FDA803D 1 x 45 W class D digital input automotive power amplifier with diagnostics, wide voltage operation range for car audio and telematic Datasheet - production data 2 loads driving Power limiting function (configurable through I2C) I2C bus diagnostics: - Short to VCC/GND - Short load and open load detection (also in play mode) - Four thermal warnings 3RZHU662 ([SSDGGRZQ *$'*36 Features DC offset detector (also in play) and 'hot spot' detection Clipping detector AEC-Q100 qualified Integrated thermal protection Integrated 108 dB D/A conversion Legacy mode ('no I2C' mode), 4 configurable settings I2S and TDM digital input (4/8/16CH TDM) Input sampling frequency: 44.1 kHz, 48 kHz, 96 kHz, 192 kHz Full I2C Short circuit and ESD integrated protections Package: PowerSSO-36 exposed pad down bus driving (3.3/1.8 V) Table 1. Device summary CISPR 25 - Class V (Fourth edition) Very low quiescent current Output lowpass filter included in the feedback allowing outstanding audio performances Order code Package Packing FDA803D-EHT PowerSSO-36 (exposed pad down) Tape & reel FDA803D-EHX Tube Wide operating supply range from 3.3 to 18 V, suitable for car radio, telematics and e-call MOSFET power outputs allowing high output power capability - 1 x 25 W /4 @ 14.4 V, 1 kHz THD = 1% - 1 x 30 W /4 @ 14.4 V, 1 kHz THD = 10% May 2018 This is information on a product in full production. DocID031487 Rev 2 1/78 www.st.com Contents FDA803D Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 7 8 5.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.4 Typical curves of the main electrical parameters . . . . . . . . . . . . . . . . . . . 17 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1 LC filter design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.2 Load possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Finite state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.1 Device state and address selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.2 Standby state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.3 Diagnostic Vcc-Gnd state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.4 ECO-mode state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.5 MUTE-PLAY and diagnostic states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.6 Operation compatibility vs battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Muting function architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 8.1 Command dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 8.2 Analog-Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 8.3 Digital-Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 8.4 Mixed mute advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 9 Hardware mute pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 10 Power limiter function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2/78 DocID031487 Rev 2 FDA803D Contents 10.1 11 Power limiter control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 11.1 DC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 11.1.1 Diagnostic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 11.1.2 Relation with short circuit protection activation . . . . . . . . . . . . . . . . . . . 37 11.1.3 Load range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 11.2 Short to Vcc / GND diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 11.3 Diagnostic time-line diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 11.4 Open load in play detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 11.4.1 Open load in play detector operation overview . . . . . . . . . . . . . . . . . . . 41 11.4.2 Processing bandwidth range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 11.4.3 Audio signal evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 11.4.4 Impedance threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 11.4.5 I2C control and timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 11.5 Input offset detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 11.6 Output voltage offset detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 11.7 Output current offset detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 11.7.1 Output current offset detector operation principle . . . . . . . . . . . . . . . . . 45 11.7.2 Result communication and I2C control . . . . . . . . . . . . . . . . . . . . . . . . . 45 11.7.3 Hot spot detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 11.8 PWM pulse skipping detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 11.9 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 11.10 Watch-dog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 11.11 Error frame check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 12 13 Additional features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 12.1 AM operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 12.2 Noise gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 12.3 Dither PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 I2S bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 13.1 I2S standard mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 13.2 TDM 4CH mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 13.3 TDM 8CH mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 13.4 TDM 16CH mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 DocID031487 Rev 2 3/78 4 Contents 14 15 16 17 4/78 FDA803D 13.5 Timing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 13.6 Group delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 14.1 Writing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 14.2 Reading procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 14.3 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 14.4 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 14.5 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 14.6 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 14.7 I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 14.8 I2S, I2C and Enable relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 I2C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 15.1 Instruction bytes- "I00xxxxx" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 15.2 Data bytes - "I01xxxxx" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 16.1 PowerSSO-36 (exposed pad) package information . . . . . . . . . . . . . . . . . 73 16.2 Package marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 DocID031487 Rev 2 FDA803D List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pins list function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Thermal data - PowerSSO36 slug-down package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Command dependence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Power limiter function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Open load in play detector impedance and validity thresholds. . . . . . . . . . . . . . . . . . . . . . 42 I2S Interface timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Group delay dependency from input sampling frequency. . . . . . . . . . . . . . . . . . . . . . . . . . 56 I2C bus interface timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 IB0-ADDR: "I0000000" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 IB1-ADDR: "I0000001" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 IB2-ADDR: "I0000010" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 IB3-ADDR: "I0000011" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 IB4-ADDR: "I0000100" - CDDiag pin configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 IB5-ADDR: "I0000101" - CDDiag pin configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 IB6-ADDR: "I0000110" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 IB7-ADDR: "I0000111" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 IB8-ADDR: "I0001000" - CHANNEL CONTROLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 IB9-ADDR: "I0001001" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 IB10-ADDR: "I0001010" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 IB11-ADDR: "I0001011" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 IB12-ADDR: "I0001100" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 IB13-ADDR: "I0001101" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 IB14-ADDR: "I0001110" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 DB0-ADDR: "I0100000" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 DB1-ADDR: "I0100001" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DB2-ADDR:"I0100010" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DB3-ADDR: "I0100011" DC Diagnostic Error code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 DB6-ADDR:"I0100110" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PowerSSO-36 exposed pad (D1 and E2 use the option variation B) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 DocID031487 Rev 2 5/78 5 List of figures FDA803D List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. 6/78 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pins connection diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 4 , f = 1 kHz sine wave) . . . . . . 17 Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 4 , f = 1 kHz pink noise) . . . . . . 17 Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 2 , f = 1 kHz sine wave) . . . . . . 17 Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 2 , f = 1 kHz pink noise) . . . . . . 17 Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 8 , f = 1 kHz sine wave) . . . . . . 17 Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 8 , f = 1 kHz pink noise) . . . . . . 17 Efficiency and power dissipation (Vs = 18 V, RL = 1 x 4 , f = 1 kHz sine wave) . . . . . . . . 18 Efficiency and power dissipation (Vs = 18 V, RL = 1 x 4 , f = 1 kHz pink noise). . . . . . . . 18 Efficiency and power dissipation (Vs = 16 V, RL = 1 x 2 , f = 1 kHz sine wave) . . . . . . . 18 Efficiency and power dissipation (Vs = 16 V, RL = 1 x 2 , f = 1 kHz pink noise). . . . . . . . 18 Efficiency and power dissipation (Vs = 18 V, RL = 1 x 8 , f = 1 kHz sine wave) . . . . . . . . 18 Efficiency and power dissipation (Vs = 18 V, RL = 1 x 8 , f = 1 kHz pink noise). . . . . . . . 18 Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 4 , f = 1 kHz sine wave) . . . . . . . 19 Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 4 , f = 1 kHz pink noise) . . . . . . . 19 Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 2 , f = 1 kHz sine wave) . . . . . . . 19 Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 2 , f = 1 kHz pink noise) . . . . . . . 19 Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 8 , f = 1 kHz sine wave) . . . . . . . 19 Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 8 , f = 1 kHz pink noise) . . . . . . . 19 Output power vs. supply voltage (RL = 4 , sine wave) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Output power vs. supply voltage (RL = 2 , sine wave) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Output power vs. supply voltage (RL = 8 , sine wave) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 THD vs. output power (VS = 14.4 V, RL = 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 THD vs. output power (VS = 14.4 V, RL = 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 THD vs. output power (VS = 14.4 V, RL = 8 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 THD vs. frequency (VS = 14.4 V, RL = 4 , PO = 1 W). . