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Quality / Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Package / Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
LED Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
NT1Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Recommended Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Application Information
Transformer Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
S-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
U-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Master Clock and XTAL Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Typical Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Detailed Functional Description
U-Interface Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Physical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Logical Characteristics of the U-interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Scrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Descrambling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Activation and Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Analog Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4
MTC-20276 INTQ
GCI Interface, Common Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Data Format and Timing of the GCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Continuous Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
The GCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
The Physical Organization of the GCI Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
General Content of the GCI Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Power-down on GCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
G1 External GCI Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
G2 External GCI Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
U-Interface Command List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Command and Indicate (C/I) Channel (A bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Power Down of the Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Transition from Synchronous to Power-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Wake-up Originated by Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Wake-up Originated by the Master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
S-interface Commands and Indications Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Commands in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Indications in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
The S-interface Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
General Description of the S-bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
S-interface - General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Test Modes Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
GCI Clock Synchronization in the ISDN Environment for the Upstream S-interface (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Clock Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Power Saving / Deactivation of the S-interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Activation of the S-interface in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Detailed Operational Description of the S-bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Transmission Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
AMI S-bus Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Balance Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
AMI Violations for Frame Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Frame Synchronization - Distance Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Frame Synchronization - Multiframing Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Synchronization Principles - Adaptive Bit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Synchronization Principles - Fixed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Pulse Polarity in the S-bus Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Transmitted Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Details on Downlink Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Details on Uplink Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
S-bus Transmitter Timing and Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Transmitter Timing and Framing at the NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
S-bus Receiver Timing and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Frame Synchronization Details in Adaptive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
First Violation Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Violation Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5
MTC-20276 INTQ
RX Bit Synchronization NT Adaptive bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Immediate Bit Synchronization at Instant t2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Continuous Bit Synchronization at Each F/L Crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Timing Relation Between RX and TX on the S-bus in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Frame Relation Between GCI and S-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
E-channel Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Multiframing - S and Q Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
S-Interface Programming
M-Channel Messages and Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
M-Channel Receiver and Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
General Content of M-Channel Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
S and Q Channel Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Internal Register M-Channel Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
M-Channel Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
M-Channel Format - Bit and Byte Numbering Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Byte Transfer Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Idle M-Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Start of Message (SOM) and First Byte Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Acknowledge of the SOM and First Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Further Byte transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Further Byte Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
End of Message (EOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Acknowledge of EOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Sender Not Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Receiver Not Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
IDLE forced From Sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Abort request From Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Acknowledge Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Reset of the M-channel Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Read Operation and Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Detailed Bitmap of the Internal Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Identification Register Read Only Address 0h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Version Number Register Read and Write Address 1h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Configuration Register Read and Write Address 2h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Output Register Read and Write Address 3h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
IN1 and IN2 Registers Read Only Addresses 4h and 5h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Performance Register Read Only Address 6h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
M-Channel Operation Messages Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Package Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Device Branding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
44PQFP Mechanical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Application Note: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
MTC-20276 INTQ Compliance Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Lists of Tables
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
LED Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Recommended Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Transformer Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Typical Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Unused Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Maintenance and Service Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Service and Maintenance Data Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Service and Maintenance Data Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Command and Indicate (C/I) Channel (A bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
S-interface Commands and Indications Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Commands in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Indications in NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Transmitted Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Read Operation and Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Detailed Bitmap of the Internal Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Identification Register Read Only Address 0h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Version Number Register Read and Write Address 1h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Configuration Register Read and Write Address 2h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Output Register Read and Write Address 3h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
IN1 and IN2 Registers Read Only Addresses 4h and 5h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Performance Register Read Only Address 6h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
M-Channel Operation Messages Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6
MTC-20276 INTQ
Operating Conditions
Unless otherwise stated, the following
electrical characteristics are valid over
the ranges specified here. (Vss = 0V).
Parameter Min Max Units Note
DVDD, AVDD 3.15 3.45 V =3.3V ±5%
SNAVDD, supply noise, analog 10 mVpp
SNDVDD, supply noise, digital 100 mVpp
SNAREF, supply noise, analog ref. 0.1 mVpp Note 2
IAREF - 0.25 + 0.25 mA load on AREF Pin
Crystal frequency 15.359 15.361 MHz ±50ppm, Note 1
Temperature range -40 +85 °C
Note 1: An external clock may be
applied to XTAL2, pin 24. Temperature
dependent drift <10ppm.
Note 2: AREF is an output, designed to
allow a decoupling capacitor to be
placed on the internal analog reference
voltage. The external circuit layout must
avoid the induction of noise on this pin.
7
MTC-20276 INTQ
Electrical Characteristics
Absolute Maximum Ratings
Operation of the device beyond these
conditions is not guaranteed. Sustained
exposure to these limits will adversely
effect device reliability.
Parameter Max Units
DVDD, AVDD 4.8 V (see note)
Vin, Voltage on any device pin VSS-0.3 V
VDD+0.3 or 3.63 V, whichever is lower
Storage temperature -65 to +150 °C
Temperature under bias -55 to +125 °C
Lead Temperature 300 °C
(soldering 10 sec)
Table 1
Table 2
Note: Exposure to voltages at or above
this level for more than 10 hours accum-
mulated over the device’s operating life
will adversely effect reliability.
Note 2. All logic pins except NRESET,
which is a Schmitt-trigger input with hys-
teresis.
8
MTC-20276 INTQ
DC Characteristics
Parameter Conditions Min Max Units Note
VIH Input level, logic 1 0.8 DVDD 1
VIL Input level, logic 0 0.2 DVDD 1
VOH Output level, logic 1 0.85 DVDD 1
VOL Output level, logic 0 0.4 V 1
VIH Rising, NRESET 1.7 1.9 V 1
VIL Falling, NRESET 0.9 1.1 V 1
VAREF Reference voltage output,
load current < ±250µA. 1.6 1.7 V
VTNRES Nreset input threshold 1.6 1.7 V
Note 1: All logic pins except NRESET,
which is a Schmitt-trigger input with
hysteresis.
AC Characteristics
Quality / Reliability
Early failure rate 0.3% at 3000 hours
Long term failure rate 300 FIT for 45°C average ambient and 45% average humidity
Lifetime 15 years
Parameter Conditions Min Max Units Note
Cin Input capacitance any pin 1 pF
Cload Load capacitance on any output pin 100 pF
VTPWRES Reset pulse width 10 mS
Table 4
MTB-20276 State Typ Max Unit
Full activated - ETSQI loop 1 on U loop, random data 362 390 mW
Full activated - ETSQI loop 2 (40dB) on U loop, random data 325 355 mW
U loop only activated - ETSI loop 1, random data 340 mW
U loop only activated - ETSI loop 2 (40dB), random data 301 mW
Deactivated 20 22 mW
Table 3
Table 5
9
MTC-20276 INTQ
Package / Pinout
SXP
SXN
SRP
SRN
AUX
SPIDO
SPIDI
VDD
XTAL1
XTAL2
VSS
LOUT2
AREF
LIN1
LIN2
TRST
TCK
TMS
TDI
TDO
SPICK
SPICS
LOUT1
AVDD
AVSS
NRESET
TSP
PW220
PW40
SBUS
AVDD
AVSS
SATP
G1DOUT
G1DIN
G1DCLK
G1DFR
VDD
VSS
G2DOUT
G2DIN
G2DCLK
G2DFR
GMODE
1
2
3
4
5
6
7
8
9
10
11
14
15
16
17
18
19
20
21
22
13
33
32
31
30
29
28
27
26
25
24
43
42
41
40
39
38
37
36
35
44
34
12
23
MTC-20276
INTQ
Fig.3: Pinout, 44 PQFP Package (MTC-20276PQ)
10
MTC-20276 INTQ
Pin Description
Nr. Function Name Dir. Description
44 LOUT1 O U-interface analog outputs. The connections LOUT1 and LOUT2 interface
1 LOUT2 O the U driver outputs, via termination resistors and the line coupling
U transformer, to the U0 reference point.
3 LIN1 I U-interface analog inputs to the INTQ from the analog ‘hybrid’
4 LIN2 I
2 AREF O Analog ground, +1.65 V ±3%. Used as reference voltage for A/D and D/A.
43 AVDD P +3.3V ±5% power supply for analog U-interface functions
42 AVSS P 0V ground for analog U-interface functions
33 SXP O S-interface analog outputs. SXP and SXN interface the S-driver outputs
32 SXN O via terminating resistors and the Tx line coupling transformer to the S0
reference point (Tx).
31 S SRP I S-interface analog inputs. SRP and SRN interface the S-inputs via the Rx line
30 SRN I coupling transformer to the S0 reference point (Rx).
37 SBUS I S-bus type configuration. 1 = short bus with fixed timing, 0 = adaptive
timing for extended bus or point-to-point
34 SATP O Analog test pin. Used for test purposes only, should be left open circuit
36 AVDD P +3.3 ±5% power supply for analog S-interface functions
35 AVSS P 0V ground for analog S-interface functions
12 G1DOUT O Primary GCI interface G1:
13 G1DIN I/O GMODE = 0: Monitoring of the internal GCI between the U and S.
14 GCI G1DCLK O GMODE = 1: NTplus mode; complete GCI connected to U with U as master.
15 G1DFR O G1DOUT = data output
G1DIN = data input (output direction in monitoring mode)
G1DCLK = 512 KHz GCI clock
G1DFR = 8KHz GCI frame clock which identifies the beginning of
the frame of G1DIN and G1DOUT
18 G2DOUT O Secondary GCI interface G2:
19 G2DIN I GMODE = 0: No function
20 G2DCLK I GMODE = 1: NTplus mode; complete GCI connected to S with external master.
21 G2DFR I G2DOUT = data output
G2DIN = data input
G2DCLK = 512KHz GCI clock
G2DFR = 8KHz GCI frame clock which identifies the beginning of
the frame of G2DIN and G2DOUT
Remark: if NT Plus mode is not used, the inputs should be strapped
high or low.
22 GMODE I Select NTplus mode. 0 = monitoring mode, 1 = NTplus mode.
5 TRST I TAP (Test Access Port) controller reset, active low
6 JTAG TCK I TAP controller clock, maximum 10 MHz
7 TMS I TAP controller mode selection
8 TDI I TAP controller input
9 TDO O TAP controller output
The table gives a summary of all MTC-20276 pins and their functions.
Table 6
Note: None of the Input pins are 5V tolerant.
* This only affects the “PS1” and “PS2” bits in the upstream M symbol, and does not have any functional implication.
11
MTC-20276 INTQ
** This only affects the “CSO” bit in the upstream M symbol, and does not influence the activation performance of the INTQ.
LED OFF Both U and S-interfaces are inactive
Fast flashing (8Hz) The U-interface is attempting to synchronize, or the EOC has activated a
2B+D loopback.
Slow flashing (1Hz) The U-interface is synchronized and the S-interface is attempting to synchronize.
LED ON Both U and S-interfaces are fully synchronized and ‘connect through’
status is achieved.
LED Indicator
The LED output can source up to 4mA to directly drive an LED, via a current limiting resistor.
Table 7
Device pin 27 (OPTO) is used to determine whether an automatic upstream activation request is performed after power-up
or reset, or not. (New releases of the relevant ETSI specifications require automatic activation on power-up, whereas
previous releases did not)
Pin 27 should be strapped as follows:
Function: Pin 27 strapped to:
Automatic activation request VDD
No automatic activation request VSS
41 RESET NRESET I Hardware reset, active low. Schmitt-trigger input for connection to
external RC or logic device.
25 OSC. XTAL1 I Connection to external crystal (15.36MHz ± 100ppm). May also be used
as input for external master clock source.
24 XTAL2 I Connection to external crystal.
40 Monitor TSP I Transmit Single Pulses. INTQ transmits single pulses of alternating maximum
positive and negative polarity at the S and U-interface.
Pulse repetition rate is 0.67 kHz at the U-interface, for test purposes and
as a search tone on the line.
