This is information on a product in full production.
May 2018 DocID031487 Rev 2 1/78
FDA803D
1 x 45 W class D digital input automotive power amplifier with diagnostics,
wide voltage operation range for car audio and telematic
Datasheet - production data
Features
AEC-Q100 qualified
Integrated 108 dB D/A conversion
I2S and TDM digital input (4/8/16CH TDM)
Input sampling frequency: 44.1 kHz, 48 kHz,
96 kHz, 192 kHz
Full I2C bus driving (3.3/1.8 V)
CISPR 25 - Class V (Fourth edition)
Very low quiescent current
Output lowpass filter included in the feedback
allowing outstanding audio performances
Wide operating supply range from 3.3 to 18 V,
suitable for car radio, telematics and e-call
MOSFET power outputs allowing high output
power capability
1 x 25 W /4 @ 14.4 V, 1 kHz THD = 1%
1 x 30 W /4 @ 14.4 V, 1 kHz THD = 10%
2 loads driving
Power limiting function (configurable through
I2C)
I2C bus diagnostics:
Short to VCC/GND
Short load and open load detection (also in
play mode)
Four thermal warnings
DC offset detector (also in play) and 'hot spot'
detection
Clipping detector
Integrated thermal protection
Legacy mode ('no I2C' mode), 4 configurable
settings
Short circuit and ESD integrated protections
Package: PowerSSO-36 exposed pad down
3RZHU662
([SSDGGRZQ
*$'*36
Table 1. Device summary
Order code Package Packing
FDA803D-EHT PowerSSO-36
(exposed pad down)
Tape &
reel
FDA803D-EHX Tube
www.st.com
Contents FDA803D
2/78 DocID031487 Rev 2
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 Typical curves of the main electrical parameters . . . . . . . . . . . . . . . . . . . 17
6 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1 LC filter design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Load possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7 Finite state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1 Device state and address selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Standby state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 Diagnostic Vcc-Gnd state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4 ECO-mode state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.5 MUTE-PLAY and diagnostic states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.6 Operation compatibility vs battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8 Muting function architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1 Command dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2 Analog-Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.3 Digital-Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.4 Mixed mute advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9 Hardware mute pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10 Power limiter function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DocID031487 Rev 2 3/78
FDA803D Contents
4
10.1 Power limiter control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11 Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11.1 DC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11.1.1 Diagnostic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11.1.2 Relation with short circuit protection activation . . . . . . . . . . . . . . . . . . . 37
11.1.3 Load range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11.2 Short to Vcc / GND diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.3 Diagnostic time-line diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.4 Open load in play detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
11.4.1 Open load in play detector operation overview . . . . . . . . . . . . . . . . . . . 41
11.4.2 Processing bandwidth range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
11.4.3 Audio signal evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.4.4 Impedance threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.4.5 I2C control and timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.5 Input offset detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.6 Output voltage offset detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.7 Output current offset detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.7.1 Output current offset detector operation principle . . . . . . . . . . . . . . . . . 45
11.7.2 Result communication and I2C control . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.7.3 Hot spot detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11.8 PWM pulse skipping detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
11.9 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
11.10 Watch-dog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
11.11 Error frame check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12 Additional features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12.1 AM operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
12.2 Noise gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
12.3 Dither PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13 I2S bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
13.1 I2S standard mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
13.2 TDM 4CH mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
13.3 TDM 8CH mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
13.4 TDM 16CH mode description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Contents FDA803D
4/78 DocID031487 Rev 2
13.5 Timing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
13.6 Group delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
14 I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
14.1 Writing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.2 Reading procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
14.3 Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.4 Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.5 Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.6 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
14.7 I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
14.8 I2S, I2C and Enable relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
15 I2C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
15.1 Instruction bytes- “I00xxxxx” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
15.2 Data bytes - “I01xxxxx” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
16 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
16.1 PowerSSO-36 (exposed pad) package information . . . . . . . . . . . . . . . . . 73
16.2 Package marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
17 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DocID031487 Rev 2 5/78
FDA803D List of tables
5
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pins list function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. Thermal data - PowerSSO36 slug-down package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 7. Command dependence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Table 8. Power limiter function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 9. Open load in play detector impedance and validity thresholds. . . . . . . . . . . . . . . . . . . . . . 42
Table 10. I2S Interface timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 11. Group delay dependency from input sampling frequency. . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 12. I2C bus interface timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 13. IB0-ADDR: “I0000000” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 14. IB1-ADDR: “I0000001” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 15. IB2-ADDR: “I0000010” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 16. IB3-ADDR: “I0000011” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 17. IB4-ADDR: “I0000100” - CDDiag pin configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 18. IB5-ADDR: “I0000101” - CDDiag pin configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 19. IB6-ADDR: “I0000110” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 20. IB7-ADDR: “I0000111” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 21. IB8-ADDR: “I0001000” - CHANNEL CONTROLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 22. IB9-ADDR: “I0001001” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 23. IB10-ADDR: “I0001010” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 24. IB11-ADDR: “I0001011” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 25. IB12-ADDR: “I0001100” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 26. IB13-ADDR: “I0001101” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 27. IB14-ADDR: “I0001110” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 28. DB0-ADDR: “I0100000” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 29. DB1-ADDR: “I0100001” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 30. DB2-ADDR:"I0100010" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 31. DB3-ADDR: “I0100011” DC Diagnostic Error code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 32. DB6-ADDR:"I0100110" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 33. PowerSSO-36 exposed pad (D1 and E2 use the option variation B) package mechanical
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 34. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
List of figures FDA803D
6/78 DocID031487 Rev 2
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2. Pins connection diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 4. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 4 , f = 1 kHz sine wave) . . . . . . 17
Figure 5. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 4 , f = 1 kHz pink noise) . . . . . . 17
Figure 6. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 2 , f = 1 kHz sine wave) . . . . . . 17
Figure 7. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 2 , f = 1 kHz pink noise) . . . . . . 17
Figure 8. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 8 , f = 1 kHz sine wave) . . . . . . 17
Figure 9. Efficiency and power dissipation (Vs = 14.4 V, RL = 1 x 8 , f = 1 kHz pink noise) . . . . . . 17
Figure 10. Efficiency and power dissipation (Vs = 18 V, RL = 1 x 4 , f = 1 kHz sine wave). . . . . . . . 18
Figure 11. Efficiency and power dissipation (Vs = 18 V, RL = 1 x 4 , f = 1 kHz pink noise). . . . . . . . 18
Figure 12. Efficiency and power dissipation (Vs = 16 V, RL = 1 x 2 , f = 1 kHz sine wave) . . . . . . . 18
Figure 13. Efficiency and power dissipation (Vs = 16 V, RL = 1 x 2 , f = 1 kHz pink noise). . . . . . . . 18
Figure 14. Efficiency and power dissipation (Vs = 18 V, RL = 1 x 8 , f = 1 kHz sine wave). . . . . . . . 18
Figure 15. Efficiency and power dissipation (Vs = 18 V, RL = 1 x 8 , f = 1 kHz pink noise). . . . . . . . 18
Figure 16. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 4 , f = 1 kHz sine wave) . . . . . . . 19
Figure 17. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 4 , f = 1 kHz pink noise) . . . . . . . 19
Figure 18. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 2 , f = 1 kHz sine wave) . . . . . . . 19
Figure 19. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 2 , f = 1 kHz pink noise) . . . . . . . 19
Figure 20. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 8 , f = 1 kHz sine wave) . . . . . . . 19
Figure 21. Efficiency and power dissipation (Vs = 3.3 V, RL = 1 x 8 , f = 1 kHz pink noise) . . . . . . . 19
Figure 22. Output power vs. supply voltage (RL = 4 , sine wave) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 23. Output power vs. supply voltage (RL = 2 , sine wave) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 24. Output power vs. supply voltage (RL = 8 , sine wave) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 25. THD vs. output power (VS = 14.4 V, R
L = 4 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 26. THD vs. output power (VS = 14.4 V, R
L = 2 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 27. THD vs. output power (VS = 14.4 V, R
L = 8 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 28. THD vs. frequency (VS = 14.4 V, R
L = 4 , PO = 1 W). . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 29. THD vs. frequency (VS = 14.4 V, R
L = 2 , PO = 1 W). . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 30. THD vs. frequency (VS = 14.4 V, R
L = 8 , PO = 1 W). . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 31. Frequency response (1 W, R
L = 4 , f = 1 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 32. Frequency response (1 W, R
L = 2 , f = 1 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 33. Frequency response (1 W, R
L = 8 , f = 1 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 34. PSRR vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 35. Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 36. Dynamic range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 37. FFT - Output spectrum (-60 dBFS input signal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 38. Finite state machine diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 39. Operation vs. battery charge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 40. Analog-Mute diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 41. Digital-Mute diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 42. Mixed mute diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 43. Analog-Mute vs. Mixed-Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 44. HWMute pin schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 45. Response obtained with a limitation corresponding to 80% of the full-scale . . . . . . . . . . . 35
Figure 46. Load range detection configured properly setting IB5 d7-d6 . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 47. DC diagnostic before turn on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 48. Short to VCC at device turn on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
DocID031487 Rev 2 7/78
FDA803D List of figures
7
Figure 49. DC Diagnostic in Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 50. Short circuit protection activation - Short to VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 51.
Short Circuit Protection activation due to short across load, short to Vcc/Gnd not present
.40
Figure 52. Open load in play detector guaranteed thresholds with standard gain setting . . . . . . . . . . 42
Figure 53. Open load in play detector guaranteed thresholds with low gain setting . . . . . . . . . . . . . . 42
Figure 54. Open load in play detector timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 55. Output voltage offset detector operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 56. Current offset measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 57. Hot spot detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 58. PWM pulse skipping detector operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 59. Thermal attenuation curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 60. PWM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 61. LRF effect on PWM output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 62. Dither PWM effect on output PWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 63. I2S standard mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 64. TDM4 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 65. TDM8 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 66. TDM16 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 67. I2S Interface timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 68. I2S clock transition timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 69. I2C bus protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 70. Reading procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 71. Without/with auto-increment reading procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 72. I2C bus interface timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 73. PowerSSO-36 (exposed pad) package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 74. PowerSSO-36 (exp. pad) marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Description FDA803D
8/78 DocID031487 Rev 2
1 Description
The FDA803D is a single bridge class D amplifier, designed in the most advanced BCD
technology, intended for any automotive audio application (car radio, telematics and e-call,
noise and tone generators, etc).
The FDA803D integrates a high performance D/A converter together with powerful
MOSFET outputs in class D, so it is very compact and powerful, moreover reaches
outstanding efficiency performances (90%).
It has a very wide operating range: it can be operated both with standard car battery levels
(5.5-18 V operating, compatible to load dump pulse) and with external step-down generated
voltages or emergency battery (since it is compatible to minimum 3.3 V operative).
The feedback loop is including the output L-C low-pass filter, allowing superior frequency
response linearity and lower distortion.
FDA803D is configurable through I2C bus interface and is integrating a complete
diagnostics array specially intended for automotive applications including innovative open
load and DC offset detection in play mode.
Thanks to the solutions implemented to solve the EMI problems, the device is intended to
be used in the standard single DIN car-radio box together with the tuner.
Moreover FDA803D features a configurable power limiting function, and can be optionally
operated under no I2C mode ('legacy mode').
DocID031487 Rev 2 9/78
FDA803D Block diagram
77
2 Block diagram
Figure 1. Block diagram
*$3*36
,6
LQWHUIDFH
3// ,&LQWHUIDFH
,QWHUSRODWRU