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 THD vs. frequency (VS = 14.4 V, RL = 2 , PO = 1 W). . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 THD vs. frequency (VS = 14.4 V, RL = 8 , PO = 1 W). . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Frequency response (1 W, RL = 4 , f = 1 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Frequency response (1 W, RL = 2 , f = 1 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Frequency response (1 W, RL = 8 , f = 1 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Dynamic range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 FFT - Output spectrum (-60 dBFS input signal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Finite state machine diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Operation vs. battery charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Analog-Mute diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Digital-Mute diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Mixed mute diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Analog-Mute vs. Mixed-Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 HWMute pin schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Response obtained with a limitation corresponding to 80% of the full-scale . . . . . . . . . . . 35 Load range detection configured properly setting IB5 d7-d6 . . . . . . . . . . . . . . . . . . . . . . . 37 DC diagnostic before turn on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Short to VCC at device turn on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 DocID031487 Rev 2 FDA803D List of figures Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. DC Diagnostic in Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Short circuit protection activation - Short to VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Short Circuit Protection activation due to short across load, short to Vcc/Gnd not present . 40 Open load in play detector guaranteed thresholds with standard gain setting . . . . . . . . . . 42 Open load in play detector guaranteed thresholds with low gain setting . . . . . . . . . . . . . . 42 Open load in play detector timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Output voltage offset detector operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Current offset measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Hot spot detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 PWM pulse skipping detector operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Thermal attenuation curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 PWM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 LRF effect on PWM output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Dither PWM effect on output PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 I2S standard mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 TDM4 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 TDM8 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 TDM16 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 I2S Interface timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 I2S clock transition timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 I2C bus protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Reading procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Without/with auto-increment reading procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 I2C bus interface timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 PowerSSO-36 (exposed pad) package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 PowerSSO-36 (exp. pad) marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 DocID031487 Rev 2 7/78 7 Description 1 FDA803D Description The FDA803D is a single bridge class D amplifier, designed in the most advanced BCD technology, intended for any automotive audio application (car radio, telematics and e-call, noise and tone generators, etc). The FDA803D integrates a high performance D/A converter together with powerful MOSFET outputs in class D, so it is very compact and powerful, moreover reaches outstanding efficiency performances (90%). It has a very wide operating range: it can be operated both with standard car battery levels (5.5-18 V operating, compatible to load dump pulse) and with external step-down generated voltages or emergency battery (since it is compatible to minimum 3.3 V operative). The feedback loop is including the output L-C low-pass filter, allowing superior frequency response linearity and lower distortion. FDA803D is configurable through I2C bus interface and is integrating a complete diagnostics array specially intended for automotive applications including innovative open load and DC offset detection in play mode. Thanks to the solutions implemented to solve the EMI problems, the device is intended to be used in the standard single DIN car-radio box together with the tuner. Moreover FDA803D features a configurable power limiting function, and can be optionally operated under no I2C mode ('legacy mode'). 8/78 DocID031487 Rev 2 FDA803D 2 Block diagram Block diagram Figure 1. Block diagram 9&&0 9&&3 $9695 ,&&ON $9GG ,&GDWD (QDEOH (QDEOH ,6ZV '9GG (QDEOH ,6FON '9695 (QDEOH 3// ,&LQWHUIDFH ,6GDWD ,6WHVW ,QWHUSRODWRU 1RLVH 6KDSHU ,6 LQWHUIDFH &XUUHQW *HQHUDWRU $UUD\ 6FUDPEOHU 3:0 7UDQVUHVLVWHQFH 3RZHU$PSOLILHU )%3 2873 2870 )%0 '*QG '*695 $*QG $*695 *1'0 *1'3 695 &''LDJ +:0XWH 1& 7$% *$3*36 DocID031487 Rev 2 9/78 77 Pins description 3 FDA803D Pins description Figure 2. Pins connection diagram 7$% *1'3 *1'0 9&&3 9&&0 1& 2870 2873 2870 2873 )%0 )%3 1& +:0XWH '*QG 695 '9GG $*695 (QDEOH $9695 (QDEOH $9GG (QDEOH $*QG (QDEOH ,6ZV 1& ,6FON &''LDJ ,6GDWD 6OXJGRZQ 1& ,6WHVW '9695 ,&FON '*695 ,&GDWD *$'*36 Table 2. Pins list function 10/78 Pin # Pin name Function 1 TAB 2 GNDM Channel half bridge minus, Power Ground 3 VCCM Channel half bridge minus, Power Supply 4 OUTM Channel half bridge minus, Output 5 OUTM Channel half bridge minus, Output 6 FBM 7 NC Not connected 8 DGnd Digital ground 9 DVdd Digital supply 10 Enable1 Enable 1 11 Enable2 Enable 2 12 Enable3 Enable 3 13 Enable4 Enable 4 14 NC 15 CDDiag Device slug connection Channel half bridge minus, Feedback Not connected Clipping detector and diagnostic output pin DocID031487 Rev 2 FDA803D Pins description Table 2. Pins list function Pin # Pin name Function 16 NC 17 D1V8SVR Positive digital supply V(SVR)+0.9V (Internally generated) 18 DGSVR Negative digital supply V(SVR)-0.9V (Internally generated) 19 I2Cdata I2C Data 20 I2Cclk I2C Clock 21 I2Stest test pin, left open 22 I2Sdata I2S/TDM data 23 I2Sclk I2S/TDM Clock input 24 I2Sws I2S/TDM Sync input /Word Select input 25 AGnd Analog ground 26 AVdd Analog supply 27 A5VSVR Positive Analog Supply V(SVR)+2.5V (Internally generated) 28 AGSVR Negative Analog Supply V(SVR)-2.5V (Internally generated) 29 SVR 30 HWMute 31 FBP 32 OUTP Channel half bridge plus, Output 33 OUTP Channel half bridge plus, Output 34 NC 35 VCCP Channel half bridge plus, Power Supply 36 GNDP Channel half bridge plus, Power Ground Not connected Supply Voltage Ripple Rejection Capacitor Hardware mute pin Channel half bridge plus, Feedback Not connected DocID031487 Rev 2 11/78 77 Application diagram 4 FDA803D Application diagram Figure 3. Application diagram ,6B:6 ,6B6&/ ,6B6'$ ,6B7(67 ,&B6&/ ,&B6'$ (1 (1 (1 (1 087( *1'3 ,6:6 ,6&/. ,6'$7$ & & X) Q) )%3 2873 ,67(67 2873 ,&&/. & & & X) X) Q) 2870 )%0 (1$%/( *1'0 1& '*695 &'',$* &'',$* 695 Q) & Q) X) & X) 5 & X) S) 9&& & X) 5 5 9&& & 5 S) & X) & X) &+ / X+ 1& 1& 1& $9695 & & Q) X) & Q) & Q) & X) 7$% $*1' $9'' & & '9'' '*1' $*695 & )'$' +:087( '9695 X+ &+ 9&&0 2870 / (1$%/( (1$%/( 9&&3 ,&'$7$ (1$%/( *$3*36 12/78 DocID031487 Rev 2 FDA803D Electrical specifications 5 Electrical specifications 5.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol Parameter VCC [VCCP ,VCCM, AVDD, DVDD] GNDmax [DGND, AGND, GNDP, GNDM] I2Cdata, I2Cclk 2 2 2 2 I Stest, I Sdata, I Sclk, I Sws Enable1,2,3,4 Value Unit DC supply voltage -0.3 to 28 V Transient supply voltage for t = 100 ms(1) -0.3 to 40 V Ground pin voltage difference -0.3 to 0.3 V I2C bus pins voltage -0.3 to 5.5 V I S bus pins voltage -0.3 to 5.5 V Enables -0.3 to 5.5 V -0.3 to 7 V -0.3 to 5.5 V Internally limited A Ambient operating temperature -40 to 125 C Storage and junction temperature -55 to 150 C 2 HWMute Hardware mute CDDiag Clip detection Output current (repetitive f > 10 Hz) Io Tamb Tstg, Tj ESDHBM ESD protection HBM 2000 V ESDCDM ESD protection CDM 500 V 1. VCC = 35 V for t < 400 ms as per ISO16750-2 load dump with centralized load dump suppression. 5.2 Thermal data Table 4. Thermal data - PowerSSO36 slug-down package Symbol Value Unit 56 C/W Rth j-a-2s2p Thermal resistance junction-to-ambient (2s2p board) 31 C/W Rth j-a-2s2pv Thermal resistance junction-to-ambient (2s2p+vias) 26 C/W Rth j-a-2s Parameter Thermal resistance junction-to-ambient (2s board) DocID031487 Rev 2 13/78 77 Electrical specifications 5.3 FDA803D Electrical characteristics Vcc = 14.4 V; RL = 4 ; f = 1 kHz; Tamb = 25 C; I2C defaults, unless otherwise specified. LC filter: L = 10 H, C = 3.3 F. PWM in In-phase modulation, feedback connected after the filter. Table 5. Electrical characteristics Symbol Min Typ Max Unit RL = 4 3.3 - 18 V RL = 2 (1) 3.3 - 16 Device in Standby - 1 5 A Device on (MUTE state) - 35 - mA ECO MODE - 22 - mA Offset voltage Mute & Play -10 - +10 mV DVDD Digital supply voltage range - 3.3 - 18 V AVDD Analog supply voltage range - 3.3 - 18 V IB11 D5-4 = 00 9.5 11 12.5 A IB11 D5-4 = 01 6.7 8 9.3 A IB11 D5-4 = 10 5 6 7 A IB11 D5-4 = 11 3 4 5 A VCC IVCC Vos Iop Parameter Supply voltage range Quiescent current Overcurrent protection Test condition IAVDD Analog current Device on (MUTE state) - 9 20 mA IDVDD Digital current Device on (MUTE state) - 13 20 mA 18.5 19.5 20.5 V Attenuation <0.5 dB Low voltage mode (IB0D0=1) 2.7 2.9 3.3 V Attenuation <0.5 dB Standard mode (IB0D0=0) 4.5 4.7 5 V 18 18.9 20.3 V - VlowM VhighM Overvoltage shutdown Vcc low supply mute threshold Attenuation = 0.5 dB(2) Vcc high voltage mute(2) Vcc supply UVLO threshold Standard mode (IB0D0=0) 4.4 4.6 4.8 V Low voltage mode (IB0D0=1) 2.55 2.7 2.85 V Tsh Thermal shutdown - 165 175 185 C Tpl Thermal protection junction temperature Attenuation = 0.5 dB 150 160 170 C - - Tpl-5 - C - - Tpl-15 - C - - Tpl-35 - C - - Tpl-50 - C UVLOVCC Tw1 Tw2 Tw3 Tw4 14/78 Thermal warning junction temperature(3) DocID031487 Rev 2 FDA803D Electrical specifications Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Min Typ Max Unit - 30 - W 25 - W 50 - W 55 - W - 45 - W - 80 - W THD = 10% Vcc = 5 V - 3.8 - W THD = 10% Vcc = 3.3 V - 1.6 - W 70 80 - - - 0.01 0.05 % 5.5 5.9 6.3 Vp 3.3 3.6 3.9 Vp Audio performances THD = 10 % THD = 1 % Po Output power Max power; Vcc = 15.2 V RL = 2 THD = 10% RL = 2 THD = 1% (1) RL = 2 , max power Po PSRR THD Gain DR Output power Power supply rejection ratio (1) f = 1 kHz; Vr = 1Vpk; Total harmonic distortion PO = 