39 PW220 I Indicate if the local mains power supply is available.*
1 = mains power supply ON
0 = mains power supply OFF
38 PW40 I Indicate if the local 40V power supply is available.*
1 = 40V power supply ON
0 = 40V power supply OFF
10 TEST0 O Factory use only. Leave open circuit.
11 TEST1 O
27 OPTO I Opto isolator input. See below.
28 LED O State indicator LED. See below.
29 CSO I Indicate cold-start-only operation mode:
0 = normal mode
1 = cold-start-only operation mode**
16 VDD P +3.3 V ±5% power supply for digital functions
26 VDD P
17 VSS P 0V ground for digital functions
23 VSS P
NT1 Schematic
12
MTC-20276 INTQ
UK0
X1
C6C5
VSS AVSSVDD AVDD
LOUT1
LOUT2
LIN1
LIN2
NRESET
X1 X2
SXP
SXN
SRP
SRN
+/- 40V -/+ 40V
Power Supply
Vdd (+3.3V)
Vss
230V AC
S0 (Tx)
S0 (Rx)
30...100V from
UK0 power feed
T2
T3
MTC-20276
INTQ
Clf
Vdd
Vdd Vdd
R8
R9
C8
R10
R11
GMODE
SBUS
S-bus type
AREF
C2
C3 C4
C1
R7
TSP Vddline test
C7
R12
R13
Vdd
S1
S2
T1
Rt
Rt
D1
Passive
Hybrid
(Figure 4a)
Metalic Line
Termination
Circuit
*
R14
Vdd
OPTO LED
R15
Power Feed
(30..100V)
Z1* North American Market Only
R20
LOUT1
LIN1
LOUT2
LIN2
T1
Rh11
Rh21
Rh12
Rh22
Rh13
Rh23
Rh14
Rh24
Rh16
Rh26Ch2
Ch1
Clf
Ch7
Li-line
power feed
La
Lb
Ch3
Ch4
Ch5 Ch6
Rh17
Fig.4: NT1 Application Schematic
Fig.4a: Recommended Hybrid Component Configuration
Application Information
The MTC-20276 requires very few
external components, all of which are
low-cost and readily available types.
In addition, the use of a 44PQFP
package style allows further savings in
the total cost and physical size of the
ISDN NT module.
The following recommended applica-
tions information is constantly being
reviewed to improve cost and
performance. Please contact Alcatel
Microelectronics’ application support
group for the latest details.
13
MTC-20276 INTQ
Component Function Value Comment
U Interface
T1 U transformer 2:1, 15 mH see text
Rh14, Rh24 U feed bridge 13±1%
Rh17 Hybrid 590(470+1201%
Rh11, Rh21 Hybrid 1k ±1%
Rh12, Rh22 Hybrid 4.32k±1%
Rh13, Rh23 Hybrid 6.81k±1%
Rh16, Rh26 Hybrid 100±1%
Ch1, Ch2 Hybrid 4.7nF ±5%
Ch3 Hybrid 470pF ±5%
Ch4, Ch5 Hybrid 39nF ±5%
Ch6 Hybrid 2.7nF ±5%
Ch7 100nF 200V
Clf Line-feed coupling 2.2µF 200V
S/T Interface
T2,T3 S transformer 2:1 see text
R8,R9 S-bus transmit impedance 33±1%
R10,R11 S-bus receive impedance 5k±10%
Rt S-bus termination resistor 100
C8 S-bus receive capacitor 27pF 10%
Crystal
X1 crystal 15.36 MHz see text
C5,C6 crystal load 22pF see text
C7 crystal load 0 to 22pF (optional) see text
R20 crystal stabilizer 1M
Miscellaneous
R7,R12,R13,R14 Pull-up/down 100k
R15 LED current limit 510-
C1,C2 reset delay 100nF
C3,C4 supply decoupling 100nF
D1 loss-of-power reset 1N4148 any small signal diode
Z1 Power Supply Clamp 4.1V zener
S1 switch - S-bus mode
S2 switch - Test signal
Recommended Component Values
Table 8
14
MTC-20276 INTQ
At the pins XTAL1 and XTAL2 a
crystal must be connected to form a
parallel mode oscillator. Two capaci-
tors of 22 pF should be connected to
ground.
Some crystals may require the parallel
capacitor Cp to be used (10 pf Typ).
Master Clock and XTAL Connections
Cp
XTAL1
XTAL2
22pF
22pF
15.36 MHz
1M
Application Information
Transformer Specifications
Table 9
S-Interface
Parameter Min Max Units
Turns Ratio 2:1 Line: Chip
Primary Inductance 20 mH
Leakage Inductance 13 µH
Interwinding Capacitance 50 pF nominal
PRI DCR 0.9 1.3 (1.1± 20%)
SEC DCR 2.1 3.1 (2.6± 20%)
U-Interface
Parameter Min Max Units
Turns Ratio 2:1 Line: Chip
Primary Inductance 13.5 16.5 mH
Leakage Inductance 60 µH
Interwinding Capacitance 90 pF
PRI DCR 6 7
SEC DCR 2.8 3.3
Typical Crystal Specifications
Table 10
AT cut, fundamental mode
Parallel resonance frequency 15.360 MHz
Total tolerance ± 50 ppm
Dynamic capacitance 15 fF
Load capacitance 30 pF
Parallel capacitance 7 pF
Series resistance 40
Series resistance drift (age) ± 10 %
Drive level 0.25 mW
Fig.5: Crystal Configuration
Unused Pins
The INTQ has a number of device pins
which are used only in specific applica-
tions, or for device testing. These pins
should be connected as shown below to
ensure proper operation in a given
application. ‘0’ means connect to
ground, ‘1’ means connect to Vdd,
‘open’ means make no connection.
A dash (‘-’) means that the pin is used
in the application. All other pins have
defined states as shown in the applica-
tion schematic.
15
MTC-20276 INTQ
Pin Number NT mode NT+ mode
GMODE 22 0 1
G2DOUT 18 open -
G2DIN 19 1 -
G2DCLK 20 0 -
G2DFR 21 0 -
G1DOUT 12 open/monitor -
G1DIN 13 open/monitor -
G1DCLK 14 open/monitor -
G1DFR 15 open/monitor -
TRST 5 0 (pull down) 0 (pull down)
TCK 6 1 (pull up) 1 (pull up)
TMS 7 1 (pull up) 1 (pull up)
TDI 8 1 (pull up) 1 (pull up)
TDO 9 open open
CSO 29 0 (normal) 0 (normal)
1 ( CSO) 1 (CSO)
PW40 38 - -
PW220 39 - -
TEST0 10 open open
TEST1 11 open open
OPTO 27 - -
LED 28 - -
SATP 34 open open
TSP 40 0 (normal) 0 (normal)
1 ( test pulses) 1 ( test pulses)
PW40 38 - -
S BUS 37 0 (P-P S Bus) 0 (P-P S Bus)
1 (Short S Bus) 1 (Short S Bus)
Overvoltage Protection
This is strongly dependant on the Print-
ed Circuit Board layout and local
specification variations. Generally, it
is recommended to use standard small-
signal diodes to clamp voltages from
the S-interface (e.g. 1N4148) and
U-interface (e.g. 1N4004) to Vdd and
ground. The recommended protection
for the U-interface is to diode clamp
the chip side transformer pins to the
supply rails, and for the S-interface
clamp the INTQ device pins (30, 31,
32, 33). In order to prevent excessive
disturbance voltages from causing the
power-supply voltage to increase (full-
wave rectifier effect through the protec-
tion diodes), it is recommended that a
zener-diode is used to clamp the Vdd
voltage < 4,8V.
Table 11
16
MTC-20276 INTQ
Common Hybrid Schematics for 4B3T and 2B1Q
LOUT1
LIN1
LOUT2
LIN2
15mH
T1
1k
1k
4k32
4k32
6k81
6k81
13
13
100
100
4n7
u-line
power feed
4n7
470p
39n
39n 2n7
590
LOUT1
LIN1
LOUT2
LIN2
6mH
T2 3k3
3k3
7k
7k
25
25
470p
u short
u
u
u
u
u
u
(* for FTZ loops, 470p -> 680p and 7k -> 6k8)
*
*
*
La
10nF
200V 200V
2:1
2.2µF
Lb
u-line
power feed
La
10nF
200V 200V
2.2µF
1.6:1
Lb
2B1Q - Recommended Hybrid component Configuration
Fig.5a: 4B3T - Recommended Hybrid Component Configuration, using same PCB layout as 2B1Q,
17
MTC-20276 INTQ
Fig.5b: MTC-20276 / 20277 Recommended Power Supply Arrangement
Vdd in
10µ + 100n 10µ + 100n
AVDD AVDD VDD VDD
43 36 16 26
Vss in
AVSS AVSS VSS VSS
42 35 17 23
Note: It is recommended to put the decoupling capacitors close to the chip.
18
MTC-20276 INTQ
Detailed Functional Description
U-Interface Block
Physical Characteristics
The quaternary symbol stream on the
U-interface has to the following physi-
cal characteristics:
Symbol rate
The symbol rate is 80 kbaud ± 1 ppm
and applies to synchronous symbol
transmission.
Input Jitter
The INTQ tolerates a sinusoidal input
jitter of the quaternary symbols as indi-
cated in Figure 6.
Jitter Transfer Function
The jitter transfer function of the INTQ
(looped between U-interfaces) doesn’t
exceed ± 1 dB in the frequency range
3 Hz to 30 Hz.
Output Jitter
The peak-to-peak jitter produced by
the INTQ doesn’t exceed 0.02 UI
(166 ns), when measured via a high
pass filter with a cut-off frequency of
30 Hz. Without this filter the same
measurement doesn’t read more than
0.1 UI.
Transmit Signal Amplitude
The absolute peak value VImax of a
single pulse VI at the U0 interface ter-
minated with a 135 Ohm resistance is
2.5 V ± 5%.
The absolute peak value of the coded
quaternary signal measured at U0
interface terminated with 135 Ohm
doesn’t exceed 4 V.
Jitter Amplitude
(peak-to-peak)
Jitter Amplitude
(peak-to-peak)
UI = Unit
Interval
UI = Unit
Interval
0,30 UIpp
0,008 UIpp
20 db/Decade
19 Hz 10 KHz
Jitter Frequency
0,5 Hz
Fig.6: Range of Admissible Sinusoidal Input Jitter
Stability
The transmit signal amplitude mea-
sured over a period of one minute
doesn’t vary by more than 1% begin-
ning 5 ms after the INTQ is switched
into power-up state.
Transmit Spectrum
The spectrum of the quaternary trans-
mit signal at U0 interface doesn’t
exceed the limits given in Figure 8.
Pulse Shape
A single pulse measured across a 135
Ohm resistance at U0 interface com-
ply to the spectral requirements pre-
sented in Figure 8 and the pulse mask
requirements given in Figure 9.
Maximum Voltage
The maximum peak-to-peak value
VUmax of the voltage VU as shown in
figure 7 with full receive signal (short
line), that can be accepted is 2 V. Due
to the analog echo subtraction the
maximum peak-to peak value Vinmax
of the voltage Vin between LIN1 and
LIN2 is 1.35 V.
Input/Output Impedance
The line terminating impedance is
nominally 135 Ohm in power up and
power down states. The return loss
against 135real exceeds 16 dB
between 12 kHz and 50 kHz.
- slope below 12 kHz: 20 dB /
decade
- slope above 50 kHz: -10 dB /
decade
Load
The load is given by the line trans-
former and the subscriber line. The
loops are standardised by the ANSI
and ETSI documents.