1RLVH
6KDSHU
6FUDPEOHU
&XUUHQW
*HQHUDWRU
$UUD\
3:0
7UDQVUHVLVWHQFH
3RZHU$PSOLILHU

2873

2870




(QDEOH
(QDEOH
(QDEOH
(QDEOH
,&GDWD
,&&ON






)%3
)%0

7$%
*1'0
9&&0
'*QG
'9GG
1&

&''LDJ

'9695

'*695

*1'3

9&&3

+:0XWH

695

$*695

$9695

$9GG

$*QG

,6WHVW
,6FON
,6ZV
,6GDWD
Pins description FDA803D
10/78 DocID031487 Rev 2
3 Pins description
Figure 2. Pins connection diagram
Table 2. Pins list function
Pin # Pin name Function
1 TAB Device slug connection
2 GNDM Channel half bridge minus, Power Ground
3 VCCM Channel half bridge minus, Power Supply
4 OUTM Channel half bridge minus, Output
5 OUTM Channel half bridge minus, Output
6 FBM Channel half bridge minus, Feedback
7 NC Not connected
8 DGnd Digital ground
9 DVdd Digital supply
10 Enable1 Enable 1
11 Enable2 Enable 2
12 Enable3 Enable 3
13 Enable4 Enable 4
14 NC Not connected
15 CDDiag Clipping detector and diagnostic output pin

















 






 
*1'0
7$%
9&&0
2870
2870
)%0
'*QG
1&
'9GG
(QDEOH
(QDEOH
(QDEOH
(QDEOH
&''LDJ
1&
1&
'9695
'*695
6OXJGRZQ
,&GDWD
,&FON
,6WHVW
,6GDWD
,6FON
,6ZV
$*QG
$9GG
$9695
695
$*695
+:0XWH
)%3
2873
2873
1&
9&&3
*1'3
*$'*36
DocID031487 Rev 2 11/78
FDA803D Pins description
77
16 NC Not connected
17 D1V8SVR Positive digital supply V(SVR)+0.9V (Internally generated)
18 DGSVR Negative digital supply V(SVR)-0.9V (Internally generated)
19 I2Cdata I2C Data
20 I2Cclk I2C Clock
21 I2Stest test pin, left open
22 I2Sdata I2S/TDM data
23 I2Sclk I2S/TDM Clock input
24 I2Sws I2S/TDM Sync input /Word Select input
25 AGnd Analog ground
26 AVdd Analog supply
27 A5VSVR Positive Analog Supply V(SVR)+2.5V (Internally generated)
28 AGSVR Negative Analog Supply V(SVR)-2.5V (Internally generated)
29 SVR Supply Voltage Ripple Rejection Capacitor
30 HWMute Hardware mute pin
31 FBP Channel half bridge plus, Feedback
32 OUTP Channel half bridge plus, Output
33 OUTP Channel half bridge plus, Output
34 NC Not connected
35 VCCP Channel half bridge plus, Power Supply
36 GNDP Channel half bridge plus, Power Ground
Table 2. Pins list function
Pin # Pin name Function
Application diagram FDA803D
12/78 DocID031487 Rev 2
4 Application diagram
Figure 3. Application diagram
&
X)
&
Q)
&
X)
&
Q)
(1
,6B6'$
,&B6&/
,6B6&/
,6B:6
,6B7(67
&'',$*
,&B6'$
(1
(1
(1
9&&
9&&
&
X)
087(
&
Q)
&
X)
&
Q)
5

&
X)
&
S) &
X)
5 
X+/
&+
5

&
X)
&
S)
&
X)
5 
X+/
&+
7$%
*1'0
9&&0
2870
2870
)%0
1&
'*1'
'9''
(1$%/(

(1$%/(

(1$%/(

(1$%/(

1&

&'',$*

1&

'9695 
'*695 
,&'$7$

,&&/.

,67(67

,6'$7$

,6&/.

,6:6

$*1'

$9''