1 W, f = 1 kHz Standard gain Low gain(4) - (1) at Amplitude = -10 dBFs Dynamic range A-wtd and brickwall 20 kHz filter 102 107.5 - dB SNR Signal to noise ratio A-wtd and brickwall 20 kHz filter 107 112 - dB Eout1 Output noise A-wtd and brickwall 20 kHz filter used, no output signal; - 35 55 V Eout2 Output noise CCIR 468 filtered - 84 130 V ITU Pop filter output voltage Standby to Mute and Mute to Standby transition -7.5 - +7.5 mV Attenuation <0.5 dB, and digital mute disabled 2.3 - - Attenuation 60 dB, and digital mute disabled - - 1 9 11 13 A 5.5 6 6.5 V VOITU Mute VMth(5) IM Mute pin voltage threshold Mute pin source current - V VMcl Mute pin internal clamp voltage - Ifeed Peak current flowing in the feedback pins Standby condition, all feedbacks forced to Vcc, output floating - 110 130 A I2C bus interface fSCL Clock frequency - - - 400 kHz VIL I2C pins low voltage - - - 0.8 V VIH I2C pins high voltage - 1.3 - - V Maximum I2C data pin low voltage when current Isink is sinked Isink = 4 mA - 0.12 0.5 V - - 1 A VOLMAX ILIMAX Maximum input leakage V = 3.6 V current DocID031487 Rev 2 15/78 77 Electrical specifications FDA803D Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Min Typ Max Unit I2S bus interface VIL-I2S IL VIH-I2S IH I2S pins low voltage - - - 0.8 V Input logic current, low VI = 0 V - - 500 nA I2S pins high voltage - 1.3 - - V Input logic current, high VI = TBD - - 500 nA Control pins characteristics VENL Enable pins low voltage - - - 0.9 V VENH Enable pins high voltage - 2.4 - - V Clipping and offset detector CDTHD Clip det THD (6) THD @ 100 Hz with average Vclipdet = 2 V 5 7 9 % CDSAT Clip det sat. voltage CD on; ICD = 1 mA - 150 300 mV CDLK Clip det leakage current CD pin at 3.6 V - - 15 A Vofflin Input DC offset detection threshold Theshold at which an offset present at inputs is detected - -18 - dB Voffout Output DC offset detection threshold(7) Input high pass filter disable 1.4 2 2.6 V 1. If outphase modulation selected, slow slope configuration must be used (IB11,D3) 2. Parameter values based on bench measurements (guaranteed by correlation with overvoltage shutdown). 3. The thermal warnings are always in tracking. 4. When selecting the low gain, also the thresholds for "DC diagnostic" function and "Open load in play detector" function scale of the same factor with respect to standard gain configuration. 5. See Chapter 8: Muting function architecture for more details. 6. Guaranteed by correlation. 7. Measured at bench during product validation. 16/78 DocID031487 Rev 2 FDA803D Electrical specifications 5.4 Typical curves of the main electrical parameters Figure 4. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 4 , f = 1 kHz sine wave) 3',66>:@ Figure 5. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 4 , f = 1 kHz pink noise) 3',66>:@ >@ >@ 32&+>:@ 3',66>:@ 3',66 96 9 5/ [ I N+]6LQH:DYH 32&+>:@ >@ 3',66 32&+>:@ *$'*36 *$'*36 Figure 9. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 8 , f = 1 kHz pink noise) >@ 96 9 5/ [ 3LQN1RLVH 3',66>:@ *$'*36 Figure 8. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 8 , f = 1 kHz sine wave) 3',66>:@ 32&+>:@ 3',66>:@ Figure 7. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 2 , f = 1 kHz pink noise) >@ 96 9 5/ [ 3LQN1RLVH *$'*36 Figure 6. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 2 , f = 1 kHz sine wave) 3',66 96 9 5/ [ I N+]6LQH:DYH 3',66 >@ 3',66 3',66 96 9 5/ [ I N+]6LQH:DYH 96 9 5/ [ 3LQN1RLVH 32&+>:@ *$'*36 DocID031487 Rev 2 32&+>:@ *$'*36 17/78 77 Electrical specifications FDA803D Figure 10. Efficiency and power dissipation (Vs = 18 V, RL = 1 x 4 , f = 1 kHz sine wave) 3',66>:@ Figure 11. Efficiency and power dissipation (Vs = 18 V, RL = 1 x 4 , f = 1 kHz pink noise) >@ 3',66>:@ >@ 3',66 3',66 96 9 5/ [ I N+]6LQH:DYH 32&+>:@ 3',66 96 9 5/ [ I N+]6LQH:DYH 32&+>:@ *$'*36 3',66 32&+>:@ *$'*36 Figure 15. Efficiency and power dissipation (Vs = 18 V, RL = 1 x 8 , f = 1 kHz pink noise) 3',66>:@ >@ 96 9 5/ [ 3LQN1RLVH Figure 14. Efficiency and power dissipation (Vs = 18 V, RL = 1 x 8 , f = 1 kHz sine wave) >@ *$'*36 3',66>:@ 3',66>:@ Figure 13. Efficiency and power dissipation (Vs = 16 V, RL = 1 x 2 , f = 1 kHz pink noise) >@ 32&+>:@ *$'*36 3',66>:@ Figure 12. Efficiency and power dissipation (Vs = 16 V, RL = 1 x 2 , f = 1 kHz sine wave) 96 9 5/ [ 3LQN1RLVH >@ 3',66 3',66 96 9 5/ [ I N+]6LQH:DYH 18/78 32&+>:@ 96 9 5/ [ 3LQN1RLVH *$'*36 DocID031487 Rev 2 32&+>:@ *$'*36 FDA803D Electrical specifications Figure 16. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 4 , f = 1 kHz sine wave) 3',66>:@ Figure 17. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 4 , f = 1 kHz pink noise) >@ >@ 3',66>:@ 96 9 5/ [ I N+]6LQH:DYH 96 9 5/ [ 3LQN1RLVH 3',66 32&+>:@ 3',66 32&+>:@ *$'*36 Figure 18. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 2 , f = 1 kHz sine wave) 3',66>:@ *$'*36 3',66>:@ Figure 19. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 2 , f = 1 kHz pink noise) >@ >@ 96 9 5/ [ I N+]6LQH:DYH 3',66 96 9 5/ [ 3LQN1RLVH 3',66 32&+>:@ *$'*36 Figure 20. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 8 , f = 1 kHz sine wave) *$'*36 3',66 >:@ Figure 21. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 8 , f = 1 kHz pink noise) >@ 3',66>:@ 32&+>:@ >@ 96 9 5/ [ I N+]6LQH:DYH 96 9 5/ [ 3LQN1RLVH 32&+>:@ 3',66 3',66 *$'*36 DocID031487 Rev 2 32&+>:@ *$'*36 19/78 77 Electrical specifications FDA803D Figure 22. Output power vs. supply voltage (RL = 4 , sine wave) 32>:@ 32>:@ 5/ VLQXVZDYH#N+] Figure 23. Output power vs. supply voltage (RL = 2 , sine wave) D[ 3 ' 7+ ' 7+ ' ' 7+ ' 7+ 7+' 7+ D[ P 32 5/ VLQXVZDYH#N+] P R ' 7+ 7+' 96>9@ 96>9@ *$'*36 *$'*36 Figure 24. Output power vs. supply voltage (RL = 8 , sine wave) 7+'>@ 32>:@ Figure 25. THD vs. output power (VS = 14.4 V, RL = 4 ) 5/ VLQXVZDYH#N+] 96 9 5/ I .+] D[ P 32 ' + 7 ' 7+ ' 7+ 9V>9@ *$'*36 Figure 26. THD vs. output power (VS = 14.4 V, RL = 2 ) 96 9 5/ I .+] 20/78 *$'*36 7+'>@ 7+'>@ Figure 27. THD vs. output power (VS = 14.4 V, RL = 8 ) 32>:@ 32>:@ 96 9 5/ I .+] *$'*36 DocID031487 Rev 2 32>:@ *$'*36 FDA803D Electrical specifications Figure 28. THD vs. frequency (VS = 14.4 V, RL = 4 , PO = 1 W) Figure 29. THD vs. frequency (VS = 14.4 V, RL = 2 , PO = 1 W) 7+'>@ 7+'>@ 96 9 5/ 32 : 96 9 5/ 32 : I>+]@ I>+]@ Figure 30. THD vs. frequency (VS = 14.4 V, RL = 8 , PO = 1 W) *$'*36 *$'*36 Figure 31. Frequency response (1 W, RL = 4 , f = 1 kHz) 7+'>@ 5HODWLYH/HYHO G%U 96 9 5/ 2XWSXW3RZHU>5HODWLYHOHYHO#N+]@ : 96 9 5/ 32 : I>+]@ I>+]@ *$'*36 *$'*36 Figure 32. Frequency response (1 W, RL = 2 , f = 1 kHz) Figure 33. Frequency response (1 W, RL = 8 , f = 1 kHz) 5HODWLYH/HYHO G%U 5HODWLYH/HYHO G%U 96 9 5/ 2XWSXW3RZHU>5HODWLYHOHYHO#N+]@ : 96 9 5/ 2XWSXW3RZHU>5HODWLYHOHYHO#N+]@ : ) +] *$'*36 DocID031487 Rev 2 I>+]@ *$'*36 21/78 77 Electrical specifications FDA803D Figure 34. PSRR vs. frequency Figure 35. Quiescent current vs. supply voltage ,T>P$@ 3655>G%@ 96 9 5/ 5/ I>+]@ Figure 36. Dynamic range *$'*36 96>9@ *$'*36 Figure 37. FFT - Output spectrum (-60 dBFS input signal) G%U 5/ G%U 5/ 22/78 $PSOLWXGH>G%)V@ *$'*36 DocID031487 Rev 2 )UHTXHQF\>+]@ *$'*36 FDA803D General information 6 General information 6.1 LC filter design The audio performance of a Class D amplifier are heavily influenced by the characteristics of the output LC filter. The choice of its components is quite critical because a lot of constraints have to be fulfilled at the same time: size, cost, filter for EMI suppression, efficiency. In particular, both the inductor and the capacitor exhibit a non linear behavior: the value of the inductance is a function of the instantaneous current in it and similarly the value of the capacitor is a function of the voltage across it. In the classical approach, where the feedback loop is closed right at the output of the power stage, the LC filter is placed outside the loop and these nonlinearities cause the Total Harmonic Distortion (THD) to increase. The only way to avoid this phenomenon would be to use components which are highly linear, but this means they are also bigger and/or more expensive. Furthermore, when the LC filter is outside the loop, its frequency response heavily depends on the impedance of the loudspeaker; this is one of the most critical aspects of Class-D amplifiers. In standard class D this can be mitigated, but not solved, by means of additional damping networks, increasing cost, space and power dissipation. FDA803D, instead, provides a very flat frequency response over audio-band which can not be achieved by standard class D without feedback after LC filter. Since the demodulator group is now in the feedback path, some constraints regarding the inductor and capacitor choice are still present but of course less stringent than in the case of a typical switching application. Moreover FDA803D can be used with the 'classical' configuration of feedback on output (before LC filter), through I2C configuration, allowing the maximum flexibility. The choice depends mainly on EMI target /requirements and could slightly affect other performances (like damping factor, or THD). 6.2 Load possibilities FDA803D supports several load possibilities, driving 2 , 4 and higher ohmic loads. Possible channel configurations are: 1 x 4 ohm (or higher) (up to 18 V) 1 x 2 ohm (up to 16 V) DocID031487 Rev 2 23/78 77 Finite state machine 7 FDA803D Finite state machine FDA803D has a finite state machine which manages amplifier functionality, reacting to user and system inputs Figure 38. Finite state machine diagram PV6KRUWWR9FF*QGFKHFN 6WDQG%\ (QDEOHVVHW $1' ,&SURJUDPPHGIRUWKHILUVW WLPH 'LDJ9FF*QG 1RVKRUWWR9FF*QG FRQGLWLRQ67$%/(IRUDWOHDVW PV 6KRUWWR9FF*QGSUHVHQW HYHQIRURQHLQVWDQW (&2PRGH (QDEOHV 25 9FFIRUV\VWHPUHVHW 25 ,6PLVVHGRUQRWFRUUHFW 9FFXQGHU 2YHUYROWDJH VKXWGRZQOLPLW 2YHUFXUUHQWSURWHFWLRQ 25 89/2SUHVHQW 25 7KHUPDOVKXWGRZQ ,&FPG 3:02)) ,&FPG 3:021 'XPS 0XWH 9FFRYHU2YHUYROWDJH VKXWGRZQOLPLW ,&FPG087( 25 $XWRPDWLFPXWH FRQGLWLRQSUHVHQW ,&FPG 'LDJ'&VWDUW 'LDJQRVWLF'&HQG 'LDJ'& ,&FPG 3/$< 3OD\ *$3*36 24/78 DocID031487 Rev 2 FDA803D 7.1 Finite state machine Device state and address selection Through Enable pins configuration it is possible to select different I2C addresses (up to 8) or to configure the device in 4 different legacy ('no I2C' modes) according to table 6. Table 6. Operation mode Enable 1 Enable 2 Enable 3 Enable 4 Stand By 0 0 0 0 Amplifier ON address 1 = `1110000' 0 1 0 0 Amplifier ON address 2 = `1110001' 1 1 0 0 Amplifier ON address 3 = `1110010' 0 0 1 0 Amplifier ON address 4 = `1110011' 0 1 1 0 Amplifier ON address 5 = `1110100' 0 1 0 1 Amplifier ON address 6 = `1110101' 1 1 0 1 Amplifier ON address 7 = `1110110' 0 0 1 1 Amplifier ON address 8 = `1110111' 0 1 1 1 Legacy mode: low voltage mode; in-phase 1 1 1 0 Legacy mode: low voltage mode; out-phase 1 1 1 1 Legacy mode: standard voltage mode; in-phase 1 0 0 0 Legacy mode: standard voltage mode; out-phase 1 0 0 1 In this way, up to 8 devices can be easily used in the same application with a single I2C bus. Moreover it is possible to work without I2C configuring the voltage range and switching mode to be used. When a valid combination of Enable 1/2/3/4 is recognized the device turns on all the internal supply voltages and outputs are biased to Vcc/2. The internal I2C registers are pre-settled in "default condition", waiting for the I2C next instruction. The return in the Standby condition, (all enable pins at 0), will cause the reset of the amplifier. As defined in the finite state machine, The same event will happen if PLL is not locked, I2S is missing or not correct, Vcc for system reset. FDA803D can work only in I2C slave mode. DocID031487 Rev 2 25/78 77 Finite state machine 7.2 FDA803D Standby state ENABLE1, ENABLE2, ENABLE3, ENABLE4 pins have a double function: set of I2C addresses and start-up of the system. If ENABLE1/2/3/4 are all low, ("000"), then the FDA803D is off, the outputs remain biased to ground and the current consumption is limited to Isb. In this case the FSM is in "Standby" state. 