- Turns ratio of line transformer: 2:1
- Transformer coil inductance (from
line side): 15 mH ± 10%
19
MTC-20276 INTQ
VU
Analog Echo
Subtraction
12 Ohm
12 Ohm
1:2
LIN1
LIN2
LOUT2
LOUT1
MTC-20276
INTQ
U0, short line
VIN
Fig.7: Test Circuit for Voltages VU and VIN, U0 Interface
-U
+U
-T 0
2.625V
2.5V
2.375V
T= = 12.5 µs
1
80 KHz
10mV
-10mV
T 8T2T 29T 30T
Time t
0.2V
-0.2V
T
T
T
12
8
9
8
3
8
T
8
5
~
~
~
~
~
~
~
~
~
~
~
~
Fig.8: Single Pulse Mask
20
MTC-20276 INTQ
Logical Characteristics of the U-Interface
21
MTC-20276 INTQ
The quaternary symbol stream crossing
the U-interface complies with the fol-
lowing logical characteristics:
Frame Structure
The information flow across the sub-
scriber line uses frames as shown in Fig-
ure 10. The length of such a frame cor-
responds to 120 quaternary symbols
being transmitted within 1.5 ms. The
frame structure is detailed as follows:
B+B+D - Data
108 quaternary symbols represent 216
bits of scrambled and encoded B+B+D
data. The 108 quaternary symbols are
transmitted in succession. These blocks
are assembled as follows:
Data of
B1 + B2 + D + B1 + B2 + D
Number of bits
8 8 2 8 8 2
Quad
Position
Bit
Position
1-9
1-18
10-117
19-234
118-120
235-240
Frame 1 ISW 2B+D 2B+D ... 2B+D 2B+D M1 ... M6
Frame 2 2B+D 2B+D ... 2B+D 2B+D M1 ... M6
Frame 3 SW 2B+D 2B+D ... 2B+D 2B+D M1 ... M6
Frame 4 SW 2B+D 2B+D ... 2B+D 2B+D M1 ... M6
Frame 5 SW 2B+D 2B+D ... 2B+D 2B+D M1 ... M6
Frame 6 SW 2B+D 2B+D ... 2B+D 2B+D M1 ... M6
Frame 7 SW 2B+D 2B+D ... 2B+D 2B+D M1 ... M6
Frame 8 SW 2B+D 2B+D ... 2B+D 2B+D M1 ... M6
SW
Fig.9: Frame and Superframe Structure
Synchronising Word
9 quaternary symbols in each direction
represent a non-scrambled synchronis-
ing word. They are used to generate
frame clocks. If they are out of position
for 60 ... 200 consecutive frames, the
line resynchronization procedure is
started. The quaternary values and the
frame position are as follows:
1. From LT to NT or analog loop in LT
(loop 1) or analog loop on NT, and
from NT to LT.
SW Polarity: +3 +3 -3 -3 -3 +3 -3 +3 +3
ISW Polarity: -3 -3 +3 +3 +3 -3 +3 -3 -3
SW-Sync Word
ISW-Inverted SW
M1-M6
Mantenance Channel
22
MTC-20276 INTQ
M1 M2 M3 M4 M5 M6
Frame1 EOC a1 EOC a2 EOC a3 ACT 1 1
Frame 2 EOC dm EOC i1 EOC i2 PS1 1 FEBE
Frame 3 EOC i3 EOC i4 EOC i5 PS2 CRC 1 CRC 2
Frame 4 EOC i6 EOC i7 EOC i8 NTM CRC 3 CRC4
Frame 5 EOC a1 EOC a2 EOC a3 CSO CRC 5 CRC6
Frame 6 EOC dm EOC i1 EOC i2 1 CRC 7 CRC8
Frame 7 EOC i3 EOC i4 EOC i5 SAI CRC9 CRC10
Frame 8 EOC i6 EOC i7 EOC i8 1 CRC 11 CRC 12
3 quaternary symbols per frame are
transmitted to convey maintenance and
embedded operations channel informa-
tion. This information is contained in a
superframe consisting of 8 frames (dura-
tion: 12 ms). The start of a superframe
in up and downstream directions is mar-
ket by a single inversion of the synchro-
nisation word (ISW). The quaternary
symbol sequences represent data that
can be transmitted at a rate of 4 kbits/s.
They are transmitted immediately before
the sync word (SW).
The M symbol is used for various pur-
poses incluiding:
1. Maintenance Channel (control test
loops and report frame errors)
2. Service channel (carry transparent
user data in both directions)
In detail the following convention
applies (NT to LT):
Maintenance and Service Channel
Service and Maintenance Data Convention
Table 13: Messages required for command/response EOC mode
Table 12
origin (o) & destination (d) & transfer (t)
Message Message Network NT1 REG
code
Operate 2B+D Loopback 0101 0000 o d t/d
Operate B1-channel Loopback (note) 0101 0001 o d t/d
Operate B2-channel Loopback (note) 0101 0010 o d t/d
Request Corrupted CRC 0101 0011 o d t/d
Notify of Corrupted CRC 0101 0100 o d t/d
Return to Normal 1111 1111 o d t/d
Hold State 0000 0000 d/o o/d o/d/t
Unable to Comply Acknowledgement 1010 1010 d o t/o
Note: In order to perform B1 or B2 channel loopback, the S-bus of the MTC-20276 needs to be fully activated.
Encoding
The encoding of a binary bit stream is
such that 2 binary bits correspond to 1
quaternary symbol. The first symbol of a
frame will always contain the informa-
tion of the first 2 bits of a B1 channel
(although these bits are of course scram-
bled).
23
MTC-20276 INTQ
Quaternal Symbol First bit (Sign) Second Bit (Magnitude)
+3 1 0
+1 1 1
-1 0 1
-3 0 0
Table 15
In the receive direction, the first symbol
of the quaternary frame is always con-
verted (after descrambling) into the first
two bits of a B1 channel.
The exact convertion is done according
to the following rules (ANSI specifica-
tion):
Symbol Description
ACT Activation bit (set to ONE during activation)
CRC Cyclic Redundancy check: covers 2B+D & M4:
1= most significant bit;
2= next most significant bit, etc.
CSO Cold-start-only bit (ONE indicates cold-start-only)
EOC Embedded operations channel:
a = address bit;
dm = data/message indicator;
i = information (data/message).
FEBE Far end block error bit (ZERO for errored multiframe).
NTM NT in test mode bit (ZERO indicates test mode).
PS1/PS2 Power status bits (ZERO indicates power problems).
SAI S-activation indicator bit (optional, set = 1 to activate S/T
Note: Transmission errors in the data
protected by the Cyclic Redundancy
Check are detected during each super-
frame and reported back to the LT in the
next superframe.
This is for loop quality checking only
and does not invoke retransmission of
any sort.
Table 14
Activation and Deactivation
In order to reduce the power consump-
tion of circuits connected to the sub-
scriber line, INTQ can be switched to
stand-by or powered down during idle
periods. The components are powered
up again during the line activation pro-
cedure. Two states are defined:
- Power-down state
Power consumption of the majority of
the functions is reduced by stopping the
clocks; maximum power reduction;
- Power-up state
All functions powered up; GCI interface
is activated; exchange of C/I messages
is possible.
The activation procedure consists of
three phases:awake ( see the following
sections), synchronise, and connect
through.
Maximum activation time (from com-
mand ACT to indication CT) without
repeater:
170 ms under normal conditions
(starting with stored coefficients)
1 s after reset of the coefficients.
The deactivation procedure consists of
two phases:line deactivation of the NT
can be initiated only by INFO U0.
Deactivation time (from Command
DEAC to Indication DC) is in the order
of 4 ms.
Reset
The INTQ can be reset via an external
pin (NRESET = LOW) or via the com-
mand RES in the C/I channel. Normally
the INTQ is reset via the pin NRESET
(hardware reset).
Both reset requests cause a reset for var-
ious function blocks via the
activation/deactivation control and the
reset logic. The INTQ is initialised such
that a “cold start” (resetting of the coeffi-
cients) is possible.
Analog Loop (Loop 2 in NT)
For maintenance purposes a loop can
be closed by applying the correct com-
mand into the M channel or into the
GCI C/I channel, described in the next
section.
24
MTC-20276 INTQ
Scrambling
The received binary data stream is
divided by generating polynomials.
The scrambler contains supervision cir-
cuitry which flags if a continuous series
of ones or zeros have been detected at
the output for a complete 1 ms frame.
Descrambling
The quaternary signals received on
each side of the subscriber line are con-
verted back into a binary bit stream
and multiplied by the generating poly-
nomials in order to recover the original
data.
-1
X
-1
X
-1
X
-1
X
-1
X
Ds
Di
-18
Ds.X
-23
Ds.X
: XOR function
-18 -23
Ds = Di Ds.X Ds.X
Fig.10: NT Transmit Scrambler
-1
X
-1
X
-1
X
-1
X
-1
X
Ds
D0
-5
Ds.X
-23
Ds.X
: XOR function
-5 -23
Ds = Di Ds.X Ds.X
Fig.11: NT Receive Descrambler
GCI Interface, Common Functions
25
MTC-20276 INTQ
Data Format and Timing of the GCI Interface
(DIN, DOUT, DCLK, DFR)
Continuous Modes
Nominal bitrate of data (DIN and DOUT) 256 kbit/s
Nominal frequency of clock (DCLK) 512 kHz
Peak-to-peak output jitter (DCLK) 166 ns
Nominal frequency of frame clock (DFR) 8 kHz
Mark-to-space ratio of DFR, i (input) 1:2 . . . 2:1
Mark-to-space ratio of DFR, o (output) 0.4:0.6 . . . 0.6:0.4
Figure 13 shows the timing of data and
clocks at the digital interface 256 kbit/s
(continuous modes).
Transitions of the data occur after even
numbered rising edges of the DCLK.
The data is valid on the odd
numbered rising edges of the DCLK.
Even-numbered rising edges of the
clock are defined as the second rising
edge following the rising edge of
the frame clock and every second rising
edge thereafter.The maximum allowed
jitter is shown in figure 14.
The start of the frame is marked by the
rising edge of the frame clock DFR.
One frame contains four time slots. The
data streams at DIN and DOUT consist
of four bytes per frame. See figure 15.
The input data DIN and the output data
DOUT are synchronous and in phase.
In the power-down state, the signal at
DIN and at DOUT is high and the sig-
nal at DFR and DCLK is low.
Fig.12: Timing of Data and Clocks at the GCI Interface
The GCI Interface
At the digital control interface the S-inter-
face block is connected via a bidirec-
tional serial interface, a digital bus
called the General Circuit Interface
(GCI), also called the ISDN Oriented
Modular (IOM) interface. This bus is log-
ically organized as many parallel point
to point links, each at 256 kbit/s. The
description of the GCI is available in the
related documents and on page 23.
The Physical Organization of
the GCI Bus
The bus has a clock and frame signal as
timing, and two data lines, one for each
direction.
In NT mode the S-interface receives the
GCI timing.
General Content of the
GCI Bus
The GCI interface is organized with 4
channels at 64 kbit/s: B1, B2, M
(Maintenance or Monitor), and B1*
channel.
The B1 and B2 channels are transpar-
ent, switched at 64 kbit/s.
In ISDN applications the B1* channel
contains two D-channel bits, 4 bits C/I
channel with the commands (towards S-
interface) or the indications (from S-inter-
face), and two extra bits (MR and MX)
to control the M-channel.
The D-channel contains HDLC messages.
It is transported transparently (NT) or ter-
minated by an HDLC transceiver (LT-
S/LT-T/TE). In the TE/LT-T a D-channel
access protocol exists on the S-bus,
which must be controlled by the S-inter-
face, and obeyed by the HDLC transmit-
ter.
-
Via the Command/Indication (C/I)
channel, Commands to, and state Indi-
cations from the S-interface are
exchanged with a control element
(microcontroller) or with another uplink
or downlink ISDN circuit. Commands
and Indications are debounced to avoid
erroneous behaviour.
The M-channel is a 64 kbit/s channel. It
has a byte oriented structure, and the
content is indicated and acknowledged
with the MR and MX bits, the two last
bits in the B1* channel. Content of the
channel: write and read access of inter-
nal S-interface registers.
Power-down on GCI
For maximal power saving the GCI bus
can be halted completely, and reactivat-
ed asynchronously from either side of
the bus.