$*695 
$9695 
695 
+:087(

)%3 
2873 
2873 
1&

*1'3 
9&&3 
)'$'
&
X)
&
Q)
*$3*36
&
Q)
&
X)
&
X)
&
Q)
DocID031487 Rev 2 13/78
FDA803D Electrical specifications
77
5 Electrical specifications
5.1 Absolute maximum ratings
5.2 Thermal data
Table 3. Absolute maximum ratings
Symbol Parameter Value Unit
VCC [VCCP ,VCCM, AVDD,
DVDD]
DC supply voltage -0.3 to 28 V
Transient supply voltage for t = 100 ms(1)
1. VCC = 35 V for t < 400 ms as per ISO16750-2 load dump with centralized load dump suppression.
-0.3 to 40 V
GNDmax [DGND, AGND,
GNDP, GNDM] Ground pin voltage difference -0.3 to 0.3 V
I2Cdata, I2Cclk I2C bus pins voltage -0.3 to 5.5 V
I2Stest, I2Sdata, I2Sclk, I2Sws I2S bus pins voltage -0.3 to 5.5 V
Enable1,2,3,4 Enables -0.3 to 5.5 V
HWMute Hardware mute -0.3 to 7 V
CDDiag Clip detection -0.3 to 5.5 V
IoOutput current (repetitive f > 10 Hz) Internally limited A
Tamb Ambient operating temperature -40 to 125 °C
Tstg, TjStorage and junction temperature -55 to 150 °C
ESDHBM ESD protection HBM 2000 V
ESDCDM ESD protection CDM 500 V
Table 4. Thermal data - PowerSSO36 slug-down package
Symbol Parameter Value Unit
Rth j-a-2s Thermal resistance junction-to-ambient (2s board) 56 °C/W
Rth j-a-2s2p Thermal resistance junction-to-ambient (2s2p board) 31 °C/W
Rth j-a-2s2pv Thermal resistance junction-to-ambient (2s2p+vias) 26 °C/W
Electrical specifications FDA803D
14/78 DocID031487 Rev 2
5.3 Electrical characteristics
Vcc = 14.4 V; RL = 4 ; f = 1 kHz; Tamb = 25 °C; I2C defaults, unless otherwise specified. LC
filter: L = 10 H, C = 3.3 F. PWM in In-phase modulation, feedback connected after the
filter.
Table 5. Electrical characteristics
Symbol Parameter Test condition Min Typ Max Unit
VCC Supply voltage range
RL = 4 3.3 - 18 V
RL = 2 (1) 3.3 - 16
IVCC Quiescent current
Device in Standby - 1 5 A
Device on (MUTE state) - 35 - mA
ECO MODE - 22 - mA
Vos Offset voltage Mute & Play -10 - +10 mV
DVDD
Digital supply voltage
range - 3.3 - 18 V
AVDD
Analog supply voltage
range - 3.3 - 18 V
Iop Overcurrent protection
IB11 D5-4 = 00 9.5 11 12.5 A
IB11 D5-4 = 01 6.7 8 9.3 A
IB11 D5-4 = 10 5 6 7 A
IB11 D5-4 = 11 3 4 5 A
IAVDD Analog current Device on (MUTE state) - 9 20 mA
IDVDD Digital current Device on (MUTE state) - 13 20 mA
- Overvoltage shutdown Attenuation = 0.5 dB(2) 18.5 19.5 20.5 V
VlowM
Vcc low supply mute
threshold
Attenuation <0.5 dB
Low voltage mode (IB0D0=1) 2.7 2.9 3.3 V
Attenuation <0.5 dB
Standard mode (IB0D0=0) 4.5 4.7 5 V
VhighM Vcc high voltage mute(2) - 18 18.9 20.3 V
UVLOVCC
Vcc supply UVLO
threshold
Standard mode (IB0D0=0) 4.4 4.6 4.8 V
Low voltage mode (IB0D0=1) 2.55 2.7 2.85 V
Tsh Thermal shutdown - 165 175 185 °C
Tpl
Thermal protection
junction temperature Attenuation = 0.5 dB 150 160 170 °C
Tw1
Thermal warning
junction temperature(3)
- - Tpl-5 - °C
Tw2 - - Tpl-15 - °C
Tw3 - - Tpl-35 - °C
Tw4 - - Tpl-50 - °C
DocID031487 Rev 2 15/78
FDA803D Electrical specifications
77
Audio performances
PoOutput power
THD = 10 % - 30 - W
THD = 1 % 25 - W
Max power; Vcc = 15.2 V - 50 - W
RL = 2 THD = 10% (1) 55 - W
RL = 2 THD = 1% (1) -45 - W
RL = 2 , max power(1) -80 - W
PoOutput power
THD = 10% Vcc = 5 V - 3.8 - W
THD = 10% Vcc = 3.3 V - 1.6 - W
PSRR Power supply rejection
ratio f = 1 kHz; Vr = 1Vpk; 70 80 - -
THD Total harmonic distortion PO = 1 W, f = 1 kHz - 0.01 0.05 %
Gain
Standard gain
at Amplitude = -10 dBFs
5.5 5.9 6.3 Vp
Low gain(4) 3.3 3.6 3.9 Vp
DR Dynamic range A-wtd and brickwall 20 kHz filter 102 107.5 - dB
SNR Signal to noise ratio A-wtd and brickwall 20 kHz filter 107 112 - dB
Eout1 Output noise A-wtd and brickwall 20 kHz filter used, no
output signal; -3555V
Eout2 Output noise CCIR 468 filtered - 84 130 V
VOITU
ITU Pop filter output
voltage
Standby to Mute and Mute to Standby
transition -7.5 - +7.5 mV
Mute
VMth(5) Mute pin voltage
threshold
Attenuation <0.5 dB, and digital mute
disabled 2.3 - -
V
Attenuation 60 dB, and digital mute
disabled -- 1
IMMute pin source current - 9 11 13 A
VMcl
Mute pin internal clamp
voltage
- 5.5 6 6.5 V
Ifeed
Peak current flowing in
the feedback pins
Standby condition, all feedbacks forced to
Vcc, output floating - 110 130 A
I2C bus interface
fSCL Clock frequency - - - 400 kHz
VIL I2C pins low voltage - - - 0.8 V
VIH I2C pins high voltage - 1.3 - - V
VOLMAX
Maximum I2C data pin
low voltage when
current Isink is sinked
Isink = 4 mA - 0.12 0.5 V
ILIMAX
Maximum input leakage
current V = 3.6 V - - 1 A
Table 5. Electrical characteristics (continued)
Symbol Parameter Test condition Min Typ Max Unit
Electrical specifications FDA803D
16/78 DocID031487 Rev 2
I2S bus interface
VIL-I2S I2S pins low voltage - - - 0.8 V
ILInput logic current, low VI = 0 V - - 500 nA
VIH-I2S I2S pins high voltage - 1.3 - - V
IHInput logic current, high VI = TBD - - 500 nA
Control pins characteristics
VENL Enable pins low voltage - - - 0.9 V
VENH Enable pins high voltage - 2.4 - - V
Clipping and offset detector
CDTHD Clip det THD (6) THD @ 100 Hz with average
Vclipdet = 2 V 57 9%
CDSAT Clip det sat. voltage CD on; ICD = 1 mA - 150 300 mV
CDLK Clip det leakage current CD pin at 3.6 V - - 15 A
Vofflin
Input DC offset
detection threshold
Theshold at which an offset present at inputs
is detected - -18 - dB
Voffout
Output DC offset
detection threshold(7) Input high pass filter disable ±1.4 ±2 ±2.6 V
1. If outphase modulation selected, slow slope configuration must be used (IB11,D3)
2. Parameter values based on bench measurements (guaranteed by correlation with overvoltage shutdown).
3. The thermal warnings are always in tracking.
4. When selecting the low gain, also the thresholds for "DC diagnostic" function and "Open load in play detector" function
scale of the same factor with respect to standard gain configuration.
5. See Chapter 8: Muting function architecture for more details.
6. Guaranteed by correlation.
7. Measured at bench during product validation.
Table 5. Electrical characteristics (continued)
Symbol Parameter Test condition Min Typ Max Unit
DocID031487 Rev 2 17/78
FDA803D Electrical specifications
77
5.4 Typical curves of the main electrical parameters
Figure 4. Efficiency and power dissipation
(Vs = 14.4 V, RL = 1 x 4 Ω, f = 1 kHz sine wave)
Figure 5. Efficiency and power dissipation
(Vs = 14.4 V, RL = 1 x 4 Ω, f = 1 kHz pink noise)

















       
Ș >@3',66>:@
96 9
5/ [ȍ
I N+]6LQH:DYH
Ș
3',66
*$'*36
32&+>:@
Ș >@

















      
3',66>:@
Ș
3',66
32&+>:@
96 9
5/ [ȍ
3LQN1RLVH
*$'*36
Figure 6. Efficiency and power dissipation
(Vs = 14.4 V, RL = 1 x 2 Ω, f = 1 kHz sine wave)
Figure 7. Efficiency and power dissipation
(Vs = 14.4 V, RL = 1 x 2 Ω, f = 1 kHz pink noise)
Ș>@






















3',66>:@
Ș
3',66
96 9
5/ [ȍ
I N+]6LQH:DYH
*$'*36
32&+>:@






















Ș >@3',66>:@
Ș
3',66
96 9
5/ [ȍ
3LQN1RLVH
32&+>:@
*$'*36
Figure 8. Efficiency and power dissipation
(Vs = 14.4 V, RL = 1 x 8 Ω, f = 1 kHz sine wave)
Figure 9. Efficiency and power dissipation
(Vs = 14.4 V, RL = 1 x 8 Ω, f = 1 kHz pink noise)
Ș >@















         
3',66>:@
Ș
3',66
96 9
5/ [ȍ
I N+]6LQH:DYH
32&+>:@
*$'*36
Ș >@
















3',66>:@
Ș
3',66
32&+>:@
96 9
5/ [ȍ
3LQN1RLVH
*$'*36
Electrical specifications FDA803D
18/78 DocID031487 Rev 2
Figure 10. Efficiency and power dissipation
(Vs = 18 V, RL = 1 x 4 Ω, f = 1 kHz sine wave)
Figure 11. Efficiency and power dissipation
(Vs = 18 V, RL = 1 x 4 Ω, f = 1 kHz pink noise)
Ș >@

















       
3',66>:@
Ș
3',66
32&+>:@
96 9
5/ [ȍ
I N+]6LQH:DYH
*$'*36
Ș >@


















3',66>:@
Ș
3',66
32&+>:@
96 9
5/ [ȍ
3LQN1RLVH
*$'*36
Figure 12. Efficiency and power dissipation
(Vs = 16 V, RL = 1 x 2 Ω, f = 1 kHz sine wave)
Figure 13. Efficiency and power dissipation
(Vs = 16 V, RL = 1 x 2 Ω, f = 1 kHz pink noise)
Ș >@






















3',66>:@
Ș
3',66
32&+>:@
96 9
5/ [ȍ
I N+]6LQH:DYH
*$'*36
Ș >@






















3',66>:@
Ș
3',66
32&+>:@
96 9
5/ [ȍ
3LQN1RLVH
*$'*36
Figure 14. Efficiency and power dissipation
(Vs = 18 V, RL = 1 x 8 Ω, f = 1 kHz sine wave)
Figure 15. Efficiency and power dissipation
(Vs = 18 V, RL = 1 x 8 Ω, f = 1 kHz pink noise)
Ș >@















   
3',66>:@
Ș
3',66
32&+>:@
96 9
5/ [ȍ
I N+]6LQH:DYH
*$'*36
Ș >@















      
3',66>:@
Ș
3',66
32&+>:@
96 9
5/ [ȍ
3LQN1RLVH
*$'*36
DocID031487 Rev 2 19/78
FDA803D Electrical specifications
77
Figure 16. Efficiency and power dissipation
(Vs = 3.3 V, RL = 1 x 4 Ω, f = 1 kHz sine wave)
Figure 17. Efficiency and power dissipation
(Vs = 3.3 V, RL = 1 x 4 Ω, f = 1 kHz pink noise)
Ș >@















     
3',66>:@
Ș
3',66
32&+>:@
96 9
5/ [ȍ
I N+]6LQH:DYH
*$'*36
Ș>@















     
3',66>:@
Ș
3',66
96 9
5/ [ȍ
3LQN1RLVH
32&+>:@
*$'*36
Figure 18. Efficiency and power dissipation
(Vs = 3.3 V, RL = 1 x 2 Ω, f = 1 kHz sine wave)
Figure 19. Efficiency and power dissipation
(Vs = 3.3 V, RL = 1 x 2 Ω, f = 1 kHz pink noise)
Ș >@