7.3 Diagnostic Vcc-Gnd state After exiting from Stand-By state the device passes through Diagnostic Vcc/Gnd state. In this state the amplifier checks the presence of the following faults: Shorts to ground or to Vcc; Under-voltage (UVLOVCC); Thermal shutdown FDA803D will then move to the next state (Eco-mode) only if there isn't any of these faults for at least 90ms, thus avoiding any danger for the amplifier and the user system. Meanwhile, if a stable fault is present, it will be communicated to the user via I2C after 90 ms, in order to provide always only stable information about the system. In this case the device will not move to Eco-mode, waiting for the fault cause removal While the amplifier is in Diagnostic Vcc-Gnd state it can receive all the I2C commands, but it will turn-on the PWM only when it enters in the next state: ECO-mode. This procedure prevents wrong or unwanted I2C communication to bring the amplifier into dangerous situation (if a short to Vcc or Gnd is present). Following conditions will move the amplifier in Diagnostic Vcc-Gnd state from any other functional state: Over current protection trigger UVLOVCC Over voltage (through DUMP condition) Thermal shutdown 7.4 ECO-mode state In ECO-mode state the amplifier is fully operative from a communication point of view and can receive and actuate all the commands given by the user. In ECO-mode the output switching is disabled, thus allowing low quiescent current consumption and therefore low power dissipation. The device is also able to move from ECO-mode state to MUTE state, turning on the output switching, within about 1 ms without experiencing POP-noise. This allows a very fast transition from ECO-mode to PLAY. 26/78 DocID031487 Rev 2 FDA803D 7.5 Finite state machine MUTE-PLAY and diagnostic states The amplifier can move from ECO-mode state to MUTE state selecting "PWM-ON" via I2C. This operation turns-on the output PWM. FDA803D can move to PLAY state (from MUTE state) via "PLAY" I2C command and returns to MUTE state from PLAY state acting on the same bit. Transition time between mute and play states could be selected via I2C. Some external conditions could lead the amplifier in mute state automatically: Low battery mute High battery mute Thermal mute Hardware pin mute Once mute condition is no more present the FDA803D will return automatically in PLAY state, following I2C register program set. Of course the user can decide to change the amplifier programming in the meanwhile, thus avoiding the automatic return in PLAY. From MUTE state the user can also select to enter DC diagnostic state. DocID031487 Rev 2 27/78 77 Finite state machine 7.6 FDA803D Operation compatibility vs battery The FDA803D operation compatibility vs the battery value is reported in the figure below. Figure 39. Operation vs. battery charge 9 9 +LJK +LJK EDWWHU\ YROWDJH EDWWHU\ YROWDJH UDQJH UDQJH 9 +LJK EDWWHU\ PXWH]RQH 9 2YHUYROWDJHVKXWGRZQ +LJK 9 $PSOLILHUPXWLQJ EDWWHU\ PXWH]RQH 9 1RUPDO EDWWHU\ 9ROWDJH 5DQJH 1RUPDO EDWWHU\ 9ROWDJH 5DQJH 3OD\PRGHGLDJQRVWLF /RZEDWWHU\ PXWH]RQH 9 9 5HVHW]RQH 9 3OD\PRGHGLDJQRVWLF 9 /RZEDWWHU\ $PSOLILHUPXWLQJ PXWH]RQH 9 89/29&& 9 6\VWHPUHVHW ,&UHJLVWHUVUHVHW 5HVHW]RQH 9 9 6WDQGDUGYROWDJHPRGH 28/78 $PSOLILHUPXWLQJ 9 9 Note: 9 2YHUYROWDJHVKXWGRZQ $PSOLILHUPXWLQJ 89/29&& 6\VWHPUHVHW ,&UHJLVWHUVUHVHW 9 /RZYROWDJHPRGH *$3*36 When Overvoltage Shutdown is reached, I2S interface is switched off and relative I/O are maintained in HighZ. DocID031487 Rev 2 FDA803D 8 Muting function architecture Muting function architecture FDA803D uses a mixed signal approach for muting function. Muting function is activated by different "mute command signal": "High voltage mute": active when Vcc enters in a voltage window over the max voltage; the window is specified in the electrical parameters table. "Low Battery mute": active when Vcc enters in a voltage window under the min voltage; the window is specified in the electrical parameters table. "Hardware mute": active when HWMute pin enters in the voltage window specified in the electrical parameters table. Thermal mute": active when temperature enters in the temperature window over the max temperature; the window is specified in the electrical parameters table. "I2C Mute": active user select mute/play I2C bits. The mute is achieved by the combination of two separated actuators, "Analog-mute" and "Digital-mute". 8.1 Command dependence Analog and digital mute actuators activation could be different based on the mute command signal. This is described in the following table: Table 7. Command dependence Command signal When? Mute Unmute Low Battery mute When Vcc enters inside the low battery mute window Mixed mute. Analog & Digital, at the same time (1) Digital (1) High Voltage mute When Vcc enters inside the high voltage mute window Mixed mute. Analog & Digital, at the same time (1) Digital (1) Thermal Mute When temperature enters inside thermal mute window Analog Analog Hardware Mute When hardware pin voltage enters inside its mute window Mixed mute. Analog & Digital, at the same time(1) Digital (1) I2C Mute When I2C mute bits are selected Digital Digital 1. User can decide to disable Digital-Mute/Unmute using bit IB13-d6; in this case in all the conditions, (except I2C Mute), the Mute/Unmute will be purely Analog. DocID031487 Rev 2 29/78 77 Muting function architecture 8.2 FDA803D Analog-Mute Analog-Mute senses when the mute command signal transits across the muting window, and attenuates the output signal proportionally to the command signal level inside the muting window. Figure 40. Analog-Mute diagram &RPPDQG 6WDUW G% 0XWH ZLQGRZ WLPH 6LJQDOOHYHOLQ 3OD\ =HURVLJQDO OHYHO WLPH *$'*36 8.3 Digital-Mute Digital-Mute acts on the digitally elaborated output signal attenuating it gradually to zero with digital steps in a pre-defined time frame (tmute). The muting time, (tmute), can be selected by I2C, (IB6 d7-d6). There are two different actions performed by digital-mute function: Mute: it starts when any mute command signal, marked as Mixed Mute in Table 7, enters in the muting window. This event rises the Start-Analog-Mute signal, communicated on DB6[4]. The muting ends after tmute, selectable through IB6[7-6]. The Start-Analog-Mute signal is ignored until the muting ramp has ended. Approximately, the corresponding analog mute attenuation at the beginning of the muting window is 0.5dB. UnMute: it starts when all the mute commands, marked with Mixed Mute in Table 7, exit from the muting window. This event resets the Start-Analog-Mute signal, communicated on DB6[4]. The unmuting ends after tmute, selectable through IB6[7-6]. The Start-Analog-Mute signal is ignored until the unmuting ramp has ended. 30/78 DocID031487 Rev 2 FDA803D Muting function architecture Figure 41. Digital-Mute diagram &RPPDQG 6WDUW G% 0XWH ZLQGRZ WLPH 6LJQDOOHYHOLQ 3OD\ =HURVLJQDO OHYHO WLPH WPXWH WPXWH WPXWH *$'*36 Note: in case of I2C mute the Digital-mute actuation does not follow Analog-mute level but only the I2C command. 8.4 Mixed mute advantages The mixed mute approach is the superposition of the two mute actuators, Analog-Mute and Digital-mute, at the same time. Here below the example of previous pages with mixed mute: Figure 42. Mixed mute diagram &RPPDQG 6WDUW G% 0XWH ZLQGRZ WLPH 6LJQDOOHYHOLQ 3OD\ =HURVLJQDO OHYHO WLPH WPXWH WPXWH WPXWH WPXWH *$'*36 DocID031487 Rev 2 31/78 77 Muting function architecture FDA803D The Mixed-Mute approach is more robust than Analog-Mute only approach. The effects are visible when the command signal variations inside the muting window last longer than the muting/unmuting time. An example is depicted in the figure below: Figure 43. Analog-Mute vs. Mixed-Mute &RPPDQG 0L[HGPXWH 2QO\$QDORJ0XWH 6WDUW G% 0XWH ZLQGRZ WLPH 6LJQDOOHYHOLQ 3OD\ =HURVLJQDO OHYHO WLPH &RPPDQGVLJQDOERXQFLQJV WUDQVPLWWHGWRWKHRXWSXWV WPXWH WPXWH *HQWOHPXWHDQGXQPXWHHYHQLI FRPPDQGVLJQDOERXQFLQJVDUHSUHVHQW *$3*36 In any moment the user can disable the Digital-mute, acting on I2C bit IB13-d6, obtaining the standard Analog-mute function. 32/78 DocID031487 Rev 2 FDA803D 9 Hardware mute pin Hardware mute pin The pin "HWMute" (pin 30) acts as mute command for the channel. The device is muted when this pin is low, while it is in play when this pin is high (low/high threshold in Table 5: Electrical characteristics). Inside the device, connected to this pin a pull-up current generator puts the device in play if left floating. An internal clamp limits the Mute pin voltage. If not used, this pin should remain floating. To drive the Mute pin to get a hardware mute an external pull-down open drain is needed. (See Figure 44), RMute must be < 60 k Figure 44. HWMute pin schematic )'$' +:0XWH 50XWH 90XWH &0XWH *$3*36 DocID031487 Rev 2 33/78 77 Power limiter function 10 FDA803D Power limiter function An adjustable power limiting function has been integrated to protect "small speakers" applications: thanks to this feature, it's possible to limit by configuration the max power delivered to the load. Taking advantage of digital input architecture, the output power limitation is obtained through the management of the input signal. It's important to underline that the limitation is implemented independently of the supply voltage value. The intervention thresholds, configurable through I2C are listed in the table below Table 8. Power limiter function Output Voltage limit [V] I2C IB2[3-0] Full-Scale Voltage limit Standard gain setting Low gain setting 0000 100% (Disabled) 19 (1) 11.4 1011 80% 15.2 9.12 1010 70% 13.3 7.98 1001 60% 11.4 6.84 1000 50% 9.5 5.7 0111 45% 8.55 5.13 0110 40% 7.6 4.56 0101 35% 6.65 3.99 0100 30% 5.7 3.42 0011 25% 4.75 2.85 0010 20% 3.8 2.28 0001 15% 2.85 1.71 1. 19 V is only a reference level, coherently with "standard gain" value in Section 5.3, to deduce the power limiter thresholds. The reference level is unreachable due to the maximum supply voltage range, equal to 18 V. The limitation is gradual in order to have no impact on the acoustic performance. Depending on the signal amplitude and the desired attenuation, different gains are applied to the signal itself. Here an example of the response obtained with a limitation corresponding to 80% of the fullscale: the blue line represents the signal when the power limiter is not employed, while the red line is the result of the applied attenuation. 