Frame Format
4 bytes are transmitted in each frame:
1st byte B1:
B-channel (64 kbit/s data), transparent
2nd byte B2:
B-channel (64 kbit/s data), transparent
3rd byte B2*:
Monitor channel, DIN: 8 bit address,
MSB first, DOUT: 8 bit data
4th byte B1*:
2 bit D-channel (16 kbit/s data)
4 bit C/l channel A1, A2, A3, A4
A, E bit used to control the transfer of
information on the Monitor channel
Fig.14: GCI Frame Format
26
MTC-20276 INTQ
Fig.13: Maximum Admissable Peak-To-Peak Input Jitter of Clocks
(DCLK, DFR) at the GCI
27
MTC-20276 INTQ
External GCI Interfaces
G1 External GCI Interface
Figure 16 shows a schematic represen-
tation of the two possible modes of the
GCI ports.
In normal mode, corresponding to pin
GMODE low, the two internal GCI inter-
faces are connected. The G1 interface is
used as a monitorpoint.
In NTplus mode, corresponding to pin
GMODE being high, the GCI interface
coming from the U-interface block is con-
nected to the G1 External GCI.
The S-interface block is connected to the
G2 External GCI.
The U-interface block is the master of the
GCI interface and thus controls the GCI
clock (DCLK) and the GCI frame (DFR).
DCLK and DFR signals at the G1 inter-
face are outputs of the INTQ.
G1 interface characteristics:
- G1 DOUT: output, data channel,
256 KHz
- G1 DIN: input in NTplus mode,
output in normal mode; data channel,
256 KHz
- G1 DFR: output, frame clock, 8 KHz
- G1 DCLK:output,clock, 512 KHz
G2 External GCI Interface
In normal mode, corresponding to pin
GMODE low, the two internal GCI inter-
faces are connected together. G2 inter-
face has no function.
In NTplus mode, corresponding to pin
GMODE high, the GCI interface of the
S-interface block is connected to the G2
External GCI.
The S-interface block is the slave of the
GCI interface, so the GCI clock (DCLK)
and the GCI frame (DFR) signals at the
G2 interface are inputs of the INTQ .
G2 interface characteristics:
- G2 DOUT,: output, data channel,
256 KHz
- G2 DIN,: input, data channel,
256 KHz
- G2 DFR: input, frame clock, 8 KHz
- G2 DCLK: input, clock, 512 KHz
Fig.15: External GCI Interface
28
MTC-20276 INTQ
Awake 0000: AW This command is to be used when the deactivated module interface is to be set in
the power-up state. The control may be represented by a steady-state binary ‘0’
condition at DIN. The module interface will be activated, i.e. provided with bit and
frame clocks for synchronous transmission.
Any other command may now be applied.
The command AW, however, maintains the activated state of the module interface
without emission of any signal at U0.
Activate 1000: ACT Layer 1 is activated at the U0 interface, starting with transmission of the wake-up
signal INFO U1W. After execution of the wakeup procedure, the transmitter
generates INFO U1A during synchronization process. When synchronization is
completed successfully, the transmitter outputs INFO U1.
Synchronized 1100: SY When the synchronization process of the receiver is completed successfulIy, the
transmitter outputs INFO U3. After reception of INFO U4H, Connect Through (CT)
is indicated and the INTQ will be connected through from module interface to line
interface (transparent).
Deactivate 1111: DC This control has to be used if the reciever is to be able to recognize awake-
Confirmation signals at interface U0, but the transmitter still is disabled. If no wake-up signal is
recognized, the INTQ is set to its power-down state. The module interface will
be deactivated.
The evaluation of any command is done
according to a double last look criteri-
on: any command is recognized only
after the same command has been
detected in two successive frames. Until
then the preceding command is consid-
ered valid.
If commands are received that are not
included in the list, the last recognized
command is considered valid. Com-
mands which are logically impossible to
receive in the current state are ignored
(ref. TS 102 080).
The indications are transmitted continu-
ously in each frame. Under no circum-
stances can an indication that is not
included in the list be transmitted.
The maintenance and Service Channel,
and the B2* Channel are not used by
the U-interface block.
U-Interface Command List
Command and Indicate (C/l) Channel (A bits)
Command (DIN) (from GCI to U).
Table 16
29
MTC-20276 INTQ
Indication (DOUT) (From U to GCI)
Deactivate 0000: DEAC A request to deactivate level 1 (INFO U0) has been detected. INFO U0
is transmitted at U0.
Test mode 1 0010: TM1 Forces S-interface in test mode 1, sending single zeros.
Not supported by the U-interface but recognized by the S-interface (NT mode only)
Resynchro- 0100: RESYN The receiver has lost framing and is attempting to resynchronize. The INTQ
nization remains connected through from module interface to line interface (transparent).
Activate 1000: ACT The synchronous state of the receiver is established (without a loop 2 or a loop 4
command). The transmitter outputs INFO U1.
Loop 2 1010: L2 The synchronous state of the receiver is established with a loop 2 command.
The transmitter outputs INFO U3.
Connection 1100: CT INFO U4H has been detected at the U-interface.
Through The INTQ will be connected through from module interface to line interface
(transparent).
Connection 1110: CTL2 INFO U4H and a loop 2 command have been detected at the U-interface.
Through The INTQ will be connected through from module interface to line interface
with Loop 2 (transparent).
Deactivated 1111: DC The transmitter is disabled, but the receiver remains enabled to detect wake-up
Confirmation signals at the U-interface. The INTQ is set in its power-down state, as long as
wake-up signals are not recognized.
When a wake-up procedure is finished, INFO U1A is transmitted.
Power Down of the Interfaces
In the following description, the U-inter-
face port of the GCI interface (G1) is the
master, and the S port of the GCI (G2)
is the slave.
Transition from Synchronous
to Power-Down State
The corresponding procedure is shown
in figure 17. After a DC code has been
detected at the module interface of the
master in two successive frames from the
slave, the master responds by indicating
DC four times and then the master turns
off the timing signals at the end of bit
A4 of the fourth DC indication. After this
time, the DOUT pins of master and slave
must be kept HIGH (quiescent condi-
tion).
30
MTC-20276 INTQ
Wake-up Originated by Slave
Transition from power-down to
synchronous operation is initiated by
the slave by transmitting LOW at
DOUT. See the figure above.
The master responds by turning timing
signals on within the wake-up time
Taw (typical 4 ms, max. 10 ms). To
ensure continuous supply of timing sig-
nals by the master the slave must keep
DOUT LOW.
After the timing signals have been
detected by the slave, the slave must
transmit AW for at least two frames
(e.g. 8 frames). Then the slave may
insert a valid code in the C/I channel
(e.g. ACT).
Monitoring of pin DOUT for LOW by
the master will start only after the tim-
ing signals have been turned off.
Fig.16 Transition to Power-Down State
Wake-up Originated by the
Master
Transition of the device from power-
down to synchronous state can
be initiated by the master by turning on
clock signals DCLK and DFR. Simultane-
ously, the master must apply the desired
command code in the C/I channel.
The slave may enter the power-up
state immediately after clock signals
have been applied, and the received
command code has been evaluated.
See figure 19.
31
MTC-20276 INTQ
It is required that the clock signals at
DCLK and DFR will have the nominal
frequency with the specified tolerance
from the moment they are turned on.
The slave may deactivate the master if
only AW (not yet ACT) has been detect-
ed by the DC command or by transmit-
ting continuous HIGH at DOUT. The
master will respond by turning off the
timing signals. See figure 18.
Fig.18: Wake-up Initialisation Procedure, downstream
Fig.17: Wake-up Initialisation Procedure, upstream
S-Interface Commands and Indications Summary.
Table 17
Commands (Downstream) in NT Mode
Table 18
0000 DR Deactivate Forces the S-interface block to deactivate the S-bus (=INFO0)
Request followed by DIu and did=DC
0001 RES RESET Forces S-interface to soft reset, extended mode only,
S-interface accepts it in basic mode (merged)
0010 ssz TEST-MODE 1 Forces S-interface to test-mode 1, sending
= TM1 single zeros
0011 TM2 TEST-MODE 2 Forces S-interface to test-mode 2, extended mode
only, sending continuous zeros.
0100 RSYd Resynchon- The U-interface is not synchronous,
izing down S-interface sends INFO2 {or SCZ}, see remark 1 below
1000 ARd Activation MTC-20172 S-interface forced to INFO2 transmission,
Request down receiver indicates the S-bus reaction
1010 ARL Activat. req INFO2 transmission on the S-bus
with S-loop test loop2 switched (transparent loop)
1100 AId Activation INFO4 transmission, normally only after
Indication AIu indication is received
1110 AIL Activ. Indic. INFO4 transmission
with S-loop test loop2 switched (transparent loop)
1111 did= Deactivate Deactivation confirmation, entering the
DC Confirmation power down state, INFO0 sent, critical
timing to halt the clocks.
Remark 1: When the U-interface is
resynchronizing, the S-interface will
send INFO2.
Remark 2: During loops, the S-inter-
face simply ignores the incoming
INFO3 from the S-bus. The receiver syn-
chronizes on looped INFO2/4.
32
MTC-20276 INTQ
NT Downstr Upstr. Downstr Upstr.
Command Indicat. Command Indicat
0000 DR TIM 1000 ARd ARu
0001 RES (lsl) 1001 - -
0010 ssz=TM1 - 1010 ARL -
0011 TM2 - 1001 - -
0100 RSYd RSYu 1100 AId AIu
0101 - - 1101 - -
0110 - ei 1110 AIL -
0111 - - 1111 did=DC DIu
33
MTC-20276 INTQ
Indications (Upstream) in NT Mode
Table 19
0000 TIM Timing The S-interface requires GCI clocks.
Request
0100 RSYu Resynchron- The S-bus receiver tries to synchronize
izing
0101 --------- --------- ---------
0110 ei Error RSTB and SCZ- pin both low simultaneously
Indication
1000 ARu Activation INFO1 received (actually any AMI signal)
Request up
1100 AIu Activation Receiver synchronized on INFO2/3/4
Indication up (INFO3 normally, INFO2/4 in loop)
1111 DIu Deactivation Timer (32 ms) expired, or INFO0 received
Indication (16 ms) after DR (deactiv. request)
For transmission of data over the sub-
scriber premises, the S-interface pro-
vides the S0-interface. This interface
enables full duplex transmission of data
(2B + 1 D-channel) over 4 wires at a
nominal data rate of 192 kBits/s. An
Alternating Mark Invert (AMI) code is
used for the line transmission. The trans-
mission of data over the S0-interface
consists of frames of 250 µs. Each
frame is 48 bits wide, and contains 4
data bytes (2 B1, 2 B2) and 4 D-bits.
The frame structures are shown in
fig.20.
A frame start is marked using a first
code violation (no mark inversion).
To allow secure synchronization of the
receiver, a second code violation is gen-
erated before the 14th bit of the frame.
To guarantee this second violation, an
auxiliary framing bit pair FA and N
(from NT to TE) or the framing bit FA
with associated balance bit (from TE to
NT) are introduced.
The first bit of the transmitted frame from
TE to NT is delayed for 2 bit periods
with respect to the frame received from
the NT. Furthermore, an echo bit (E-bit)
for the D-channel and an activation bit
(A-bit) are provided, where DC-balanc-
ing is done by means of the L-bits.
The S-Interface
Functional Overview
General Description
of the S-bus Interface
The S-interface can be used on the S-bus
configured as a point-to-point connec-
tion or as a passive bus. The bus con-
nection can handle up to 8 terminals. It
is either a short bus with the terminals
dispersed over a length of 200m, or
an extended bus with a cluster of termi-
nals within a 25 m range.
The chip handles full-duplex transmission
of two B-channels (64 kbit/s each) and
one D-channel (16 kbit/s). It handles
also the echo E-channel, the multifram-
ing S and Q bits, ...
The S-interface contains all circuit parts
necessary for the adaption of the S-inter-
face, especially transmitter and receiver
stages.
- S-bus outputs are balanced, allow
ing bus operation;
- S-bus inputs are balanced;
- Out-of-band noise is filtered;
- RX has AGC and an adaptive
threshold, and corrects long-line
distortion by optimizing the sample
moment.