         
3',66>:@
Ș
3',66
32&+>:@
96 9
5/ [ȍ
I N+]6LQH:DYH
*$'*36
Ș >@















       
3',66>:@
Ș
3',66
96 9
5/ [ȍ
3LQN1RLVH
32&+>:@
*$'*36
Figure 20. Efficiency and power dissipation
(Vs = 3.3 V, RL = 1 x 8 Ω, f = 1 kHz sine wave)
Figure 21. Efficiency and power dissipation
(Vs = 3.3 V, RL = 1 x 8 Ω, f = 1 kHz pink noise)
Ș>@















       
3',66>:@
Ș
3',66
96 9
5/ [ȍ
I N+]6LQH:DYH
*$'*36
32&+>:@
3
Ș
3
96
5/
32&+>:@
*$'*36















',66 Ș>@
9
[ȍ
3LQN1RLVH
',66
      
>:@
Electrical specifications FDA803D
20/78 DocID031487 Rev 2
Figure 22. Output power vs. supply voltage
(RL = 4 Ω, sine wave)
Figure 23. Output power vs. supply voltage
(RL = 2 Ω, sine wave)









3
2
>:@
9
6
>9@
5/ ȍ
VLQXVZDYH#N+]
3RPD[
7+' 
7+' 
7+' 
7+' 
*$'*36












3
2
>:@
9
6
>9@
5
/
 ȍ
VLQXVZDYH#N+]
3
2
PD[
7+' 
7+' 
7+' 
7+' 
*$'*36
Figure 24. Output power vs. supply voltage
(RL = 8 Ω, sine wave)
Figure 25. THD vs. output power
(VS = 14.4 V, R
L = 4 Ω)





32>:@
9V>9@
5/ ȍ
VLQXVZDYH#N+]
32
PD[
7+' 
7+' 
7+' 
*$'*36




  
7+'>@
3
2
>:@
9
6
 9
5
/
 
I .+]

*$'*36
Figure 26. THD vs. output power
(VS = 14.4 V, R
L = 2 Ω)
Figure 27. THD vs. output power
(VS = 14.4 V, R
L = 8 Ω)




  
7+'>@
32>:@
96 9
5/ ȍ
I .+]
*$'*36




  
7+'>@
32>:@
96 9
5/ ȍ
I .+]
*$'*36
DocID031487 Rev 2 21/78
FDA803D Electrical specifications
77
Figure 28. THD vs. frequency
(VS = 14.4 V, R
L = 4 Ω, PO = 1 W)
Figure 29. THD vs. frequency
(VS = 14.4 V, R
L = 2 Ω, PO = 1 W)



   
7+'>@
I>+]@
9
6
 9
5
/
 ȍ
3
2
 :
*$'*36



   
7+'>@
I>+]@
9
6
 9
5
/
 ȍ
3
2
 :
*$'*36
Figure 30. THD vs. frequency
(VS = 14.4 V, R
L = 8 Ω, PO = 1 W)
Figure 31. Frequency response
(1 W, R
L = 4 Ω, f = 1 kHz)



   
7+'>@
I>+]@
96 9
5/ ȍ
32 :
*$'*36









   
5HODWLYH/HYHOG%U
I>+]@
96 9
5/ ȍ
2XWSXW3RZHU>5HODWLYHOHYHO#N+]@ :
*$'*36
Figure 32. Frequency response
(1 W, R
L = 2 Ω, f = 1 kHz)
Figure 33. Frequency response
(1 W, R
L = 8 Ω, f = 1 kHz)









   
5HODWLYH/HYHOG%U
)+]
96 9
5/ ȍ
2XWSXW3RZHU>5HODWLYHOHYHO#N+]@ :
*$'*36









   
5HODWLYH/HYHOG%U
I>+]@
96 9
5/ ȍ
2XWSXW3RZHU>5HODWLYHOHYHO#N+]@ :
*$'*36
Electrical specifications FDA803D
22/78 DocID031487 Rev 2
Figure 34. PSRR vs. frequency Figure 35. Quiescent current vs. supply voltage









   
3655>G%@
I>+]@
96 9
5/ ȍ
*$'*36







  
,T>P$@
96>9@
5/ 
*$'*36
Figure 36. Dynamic range Figure 37. FFT - Output spectrum (-60 dBFS
input signal)