34/78 DocID031487 Rev 2 FDA803D Power limiter function Figure 45. Response obtained with a limitation corresponding to 80% of the full-scale 3RZHUOLPLWHU2)) 3RZHUOLPLWHU21 2XWSXW YROWDJH 9 'LJLWDOLQSXWVLJQDO )V *$3*36 10.1 Power limiter control The function can be controlled with I2C bus, properly settings the bits IB2[3-0]. The configuration of the power limiter threshold and the enable/disable are available only in MUTE state. DocID031487 Rev 2 35/78 77 Diagnostic 11 FDA803D Diagnostic The FDA amplifiers family provides diagnostic function for detecting several possible faults conditions. Any warning information will be stored in the I2C interface and kept until the first I2C bus reading operation. Some fault events can be sent to CDDiag pin as trigger for an interrupt process. Here reported the faults detectable taking advantage of FDA803D's diagnostic features: Short to VCC/GND; Short or open load (with DC diagnostic); Open load during play; Under/over voltage events; Chip over temperature; Digital input offset; Output voltage offset; Output current offset; Output clipping; Over current. The fault events are managed with different actions depending on their severity. It is important, for a correct diagnostic result collection, to clean diagnosis related I2C register and the DB6, to clean eventual Start Analog Mute flag, through a read operation. 11.1 DC diagnostic The DC diagnostic is a routine performed to detect the load connection status. FDA amplifiers family provides a highly reliable and noise immune load diagnostic algorithm, in order to prevent false detections induced by supply voltage variations or mechanical stress on the speaker (e.g. car door closing). The algorithm includes the internal generation of a properly calibrated and pop-free test signal. For an extensive description of the DC diagnostic feature, please refer to the DC Diagnostic user manual. 11.1.1 Diagnostic control DC diagnostic can be run setting via I2C "Start Diag DC". Diagnostic signal is generated and test is performed only when all the following conditions are true: 1. Channel is in MUTE state. 2. DC test enable bit is set from '0' to '1'. 3. The channel has power stage ON 4. Device is NOT kept in mute by means of the dedicated hardware pin 36/78 DocID031487 Rev 2 FDA803D Diagnostic At the end of the diagnostic cycle the "Start Diag DC" instruction bit is reset to '0' by the device itself, and the "open load" or "short load" messages respectively will be displayed on I2C data bits. If "Start Diag DC" bit is set to '1' while the channel is not in "MUTE" state, (for example: "PLAY" state or "Eco-mode" state), the channel will perform the diagnostic as soon as it enters in "MUTE" state. If the amplifier channel is in "Eco-mode" and I2C instructions for PWM ON + DIAG DC + PLAY are given at the same time the channel will perform the following sequence automatically: 1. turn on power stage 2. perform DC diagnostic 3. enter PLAY mode DC diagnostic must be performed only with PWM "In phase" modulation, in order to avoid pop noise. "Out phase" modulation, if desired, must be selected after DC diagnostic execution. 11.1.2 Relation with short circuit protection activation After a short circuit protection intervention amplifier is set automatically in a protected status during which "Short to Vcc/Gnd" diagnostic is performed. At the end of "Short to Vcc/Gnd" diagnostic, if no shorts to Vcc/Gnd are present on the outputs, the amplifier will run DC diagnostic only if the corresponding "Start Diag DC" bit is set to "1". Otherwise the amplifier will go back to the state preceding the short circuit protection intervention without performing diagnostic cycles. After the diagnostic completion "Start Diag DC" bit is set back to "0" by the amplifier. 11.1.3 Load range The thresholds for short load detection and open load detection can be configured through IB10[7,6]. Including the tolerance, the impedance values to be considered are reported in Figure 46. Figure 46. Load range detection configured properly setting IB5 d7-d6 ^Z>Z EZZ KZ ,%>@ ,%>@ ,%>@ ,%>@ *$'*36 The DC diagnostic pulse has a configurable time duration: for detailed timings definition, please refer to the DC Diagnostic user manual. The DC diagnostic result is provided on I2C register DB2. DocID031487 Rev 2 37/78 77 Diagnostic 11.2 FDA803D Short to Vcc / GND diagnostic The short to Vcc/GND diagnostic performs the detection of: "Hard" and "soft" short to Vcc "Hard" and "soft" short to Gnd Timing Short to Vcc/Gnd diagnostic cycle duration is 90 ms(*). If a short to Vcc/Gnd is not stable during diagnostic cycle the channel will remain in "Diag. Vcc/Gnd" state until a fault or non-fault condition is stable for at least 90 ms(*). This special function avoids wrong detections in case of disturbs caused by mechanical stresses applied to the speaker (e.g. car door closing). The short to Vcc/Gnd diagnostic starts automatically following the logic shown in Figure 38. Results communication and I2C control After performing Short to Vcc/Gnd diagnostic for 90 ms(*) with a stable fault/non-fault condition, there are two different scenarios: 1. Fault present: the device is communicating the fault condition setting the I2C bit DB2[3] (in case of short to Vcc) or DB2[2] (in case of short to Gnd). The amplifier is remaining in "Diag. Vcc/Gnd" state until the short is removed 2. Fault not present: Short to Vcc/Gnd diagnostic ends and the state machine can evolve following the I2C commands. Note: (*) Time when default I2C parameters settings are used 11.3 Diagnostic time-line diagrams Figure 47. DC diagnostic before turn on 9RXW WLPH 67$7( 6W%\ '85$7,21 ; 695 UDPS :DLWIRU 9FF*QG 'LDJ ,&VHWXS PV (1$%/( 3,183 ; 5HDG\WR DFFHSW,& FRPPDQG ,6VKRXOG EHSUHVHQW )LUVW,&VHWWLQJ ,&ILUVWVHWWLQJELW VHWWR 7LPHZKHQGHIDXOW,&SDUDPHWHUVVHWWLQJVDUHXVHG 38/78 PV 75 '&'LDJ 0XWH 3OD\ ; PV ; ; ,&FRPPDQG 3:021'& GLDJVWDUW 9FF*QGGLDJ UHVXOWVDYDLODEOH RQ,& DocID031487 Rev 2 ,&FRPPDQG3OD\ '&GLDJUHVXOWVDYDLODEOHRQ ,&6WDUW'&',$*ELWUHVHWWR E\DPS *$'*36 FDA803D Diagnostic Figure 48. Short to VCC at device turn on 9RXW 6KRUWUHPRYDO WLPH 67$7( 6W%\ '85$7,21 ; 695 UDPS :DLWIRU 9FF*QG 'LDJ ,& PV ; PV 9FF*QG 'LDJ 9FF*QG 75 'LDJ PV ; 5HDG\WR )LUVW,&VHWWLQJ DFFHSW,& ,&ILUVWVHWWLQJELW FRPPDQG VHWWR 9FF*QGGLDJ ,6VKRXOG UHVXOWVDYDLODEOH EHSUHVHQW RQ,& 7LPHZKHQGHIDXOW,&SDUDPHWHUVVHWWLQJVDUHXVHG (1$%/( 3,183 ; 9FF*QGGLDJQRVWLF1R 6KRUWPHVVDJHSUHVHQW RQ,&GDWDE\WHV *$'*36 Figure 49. DC Diagnostic in Mute 9RXW WLPH 67$7( 3/$< 0XWH '&',$* 0XWH '85$7,21 ; ; PV ; ,&FRPPDQG *RLQ0XWH 7LPHZKHQGHIDXOW,&SDUDPHWHUVVHWWLQJVDUHXVHG ,&FRPPDQG '&GLDJVWDUW 3/$< ,&FRPPDQG 3OD\ '&GLDJUHVXOWVDYDLODEOHRQ ,&6WDUW'&',$* ELWUHVHWWR E\DPS DocID031487 Rev 2 *$'*36 39/78 77 Diagnostic FDA803D Figure 50. Short circuit protection activation - Short to VCC 9RXW 6KRUWUHPRYDO WLPH 67$7( 3/$< 9FF*QG 'LDJ 9FF*QG 'LDJ 9FF*QG 'LDJ '85$7,21 ; PV ; PV 6KRUW&LUFXLW3URWHFWLRQ $FWLYDWLRQ 9FF*QGGLDJ UHVXOWVDYDLODEOH RQ,& 7LPHZKHQGHIDXOW,&SDUDPHWHUVVHWWLQJVDUHXVHG 3/$< 9FF*QGGLDJ1R6KRUW PHVVDJHSUHVHQWRQ,& GDWDE\WHV ,),&FRPPDQG3/$@ ,%>@ *$'*36 Figure 53. Open load in play detector guaranteed thresholds with low gain setting 1RUPDOORDG 2SHQORDG ,%>@ ,%>@ *$'*36 42/78 DocID031487 Rev 2 FDA803D Diagnostic Please note that an exact value of impedance can be defined only in case of an ideal sinusoid at a fixed frequency. In case of a generic audio signal, the overall complex impedance vs frequency characteristic of the speaker is involved. 11.4.5 I2C control and timing The user must set IB3[0] in order to start the open load in play detection. Once the test is started, the internal circuits required for the detection are turned on, requiring a settling time lasting approximately 500 ms. When the internal circuits are ready to work, both digital input signal and output current measurement start being evaluated, following the impedance threshold set through IB10[6]. Depending on the audio signal characteristics, the evaluation can last from 300 ms to 1 s approximately. At the end of the evaluation, the device: Sets DB0[2]='1' to communicate that the test ended successfully, and resets IB3[0] allowing the user to perform another test afterwards Sets DB0[1]='1' to communicate that the test result is valid, otherwise sets DB0[1]='0' to communicate that the test result is not valid. Sets DB0[0]='1' to communicate that an open load has been detected, otherwise sets DB0[0]='0' to communicate that an open load has not been detected. Please note that the value on DB0[0] is significant only if the test result is valid. If the test ends successfully but the result is not valid, the user must repeat the test. This condition happens when the audio signal is not good enough for a reliable detection. The detection timings are represented in Figure 54: Figure 54. Open load in play detector timing 6HWWLQJWLPH PV (YDOXDWLRQ PVV W>V@ 2SHQ/RDGLQ3OD\ 'HWHFWRUVWDUW ,& (YDOXDWLRQ VWDUW 2SHQ/RDGLQ3OD\ 'HWHFWRURXWSXW ,& *$'*36 If the device FSM moves from PLAY to another state during the open load in play detection routine, the test ends unsuccessfully by keeping the flag DB0[2] clear. The device automatically resets IB3[0] allowing the user to repeat the test. 11.5 Input offset detector Input offset detector aim is to detect an offset coming from the audio signal source through I2S/TDM input stream. For this purpose, the feature evaluates the input offset through a low-pass filter, which is compared with a threshold equal to -18dBFs. If the measured offset exceeds the threshold, Input Offset Detector sets the flag DB0[7] to '1'. DocID031487 Rev 2 43/78 77 Diagnostic FDA803D Moreover, if the high-pass filter function is enabled through IB3[2], the input offset is eliminated, guaranteeing a complete robustness in case of any malfunction coming from the audio signal source. 11.6 Output voltage offset detector Output voltage offset detector aim is to detect a voltage offset on the output. For this purpose, an internal circuit detects when the voltage value on FBP pin or on FBM pin exceeds 1V difference with respect to Vcc/2 value, generating a fault condition. If the fault condition persists for 90ms consecutively, the circuits sets the flag on I2C bit DB0[3]. As soon as the fault condition is removed, both the flag DB0[3] and the 90ms counter are reset. The implemented logic avoids false detections in case of very low signal frequency. The feature operation is showed in Figure 55: Figure 55. Output voltage offset detector operation &W &D ss s ss & ZZ KsZ KZ *$'*36 When enabled, the feature is active both in MUTE and in PLAY states. Please note that the Output Voltage Offset Detector must not be enabled when FBP and FBM pins are shorted with OUTP and OUTM pins, i.e. for feedback before filter configuration: the full-swing PWM outputs don't allow the fault condition persisting for more than 90ms even in case of offset. A valid and robust alternative is provided by the Output Current Offset Detector. The offset detector output is provided in two forms: Enables the pull down on CDDiag pin, if IB4[7]='1' Sets the flag DB0[3]='1' 44/78 DocID031487 Rev 2 FDA803D 11.7 Diagnostic Output current offset detector Output current offset detector aim is to detect a current offset on the output. 