- NT receiver bus type is selectable:
short bus with fixed timing, or adap-
tive timing for extended bus or point to
point.
The S-bus tranceiver stages must be con-
nected to the bus via external interface
circuitry (2:1 transformer) and protec-
tion. When the S-interface is in unpow-
ered state (supply voltage = 0 V) the S-
bus transmitter is high ohmic (see CCITT
I.430).
34
MTC-20276 INTQ
N : = FA
B1 : BIT OF CHANNEL B1
B2 : BIT OF CHANNEL B2
A : ACTIVATION BIT
S : S-BIT
M : MULTIFRAMING BIT
F : FRAMING BIT
L : DC BALANCING BIT
D : D-CHANNEL BIT
E : D-CHANNEL ECHO-BIT
FA : AUXILIARY FRAMING BIT
D L. F L. B1 L. D L. FA L B2
L. D L. L. D L. L. D L. F L.
D L. F L. B1 E D A FA N B2
ED M B1 E D S B2 E D L. F L.
2 BITS OFFSET
NT to TE
TE to NT
B1 B2
Fig.19: So-Frame Format
35
MTC-20276 INTQ
The S -interface can be used in a point-
to-point and in a point to multipoint con-
figuration (including extended passive
bus). In the first configuration, the length
of the cable is limited to aprox. 1.2 km
(see fig.21).
In the bus configuration (point to multi-
point), up to 8 terminals may be con-
nected to the S0-interface (fig.22)
The terminals must be connected in a
range of 150 m. For the extended pas-
sive bus, the terminals must be clustered
within a 25m range with a maximum
cable length of about 1 km.
To avoid bus mismatching when multi-
ple TEs are connected, the driver stages
present a high impedance when they
are not powered.
Controlled access to the shared data
channels is realized within the S-inter-
face by a D-channel access procedure.
Each terminal can be given a certain
priority for D access. Via the echo bit,
which is the reflection of the received D
channel at the NT, it is possible for the
terminal to detect the status of the D-
channel. In order to try to gain access
over the D-channel, a terminal has to
see 8 to 11 consecutive ones in the
echo-channel. The exact number
depends on the priority given to the ter-
minal. When several terminals try to
gain access at the same time, collisions
occur on the S-bus. The terminal that
transmitted "one" but sees a “zero” in
the echo channel detects the collision
and loses the D-channel access.
The terminal that transmitted the "zero"
gains the access. When a successful D-
channel message is transmitted, the pri-
ority is decreased by 1 in order to guar-
antee fairness with the other terminals.
The status of the D-channel of the TE/LTT
is at the 5th bit position of the monitor
byte. This enables the control of the D-
channel by an external HDLC controller.
S i/f
<= 1.2 Km
T
RS i/f GCI
T
R
T
R
GCI
TE/LTT NT/INT
Fig.20: Point to Point Configuration
<150 m
T
RGCI
T
R
T
R
S i/f
TE # 1
S i/f
TE # 8
MAX 8
T
RTERMINATING RESISTOR
of 100
NT/INT
S i/f
Fig.21:Point to Multipoint Configuration
MAX 8
S-Interface
General Overview
The block diagram of the S-interface is
shown in fig.22.
Data from the So-interface is received
by the S-interface receiver, which has
a balanced input, an AGC stage, a fil-
ter and comparators with dynamically
adapted thresholds. The timing of the
received S0-frame is fixed (Only NT).
In the fixed timing case, the timing is
locked to the transmitted frame, and
the tolerable phase delay on the
received So-frame is limited. In adap-
tive timing mode, delays up to 48 µs
can be tolerated. The start of the
received frame is detected in the FL-
detection unit. An adaptive algorithm
is used for compensation of the slope
of the FL transition. A digital PLL recov-
ers the received bit clock (192 kHz).
A second digital PLL generates the
transmit bit clock (192 kHz), which is
locked to the GCI frame. It is possible
to compensate external circuits (e.g.
filters) by adjusting the internal phase
of the bit clocks by means of a register
accessible by the monitor channel.
These circuits work with a 7680 kHz
±100 ppm clock. This clock is internal-
ly delivered to the S-interface by the U-
interface block.
The serial B and D data from the V*
GCI digital-interface is stored into a
buffer with a dynamic pointer struc-
ture, and is presented to the S_trans-
mitter where the So-frame formatting is
done. In the other direction, the
S_receiver unit disassembles the
received So-frame.
The B and D data are stored in the
buffer and multiplexed together with
M, C/I, MX and MR into a digital V*
GCI frame. The pointer structure of the
buffer guarantees a minimum round-
trip delay. If the clock wander
becomes too big, a warning is given
in the C/I channel, and the internal
pointers are reinitialized.
Activation/deactivation procedures
are handled in the status controller.
Two basic modes are available:
A V* mode, compatible with the U-
interface block, and a GCI compatible
mode. The S-interface automatically
selects the connect mode.
The S/Q control module handles the
multiframing on the S and the Q chan-
nel of the So-interface. This function is
disabled in the INT.
In order to reduce the power consump-
tion of the components connected to
the subscriber line, the S-interface
are switched to a power down mode
during idle periods.
36
MTC-20276 INTQ
Analog
transmitter
s_transmitter
DPLL
s_receiver
FL detection
M control
buffer
S/Q control
activity
detector 7680 kHz
oscillator asynchronous
power up/down
V*/GCI
DIN
DOUT
DFR
DCLK
status
controller
Analog
receiver
MUX
C/I
S, Q
B, D
B, D
SX
P
S, Q
SX
N
SR
P
SR
N
B, D
B, D
CHP boundary
XTI from U side
Fig.22: Block Diagram of the S-interface
Test Modes Summary
Test loops may be closed in the S-inter-
face, where all three channels (B1, B2
and D) are looped back as close as
possible to the So-interface.
Loop 2 is a transparent loop where the
transmitted So-frame is also switched
on the S-bus. Activation from the So-
interface is not possible.
Both loops are initiated over the C/I-
channel and under control of a layer 2
component.
For further testing of the subscriber line,
two test signals can be transmitted over
the So-interface: A 96 kHz test
sequence sending continuous AMI
marks, and a 2 kHz test sequence
sending single AMI marks. Both test
modes are under control of the C/I
channel, as well as TSP pin.
GCI Clock Synchronization in
the ISDN Environment for the
Upstream S-Interface (NT)
In general the downstream devices are
slaved to the upstream devices.
The S-interface is master of the S-bus,
and can sample the received (upstream)
S-bus frames with a receive clock at
exactly the transmit frequency, but with
an unknown phase.
The S-interface receives the GCI timing,
and must derive the 192 kHz S-bus bit-
clock from it. As the GCI timing is not
necessarily a multiple of 192 kHz, the
S-interface generates a 192 kHz TX and
RX clock from a clock input at 7680
kHz +/- 100 ppm. The 192 kHz is not
a pure divide by 40 of the X-tal, but is
locked to the 8 kHz frame signal of the
GCI-interface. This is a DPLL action
where the 192 kHz clock period can be
adjusted 1/40 of the 192 kHz clock
period every 250 us. Note that jitter on
the 192 kbit S-bus signals is a combina-
tion of the jitter on the 7680 kHz before
the DPLL and the effects of the DPLL lock-
ing to the GCI 8 kHz frame.
The S-bus RX clock in fixed timing (short
passive bus) is derived from the same
clock input with the same frequency cor-
rection as the transmit clock, but with a
phase offset. The corrections of 1/40 of
a bit period are used in open loop here.
The S-bus RX clock in adaptive timing
(extended bus, point to point) is also
derived from the same master clock.
However, the receiver must optimize the
symbol sampling moment. This is an
extra phase correction, which tracks
wander and jitter of the received data.
The receiver tracks the RX data by lock-
ing on the F/L transitions.
Note: The timing stays identical for an
internal loop from TX to RX, because
then the S-interface uses adaptive RX
timing as well. Even an external S-bus
loop can be applied, provided that the
receiver does NOT work with fixed RX
timing.
Conclusion: the S-interface block has 3
different clocks, which are locked in fre-
quency, but with unknown phase rela-
tion. Because the clocks are derived via
DPLL blocks the phase relation is not
constant, but has some jitter and wan-
der.
Clock Speed
The master clock runs at 7680 kHz +/-
100 PPM.
Internally the S-bus transceiver part runs
at 192 kHz, derived from the master
clock, but locked to the ISDN network
clock with a phase locked loop, adjust-
ing one 7.68 MHz period every 250
us. The ISDN network clock is sent
downstream via the S-bus or the GCI
interface.
The GCI part runs at the clockspeed of
its interface, which is 512 kHz in NT
mode.
Power Saving/Deactiv-
ation of the S-Interface
The S-interface is controlled via the GCI
interface. This interface is designed to
be shut down and consequently reacti-
vated. Shutting the bus down is com-
manded by the controller on the bus.
Once the command is acknowledged,
there exists a fixed procedure to halt the
clock (by the controller in NT). Reacti-
vating the bus can be done by the S-
interface or the controller.
When the GCI bus is going to be shut
down, the S-bus transceiver is put to idle
also. The S-bus transceiver enables an
asynchronous signal detector, which
can reactivate the S-interface on receipt
of INFO via the S-bus. Then the S-inter-
face shuts down the internal 7.68 MHz
clock distribution. If the clock is external-
ly provided it can be put to idle also,
after the GCI bus has become idle.
The S-interface can receive activation
via the S-bus during the process of shut-
ting down via the GCI bus.
Activation of the
S-Interface in NT mode
Activation through the S-bus will be seen
by the signal detector. The S-interface
does not need a GCI clock to activate
the GCI interface, which it does by
asynchronously pulling the data line
low. The master on the bus answers
with GCI and frame, followed by com-
mands via the C/I channel. The bus
master also delivers the 7.68 MHz fre-
quency simultaneously with GCI activa-
tion.
Activation through the GCI bus consists
of clock and frame delivery, followed
by commands via the C/I channel. The
S-interface will activate the S-bus trans-
ceiver according to the commands,
including the internal clock distribution.
If the master clock must be delivered to
S-interface. Note that the internal clock
distribution to the S-tranceiver section is
delayed for 2 ms (using the GCI frame-
clock).
37
MTC-20276 INTQ
Introduction
In this section, external and internal
operational details of the S-bus interface
are given. Detailed interface timing and
electrical specifications are given in
related documents.
General Characteristics
The S-interface realizes full-duplex trans-
mission of two B-channels (64 kbit/s
each) and one D-channel (16 kbit/s).
Additionally the S-interface allows con-
trolled access to the common D-channel
and the activation/ deactivation of each
connected device.
Transmission Rate
The nominal transmission rate is 192
kbit/s in each direction. There is no
requirement for special bit sequences in
the B-channels.
Frame Structure
Data is transmitted within a frame of 48
bits in each direction. The nominal
frame period is 250 us which gives a
frequency of 4 kHz. The frame structure
is not depending on ’bus’ or ’point-to-
point’ configuration.
AMI S-bus Coding
For both directions a pseudo-ternary
coding (AMI) is used. A binary ’1’ (high
level logic) is coded as ’no signal’
whereas a binary ’0’ sequence is repre-
sented by alternating positive and nega-
tive pulses.
The polarity inversions, coupled with a
minimal density of marks per frame,
reduce the low frequency components
of the signal. The 4 kHz frame always
starts with a positive pulse (F-bit), fol-
lowed by a negative balance bit L.
Balance Bits
Inside the frame more balance bits are
present serving two purposes:
1) In both directions they guarantee that
the polarity of the first bit or F-bit is con-
stant. They also increase the mark densi-
ty on the link.
2) Moreover, in uplink direction the bits
in the frame can be generated by differ-
ent terminals. Therefore, the frame is
subdivided in groups of bits, each sent
by a single terminal and terminated also
with a balance bit. The first binary ’0’ of
each group of bits except for the fram-
ing signal is coded as a negative pulse.