     
G%U
$PSOLWXGH>G%)V@
5/ 
*$'*36









   
G%U
)UHTXHQF\>+]@
5/ 
*$'*36
DocID031487 Rev 2 23/78
FDA803D General information
77
6 General information
6.1 LC filter design
The audio performance of a Class D amplifier are heavily influenced by the characteristics
of the output LC filter. The choice of its components is quite critical because a lot of
constraints have to be fulfilled at the same time: size, cost, filter for EMI suppression,
efficiency. In particular, both the inductor and the capacitor exhibit a non linear behavior: the
value of the inductance is a function of the instantaneous current in it and similarly the value
of the capacitor is a function of the voltage across it.
In the classical approach, where the feedback loop is closed right at the output of the power
stage, the LC filter is placed outside the loop and these nonlinearities cause the Total
Harmonic Distortion (THD) to increase. The only way to avoid this phenomenon would be to
use components which are highly linear, but this means they are also bigger and/or more
expensive.
Furthermore, when the LC filter is outside the loop, its frequency response heavily depends
on the impedance of the loudspeaker; this is one of the most critical aspects of Class-D
amplifiers. In standard class D this can be mitigated, but not solved, by means of additional
damping networks, increasing cost, space and power dissipation. FDA803D, instead,
provides a very flat frequency response over audio-band which can not be achieved by
standard class D without feedback after LC filter.
Since the demodulator group is now in the feedback path, some constraints regarding the
inductor and capacitor choice are still present but of course less stringent than in the case of
a typical switching application.
Moreover FDA803D can be used with the 'classical' configuration of feedback on output
(before LC filter), through I2C configuration, allowing the maximum flexibility. The choice
depends mainly on EMI target /requirements and could slightly affect other performances
(like damping factor, or THD).
6.2 Load possibilities
FDA803D supports several load possibilities, driving 2 , 4 and higher ohmic loads.
Possible channel configurations are:
1 x 4 ohm (or higher) (up to 18 V)
1 x 2 ohm (up to 16 V)
Finite state machine FDA803D
24/78 DocID031487 Rev 2
7 Finite state machine
FDA803D has a finite state machine which manages amplifier functionality, reacting to user
and system inputs
Figure 38. Finite state machine diagram
6WDQG%\
'LDJ9FF*QG
(&2PRGH
0XWH
'LDJ'&
'XPS
3OD\
(QDEOHVVHW
$1'
,&SURJUDPPHGIRUWKHILUVW
WLPH 1RVKRUWWR9FF*QG
FRQGLWLRQ67$%/(IRUDWOHDVW
PV
,&FPG
³'LDJ'&VWDUW´
'LDJQRVWLF'&HQG
,&FPG
³3/$
9FFRYHU2YHUYROWDJH
VKXWGRZQOLPLW
(QDEOHV ³´
25
9FFIRUV\VWHPUHVHW
25
,6PLVVHGRUQRWFRUUHFW
PV6KRUWWR9FF*QGFKHFN
6KRUWWR9FF*QGSUHVHQW
HYHQIRURQHLQVWDQW
,&FPG
³3:021´
,&FPG
³3:02))´
,&FPG³087(´
25
$XWRPDWLFPXWH
FRQGLWLRQSUHVHQW
9FFXQGHU
2YHUYROWDJH
VKXWGRZQOLPLW
2YHUFXUUHQWSURWHFWLRQ
25
89/2SUHVHQW
25
7KHUPDOVKXWGRZQ
*$3*36
DocID031487 Rev 2 25/78
FDA803D Finite state machine
77
7.1 Device state and address selection
Through Enable pins configuration it is possible to select different I2C addresses (up to 8) or
to configure the device in 4 different legacy ('no I2C' modes) according to table 6.
In this way, up to 8 devices can be easily used in the same application with a single I2C bus.
Moreover it is possible to work without I2C configuring the voltage range and switching
mode to be used.
When a valid combination of Enable 1/2/3/4 is recognized the device turns on all the internal
supply voltages and outputs are biased to Vcc/2.
The internal I2C registers are pre-settled in "default condition", waiting for the I2C next
instruction.
The return in the Standby condition, (all enable pins at 0), will cause the reset of the
amplifier. As defined in the finite state machine, The same event will happen if PLL is not
locked, I2S is missing or not correct, Vcc for system reset.
FDA803D can work only in I2C slave mode.
Table 6. Operation mode
Enable 1 Enable 2 Enable 3 Enable 4
Stand By 0 0 0 0
Amplifier ON address 1 = ‘1110000’ 0 1 0 0
Amplifier ON address 2 = ‘1110001’ 1 1 0 0
Amplifier ON address 3 = ‘1110010’ 0 0 1 0
Amplifier ON address 4 = ‘1110011’ 0 1 1 0
Amplifier ON address 5 = ‘1110100’ 0 1 0 1
Amplifier ON address 6 = ‘1110101’ 1 1 0 1
Amplifier ON address 7 = ‘1110110’ 0 0 1 1
Amplifier ON address 8 = ‘1110111’ 0 1 1 1
Legacy mode: low voltage mode; in-phase 1 1 1 0
Legacy mode: low voltage mode; out-phase 1 1 1 1
Legacy mode: standard voltage mode; in-phase 1 0 0 0
Legacy mode: standard voltage mode; out-phase 1 0 0 1
Finite state machine FDA803D
26/78 DocID031487 Rev 2
7.2 Standby state
ENABLE1, ENABLE2, ENABLE3, ENABLE4 pins have a double function: set of I2C
addresses and start-up of the system.
If ENABLE1/2/3/4 are all low, ("000"), then the FDA803D is off, the outputs remain biased to
ground and the current consumption is limited to Isb. In this case the FSM is in "Standby"
state.
7.3 Diagnostic Vcc-Gnd state
After exiting from Stand-By state the device passes through Diagnostic Vcc/Gnd state.
In this state the amplifier checks the presence of the following faults:
Shorts to ground or to Vcc;
Under-voltage (UVLOVCC);
Thermal shutdown
FDA803D will then move to the next state (Eco-mode) only if there isn't any of these faults
for at least 90ms, thus avoiding any danger for the amplifier and the user system.
Meanwhile, if a stable fault is present, it will be communicated to the user via I2C after
90 ms, in order to provide always only stable information about the system. In this case the
device will not move to Eco-mode, waiting for the fault cause removal
While the amplifier is in Diagnostic Vcc-Gnd state it can receive all the I2C commands, but it
will turn-on the PWM only when it enters in the next state: ECO-mode. This procedure
prevents wrong or unwanted I2C communication to bring the amplifier into dangerous
situation (if a short to Vcc or Gnd is present).
Following conditions will move the amplifier in Diagnostic Vcc-Gnd state from any other
functional state:
Over current protection trigger
UVLOVCC
Over voltage (through DUMP condition)
Thermal shutdown
7.4 ECO-mode state
In ECO-mode state the amplifier is fully operative from a communication point of view and
can receive and actuate all the commands given by the user.
In ECO-mode the output switching is disabled, thus allowing low quiescent current
consumption and therefore low power dissipation. The device is also able to move from
ECO-mode state to MUTE state, turning on the output switching, within about 1 ms -
without experiencing POP-noise.
This allows a very fast transition from ECO-mode to PLAY.
DocID031487 Rev 2 27/78
FDA803D Finite state machine
77
7.5 MUTE-PLAY and diagnostic states
The amplifier can move from ECO-mode state to MUTE state selecting "PWM-ON" via I2C.
This operation turns-on the output PWM.
FDA803D can move to PLAY state (from MUTE state) via "PLAY" I2C command and returns
to MUTE state from PLAY state acting on the same bit.
Transition time between mute and play states could be selected via I2C.
Some external conditions could lead the amplifier in mute state automatically:
Low battery mute
High battery mute
Thermal mute
Hardware pin mute
Once mute condition is no more present the FDA803D will return automatically in PLAY
state, following I2C register program set.
Of course the user can decide to change the amplifier programming in the meanwhile, thus
avoiding the automatic return in PLAY.
From MUTE state the user can also select to enter DC diagnostic state.
Finite state machine FDA803D
28/78 DocID031487 Rev 2
7.6 Operation compatibility vs battery
The FDA803D operation compatibility vs the battery value is reported in the figure below.
Figure 39. Operation vs. battery charge
Note: When Overvoltage Shutdown is reached, I2S interface is switched off and relative I/O are
maintained in HighZ.
+LJK
EDWWHU\
YROWDJH
UDQJH
+LJK
EDWWHU\
PXWH]RQH
1RUPDO
EDWWHU\
9R O W DJ H
5DQJH
/RZEDWWHU\
PXWH]RQH
5HVHW]RQH
$PSOLILHUPXWLQJ
$PSOLILHUPXWLQJ
2YHUYROWDJHVKXWGRZQ
89/29&&
3OD\PRGHGLDJQRVWLF
9
9
9
9
9
9
9
9
9
,&UHJLVWHUVUHVHW
6\VWHPUHVHW
6WDQGDUGYROWDJHPRGH /RZYROWDJHPRGH
+LJK
EDWWHU\
YROWDJH
UDQJH
+LJK
EDWWHU\
PXWH]RQH
1RUPDO
EDWWHU\
9R O W DJ H
5DQJH
/RZEDWWHU\
PXWH]RQH
5HVHW]RQH
$PSOLILHUPXWLQJ
$PSOLILHUPXWLQJ
2YHUYROWDJHVKXWGRZQ
89/29&&
3OD\PRGHGLDJQRVWLF
9
9
9
9
9
9
9
9
9
,&UHJLVWHUVUHVHW
6\VWHPUHVHW
*$3*36
DocID031487 Rev 2 29/78
FDA803D Muting function architecture
77
8 Muting function architecture
FDA803D uses a mixed signal approach for muting function.
Muting function is activated by different "mute command signal":
“High voltage mute”: active when Vcc enters in a voltage window over the max voltage;
the window is specified in the electrical parameters table.
“Low Battery mute”: active when Vcc enters in a voltage window under the min voltage;
the window is specified in the electrical parameters table.
“Hardware mute”: active when HWMute pin enters in the voltage window specified in
the electrical parameters table.
Thermal mute”: active when temperature enters in the temperature window over the
max temperature; the window is specified in the electrical parameters table.
“I2C Mute”: active user select mute/play I2C bits.
The mute is achieved by the combination of two separated actuators, “Analog-mute” and
“Digital-mute”.
8.1 Command dependence
Analog and digital mute actuators activation could be different based on the mute command
signal. This is described in the following table:
Table 7. Command dependence
Command signal When? Mute Unmute
Low Battery mute
When Vcc enters inside
the low battery mute
window
Mixed mute. Analog &
Digital, at the same
time (1)
1. User can decide to disable Digital-Mute/Unmute using bit IB13-d6; in this case in all the conditions, (except
I2C Mute), the Mute/Unmute will be purely Analog.
Digital (1)
High Voltage mute
When Vcc enters inside
the high voltage mute
window
Mixed mute. Analog &
Digital, at the same
time (1)
Digital (1)
Thermal Mute
When temperature
enters inside thermal
mute window
Analog Analog
Hardware Mute
When hardware pin
voltage enters inside its
mute window
Mixed mute. Analog &
Digital, at the same
time(1)
Digital (1)
I2C Mute When I2C mute bits are
selected Digital Digital
Muting function architecture FDA803D
30/78 DocID031487 Rev 2
8.2 Analog-Mute
Analog-Mute senses when the mute command signal transits across the muting window,
and attenuates the output signal proportionally to the command signal level inside the
muting window.
Figure 40. Analog-Mute diagram
8.3 Digital-Mute
Digital-Mute acts on the digitally elaborated output signal attenuating it gradually to zero with
digital steps in a pre-defined time frame (tmute). The muting time, (tmute), can be selected by
I2C, (IB6 d7-d6). There are two different actions performed by digital-mute function:
Mute: it starts when any mute command signal, marked as Mixed Mute in Table 7, enters in
the muting window. This event rises the Start-Analog-Mute signal, communicated on
DB6[4]. The muting ends after tmute, selectable through IB6[7-6]. The Start-Analog-Mute
signal is ignored until the muting ramp has ended.
Approximately, the corresponding analog mute attenuation at the beginning of the muting
window is 0.5dB.
UnMute: it starts when all the mute commands, marked with Mixed Mute in Table 7, exit
from the muting window. This event resets the Start-Analog-Mute signal, communicated on
DB6[4]. The unmuting ends after tmute, selectable through IB6[7-6]. The Start-Analog-Mute
signal is ignored until the unmuting ramp has ended.
*$'*36
0XWH
ZLQGRZ
6WDUW§G%
6LJQDOOHYHOLQ
3OD\
&RPPDQG
=HURVLJQDO
OHYHO
WLPH
WLPH
DocID031487 Rev 2 31/78
FDA803D Muting function architecture
77
Figure 41. Digital-Mute diagram
Note: in case of I2C mute the Digital-mute actuation does not follow Analog-mute level but only the
I2C command.
8.4 Mixed mute advantages
The mixed mute approach is the superposition of the two mute actuators, Analog-Mute and
Digital-mute, at the same time.
Here below the example of previous pages with mixed mute:
Figure 42. Mixed mute diagram
*$'*36
6WDUW§G%
6LJQDOOHYHOLQ
3OD\
&RPPDQG
=HURVLJQDO
OHYHO
WLPH
WLPH
W
PXWH
0XWH
ZLQGRZ
W
PXWH
W
PXWH
*$'*36
6WDUW§G%
6LJQDOOHYHOLQ
3OD\
&RPPDQG
=HURVLJQDO
OHYHO
WLPH
WLPH
0XWH
ZLQGRZ
W
PXWH
W
PXWH
W
PXWH
W
PXWH
Muting function architecture FDA803D
32/78 DocID031487 Rev 2
The Mixed-Mute approach is more robust than Analog-Mute only approach. The effects are
visible when the command signal variations inside the muting window last longer than the
muting/unmuting time. An example is depicted in the figure below:
Figure 43. Analog-Mute vs. Mixed-Mute
In any moment the user can disable the Digital-mute, acting on I2C bit IB13-d6, obtaining the
standard Analog-mute function.
*$3*36
6LJQDOOHYHOLQ
3OD\
&RPPDQG
=HURVLJQDO
OHYHO
WLPH
WLPH
2QO\$QDORJ0XWH
&RPPDQGVLJQDOERXQFLQJV
WUDQVPLWWHGWRWKHRXWSXWV
0L[HGPXWH
*HQWOHPXWHDQGXQPXWHHYHQLI
FRPPDQGVLJQDOERXQFLQJVDUHSUHVHQW
W
PXWH
6WDUW§G%
0XWH
ZLQGRZ
W
PXWH
DocID031487 Rev 2 33/78
FDA803D Hardware mute pin
77
9 Hardware mute pin
The pin "HWMute" (pin 30) acts as mute command for the channel. The device is muted
when this pin is low, while it is in play when this pin is high (low/high threshold in Table 5:
Electrical characteristics).
Inside the device, connected to this pin a pull-up current generator puts the device in play if
left floating. An internal clamp limits the Mute pin voltage. If not used, this pin should remain
floating.
To drive the Mute pin to get a hardware mute an external pull-down open drain is needed.
(See Figure 44), RMute must be < 60 k
Figure 44. HWMute pin schematic
+:0XWH
)'$'
50XWH
&0XWH
90XWH
*$3*36
Power limiter function FDA803D
34/78 DocID031487 Rev 2
10 Power limiter function
An adjustable power limiting function has been integrated to protect "small speakers"
applications: thanks to this feature, it's possible to limit by configuration the max power
delivered to the load.
Taking advantage of digital input architecture, the output power limitation is obtained through
the management of the input signal. It's important to underline that the limitation is
implemented independently of the supply voltage value.
The intervention thresholds, configurable through I2C are listed in the table below
The limitation is gradual in order to have no impact on the acoustic performance. Depending
on the signal amplitude and the desired attenuation, different gains are applied to the signal
itself.
Here an example of the response obtained with a limitation corresponding to 80% of the full-
scale: the blue line represents the signal when the power limiter is not employed, while the
red line is the result of the applied attenuation.
Table 8. Power limiter function
I2C IB2[3-0] Full-Scale Voltage limit
Output Voltage limit [V]
Standard gain
setting Low gain setting
0000 100% (Disabled) 19 (1)
1. 19 V is only a reference level, coherently with "standard gain" value in Section 5.3, to deduce the power
limiter thresholds. The reference level is unreachable due to the maximum supply voltage range, equal to
18 V.
11.4
1011 80% 15.2 9.12
1010 70% 13.3 7.98
1001 60% 11.4 6.84
1000 50% 9.5 5.7
0111 45% 8.55 5.13
0110 40% 7.6 4.56
0101 35% 6.65 3.99
0100 30% 5.7 3.42
0011 25% 4.75 2.85
0010 20% 3.8 2.28
0001 15% 2.85 1.71
DocID031487 Rev 2 35/78
FDA803D Power limiter function
77
Figure 45. Response obtained with a limitation corresponding to 80% of the full-scale
10.1 Power limiter control
The function can be controlled with I2C bus, properly settings the bits IB2[3-0].
The configuration of the power limiter threshold and the enable/disable are available only in
MUTE state.
*$3*36