11.7.1 Output current offset detector operation principle The device senses the differential DC current flowing through the output pins OUTP and OUTM. In particular, in reference to Figure 56, the measured current offset is: IOFFSET = |IOUTP-IOUTM|/2. Figure 56. Current offset measurement 2873 ,2873 2870 ,2870 *$'*36 The measured current offset is then compared with a current threshold, which can be set by means of I2C bits IB10[4,3]: if it exceeds the chosen threshold, the device communicate that an output current offset has been detected. 11.7.2 Result communication and I2C control The output current offset detection consists in one single-shot test. The feature is controlled through I2C commands. In order to start the detection, the user must set IB3[3]='1'. At the end of the test, the internal control logic performs the following operations: Sets DB0[6]='1' to communicate that the test is ended and the result is valid Sets DB0[5]='1' if an offset has been detected, or DB0[5]='0' if no offset has been detected Sets IB3[3]='0', allowing the user to perform another test afterwards The detection can be start in MUTE state or in PLAY state. If the user sets IB3[3]='1' while the device FSM state is different, the test starts as soon as the device FSM enters in MUTE or PLAY state. 11.7.3 Hot spot detection The output current offset detector enables the possibility to detect a soft short to Vcc or to Gnd occurring when the PWM is already turned on, guaranteeing improved robustness against hot spot formation. The operation principle is shown in Figure 57: DocID031487 Rev 2 45/78 77 Diagnostic FDA803D Figure 57. Hot spot detection ,6+257 2873 ,2873 2870 ,2870 *$'*36 In standard operative condition, the DC value of IOUTP and IOUTM is zero, therefore the measured output current offset is zero. When a soft short is connected between one output and Vcc or Gnd, the corresponding output drives an additional current ISHORT. The device interprets half of the mentioned current as offset: IOFFSET = |IOUTP-IOUTM|/2 = |ISHORT|/2. In conclusion, if half of the DC current flowing in the short circuit exceeds the threshold selected through IB10[4,3], Output Current Offset Detector communicates an offset detection. 11.8 PWM pulse skipping detector Pulse skipping detector aim is to detect the PWM stage saturation. The feature detects pulse skipping when, for each output, at least two consecutive PWM commutations have been skipped. The operation is shown in Figure 58: Figure 58. PWM pulse skipping detector operation 3:0RXW 3:03XOVH 6NLSSLQJ 'HWHFWRURXW *$'*36 In order to enable the PWM pulse skipping detector, the user must set IB5[5,4]='01'. When detecting pulse skipping, the feature provides the output in two forms: Enables the pull down on CDDiag pin Sets the flag DB1[0]='1' As soon as the pulse skipping condition is removed, both the outputs are reset. The suggested utilization for this function is to connect a low-pass filter to CDDiag pin, therefore comparing the output with a voltage threshold. The lower is the CDDiag pin average voltage, the higher is the distortion. 46/78 DocID031487 Rev 2 FDA803D 11.9 Diagnostic Thermal protection The device integrates different protection levels against over-temperature conditions. The first protection level consists only in communicating if the temperature exceeds four different thresholds, from TW4 to TW1. The result is provided in two ways: Setting DB1[7-4]; Pulling down the CDDiag pin, coherently with the setting of IB4[6-4]. If needed, the user is in charge of taking proper actions to counteract the temperature rising. The second protection level consists in the output signal attenuation as a function of the temperature, in order to reduce the power dissipation. The thermal attenuation occurs in the temperature range between Tpl and Tph, as shown in Figure 59. The third level protection consists in switching off the power stage when the temperature overpasses the Tsh value. As shown in Figure 2, after thermal shutdown triggering, the device FSM enters in "Short to Vcc / Gnd diagnostic state", preventing subsequent power stage turn on in case of shorts to battery or ground. The temperature values TW4, TW3, TW2, TW1, Tpl, Tph, Tsh are always in tracking, independently of the parameters spread. If the user sets the I2C bit IB12[7], all the mentioned thresholds are reduced of 15C. Figure 59. Thermal attenuation curve 6LJQDODWWHQXDWLRQ 7: 7: 7: 7: 7SO 7SK 7VK 7HPSHUDWXUH G% G% *$'*36 DocID031487 Rev 2 47/78 77 Diagnostic 11.10 FDA803D Watch-dog The user can enable an internal watch-dog, setting I2C IB9[4]='1'. The function is based on a timer which is reset at each Word Select line rising edge, and which reaches the timeout in: 2.9 ms if fs = 44.1 kHz; 2.7 ms if fs = 48 kHz, 96 kHz, 192 kHz. When the timer reaches the timeout, the function performs two operations: Sends a muting command to the amplifier Sets a flag on DB6[2] In case of timeout, the muting command is released as soon as the timer is reset by a new Word Select line edge. 11.11 Error frame check The device integrates a function called "Error frame check", which is permanently enabled. The function counts the number of rising edges received on the Clock line, starting from each rising edge of Word Select line. At the end of the data frame, marked by the subsequent rising edge on Word Select line, the function checks that the reached count is coherent with the I2C configuration of the I2S protocol. In case the function detects an error, the device sets a flag on DB6[1]. 48/78 DocID031487 Rev 2 FDA803D Additional features 12 Additional features 12.1 AM operation mode The device provides special functions in order to avoid EM interferences when the radio is tuned on an AM station. The first function consists in allowing the user to select a proper PWM switching frequency through I2C interface, depending on the AM station selected by the tuner. The PWM switching frequency selection is available only in case the I2S frame clock is 44.1 kHz or 48 kHz, as shown in Figure 60. Figure 60. PWM switching frequency selection N+] N+],6IUDPHFORFN N+] 3:0VZLWFKLQJIUHTXHQF\ N+] N+] N+],6IUDPHFORFN N+] 3:0VZLWFKLQJIUHTXHQF\ N+] *$3*36 Actually, the PWM spectrum of the output square wave can be controlled in AM band just in case it is possible to fix the switching frequency, in other words without skipping any power stage commutation (typical phenomenon for a class D amplifier close to the clipping). The device provides an additional function called LRF (Low Radiation Function). This I2C option assures a minimum duty cycle for the PWM output square wave avoiding any missing pulses. Figure 61. LRF effect on PWM output PLVVLQJFRPPXWDWLRQ 9VV 12/5) 9VV 9VV IRUFHGFRPPXWDWLRQ /5) 9VV &OLSSLQJZLWKRXW/5) &OLSSLQJZLWK/5) 9VV *$3*36 DocID031487 Rev 2 49/78 77 Additional features FDA803D Please note that, by limiting the PWM duty cycle, a limitation of the output power occurs: the output power in case of usage of LRF function decreases about 10 % @ 1 % THD. 12.2 Noise gating Noise gating is an automatic noise reduction feature that activates when output signal reaches not audible levels. When input signal levels falls below -109 dBFs, the system activity is automatically optimized in order to exploit very low noise level on the output speakers. The noise gating process has a 500 ms watching time before turning on, in order to avoid spurious activations. The feature is enabled by default and can be disabled selecting IB3[1]. 12.3 Dither PWM The device implements a function, Dither PWM, which can be enabled through I2C bus by setting IB1[2]. The main target of this feature is to improve the EMC performances in the range [10 - 30 MHz], especially in MUTE condition. The function consists in modulating the period of the output PWM. The function doesn't affect the average PWM frequency. The modulation pattern is repeated every 8 PWM clock cycles, in order to avoid introducing significant noise in the audio bandwidth. A qualitative example of the function operation is depicted in Figure 62. Figure 62. Dither PWM effect on output PWM 'LWKHU3:0GLVDEOHG 'LWKHU3:0HQDEOHG *$'*36 Note: 50/78 The use of this function is suggested only with In Phase modulation. DocID031487 Rev 2 I2S bus interface FDA803D 13 I2S bus interface The device receives the audio signal through I2S bus. The I2S bus is composed of three lines: Clock line (I2Sclk pin); Word Select line (I2Sws pin); Serial Data line (I2Sdata pin). The Word Select line frequency must be always equal to the audio sampling frequency fs. According to the I2C setting of IB1[7-5], the device supports the following standards for sampling frequency: 44.1 kHz; 48 kHz; 96 kHz; 192 kHz. According to the I2C setting of IB0[6-5], the user can send the audio signal with the following data formats: I2S standard (max fs = 192 kHz); TDM - 4CHs (max fs = 192 kHz); TDM - 8CHs (max fs = 96 kHz); TDM - 16CHs (max fs = 48 kHz). For all the mentioned data formats, the user must provide the data word following two's complement representation, starting from the MSB. The data word is composed of 32 bits: the device processes only the first 24 most significant bits, while it does not care the least significant 8 bits. The internal PLL locks on the Clock line signal: when the I2S clock is missing or corrupted, the PLL consequently unlocks and the device forces the finite state machine in standby state. Furthermore, since the Clock line frequency is dependent on I2S bus configuration, it is strictly necessary to configure the I2C bits IB0[6-5] and IB1[7-5] accordingly. DocID031487 Rev 2 51/78 77 I2S bus interface 13.1 FDA803D I2S standard mode description The I2S standard format is shown in Figure 63. The Clock line frequency is equal to 64 fs. With a proper I2C configuration, the user can select the channel containing the data to be processed: Right channel - IB0[4-1]='0000' Left channel - IB0[4-1]='0001' Figure 63. I2S standard mode IV [IV 76&. ,6FON [IV [IV /HIWFKDQQHO ,6ZV 5LJKWFKDQQHO ,6GDWD *$'*36 13.2 TDM 4CH mode description The TDM4 format is shown in Figure 64. The clock line frequency is equal to 128 fs. With a proper I2C configuration, the user can select the slot containing the data to be processed: Slot 0 - IB0[4-1]='0000'' Slot 1 - IB0[4-1]='0001'' Slot 2 - IB0[4-1]='0010'' Slot 3 - IB0[4-1]='0011'. Figure 64. TDM4 mode IV 76&. [IV ,6FON 7:6+ ,6ZV 6ORW 6ORW 6ORW 6ORW ,6GDWD *$'*36 52/78 DocID031487 Rev 2 I2S bus interface FDA803D 13.3 TDM 8CH mode description The TDM8 format is shown in Figure 65. The clock line frequency is equal to 256 fs. With a proper I2C configuration, the user can select the slot containing the data to be processed: Slot 0 - IB0[4-1]='0000', Slot 1 - IB0[4-1]='0001', Slot 2 - IB0[4-1]='0010', Slot 3 - IB0[4-1]='0011', Slot 4 - IB0[4-1]='0100', Slot 5 - IB0[4-1]='0101', Slot 6 - IB0[4-1]='0110', Slot 7 - IB0[4-1]='0111'. Figure 65. TDM8 mode IV 76&. [IV ,6FON 7:6+ ,6ZV 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW ,6GDWD *$'*36 DocID031487 Rev 2 53/78 77 I2S bus interface 13.4 FDA803D TDM 16CH mode description The TDM8 format is shown in Figure 66. The clock line frequency is equal to 512 fs. With a proper I2C configuration, the user can select the slot containing the data to be processed: Slot 0 - IB0[4-1]='0000', Slot 1 - IB0[4-1]='0001', Slot 2 - IB0[4-1]='0010', Slot 3 - IB0[4-1]='0011', Slot 4 - IB0[4-1]='0100', Slot 5 - IB0[4-1]='0101', Slot 6 - IB0[4-1]='0110', Slot 7 - IB0[4-1]='0111', Slot 8 - IB0[4-1]='1000', Slot 9 - IB0[4-1]='1001', Slot 10 - IB0[4-1]='1010,' Slot 11 - IB0[4-1]='1011', Slot 12 - IB0[4-1]='1100', Slot 13 - IB0[4-1]='1101', Slot 14 - IB0[4-1]='1110', Slot 15 - IB0[4-1]='1111'. Figure 66. TDM16 mode IV 76&. [IV ,6FON 7:6+ ,6ZV 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW ,6GDWD *$'*36 54/78 DocID031487 Rev 2 I2S bus interface FDA803D 13.5 Timing requirements Figure 67. I2S Interface timings 76&. ,FON 7'+ 7'6 ,6GDWD *$'*36 Figure 68. I2S clock transition timings 76&.7 76&.7 76&.