The balance L-bit finishes those group
with a positive mark if needed, to avoid
violations of the mark inversion scheme.
This allows the different B and D chan-
nel bits to be sent by different transmit-
ters on a bus, because the AMI polarity
is always fixed. Thus no AMI violation
can be caused by the multipoint nature
of the bus.
AMI Violations for
Frame Synchronization
For synchronization purposes the AMI is
violated twice per frame. A 48 bit
frame always starts with a positive pulse
(F-bit) followed by a negative balance
bit L. The F-bit is a violation, because
the last mark of the previous frame is
positive also. The first binary ’0’ follow-
ing a framing signal (F, L) is always
negative, and is a second violation.
Frame Synchronization
Distance Rule
There are two AMI violations in the
frame: the F-bit at the beginning is at a
fixed position. The second violation
must follow the F-bit within 13 bit posi-
tions, because the frame contains an FA
(auxiliary flag) at position 14, which is
a binary 0, even if all other bits (2 to
13) are binary one. After the FA the
next violation will be the F flag itself, at
a distance much larger than13 bit posi-
tions. This distance rule allows for fast
and reliable frame flag detection.
Frame Synchronization
Multiframing Exceptions
AMI violation delay in multiframing:
At the TE/LT-T position the received FA
bit is occasionally a binary 1 in case
of multiframing. However, then the N
bit at position 15 is a binary one,
because it is the binary inverse of the
FA. This guarantees a second violation
within 14 positions after the F-bit.
AMI violation exception in multiframing:
At the NT/LT-S position the received FA
bit is occasionally a binary 1 in case of
multiframing. FA is followed by a bal-
ance bit L, which is then also at binary
1. If all B and D bits between F-L and
FA-L are also at binary 1, then there is
no second violation within the 14 posi-
tions. If the remaining bits (B and D
channels) are also at 1 in the remain-
der of the 48 bit frame, then the second
violation will be absent and next F-bit
will be no violation! This can delay the
synchronization and could trigger an
invalid loss of synchronization.
The delayed synchronization during
multiframing is unavoidable. To avoid
an invalid loss of sync at the NT/LT-S
when multiframing is on, all incorrect
second violations (too late or missing) in
uplink direction are ignored if the FA bit
was a binary 1 in the corresponding 48
bit frame in downlink direction. Missing
violation at the F-bit position are
ignored if the preceeding 48 bit frame
(downlink) had the FA-bit at one.
38
MTC-20276 INTQ
Detailed Operational Description
of the S-bus Interface
Synchronization Principles -
Adaptive Bit Timing
1) The receiver first finds the AMI viola-
tions by oversampling.
2) Immediate bit-synchronization is
given by the F-L transition.
3) The distance rule of the next violation
within 14 positions is used to validate
the F-bit.
4) Frame synchronization is acquired
after 3 correct frames, with a correct F-
bit violation and a second one within
14 bit positions.
5) The F-L transition determines the
adaptive bit sampling.
6) At NT/LT-S loss of sync after two
frames not having F violation or second
violation following the distance rule (at
14 bits), when no multiframing is active.
The downlink signal stays active, but
changes automatically from INFO4 to
INFO2. In case of multiframing we
ignore missing second violation within
the 14 bit distance, or the missing viola-
tion at the next F-bit for uplink frames
with the corresponding downlink FA bit
at binary 1.
Synchronization Principles -
Fixed Bus Timing
On a short passive bus the position of
the bit sampling can be fixed.
The points 3), 4) and 6) of the previous
paragraph are executed. No oversam-
pling is done, no DPLL action is needed
to track the F-L adge.
Note that the fixed timing is changed
automatically to adaptive timing, when
internal S-bus loops are commanded.
When external S-bus loops are used
(e.g. for production test) only adaptive
timing is suitable!
Pulse Polarity in the S-bus
Frame
The receiver is polarity independent.
The transmitter in NT mode has no
polarity requirements.
Table 20
Transmitted Frames
In the MTC-20276, the S-interface can
transmit different signals called INFO 0,
2, 4 and 2 test signals.
The B-channel and D-channel are trans-
parently transmitted on the S-bus. When
idle those channels are all binary 1.
Details on Downlink Frames
The downlink frames transmitted by
upstream devices contain an E-bit.
During INFO4 the E-bit is the echoed
D-channel-bit received from the down-
stream devices. This D-echo-channel is
used for D-channel access procedure.
Two L-bits are used for DC-balancing,
after the F-bit and the last bit the frame.
In downlink direction some special bits
are used:
- A-bit used for activation (A=1 for
INFO4, A=0 for INFO2);
- S-bit coded as binary zero, if no multi-
framing active;
- N-bit coded as N = .NOT. FA (applies
to INFO2 and INFO4);
- M-bit at binary zero, except when mul-
tiframing;
- FA-bit, additional flag (bin. zero),
except when multiframing.
Without multiframing active S, FA, M
bits are binary zeros. Multiframing is
allowed to be active during INFO2 and
INFO4 and influences the S, FA, M bits.
Details on Uplink Frames
The INFO3 frame transmitted at termi-
nal-side consists of several groups of
bits, each of them DC-balanced by an
adjacent symmetry bit L.
The uplink D-channel requires an access
protocol. Downlink multiframing influ-
ences the FA-bit in uplink (Q-channel):
If the S-interface receives the FA-bit as
binary 0 (electrical mark) it will always
answer with binary 0.
If the S-interface sees the FA-bit as bina-
ry 1 it answers with binary 1, when mul-
tiframing is not active.
39
MTC-20276 INTQ
Signals from network to terminal Signals from terminal to network
INFO0 No signal, open circuit INFO0 No signal, open circuit
INFO2 Frame with all bits of INFO1 Continuous signal with
B, D, and E-Echo channels, the following pattern:
and A bit at binary zero, positive zero,
FA, M, S, N and L bits negative ZERO, six ONEs
follow the coding rules
INFO4 Frame with operational INFO3 Synchronized frames with
data on B, D, and E-Echo operational data on B, D
channels. Bit A set to channels. FA and L bits
binary ONE. FA, M, S, N, L according to normal coding
bits follow to coding
TEST1 Send Single Zeros (SSZ), TEST1 Send Single Zeros (SSZ),
AMI marks, 250 us distance AMI marks, 250 us distance
forced via pin (NT) or C/I forced via pin (NT) or C/I
TEST2 Send Continuous Zeros TEST2 Send Continuous Zeros
(SCZ), alternating marks, (SCZ), alternating marks
forced via pin (NT) or C/I forced via pin (NT) or C/I
S-bus Transmitter Timing
and Framing
The transmitter data are sent at 192
kHz. The 192 kHz are derived from the
master frequency of 7.68 MHz, by divi-
sion by 40. The transmitter framing is at
4 kHz. The timing is slaved to the down-
link clocks, the 4 kHz S-bus frame is
locked in phase to the available down-
link framing.
Transmitter Timing and Fram-
ing at the NT
With a DPLL the 192 kHz is locked to
the GCI interface, by synchronizing the
S-bus frame with the GCI frame. The
DPLL locks the falling edge of the F/L
frame signal on the GCI frame signal.
Jitter is according to the CCITT I.430
spec.
S-bus Reciever Timing
and Synchronization
RX Frame Sync and Bit Sam-
pling in NT Short Passive Bus
Mode
The bit-sampling moment is fixed, and
coupled with the TX bit clock, which is
derived from the master clock, and
locked to the GCI frame. The RX bit
counters (counting the position of the
uplink bits in the frame) are also locked
to the downlink/TX bit counter. Uplink
data are 2 counts late.
The fixed bit sampling moment is
advanced 5 periods of the 7.68 MHz
clock, before the edges of the S-inter-
face transmit data stream. This is need-
ed to allow an advance of 7% or 3
periods of the uplink data, allowed
according to the CCITT to be sent by TE
at zero distance, combined with a 1
period jump of the downlink data clock
derived from the master clock.
This relationship is valid on the S-bus
itself. Inside the S-interface the actual bit
sampling must be delayed to account
for the nominal delay of the external
transformer, the internal filters and dri-
ver delays. The total delay of the exter-
nal devices was estimated at 100 ns,
the internal delay is implementation
related.
The frame synchronization knows the F
position, and applies the rules
explained earlier (i.e. without over- sam-
pling). The NT in fixed bus mode can
be forced to loop the S-bus signals inter-
nally! Then S-interface applies adaptive
timing, to test a maximal functionality.
Frame Synchronization
Details in Adaptive Tim-
ing
During synchronization the device over-
samples the incoming bits with a fixed
threshold, which is at 33 % of the nomi-
nal pulse height, with AGC active.
First Violation Detection
The oversampling is done at the 7.68
Mhz master clock, or at a factor 40. A
simple voting technique is used to detect
a violation: the detector output incre-
ments a counter as long as the detected
bits are marks of the same polarity or
zeros. When a polarity change of the
marks is seen, the counter is cleared.
Whenever a sequence of more than
50 oversampled marks of the same
polarity are seen, the receiver decides
that a violation came in. The number 50
must not be too large, to allow synchro-
nization on signals with flat edges.
After finding a single violation, the over-
sampling looks for the mark-to-zero and
the subsequent zero-to- opposite-mark
transition which it uses to estimate the
actual F/L crossing; see next para-
graph.
Violation Validation
During the hunt for frame synchroniza-
tion the F/L transition forces the RX bit
sampling clock and bit counter in an
deterministic state, which is optimal. The
RX part now hunts for a next violation.
In fact the next mark must be a viola-
tion. This violation (polarity should be
opposite, but this is ignored) must arrive
before the counter indicates 14
received bits. If the second violation is
found before 14 received bits, the F/L
must be validated for 2 more consecu-
tive frames. In all following frames
the F/L transition is oversampled to lock
the RX bit sampling clocks with DPLL
movements of 1 period of 7.68 MHz. If
the F/L validation is not correct during
the 2 subsequent frames, the S-interface
restarts its hunt.
RX Bit Synchronization NT
Adaptive Bus
Bit synchronization is done only by
detection of the F-L zero crossing. This is
optimal for short busses and extended
busses, where multiple signal sources
are present, each with an independent
bit timing. Only the F/L is a ”stable”
combination of all electrical drivers on
the bus. For long point to point links the
same technique is used, although aver-
aging of all zero crossings would be
better, theoretically.
Each time the bit counters indicate the
reception of F/L, the RX part oversam-
ples the transition at 7.68 MHz.
The F/L crossing is used for several pur-
poses:
1) It gives an immediate estimate of the
RX data optimal sampling moment, after
a first violation is found, via oversam-
pling.
2) It indicates how to correct the RX 192
kHz sampling clock each frame by one
7.68 MHz period (DPLL action in adap-
tive RX sampling).
40
MTC-20276 INTQ
The ”F-L zero crossing” is not detected.
The S-interface detects the transition
mark-zero (instant t1) and the subse-
quent zero-opposite-mark (instant t2).
During the F/L bits the device oversam-
ples the incoming signal with a fixed
threshold, which is ALWAYS at 33 % of
the nominal pulse height.
In between t1 and t2 the RX part counts
”Y”, the number of zeros, ignoring pos-
sible marks. The zero count Y is less
than the t2-t1, because noise could
force marks to be seen by the receiver
during the interval.
The number ”Y” of intermediate zeros is
used to estimate the slope of the arriving
signal, to predict the edge of the F/L
transition. Y is limited to 15, which cor-
responds to a first order time constant of
2 us for the S-bus data, filtered by the S-
interface input filter. This is 2.5 times
slower than the worst case point to point
signal as specified in CCITT I.430.
Note that Y could be larger than 15 if
the zero crossing is sought on a mark
which is followed by a zero bit, i.e.
when the violation is not the F bit fol-
lowed by L.
Immediate Bit Synchroni-
zation at Instant t2
When the receiver is not synchronized
the receiver is oversampling and hunts
for violations.