'LJLWDOLQSXWVLJQDO)V
2XWSXW
YROWDJH
9
     






3RZHUOLPLWHU2))
3RZHUOLPLWHU21
Diagnostic FDA803D
36/78 DocID031487 Rev 2
11 Diagnostic
The FDA amplifiers family provides diagnostic function for detecting several possible faults
conditions.
Any warning information will be stored in the I2C interface and kept until the first I2C bus
reading operation. Some fault events can be sent to CDDiag pin as trigger for an interrupt
process.
Here reported the faults detectable taking advantage of FDA803D's diagnostic features:
Short to VCC/GND;
Short or open load (with DC diagnostic);
Open load during play;
Under/over voltage events;
Chip over temperature;
Digital input offset;
Output voltage offset;
Output current offset;
Output clipping;
Over current.
The fault events are managed with different actions depending on their severity.
It is important, for a correct diagnostic result collection, to clean diagnosis related I2C
register and the DB6, to clean eventual Start Analog Mute flag, through a read operation.
11.1 DC diagnostic
The DC diagnostic is a routine performed to detect the load connection status.
FDA amplifiers family provides a highly reliable and noise immune load diagnostic
algorithm, in order to prevent false detections induced by supply voltage variations or
mechanical stress on the speaker (e.g. car door closing). The algorithm includes the internal
generation of a properly calibrated and pop-free test signal.
For an extensive description of the DC diagnostic feature, please refer to the DC Diagnostic
user manual.
11.1.1 Diagnostic control
DC diagnostic can be run setting via I2C "Start Diag DC".
Diagnostic signal is generated and test is performed only when all the following conditions
are true:
1. Channel is in MUTE state.
2. DC test enable bit is set from '0' to '1'.
3. The channel has power stage ON
4. Device is NOT kept in mute by means of the dedicated hardware pin
DocID031487 Rev 2 37/78
FDA803D Diagnostic
77
At the end of the diagnostic cycle the "Start Diag DC" instruction bit is reset to '0' by the
device itself, and the "open load" or "short load" messages respectively will be displayed on
I2C data bits.
If "Start Diag DC" bit is set to '1' while the channel is not in "MUTE" state, (for example:
"PLAY" state or "Eco-mode" state), the channel will perform the diagnostic as soon as it
enters in "MUTE" state.
If the amplifier channel is in "Eco-mode" and I2C instructions for PWM ON + DIAG DC +
PLAY are given at the same time the channel will perform the following sequence
automatically:
1. turn on power stage
2. perform DC diagnostic
3. enter PLAY mode
DC diagnostic must be performed only with PWM "In phase" modulation, in order to avoid
pop noise. "Out phase" modulation, if desired, must be selected after DC diagnostic
execution.
11.1.2 Relation with short circuit protection activation
After a short circuit protection intervention amplifier is set automatically in a protected status
during which "Short to Vcc/Gnd" diagnostic is performed.
At the end of "Short to Vcc/Gnd" diagnostic, if no shorts to Vcc/Gnd are present on the
outputs, the amplifier will run DC diagnostic only if the corresponding "Start Diag DC" bit is
set to "1". Otherwise the amplifier will go back to the state preceding the short circuit
protection intervention without performing diagnostic cycles.
After the diagnostic completion "Start Diag DC" bit is set back to "0" by the amplifier.
11.1.3 Load range
The thresholds for short load detection and open load detection can be configured through
IB10[7,6]. Including the tolerance, the impedance values to be considered are reported in
Figure 46.
Figure 46. Load range detection configured properly setting IB5 d7-d6
The DC diagnostic pulse has a configurable time duration: for detailed timings definition,
please refer to the DC Diagnostic user manual.
The DC diagnostic result is provided on I2C register DB2.
EŽƌŵĂůůŽĂĚ KƉĞŶůŽĂĚ^ŚŽƌƚ>ŽĂĚ
   
   
   
   ,%>@ ¶¶
,%>@ ¶¶
,%>@ ¶¶
,%>@ ¶¶
*$'*36
Diagnostic FDA803D
38/78 DocID031487 Rev 2
11.2 Short to Vcc / GND diagnostic
The short to Vcc/GND diagnostic performs the detection of:
"Hard" and "soft" short to Vcc
"Hard" and "soft" short to Gnd
Timing
Short to Vcc/Gnd diagnostic cycle duration is 90 ms(*).
If a short to Vcc/Gnd is not stable during diagnostic cycle the channel will remain in "Diag.
Vcc/Gnd" state until a fault or non-fault condition is stable for at least 90 ms(*).
This special function avoids wrong detections in case of disturbs caused by mechanical
stresses applied to the speaker (e.g. car door closing).
The short to Vcc/Gnd diagnostic starts automatically following the logic shown in Figure 38.
Results communication and I2C control
After performing Short to Vcc/Gnd diagnostic for 90 ms(*) with a stable fault/non-fault
condition, there are two different scenarios:
1. Fault present: the device is communicating the fault condition setting the I2C bit DB2[3]
(in case of short to Vcc) or DB2[2] (in case of short to Gnd). The amplifier is remaining
in "Diag. Vcc/Gnd" state until the short is removed
2. Fault not present: Short to Vcc/Gnd diagnostic ends and the state machine can evolve
following the I2C commands.
Note: (*) Time when default I2C parameters settings are used
11.3 Diagnostic time-line diagrams
Figure 47. DC diagnostic before turn on
'85$7,21
9RXW
67$7(
;
6W%\ UDPS
695
PV
,&VHWXS
:DLWIRU
;PV
'LDJ
9FF*QG
;
75
PV
'&'LDJ
;
0XWH
;
3OD\
WLPH
3,183
(1$%/(
EHSUHVHQW
,6VKRXOG
FRPPDQG
DFFHSW,&
5HDG\WR
VHWWRµ¶
µ,&ILUVWVHWWLQJ¶ELW
)LUVW,&VHWWLQJ
RQ,&
UHVXOWVDYDLODEOH
9FF*QGGLDJ
GLDJVWDUW
3:021'&
,&FRPPDQG
µ¶E\DPS
,&µ6WDUW'&',$*¶ELWUHVHWWR
'&GLDJUHVXOWVDYDLODEOHRQ
,&FRPPDQG3OD\
*$'*36
7LPHZKHQGHIDXOW,&SDUDPHWHUVVHWWLQJVDUHXVHG
DocID031487 Rev 2 39/78
FDA803D Diagnostic
77
Figure 48. Short to VCC at device turn on
Figure 49. DC Diagnostic in Mute
;;
;;
9RXW
'85$7,21
67$7( UDPS
695
PV
6W%\ ,&
:DLWIRU
PV
'LDJ
9FF*QG
;
'LDJ
9FF*QG
PV
'LDJ
9FF*QG 75
WLPH
RQ,&GDWDE\WHV
6KRUW¶PHVVDJHSUHVHQW
9FF*QGGLDJQRVWLFµ1R
3,183
(1$%/(
EHSUHVHQW
,6VKRXOG
FRPPDQG
DFFHSW,&
5HDG\WR
VHWWRµ¶
µ,&ILUVWVHWWLQJ¶ELW
)LUVW,&VHWWLQJ
RQ,&
UHVXOWVDYDLODEOH
9FF*QGGLDJ
O
6KRUWUHPRYD
*$'*36
  