+ 76&./ 9,+,6 9 9,/,6 9 *$'*36 Table 10. I2S Interface timings Symbol Parameter Note I2S clock period TSCK Min Max 40.69 Unit ns 0.9 x TSCK 1.1 x TSCK I2S clock duty cycle 40 60 TSCKH I2S clock high time 15 ns TSCKL I2S clock low time 15 ns TSCKT I2S clock transition time I2S clock period tolerance 6 % ns TDS I2S data (and word select) setup time (before I2S clock rising edge) 8 ns TDH I2S data (and word select) hold time (after I2S clock rising edge) 8 ns I2S standard TWSH I2S word select high time 32 x TSCK TDM4 format 1 x TSCK 127 x TSCK TDM8 format 1 x TSCK 255 x TSCK TDM16 format 1 x TSCK 511 x TSCK DocID031487 Rev 2 55/78 77 I2S bus interface 13.6 FDA803D Group delay The group delay depends on the sampling frequency fs, properly configured with I2C bits IB1[7-5]. The typical value for all the configurations is reported in Table 11: Table 11. Group delay dependency from input sampling frequency 56/78 Input sampling frequency fs Group delay 44.1 kHz 465 s 48 kHz 430 s 96 kHz 50 s 192 kHz 30 s DocID031487 Rev 2 I2C bus interface FDA803D 14 I2C bus interface Data transmission from microprocessor to the FDA803D and viceversa takes place through the 2 wires I2C bus interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected). When I2C bus is active any operating mode of the IC may be modified and the diagnostic may be controlled and results read back. The protocol used for the bus is depicted in Figure 69 and comprises: a start condition (S) a chip address byte (the LSB bit determines read/write transmission) a subaddress byte a sequence of data (N-bytes + acknowledge) a stop condition (P) Figure 69. I2C bus protocol description 6 $GGUHVV $ 6XEDGGUHVV $ 'DWD 3 $GGUHVV 6XEDGGUV , ; ; 68%$ 68%$ 68%$ 68%$ 68%$ 'DWD '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ '$7$ 5: *$3*36 1. The I2C addresses are: Address 1 = 1110000 Address 2 = 1110001 Address 3 = 1110010 Address 4 = 1110011 Address 5 = 1110100 Address 6 = 1110101 Address 7 = 1110110 Address 8 = 1110111 Description: - S = Start - R/W = '0' => Receive-Mode (Chip could be programmed by P) - I = Auto increment; when 1, the address is automatically incremented for each byte transferred - X: not used - A = Acknowledge - P = Stop - MAX CLOCK SPEED 400kbit/sec DocID031487 Rev 2 57/78 77 I2C bus interface 14.1 FDA803D Writing procedure There are two possible procedures: 1. without increment: the I bit is set to 0 and the register is addressed by the subaddress. Only this register is written by the data following the subaddress byte. 2. with increment: the I bit is set to 1 and the first register write is the one addressed by subaddress. The registers are written from this address up to stop bit or the reaching of last register. 14.2 Reading procedure The reading procedure is made up only by the device address (sent by master) and the data (sent by slave) as reported in Figure 70 (a). In particular when a reading procedure is performed the first register read is the last addressed in a previous access to I2C peripheral. Hence, to read a particular register also a sort of write action (a write interrupted after the sub-address is sent) is needed to specify which register has to be read. Figure 70 (b) shows the complete procedure to read a specific register where: the master performs a write action by sending just the device address and the subaddress; the transmission must be interrupted with the stop condition when the subaddress is sent. now, the read procedure can be performed: the master starts a new communication and sends the device address; then the slave (FDA803D) will respond by sending the data bits. the read communication is ended by the master which sends a stop condition preceded by a not-acknowledge. Instead, performing a start immediately after the stop condition could be possible for generating the repeated start condition (Sr) which also keeps busy the I2C bus until the stop is reached (Figure 70 (c)). Figure 70. Reading procedure 6 $GGUHVV $ 'DWD $ 3 D $GGUHVV 6 $ 6XEDGGUHVV $ 3 6 $ $GGUHVV $ 'DWD 3 E 6 $GGUHVV $ 6XEDGGUHVV $ 6U F $GGUHVV $ 'DWD $ 3 *$3*36 There are two possible reading procedures: 1. without auto-increment (Figure 71 (a)) if the "I" bit of the last I2C writing procedure has been set to 0: in this case only the register addressed by the sub-address sent in the previous writing procedure is read; 2. with auto-increment (Figure 71 (b)) if the "I" bit of the last I2C write procedure has been set to 1: in this case the first register read is the one addressed by sub-address sent in the previous writing procedure. Only the registers from this address up to the stop bit are read. 58/78 DocID031487 Rev 2 I2C bus interface FDA803D Figure 71. Without/with auto-increment reading procedure 6 $ ;;DDDDD $ 6U $ 'DWD $ 3 D QRLQFUHPHQWDOUHDGRIDDDDDUHJLVWHUV 6 $ ;;DDDDD $ 6U$& $ 'DWD E LQFUHPHQWDOUHDGRIDDDDDDQGDDDDDUHJLVWHUV $ 'DWD $ 3 *$3*36 If a microcontroller tries to read an undefined register, FDA803D will return a "0xFF" data; for more details refer directly to I2C specification. 14.3 Data validity The data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW. 14.4 Start and stop conditions A start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH. 14.5 Byte format Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first. 14.6 Acknowledge The transmitter* puts a resistive HIGH level on the SDA line during the acknowledge clock pulse. The receiver** has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse. * Transmitter = master (P) when it writes an address to the FDA803D = slave (FDA803D) when the P reads a data byte from FDA803D ** Receiver = slave (FDA803D) when the P writes an address to the FDA803D = master (P) when it reads a data byte from FDA803D DocID031487 Rev 2 59/78 77 I2C bus interface 14.7 FDA803D I2C timing This paragraph describes more in detail the I2C bus protocol used and its timings. Please refer to Table 12 and Figure 72 below. Figure 72. I2C bus interface timing 4SCLH 4BUF 4SCLL 3#, 4SCLP 4SSTART 4HSTART 4SSDA 3$! 4SSTOP 4HSDA -3" -3" !#+ START STOP '!0'03 Table 12. I2C bus interface timing Symbol Parameter Min Max Unit - 400 kHz 2500 - ns Fscl SCL (clock line) frequency Tscl SCL period Tsclh SCL high time 0.6 - s Tscll SCL low time 1.3 - s Setup time for start condition 0.6 - s Tsstart Thstart Hold time for start condition 0.6 - s Tsstop Setup time for stop condition 0.6 - s Bus free time between a stop and a start condition 1.3 - s Setup time for data line 100 - ns Tbuf Tssda Thsda Tf Hold time for data line Fall time for SCL and SDA 0 (1) - - ns 300 ns 1. Device must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of SCL. 60/78 DocID031487 Rev 2 I2C bus interface FDA803D 14.8 I2S, I2C and Enable relationship FDA803D provides both I2C and I2S communication by means of two different digital interfaces but connected to each other interfaces and clock domains. To program the I2C interface the I2S clock must be present, and at least 10 ms should have passed from the Enable pins setting event. In FDA803D the digital part has different clock domains: The I2C programming block clock is the I2C clock The I2S receiver clock which is the I2S clock The system clock which is generated by an internal PLL. The I2C commands are not effective if I2S clock is not present. However they will remain memorized inside I2C registers. If I2S clock is lost the digital machine goes in standby. I2S clock (SCK) should be given to device before enabling it (Enable pins set to `out of standby'). DocID031487 Rev 2 61/78 77 I2C register FDA803D 15 I2C register 15.1 Instruction bytes- "I00xxxxx" Table 13. IB0-ADDR: "I0000000" Data bit Default value D7 0 Definition Lock bit: 0 - Write on IBs is enable 1 - Write on IBs is disable Digital input settings: D6 00 D5 D4-D1 0000 D0 0 62/78 D6-D5 Input setting 00 I2S standard 01 TDM - 4 CHs 10 TDM - 8 CHs 11 TDM - 16 CHs 4 bits for channel position selection for I2S standard, TDM4, 8 and 16: D4-D1 Position selection 0000 slot 0 (TDM mode) - right ch. (I2S mode 0001 slot 1 (TDM mode) - left ch. (I2S mode) 0010 slot 2 (TDM mode) 0011 slot 3 (TDM mode) 0100 slot 4 (TDM 8 and 16 mode) 0101 slot 5 (TDM 8 and 16 mode) 0110 slot 6 (TDM 8 and 16 mode) 0111 slot 7 (TDM 8 and 16 mode) 1000 slot 8 (TDM 16 mode) 1001 slot 9 (TDM 16 mode) 1010 slot 10 (TDM 16 mode) 1011 slot 11 (TDM 16 mode) 1100 slot 12 (TDM 16 mode) 1101 slot 13 (TDM 16 only) 1110 slot 14 (TDM 16 only) 1111 slot 15 (TDM 16 only) 0 - Standard voltage mode 1 - Low voltage mode DocID031487 Rev 2 I2C register FDA803D Table 14. IB1-ADDR: "I0000001" Data bit Default value Definition D7 - D6 00 Digital input frame sync frequency (Fs): D7-D6 Frame sync (WS) frequency 00 44.1 kHz 01 48 kHz 10 96 kHz 11 192 kHz D5 0 Reserved D4 - D3 00 Switching frequency expressed in kHz. D4-D3 I2S frame sync frequencies (WS) [kHz] 44.1 48 96 00 308.7 336 384 01 352.8 384 384 10 396.9 432 384 11 Reserved Reserved Reserved D2 0 0 - PWM amplifier clock not dithered 1 - PWM amplifier clock dithered D1 0 Reserved D0 0 0 - PWM in phase 1 - PWM out of phase DocID031487 Rev 2 192 384 384 384 Reserved 63/78 77 I2C register FDA803D Table 15. IB2-ADDR: "I0000010" Data bit Default value Definition D7-D6 00 "DiagShort2Supply" timing selection: D7-D6 Timing 00 90 ms 01 70 ms 10 45 ms 11 20 ms D5 0 Reserved D4 0 0 - Low radiation function OFF 1 - Low radiation function ON D3 - D0 64/78 0000 Power limiting Function configuration D3-D0 Power limiting Config 0000 Power limiter disabled 0001 Power limited with maximum voltage scale at 15% 0010 Power limited with maximum voltage scale at 20% 0011 Power limited with maximum voltage scale at 25% 0100 Power limited with maximum voltage scale at 30% 0101 Power limited with maximum voltage scale at 35% 0110 Power limited with maximum voltage scale at 40% 0111 Power limited with maximum voltage scale at 45% 1000 Power limited with maximum voltage scale at 50% 1001 Power limited with maximum voltage scale at 60% 1010 Power limited with maximum voltage scale at 70% 1011 Power limited with maximum voltage scale at 80% 1100 Reserved 1101 Reserved 1110 Reserved 1111 Reserved DocID031487 Rev 2 I2C register FDA803D Table 16. IB3-ADDR: "I0000011" Data bit Default value Definition D7 - D7 0 Reserved D5 0 0 - Output Voltage offset detector disable 1 - Output Voltage offset detector enable D4 0 0 - Input offset detector disable 1 - Input offset detector