The F/L crossing is found at instant t2
and the 192 kHz bit clock is preset to
predict an optimal sampling moment.
The data edge is estimated at instant
( t2 - 2.00*Y ).
The optimal sampling precedes the theo-
retical edge by 8 periods of the 7.68
MHz clock. The advance is needed to
allow a jitter of +/- 7% (15% or 6 peri-
ods of 7.68 MHz) of the data, allowed
according to the CCITT to be sent by
any TE, combined with a 1 period DPLL
correction needed at the NT to correct
for its own X-tal.
Continuous Bit Synchroniza-
tion at Each F/L Crossing
Once the receiver is synchronized on
the data, the F/L edge is used on each
frame to validate the sampling moment.
The oversampling clock is used in the
F/L window to validate the zero crossing.
At instant t2 (zero to opposite mark tran-
sition) the state of the counter generat-
ing the 192 kHz clock from the 7.68
MHz is compared with the optimal
value, which should be loaded for an
immediate bit synchronization as
explained above. If the difference (in #
of periods of 7.68 MHz) is -1, 0, or 1,
the counter is not changed, to provide
hysteresis. If the difference is larger, the
counters are adjusted with only 1 1/40,
to limit the DPLL reaction.
In this manner the sampling moment is
adjusted with one 7.68 MHz period,
every 250 us. At the TE this allows a
maximal frequency error of the X-tal of
500 PPM.
Timing Relation Between
RX and TX on the S-bus
in NT Mode
The delay between transmitted and
received frames at NT is 2 bits plus the
roundtrip delay across the S-interface,
in normal operation. Worst case delay
between downlink frames and uplink
frames is 42 us (see CCITT) or 8 bits.
Longer delays cause problems to cor-
rectly send the E-channel bits. In loop-
back mode, the delay is zero.
The receiver in NT is conceived to
accept any delay, while in adaptive
sampling mode. This is convenient when
looping the S-bus signals. E-channel
operation is only correct if the delay is 0
to 8 bits.
Frame Relation Between
GCI and S-Interface
If the S-interface is in the Network posi-
tion, the 192 kHz S-bus bit clock is
derived from the master clock, which is
locked to the 8 kHz frame of the GCI
bus.
The leading edge of the F-bit starts the
frame on the S-bus. The DPLL forces this
F-bit edge in a fixed range relative to
the frame signal of the GCI bus.
The F-bit start is situated in a 520 ns
zone starting with the edge beween
bit0 and bit1 on the GCI bus. The
uncertainty is caused by the DPLL
actions which will correct the 192 kHz
S-bus clock in steps of 130 ns, i.e. one
7.68 MHz period.
This phase relation optimizes the total
roundtrip delay on the S-bus for each B-
channel, if the GCI clock is 512 kHz.
The delay of the NT with S-bus looped
is only 125 us for both B-channels at the
GCI side.
E-Channel Generation
At the NT site the S-interfaceA mirrors
the uplink D-bits in the downlink E-chan-
nel. The purpose of the E-channel is to
control the D-channel access from multi-
ple TEs on the S-bus.
In INFO2 the E-bits are zero, in INFO4
the E-channel mirrors the preceding D-
channel bit received in the S-bus receiver.
The E-channel can be blocked to trans-
mit only 0 via DEX1 and DEX0 bits.
Multiframing - S and Q
Channels
The S-interface block supports multi-
framing according to I.430 but multi-
framing is disabled on chip.
41
MTC-20276 INTQ
42
MTC-20276 INTQ
S-Interface Programming
M-Channel Messages and Registers
In the INTQ, the S-interface block can
operate in its normal mode, or can be
selected to operate in a reduced func-
tion mode compatible with earlier
devices.
Introduction
In the S-interface block, the M-Channel
is used for the transfer of operation and
maintenance information:
The WRITE and READ operations of
internal registers;
- Test and identification registers;
- Mode registers, overriding the default
state, changing the modes without
having to change straps;
- Control registers to change auxilliary
inputs and outputs;
- Status registers, e.g. alarm and error
monitoring;
M-Channel Receiver and
Transmitter
In the S-interface the M-channel tran-
ceiver works half-duplex, with mes-
sages lenght 2 bytes, with the M-
channel going to idle after every mes-
sage, to allow a change of direction
in the S-interface M-transceiver.
General Content of
M-Channel Messages
In the S-interface block, the M-channel
messages are limited to double bytes.
The first nybble of the message is a
general address, defined in the GCI
standards. In the S-interface this
address nibble is limited to:
1000b, used to read or write internal
registers.
All other values are ignored.
S and Q Channel Messages
This feature is disabled on the INTQ.
Internal Register M-Channel
Messages
All internal register operations on the
M-channel are double byte messages.
Both READ and WRITE operations are
possible. After every operation, the
M-channel must go idle again.
Concatenation of double byte messa-
ges could result in errors. Messages
which are aborted are ignored. The S-
interface block debounces the different
bytes of the message.
A WRITE operation is a one way mes-
sage, acknowledged only via the MR
bit. However, every register can be
read. A READ operation results in an
answer, delivering the CONTENT.
The READ operation causes the two
directions of the M-channel to be
logically dependent! After the READ
message to the S-interface block the
incoming M-channel must return to
IDLE. The M-transceiver in the S-
interface block gives priority to the
delivery of the CONTENT before
it can handle the next incoming
READ/WRITE.
M-Channel Operations
M-Channel Format - Bit and
Byte Numbering Convention
The M-channel is a byte oriented chan-
nel. Bytes (also called octets) are trans-
mitted in ascending numerical order.
Within a byte the most significant bit is
transmitted first.
Byte Transfer Procedure
To transfer a message composed of sub-
sequent bytes on the GCI M-channel
each byte is presented by the transmitter
and acknowledged by the receiver. For
that purpose the two M-channels (to and
from the S-interface) have separate
handshake bits, the MR and MX bits in
the B1*-channel. The MX bit signals the
presence of new information in the M-
byte, the MR bit signals the reading of
the information by the receiver.
Idle M-Channel
The procedure starts from idle, where
MX and MR are both inactive at 1. The
M-channel content during idle is invalid
and should be at FFh. However, the idle
value received by the S-interface is
ignored.
Start of Message (SOM) and
First Byte Transfer
From the idle state a start of message
transmission is initiated by the sender
with the transition of the MX-bit from
inactive to the active state. The data to
be transmitted are passed in the M-byte
starting in the same frame as the MX-bit
activation. In normal operation the first
byte must be kept constant in the M-
channel until the SOM is acknowledged
by the receiver.
Acknowledge of the SOM
and First Byte
On detection of the SOM the receiver
will read the M-byte. It will acknowl-
edge reception, provided that identical
data were seen in the M-channel during
two consecutive frames. To acknowl-
edge SOM and the first byte, the MR bit
goes from inactive to the active state,
remaining there, until:
1) a next byte is transferred, with MX
indication, see next paragraph;
2) an EOM is signalled by the transmit-
ter;
3) the receiver wants to abort the mes-
sage.
Further Byte Transfers
In the case of the second byte transfer,
the sender must detect the transition of
the MR bit of the receiver from inactive
to the active state (negative edge 1 to
0), before transmitting the second byte,
see previous paragraph. The
sender indicates a new byte of informa-
tion by the transition of the MX bit from
active to inactive, for exactly one frame.
The data is valid in the same frame. The
next frame the MX bit goes from inac-
tive to active, and the valid data are
repeated. The data are thus repeated
for minimally two frames. The sender
repeats the data in all subsequent
frames until the receiver returns the MR
bit inactive, to acknowledge the data
(see next paragraph), or to abort the
message.
Further Byte Acknowledge-
ment
Each subsequent byte (signaled by MX
going high for one frame, see previous
paragraph) is acknowledged by the
receiver once it has seen two consecu-
tive identical bytes in the M-channel. It
acknowledges it by putting the MR
inactive (at 1) for exactly one frame.
In the next frame the MR bit must go
back to active.
End of Message (EOM)
Once the sender has received the
acknowledge of the last byte, it changes
the content to FFh, moves the MX to
inactive and keeps it inactive for at least
two frames.
Acknowledge of EOM
After the EOM of the sender, the receiv-
er acknowledges the EOM by putting
MR bit in the inactive state for at least
two frames, keeping it there until the
transmitter goes active again.
Sender Not Ready
If the sender is not ready (second byte
or subsequent) the MX bit will be kept in
the active state and the channel byte
stays constant.
Receiver Not Ready
If the receiver is not ready for the first
byte it keeps the MR in the inactive
state. If the receiver is not ready for the
second byte, it refuses to acknowledge
the bytes by keeping MR in the active
state.
IDLE Forced From Sender
If the first byte is never acknowledged,
i.e. MR staying at 1, the sender can
force the M-channel and MX to IDLE.
If the reception of a subsequent byte is
not (or not yet) acknowledged (MR is
staying active at 0) by the receiver, the
sender can put the M-channel and MX
to IDLE. The receiver should return MR
to inactive. The last byte or even the
complete message are never really
acknowledged by the receiver.
Abort Request From Receiver
The receiver can abort a message after
the SOM acknowledge or any subse-
quent byte acknowledge by forcing MR
inactive for at least two frames. The S-
interface aborts a message only when it
is forced in hard reset.
Acknowledge Abort
The sender acknowledges the abort
request by entering the idle state.
Reset of the M-Channel
Transceiver
At reset, the M-channel transceiver is
forced to the idle state.
All message bytes are put to idle, the
MX and MR bits are forced to 1,
aborting any ongoing message.
43
MTC-20276 INTQ
To S i/f byte 1: 1 0 0 0 X ADR2 ADR1 ADRO
block byte 2: CONTENT (MSB first to LSB last)
44
MTC-20276 INTQ
There is no outgoing message in reac-
tion to the WRITE.
The second nibble is address of the
internal register, limited from 1 to 6 in
the S-interface block. The write
addresses must differ from 0000, oth-
erwise the READ operation is
assumed.
Write Operation
For a Write operation, the double byte messages is as follows:
Table 21
The second nibble is all zero for an
internal READ operation. The fourth
nibble is the address of the register,
from 0 to 6.
Read Operation and Content
For a READ operation, the double byte messages is as follows:
Table 22
The second nibble is the address of
the internal register. The second byte
contains the content of the register.
The answer is the CONTENT message, two bytes as follows:
Detailed Bitmap of the Internal Registers
Table 23
Address name sent first Bits sent last Access
0h ID 0 1 1 0 1 0 0 0 read
1h VN 0 0 0 0 1 X X X read
2h CONF BT1/SC BTO DEX1 DEXO 1 MFE LTS/T DELT rd/wr
3h OUT RES RES RES RES - TEST RES RES rd/wr
0000 1000
4h IN1 1 1 1 1 1 1 1 1 read
5h IN2 (TEST) SCLK XTR4 XTR3 1 XTR2 XTR1 XTR0 read
6h PERF RES RES RES RES 1 RES 0 BER read
7h TEST device test only; not used in normal operation rd/wr
To S i/f byte 1: 1 0 0 0 0 0 0 0
block byte 2: X X X X X ADR2 ADR1 ADRO
From S i/f byte 1: 1 0 0 0 1 ADR2 ADR1 ADRO
block byte 2: CONTENT (MSB first to LSB last)
01101000
45
MTC-20276 INTQ
The version number of the device starts at 00h.
Configuration Register Read and Write Address 2h
Table 26
BT1/SC BT0 bus type selection
0 X bus type according to BUS pin; value at reset;
1 0 bus type = Adaptive; BUS pin ignored, pin usable as l/O;
1 1 bus type = Fixed; BUS pin ignored.
DEX1 DEX0 Common Echo Bus mode selection
0 X E-channel activated.
1 0 E-channel activated.
1 1 E-channel forced to ‘0’.
BUSY READ only bit. Must be writen at 0, writing BUSY at 1 triggers testmodes.
MFE Multiframing enable if 1; Reset value is 0. Always write as 0.
Multiframing is disabled in the MTC-20276.