7LPHZKHQGHIDXOW,&SDUDPHWHUVVHWWLQJVDUHXVHG
;; ;
9RXW
3/$< 0XWH '&',$* 0XWH
PV
WLPH
3OD\
,&FRPPDQG
µ¶ E\DPS
,&µ6WDUW'&',$* ELWUHVHWWR
'&GLDJUHVXOWVDYDLODEOHRQ
'&GLDJVWDUW
,&FRPPDQG
*RLQ0XWH
,&FRPPDQG
3/$<
67$7(
'85$7,21 
7LPHZKHQGHIDXOW,&SDUDPHWHUVVHWWLQJVDUHXVHG *$'*36
Diagnostic FDA803D
40/78 DocID031487 Rev 2
Figure 50. Short circuit protection activation - Short to VCC
Figure 51. Short Circuit Protection activation due to short across load, short to
Vcc/Gnd not present
;
9RXW
'85$7,21
67$7( 3/$<
;
9
$FWLYDWLRQ
6KRUW&LUFXLW3URWHFWLRQ
RQ,&
UHVXOWVDYDLODEOH
FF*QGGLDJ
PV
'LDJ
9FF*QG
'LDJ
9FF*QG
'LDJ
9FF*QG
PV
3/$<
WLPH
6KRUWUHPRYDO
GDWDE\WHV
PHVVDJHSUHVHQWRQ,&
9FF*QGGLDJµ1R6KRUW¶ LQSOD\DXWRPDWLFDOO\
SUHVHQWGHYLFHZLOOJREDFN
,),&FRPPDQG3/$<LVVWLOO
 
7LPHZKHQGHIDXOW,&SDUDPHWHUVVHWWLQJVDUHXVHG *$'*36
9RXW
'85$7,21
67$7( 3/$<
;
'&',$*
PV
3/$<
$FWLYDWLRQ
3URWHFWLRQ
6KRUW&LUFXLW
RQ,&
UHVXOWVDYDLODEOH
9FF*QGGLDJ
'&GLDJSXOVHVWDUWV
,Iµ6WDUW'&GLDJ¶ELWLVµ¶
DXWRPDWLFDOO\
µ¶E\DPS
,&µ6WDUW'&',$*¶ELWUHVHWWR
'&GLDJUHVXOWVDYDLODEOHRQ
DXWRPDWLFDOO\
ZLOOJREDFNLQSOD\
LVVWLOOSUHVHQWGHYLFH
,),&FRPPDQG3/$<
WLPH
PV
9FF*QG'LDJ
 