enable D3 0 0 - Output Current offset / hot spot detector disable 1 - Output Current offset / hot spot detector enable D2 0 0 - No Highpass in the DAC 1 - Highpass in the DAC D1 0 0 - Noise gating enable 1 - Noise gating disable D0 0 0 - Open Load detection in play disable 1 - Open Load detection in play enable Table 17. IB4-ADDR: "I0000100" - CDDiag pin configuration Data bit Default value Definition D7 0 0 - No Output Voltage offset information on CDDiag pin 1 - Output Voltage offset information on CDDiag pin D6-D4 00 Temperature warning information on CD/DIAG pin: D6-D4 CDDiag configuration 000 No thermal warning 001 TW1 010 TW2 011 TW3 100 TW4 101 Reserved 110 Reserved 111 Reserved D3 0 0 - No Overcurrent information on CD/DIAG pin 1 - Overcurrent information on CD/DIAG pin D2 0 0 - No Input Offset information on CD/DIAG pin 1 - Input Offset information on CD/DIAG pin D1 0 0 - No Short to Vcc / Short to GND information on CD/DIAG pin 1 - Short to Vcc / Short to GND information on CD/DIAG pin D0 0 0 - No High Voltage Mute information on CD/Diag pin 1 - High Voltage Mute information on CD/Diag pin DocID031487 Rev 2 65/78 77 I2C register FDA803D Table 18. IB5-ADDR: "I0000101" - CDDiag pin configuration Data bit Default value Definition D7 0 0 - No UVLOVCC information on CDDiag pin 1 - UVLOVCC information on CDDiag pin D6 0 0 - No Thermal shutdown information on CDDiag pin 1 - Thermal shutdown information on CDDiag pin D5-D4 00 Clipping information on CDDiag pin: D5-D4 CDDiag configuration 00 No clipping information 01 PWM Pulse Skipping detector 10 Reserved 11 Reserved D3-D0 0000 Reserved Table 19. IB6-ADDR: "I0000110" Data bit Default value Definition D7-D6 00 Mute timing setup, (values with fsample = 44.1 kHz): D7-D6 Type of mute Mute time Unit 00 Very Fast 3 ms 01 Fast 45 ms 10 Slow 90 ms 11 Very Slow 185 ms D5 0 Audio signal gain control: 0 - standard digital audio gain 1 - +6 db digital audio gain D4 0 0 - standard gain 1 - low gain D3-D0 0000 Reserved Table 20. IB7-ADDR: "I0000111" Data bit Default value Definition 00 Diagnostic ramp time selection: D7-D6 Timing 00 Normal 01 x2 10 x4 11 /2 D5-D4 00 Diagnostic Hold Time selection: D5-D4 Timing 00 Normal 01 x2 10 x4 11 /2 D3-D0 0000 D7-D6 66/78 Reserved DocID031487 Rev 2 I2C register FDA803D Table 21. IB8-ADDR: "I0001000" - CHANNEL CONTROLS Data bit Default value D7-D6 11 Reserved D5 0 0 - Channel in TRISTATE (PWM OFF) 1 - Channel with PWM ON D4 0 0 - Channel DC Diag disable 1 - Channel DC Diag start D3-D1 000 D0 0 Definition I2Stest pin configuration: D3-D1 Function 000 High impedance configuration 001 Reserved 010 Reserved 011 Reserved 100 Reserved 101 Output: PWM synchronization signal 110 Reserved 111 Reserved 0 - Channel in MUTE 1 - Channel in PLAY Table 22. IB9-ADDR: "I0001001" Data bit Default value D7-D5 000 D4 0 D3-D0 0000 Definition Reserved 0 - watch-dog for word select managing 1 - no watch-dog for word select managing Reserved Table 23. IB10-ADDR: "I0001010" Data bit Default value Definition D7 0 Short load impedance threshold (DC Diagnostic): 0 - 0.75 1 - 0.5 D6 0 Open load impedance threshold (DC Diagnostic & Open load in play detector): 0 - 25 1 - 15 D5 0 Reserved DocID031487 Rev 2 67/78 77 I2C register FDA803D Table 23. IB10-ADDR: "I0001010" (continued) Data bit Default value Definition D4-D3 10 Output Current Offset Detector threshold configuration D3-D2 Offset Detector threshold 00 Reserved 01 0.25 A (i.e. 2 V with 8 load) 10 0.5 A (i.e. 2 V with 4 load) 11 1.0 A (i.e. 2 V with 2 load) D2-D0 000 Reserved Table 24. IB11-ADDR: "I0001011" Data bit Default value Definition D7-D6 00 Reserved D5-D4 0 Over current protection level selection: D5 D4 Iprot VDD>5.4VIprot VDD<5.4V 0 0 11A 6A 0 1 8A 6A 1 0 6A 4A 1 1 4A 4A D3 0 0 - Deafult 1 - PWM Slow Slope D2-D0 000 Reserved Table 25. IB12-ADDR: "I0001100" Data bit Default value D7 0 D6-D0 0001000 68/78 Definition 0 - Standard thermal warning 1 - Thermal warning shift -15 C Reserved DocID031487 Rev 2 I2C register FDA803D Table 26. IB13-ADDR: "I0001101" Data bit Default value Definition D7 0 Reserved D6 0 0 - Digital mute enabled in PLAY when StartAnalogMute without Thermal Warning 1 occurs 1 - Digital mute disabled in PLAY when StartAnalogMute without Thermal Warning 1 occurs D5-D0 100000 Reserved Table 27. IB14-ADDR: "I0001110" Data bit Default value D7-D5 000 D4 0 Reserved 0 - feedback on LC filter 1 - feedback on Out Pin LC filter setup: D3 d3-d2-d1 D2 100 D1 D0 Definition 0 000 001 010 011 100 101 110 111 LC filter Reserved 10 H + 2.2 F 10 H + 2.2 F 10 H + 3.3 F 10 H + 3.3 F 10 H + 4.7 F 10 H + 4.7 F Reserved Out Phase In Phase Out Phase In Phase Out Phase In Phase 0 - FIRST setup not programmed via I2C 1 - FIRST setup programmed - ready to work DocID031487 Rev 2 69/78 77 I2C register 15.2 FDA803D Data bytes - "I01xxxxx" Legend: Type "S/C": the hardware can only set the flag. An I2C reading operation clears the flag. Type "SR/C": the hardware can set or reset the flag. An I2C reading operation clears the flag. Type "SR": the hardware can set or reset the flag. An I2C reading operation doesn't affect the flag. Table 28. DB0-ADDR: "I0100000" Data bit Type D7 S/C D6 SR/C 0 - Output Current offset not valid 1 - Output Current offset valid D5 SR/C 0 - Output Current offset not present 1 - Output Current offset present D4 S/C Reserved D3 S/C 0 - Output Voltage offset not present 1 - Output Voltage offset present D2 SR/C 0 - Open Load in Play test not ended 1 - Open Load in Play test ended D1 SR/C 0 - Open Load in Play test input signal not valid 1 - Open Load in Play test input signal valid D0 SR/C 0 - Open Load in Play not detected 1 - Open Load in Play detected 70/78 Definition 0 - Offset at input not present 1 - Offset at input present DocID031487 Rev 2 I2C register FDA803D Table 29. DB1-ADDR: "I0100001" Data bit Type Definition D7 SR/C 0 - Thermal warning 1 not active 1 - Thermal warning 1 active D6 SR/C 0 - Thermal warning 2 not active 1 - Thermal warning 2 active D5 SR/C 0 - Thermal warning 3 not active 1 - Thermal warning 3 active D4 SR/C 0 - Thermal warning 4 not active 1 - Thermal warning 4 active D3 SR/C 0 - PLL not locked 1 - PLL locked D2 S/C 0 - UVLOALL not detected 1 - UVLOALL detected (NOTE: after turn-on, the first reading of this flag will be always 1) D1 S/C 0 - No Overvoltage Shutdown detected 1 - Overvoltage Shutdown detected D0 S/C 0 - PWM pulse skipping not detected 1 - PWM pulse skipping detected Table 30. DB2-ADDR:"I0100010" Data bit Type Definition D7 SR/C 0 - Channel DC diagnostic pulse not ended 1 - Channel DC diagnostic pulse ended D6 SR/C 0 - Channel DC diagnostic data not valid 1 - Channel DC diagnostic data valid D5 S/C D4 SR/C 0 - No Short Load on Channel 1 - Short Load on Channel D3 SR 0 - No Short to Vcc on Channel 1 - Short to Vcc on Channel D2 SR 0 - No short to Gnd on Channel 1 - Short to Gnd on Channel D1 SR/C 0 - No Open Load on Channel 1 - Open Load on Channel D0 SR/C 0 - Channel in mute 1 - Channel in play 0 - Channel Over current not detected 1 - Channel Over current protection triggered DocID031487 Rev 2 71/78 77 I2C register FDA803D Table 31. DB3-ADDR: "I0100011" DC Diagnostic Error code Data bit Type Definition D7 D6 D5 D4 D3 SR/C DC Diagnostic Error code D2 D1 D0 Table 32. DB6-ADDR:"I0100110" Data bit Type D7 S/C 0 - High Voltage Mute not Started 1 - High Voltage Mute Started D6 S/C 0 - UVLOVCC not detected 1 - UVLOVCC detected D5 S/C 0 - Thermal shutdown not detected 1 - Thermal shutdown detected D4 S/C 0 - No analog mute started 1 - Start analog mute (-0.5 dB attenuation reached) D3 S/C Reserved D2 SR/C D1 S/C 0 - no error frame checked 1 - error frame checked D0 S/C Reserved 72/78 Definition 0 - watch-dog for word select not occured 1 - watch-dog for word select occurred DocID031487 Rev 2 FDA803D 16 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at: www.st.com. ECOPACK(R) is an ST trademark. PowerSSO-36 (exposed pad) package information Figure 73. PowerSSO-36 (exposed pad) package outline %RWWRPYLHZ JJJ 0 & $% ' ' JJJ 0 &$% ' * * ( ( * ' H HHH & $ $ FFF & 6($7,1*3/$1( $ E 6HFWLRQ$$ & GGG 0 &' K K [ III & $% ' 5 + ' $ 1 % VHH6HFWLRQ%% 5 *$8*(3/$1( / % / ' $ 6 16.1 / LQGH[DUHD '[( *[ ( ( SLQLQGLFDWRU 6HFWLRQ%% ( E :,7+3/$7,1* * F F [ DDD &' E %$6(0(7$/ [17,36 EEE & 7RSYLHZ % $ VHH6HFWLRQ$$ 1 *$3*36 B,B(+ DocID031487 Rev 2 73/78 77 Package information FDA803D Table 33. PowerSSO-36 exposed pad (D1 and E2 use the option variation B) package mechanical data Dimensions Ref Inches(1) Millimeters Min. Typ. Max. Min. Typ. Max. 0 - 8 0 - 8 1 5 - 10 5 - 10 2 0 - - 0 - - A 2.15 - 2.45 0.0846 - 0.0965 A1 0.0 - 0.1 0.0 - 0.0039 A2 2.15 - 2.35 0.0846 - 0.0925 b 0.18 - 0.32 0.0071 - 0.0126 b1 0.13 0.25 0.3 0.0051 0.0098 0.0118 c 0.23 - 0.32 0.0091 - 0.0126 c1 0.2 0.2 0.3 0.0079 0.0079 0.0118 D (2) 10.30 BSC 0.4055 BSC D1 VARIATION D2 - 3.65 - - 0.1437 - D3 - 4.3 - - 0.1693 - e 0.50 BSC 0.0197 BSC E 10.30 BSC 0.4055 BSC 7.50 BSC 0.2953 BSC (2) E1 E2 74/78 VARIATION E3 - 2.3 - - 0.0906 - E4 - 2.9 - - 0.1142 - G1 - 1.2 - - 0.0472 - G2 - 1 - - 0.0394 - G3 - 0.8 - - 0.0315 - h 0.3 - 0.4 0.0118 - 0.0157 L 0.55 0.7 0.85 0.0217 - 0.0335 L1 1.40 REF 0.0551 REF L2 0.25 BSC 0.0098 BSC N 36 1.4173 R 0.3 - - 0.0118 - - R1 0.2 - - 0.0079 - - S 0.25 - - 0.0098 - - DocID031487 Rev 2 FDA803D Package information Table 33. PowerSSO-36 exposed pad (D1 and E2 use the option variation B) package mechanical data (continued) Dimensions Ref Inches(1) Millimeters Min. Typ. Max. Min. Typ. Max. Tolerance of form and position aaa 0.2 0.0079 bbb 0.2 0.0079 ccc 0.1 0.0039 ddd 0.2 0.0079 eee 0.1 0.0039 ffff 0.2 0.0079 ggg 0.15 0.0059 VARIATIONS Option A D1 6.5 - 7.1 0.2559 - 0.2795 E2 4.1 - 4.7 0.1614 - 0.1850 D1 4.9 - 5.5 0.1929 - 0.2165 E2 4.1 - 4.7 0.1614 - 0.1850 D1 6.9 - 7.5 0.2717 - 0.2953 E2 4.3 - 5.2 0.1693 - 0.2047 Option B Option C 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Dimensions D and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is `0.25 mm' per side D and `0.15 mm' per side E1. D and E1 are Maximum plastic body size dimensions including mold mismatch. DocID031487 Rev 2 75/78 77 Package information 16.2 FDA803D Package marking information Figure 74. PowerSSO-36 (exp. pad) marking information 0DUNLQJDUHD /DVWWZRGLJLWV (6(QJLQHHULQJVDPSOH EODQN!&RPPHUFLDOVDPSOH 3RZHU6627239,(: QRWLQVFDOH Note: *$3*36B(6 Engineering Samples: these samples are clearly identified by last two digits `ES' in the marking of each unit. These samples are intended to be used for electrical compatibility evaluation only; usage for any other purpose may be agreed only upon written authorization by ST. ST is not liable for any customer usage in production and/or in reliability qualification trials. Commercial Samples: Fully qualified parts from ST standard production with no usage restrictions. 76/78 DocID031487 Rev 2 FDA803D 17 Revision history Revision history Table 34. Document revision history Date Revision Changes 19-Feb-2018 1 Initial release. 03-May-2018 2 Datasheet changed from Confidentiality level to Public. DocID031487 Rev 2 77/78 77 FDA803D IMPORTANT NOTICE - PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. (c) 2018 STMicroelectronics - All rights reserved 78/78 DocID031487 Rev 2