RES Not used in this configuration. Always write 0. (Reserved)
DELT Not used in this configuration. Always write 0.
Output Register Read and Write Address 3h
Table 27
Note: The RES pins are reserved and cannot be used in this configuration.
TEST Must be written 0, writing TEST 1 triggers test modes.
CONF
reset
Identification Register Read Only Address 0h
Table 24
Version Number Register Read and Write Address 1h
Table 25
00001XXX
BT1/SC BT0 DEX1 DEX0 - MFE RES DELT
00001000
RES RES4 RES RES - TEST RES RES
00001000
ID
VN
OUT
reset
IN1 and IN2 Registers Read Only Addresses 4h and 5h
Table 28
S-bus mode Selection TSP Selection
0 Adaptative timing (PTP and EPB) 0 Transmit single Pulse U+S
1 Fixed timing (SPB) 1 Normal mode
Performance Register Read Only Address 6h
Table 29
RES Always reads as 0
BER Set each time the BER signal goes low, reset after being read.
M-Channel operation messages overview
Table 30
IN1
Reads
IN2
Reads
46
MTC-20276 INTQ
RES RES RES RES 1 RES 0 BER
11111111
(TEST) S-bus mode TSP
x11x1x00
The RES bits are reserved and cannot
be used in this configuration.
The bits represent the binary level of the
input pin. All values are sampled asyn-
chronously at the moment the content
message is assembled.
to the SIC block from the SIC block
register name read messsage write message content message
byte 1 byte 2 byte 1 byte 2 byte 1 byte 2
identification 80h 00h - - 88h content
version number 80h 01h - - 89h content
configuration 80h 02h 82h content 8Ah content
output 80h 03h 83h content 8Bh content
input1 80h 04h (test only) 8Ch content
input2 80h 05h (test only) 8Dh content
performance 80h 06h - - 8Eh content
test (test only) (test only) (test only)
PERF
BER:Bit Error Rate. This indicate that
the SIC blocks has seen excessive bit
errors, indicating a link transmission
problem.
47
MTC-20276 INTQ
Package Specification
Device Branding
ALCATEL 2840
YYWW INTQ
MTC 20276 PQ -C
QNTB-MMM ARM
LLLLLLLLL AA
Fig.23: Device Marking-PQ Order number MTC-20276 PQ-I or C
48
MTC-20276 INTQ
44PQFP Mechanical Specification
All dimensions are in inches and parenthetically in millimeters. Inches dimensions are approximated.
Drawing revision: 11
Date: 07-06-95
General dimensions
.018(0.45)
.010(0.25)
TYP .0315(0.80)
.041(1.03)
.026(0.65)
0°- 10°
0°- 10°
.398(10.10)
.390(9.90)
TYP .063(1.60)
Pin 1
.529(13.45)
.510(12.95)
.087(2.20)
.075(1.90)
TYP.006(0.15)
MAX .096(2.45)
MIN .002(0.05)
.529(13.45)
.510(12.95) .398(10.10)
.390(9.90)
44 LEAD PQFP / DQFP
DWG.NR.90-0010
49
MTC-20276 INTQ
This application note discusses the func-
tional implementation of certain system
features which are either optional or not
clearly defined in the prevailing interna-
tional standards ETSI TS 102 080 and
ANSI T1.601-1990.
EOC Data Channel
This is not implemented. The ETSI TS
102 080 and ANSI T1.601-1990
mention this data channel, but do not
describe how it should be used.
NTM Bit Is Not Supported (SET
to 1)
This is an optional feature of ETSI TS
102 080.
AIB Bit Is Ignored
This is an optional feature of ETSI ETS
102080.
After U-only Activation, the
Loopbacks (2B+D, B1, B2) Are
Not Transparent.
This is a logical consequence of the fact
that only the U is activated. However,
ETSI TS 102 080 does not describe the
characteristics of the loopbacks in U-
only activation (and in normal activa-
tion, the loopbacks should be transpar-
ent).
The Event ’UOA=0 and DEA=1’
in State NT6(a) and NT6 Trig-
gers Transition to NT8(A) (TS
102 080)
ETSI TS 102 080 specifies as next state
’NT8(a) or NT8(c)’. The MTC-20276
uses NT8(a).
New INFO1 Received
ETSI TS 102 080 is ambiguous (in
NOTE 12, p. 84):It states ”when INFO1
remains continuously after the NT fails to
bring up the network side and returns to
state NT1, the NT does not go again
into state NT2 unless a new transition
from INFO0 to INFO1 is received”.
Two interpretations are possible:
1. ’success’ is INFO3 reception instead
of INFO1 (i.e. arrival into state NT7).
2. ’success’ is arrival into state ’active’
(NT8).
The MTC-20276 uses the first interpretation.
TL:Tolerance on Recognised
10khz
The tolerance is not clear in ETSI TS 102
080. Currently, 8.6khz and 11.7khz
are used as specified pass/fail points
(i.e. a factor of 1.36 between these 2
frequencies, as in the implementation of
4B3T in the MTC-20277 INTT device).
Autoact
Reset of the chip (or power-up) automati-
cally causes an activation (as in ETSI TS
102 080, ANSI - clause 6.4, ANSI.
Table C.1).
ACT-bit (NT->LT) During 2B+D
Loopback
There is a difference between ETSI TS
102 080-1995 and ANSI T1.601 for
the 2B+D loopback case:
- act bit (NT->LT):
ANSI: always 0
ETSI: 0 until synchronised on its own
transmitted INFO2, then 1
- start of upstream transparency:
ANSI: on receipt of 2B+D loopback
request
ETSI: on receipt of ’act-bit = 1’ from LT.
The ETSI approach is chosen, as ANSI
is in the process of aligning itself to ETSI
(the contribution has been voted on the
ANSI T1E1.4 living list).
S/T Only Activation
This feature is described in ANSI92, in
Section C.5. It occurs when the NT does
not acquire the superframe marker with-
in 15s. This feature appears to be
optional, but is not stated as such. It
appears not to be present in ETSI TS
102 080, and to cause different behav-
iour from the TS 102 080 activation
tables (i.e. the actions on event ’15s
expired’ in states 3, 4, 5) and in the
ANSI tables C.1 and C.4. Currently, it
is not implemented.
EOC Message Notification of
Corrupted CRC: Impact on
FEBE_from_NT ?
ETSI TS 102 080. ANSI T1.601 do not
describe an NT- action that should be
the consequence of the above EOC
message. One could argue that the
FEBE bit sent by the NT should then be
fixed to 0 or 1. However, we currently
keep the definition of FEBE that reflects
the comparison between the NT-comput-
ed CRC and the CRC received in the
frame (as is the case when the CRC is
not corrupted).
ANSI NT Maintenance Modes
Metallic Loop Terminator for North
American applications only. (ANSI Sec-
tion 6.5)
Loss of Signal in State NT5
ETSI TS 102 080 and ANSI specify ‘no
action’, when the signal is lost in state
NT5. This means that the system does
not deactivate until the 15s timer M4 is
expired. The implementation is as
described in TS 102 080/ANSI.
Response to EOC-message
’Notification of Corrupted CRC’
ETSI TS 102 080 and ANSI do not
explicitly state what the NT has to send
back. The INTQ sends back ’unable to
comply’.
Time Between end EC-training
and Going into Power-down
ETSI TS 102 080 specifies this time as
480ms. The current MTC-20276 imple-
mentation uses 960ms, to allow a test
system to respond more slowly than
480ms.
MTC-20276 INTQ Compliance Issues
Compatibility with ETSI/ANSI Specs
50
MTC-20276 INTQ
Note
51
MTC-20276 INTQ
Note
MTC-20276 INTQ
Alcatel Microelectronics acknowledges the trademarks of all companies referred to in this document.
Alcatel Microelectronics
info@mie.alcatel.be
http://www.alcatel.com/telecom/micro
This document contains information on a new product.
Alcatel Microelectronics
reserves the right to make
changes in specifications at any time and without notice.
The information furnished by
Alcatel Microelectronics
in
this document is believed to be accurate and reliable.
However, no responsibility is assumed by
Alcatel Microelec-
tronics
for its use, nor for any infringements of patents or
other rights of third parties resulting from its use.
No licence is granted under any patents or patent rights
of
Alcatel Microelectronics
.
Premier Technical Sales SAN DIEGO, CA, 2011 Via Tiempo, Cardiff, CA 92007, Tel. (760) 943 6222, Fax (760) 943 0425
SANTA CLARA, CA, 3235 Kifer Road, Suite 110, Santa Clara, CA 95051, Tel. (408) 736 2260, Fax (408) 736 2826
TUSTIN, CA, 2660 Walnut Ave, Unit H, Tustin, CA 92680, Tel. (714) 573 8242, Fax (714) 573 4942
ATLANTA, GA, 135 Arden Way, Peachtree City, GA 30269, Tel. (770) 632 9648, Fax (770) 486 4098
BOSTON, MA, 33 Boston Post Road West, Suite 270, Marlboro, MA 01752, Tel. (508) 460 1730, Fax (508) 460 1731
PORTLAND, OR, 5319 S.W. Westgate Dr. Suite 136, Portland, OR 97221, Tel. (503) 297 3956, Fax (503) 297 4956
AUSTIN, TX, 12148 Jollyville Road, Unit 422, Austin, TX 78759, Tel. (512) 257 8218, Fax (512) 257 1714
DALLAS, TX, 800 East Campbell Road, Suite 199, Richardson, TX 75081, Tel. (972) 680 5233, Fax (972) 680 5234
OTTAWA, ONTARIO, CANADA, 43 Pretty Street, Stittsville, Ontario, K2S1A4 Canada, Tel. (613) 836 1779, Fax (613) 836 4459
Headquarters
Manufacturing & Cus-
tomer Service
Westerring 15
9700 Oudenaarde
Belgium
Tel. +32 55 33 24 70
Fax +32 55 33 27 68
Marketing &
Design Centre
Benelux & Nordic
Countries (Sales)
Excelsiorlaan 44-46
1930 Zaventem
Belgium
Tel. +32 2 718 18 11
Fax +32 2 725 37 49
info@mie.alcatel.be
Sales Offices
Central Europe
Arabellastraße 4
81925 Munich
Germany
Tel. +49 89 920 07 70
Fax +49 89 910 15 59
Stuttgart Office
Schwieberdingertraße 9
70435 Stuttgart
Germany
Tel. +49 711 821 45 304
Fax +49 711 821 44 619
United Kingdom
Guildgate House
Shute End
Wokingham, Berkshire
RG40 1BH
UK
Tel. +44 118 979 7102
Fax +44 118 979 7103
Sweden
Arrendatorsvägen 1
SE-14162 Huddinge
Sweden
Tel. +46 8711 0540
Fax +46 8711 9052
Sales &
Design Centres
Southern Europe
10, rue Latécoère, B.P.57
78140 Vélizy Cedex
France
Tel. +33 1 46 32 53 86
Fax +33 1 46 32 55 68
Italy
Via Trento 30
20059 Vimercate MI
Italy
Tel. +39 039 686 4520
Fax +39 039 686 6899
USA
M/S 412-115
1225 N. Alma Road
Richardson
TX 75081-2206
USA
Tel. +1 972 996 2489
Fax +1 972 996 2503
Representatives
Northern Germany
TRIAS
Moerser Landstraße 408
47802 Krefeld
Germany
Tel. +49 2151 95 30 111
Fax +49 2151 95 30 115
Japan
Alcatel ITS Japan Ltd
Yebisu Garden Pl Tower 24
20-3 Ebisu 4-chome,
Shibuya-ku
Tokyo, 150, Japan
Tel. +81 3 5424 8561
Fax +81 3 5424 8581
Taiwan ROC
Alcatel Microelectronics
Tower A, 17F, N°116, Sect
1 Hsin-Tai 5th Rd, Hsi-Chih
Taipei County
Taiwan, R.O.C.
Tel. +886 2 2696-2618
Fax +886 2 2696-2562
07/99-DS252e