7LPHZKHQGHIDXOW,&SDUDPHWHUVVHWWLQJVDUHXVHG *$'*36
DocID031487 Rev 2 41/78
FDA803D Diagnostic
77
11.4 Open load in play detector
Open load in play detector aim is to detect the possible speaker detachment during PLAY
state.
The innovative internal architecture allows to detect an open load condition taking
advantage of the audio signal itself, guaranteeing high detection reliability without requiring
a dedicated test signal.
11.4.1 Open load in play detector operation overview
The open load in play detection consists in one single shot test, which can be repeated
according to user need.
The test firstly checks the audio signal characteristics. If the audio signal is judged good
enough to provide a reliable result, the test result is valid. Otherwise, if the audio signal
doesn't allow to perform a reliable detection, the test result is not valid and the user needs to
repeat the test.
During the same evaluation time window, an internal circuit measures the differential current
flowing through the pins OUTP and OUTM. The test consequently evaluates both the digital
input signal and the output current, monitoring the average load impedance over time.
If the test result is valid and the average load impedance exceeds the chosen impedance
threshold, the device communicates that the load is not connected. Otherwise, if the test
result is valid and the average load impedance is lower than the chosen threshold, the
device communicates that the load is connected.
11.4.2 Processing bandwidth range
The feature requires an accurate measurement of the current flowing through the speaker.
The filter capacitors behave like an undesired load connected in parallel with the speaker,
altering the current measurement. However, this undesired contribution is significant only in
the high frequency range of the audio bandwidth.
On the other side, the most of the audio signal energy is distributed in the midde-low
frequency range of the audio bandwidth.
Due to the mentioned reasons, Open Load in Play Detector processes the audio bandwidth
up to 2kHz approximately, in order to guarantee a highly reliable solution without affecting
the rate of valid tests.
Please note that the processing bandwidth limitation does not affect the main signal path
from digital input signal to output voltage on FBP and FBM pins.
Diagnostic FDA803D
42/78 DocID031487 Rev 2
11.4.3 Audio signal evaluation
The audio signal is considered a good test signal if its amplitude allows the internal circuits
to perform accurate measurements. In particular, Open Load in Play Detector processes the
audio signal only if its amplitude exceeds the values expressed in Table 9:
The audio signal is unknown and not stationary, while the speaker has a complex
impedance. Open Load in Play Detector evaluates the audio signal for a time window lasting
up to 1s in order to properly average the data over time. The detection is considered valid if,
during the evaluation time window, the input audio signal exceeds for 300ms the thresholds
reported in Table 9.
11.4.4 Impedance threshold
Open Load in Play Detector includes two different impedance thresholds which can be
configured through IB10[6] and which depend also on gain setting through IB6[4]. Their
value has been calibrated in the following conditions:
ideal sinusoidal signal,
absence of external disturbances.
The uncertainly on audio signal characteristics and on external disturbances requires to
keep proper tolerances. The guaranteed thresholds are reported in Figure 52 and in
Figure 53:
Figure 52. Open load in play detector guaranteed thresholds with standard gain
setting
Figure 53. Open load in play detector guaranteed thresholds with low gain setting
Table 9. Open load in play detector impedance and validity thresholds
Open load impedance threshold Digital input signal amplitude threshold
25 (IB10[6]=’0’) 67 mFs
15 (IB10[6]=’1’) 40 mFs
1RUPDOORDG 2SHQORDG
,%>@ ¶¶   
,%>@ ¶¶   
*$'*36
1RUPDOORDG 2SHQORDG
,%>@ ¶¶  
,%>@ ¶¶   
*$'*36
DocID031487 Rev 2 43/78
FDA803D Diagnostic
77
Please note that an exact value of impedance can be defined only in case of an ideal
sinusoid at a fixed frequency. In case of a generic audio signal, the overall complex
impedance vs frequency characteristic of the speaker is involved.
11.4.5 I2C control and timing
The user must set IB3[0] in order to start the open load in play detection.
Once the test is started, the internal circuits required for the detection are turned on,
requiring a settling time lasting approximately 500 ms.
When the internal circuits are ready to work, both digital input signal and output current
measurement start being evaluated, following the impedance threshold set through IB10[6].
Depending on the audio signal characteristics, the evaluation can last from 300 ms to 1 s
approximately.
At the end of the evaluation, the device:
Sets DB0[2]='1' to communicate that the test ended successfully, and resets IB3[0]
allowing the user to perform another test afterwards
Sets DB0[1]='1' to communicate that the test result is valid, otherwise sets DB0[1]='0' to
communicate that the test result is not valid.
Sets DB0[0]='1' to communicate that an open load has been detected, otherwise sets
DB0[0]='0' to communicate that an open load has not been detected.
Please note that the value on DB0[0] is significant only if the test result is valid.
If the test ends successfully but the result is not valid, the user must repeat the test. This
condition happens when the audio signal is not good enough for a reliable detection.
The detection timings are represented in Figure 54:
Figure 54. Open load in play detector timing
If the device FSM moves from PLAY to another state during the open load in play detection
routine, the test ends unsuccessfully by keeping the flag DB0[2] clear. The device
automatically resets IB3[0] allowing the user to repeat the test.
11.5 Input offset detector
Input offset detector aim is to detect an offset coming from the audio signal source through
I2S/TDM input stream.
For this purpose, the feature evaluates the input offset through a low-pass filter, which is
compared with a threshold equal to -18dBFs. If the measured offset exceeds the threshold,
Input Offset Detector sets the flag DB0[7] to '1'.
6HWWLQJWLPH
PV
(YDOXDWLRQ
VWDUW
W>V@
2SHQ/RDGLQ3OD\
'HWHFWRUVWDUW,&
2SHQ/RDGLQ3OD\
'HWHFWRURXWSXW,&
(YDOXDWLRQ
PVĺV
*$'*36
Diagnostic FDA803D
44/78 DocID031487 Rev 2
Moreover, if the high-pass filter function is enabled through IB3[2], the input offset is
eliminated, guaranteeing a complete robustness in case of any malfunction coming from the
audio signal source.
11.6 Output voltage offset detector
Output voltage offset detector aim is to detect a voltage offset on the output.
For this purpose, an internal circuit detects when the voltage value on FBP pin or on FBM
pin exceeds 1V difference with respect to Vcc/2 value, generating a fault condition. If the
fault condition persists for 90ms consecutively, the circuits sets the flag on I2C bit DB0[3]. As
soon as the fault condition is removed, both the flag DB0[3] and the 90ms counter are reset.
The implemented logic avoids false detections in case of very low signal frequency.
The feature operation is showed in Figure 55:
Figure 55. Output voltage offset detector operation
When enabled, the feature is active both in MUTE and in PLAY states.
Please note that the Output Voltage Offset Detector must not be enabled when FBP and
FBM pins are shorted with OUTP and OUTM pins, i.e. for feedback before filter
configuration: the full-swing PWM outputs don't allow the fault condition persisting for more
than 90ms even in case of offset. A valid and robust alternative is provided by the Output
Current Offset Detector.
The offset detector output is provided in two forms:
Enables the pull down on CDDiag pin, if IB4[7]='1'
Sets the flag DB0[3]='1'
ĐϮ
ĐϮнϭs
sĐĐϮͲϭs
&W &D
&ĂƵůƚ
ĐŽŶĚŝƚŝŽŶ
фϵϬŵƐ фϵϬŵƐ
KƵƚƉƵƚsŽůƚĂŐĞ
KĨĨƐĞƚĞƚĞĐƚŽƌ
ϵϬŵƐ
*$'*36
DocID031487 Rev 2 45/78
FDA803D Diagnostic
77
11.7 Output current offset detector
Output current offset detector aim is to detect a current offset on the output.
11.7.1 Output current offset detector operation principle
The device senses the differential DC current flowing through the output pins OUTP and
OUTM. In particular, in reference to Figure 56, the measured current offset is:
IOFFSET = |IOUTP-IOUTM|/2.
Figure 56. Current offset measurement
The measured current offset is then compared with a current threshold, which can be set by
means of I2C bits IB10[4,3]: if it exceeds the chosen threshold, the device communicate that
an output current offset has been detected.
11.7.2 Result communication and I2C control
The output current offset detection consists in one single-shot test. The feature is controlled
through I2C commands.
In order to start the detection, the user must set IB3[3]='1'.
At the end of the test, the internal control logic performs the following operations:
Sets DB0[6]='1' to communicate that the test is ended and the result is valid
Sets DB0[5]='1' if an offset has been detected, or DB0[5]='0' if no offset has been
detected
Sets IB3[3]='0', allowing the user to perform another test afterwards
The detection can be start in MUTE state or in PLAY state. If the user sets IB3[3]='1' while
the device FSM state is different, the test starts as soon as the device FSM enters in MUTE
or PLAY state.
11.7.3 Hot spot detection
The output current offset detector enables the possibility to detect a soft short to Vcc or to
Gnd occurring when the PWM is already turned on, guaranteeing improved robustness
against hot spot formation.
The operation principle is shown in Figure 57:
2870
2873
,2873
,2870
*$'*36
Diagnostic FDA803D
46/78 DocID031487 Rev 2
Figure 57. Hot spot detection
In standard operative condition, the DC value of IOUTP and IOUTM is zero, therefore the
measured output current offset is zero.
When a soft short is connected between one output and Vcc or Gnd, the corresponding
output drives an additional current ISHORT. The device interprets half of the mentioned
current as offset: IOFFSET = |IOUTP-IOUTM|/2 = |ISHORT|/2.
In conclusion, if half of the DC current flowing in the short circuit exceeds the threshold
selected through IB10[4,3], Output Current Offset Detector communicates an offset
detection.
11.8 PWM pulse skipping detector
Pulse skipping detector aim is to detect the PWM stage saturation.
The feature detects pulse skipping when, for each output, at least two consecutive PWM
commutations have been skipped. The operation is shown in Figure 58:
Figure 58. PWM pulse skipping detector operation
In order to enable the PWM pulse skipping detector, the user must set IB5[5,4]='01'.
When detecting pulse skipping, the feature provides the output in two forms:
Enables the pull down on CDDiag pin
Sets the flag DB1[0]='1'
As soon as the pulse skipping condition is removed, both the outputs are reset.
The suggested utilization for this function is to connect a low-pass filter to CDDiag pin,
therefore comparing the output with a voltage threshold. The lower is the CDDiag pin
average voltage, the higher is the distortion.
2870
2873
,2873
,2870
,6+257
*$'*36
3:0RXW
3:03XOVH
6NLSSLQJ
'HWHFWRURXW
*$'*36
DocID031487 Rev 2 47/78
FDA803D Diagnostic
77
11.9 Thermal protection
The device integrates different protection levels against over-temperature conditions.
The first protection level consists only in communicating if the temperature exceeds four
different thresholds, from TW4 to TW1. The result is provided in two ways:
Setting DB1[7-4];
Pulling down the CDDiag pin, coherently with the setting of IB4[6-4].
If needed, the user is in charge of taking proper actions to counteract the temperature rising.
The second protection level consists in the output signal attenuation as a function of the
temperature, in order to reduce the power dissipation. The thermal attenuation occurs in the
temperature range between Tpl and Tph, as shown in Figure 59.
The third level protection consists in switching off the power stage when the temperature
overpasses the Tsh value. As shown in Figure 2, after thermal shutdown triggering, the
device FSM enters in "Short to Vcc / Gnd diagnostic state", preventing subsequent power
stage turn on in case of shorts to battery or ground.
The temperature values TW4, TW3, TW2, TW1, Tpl, Tph, Tsh are always in tracking,
independently of the parameters spread. If the user sets the I2C bit IB12[7], all the
mentioned thresholds are reduced of 15°C.
Figure 59. Thermal attenuation curve
6LJQDODWWHQXDWLRQ
7HPSHUDWXUH
7: 7: 7: 7: 7SO 7SK 7VK
G%
G%
*$'*36
Diagnostic FDA803D
48/78 DocID031487 Rev 2
11.10 Watch-dog
The user can enable an internal watch-dog, setting I2C IB9[4]='1'.
The function is based on a timer which is reset at each Word Select line rising edge, and
which reaches the timeout in:
2.9 ms if fs = 44.1 kHz;
2.7 ms if fs = 48 kHz, 96 kHz, 192 kHz.
When the timer reaches the timeout, the function performs two operations:
Sends a muting command to the amplifier
Sets a flag on DB6[2]
In case of timeout, the muting command is released as soon as the timer is reset by a new
Word Select line edge.
11.11 Error frame check
The device integrates a function called "Error frame check", which is permanently enabled.
The function counts the number of rising edges received on the Clock line, starting from
each rising edge of Word Select line. At the end of the data frame, marked by the
subsequent rising edge on Word Select line, the function checks that the reached count is
coherent with the I2C configuration of the I2S protocol.
In case the function detects an error, the device sets a flag on DB6[1].
DocID031487 Rev 2 49/78
FDA803D Additional features
77
12 Additional features
12.1 AM operation mode
The device provides special functions in order to avoid EM interferences when the radio is
tuned on an AM station.
The first function consists in allowing the user to select a proper PWM switching frequency
through I2C interface, depending on the AM station selected by the tuner. The PWM
switching frequency selection is available only in case the I2S frame clock is 44.1 kHz or 48
kHz, as shown in Figure 60.
Figure 60. PWM switching frequency selection
Actually, the PWM spectrum of the output square wave can be controlled in AM band just in
case it is possible to fix the switching frequency, in other words without skipping any power
stage commutation (typical phenomenon for a class D amplifier close to the clipping). The
device provides an additional function called LRF (Low Radiation Function). This I2C option
assures a minimum duty cycle for the PWM output square wave avoiding any missing
pulses.
Figure 61. LRF effect on PWM output
*$3*36
N+]
N+]
N+]
N+]
N+]
N+]
3:0VZLWFKLQJIUHTXHQF\
3:0VZLWFKLQJIUHTXHQF\
N+],6IUDPHFORFN
N+],6IUDPHFORFN
9VV
9VV
9VV
9VV
9VV
&OLSSLQJZLWKRXW/5)
12/5)
&OLSSLQJZLWK/5)
/5)
PLVVLQJFRPPXWDWLRQ
IRUFHGFRPPXWDWLRQ
*$3*36
Additional features FDA803D
50/78 DocID031487 Rev 2
Please note that, by limiting the PWM duty cycle, a limitation of the output power occurs: the
output power in case of usage of LRF function decreases about 10 % @ 1 % THD.
12.2 Noise gating
Noise gating is an automatic noise reduction feature that activates when output signal
reaches not audible levels.
When input signal levels falls below -109 dBFs, the system activity is automatically
optimized in order to exploit very low noise level on the output speakers.
The noise gating process has a 500 ms watching time before turning on, in order to avoid
spurious activations.
The feature is enabled by default and can be disabled selecting IB3[1].
12.3 Dither PWM
The device implements a function, Dither PWM, which can be enabled through I2C bus by
setting IB1[2].
The main target of this feature is to improve the EMC performances in the range [10
30 MHz], especially in MUTE condition.
The function consists in modulating the period of the output PWM. The function doesn’t
affect the average PWM frequency.
The modulation pattern is repeated every 8 PWM clock cycles, in order to avoid introducing
significant noise in the audio bandwidth.
A qualitative example of the function operation is depicted in Figure 62.
Figure 62. Dither PWM effect on output PWM
Note: The use of this function is suggested only with In Phase modulation.

'LWKHU3:0GLVDEOHG
'LWKHU3:0HQDEOHG
*$'*36
DocID031487 Rev 2 51/78
FDA803D I2S bus interface
77
13 I2S bus interface
The device receives the audio signal through I2S bus.
The I2S bus is composed of three lines:
Clock line (I2Sclk pin);
Word Select line (I2Sws pin);
Serial Data line (I2Sdata pin).
The Word Select line frequency must be always equal to the audio sampling frequency fs.
According to the I2C setting of IB1[7-5], the device supports the following standards for
sampling frequency:
44.1 kHz;
48 kHz;
96 kHz;
192 kHz.
According to the I2C setting of IB0[6-5], the user can send the audio signal with the following
data formats:
I2S standard (max fs = 192 kHz);
TDM - 4CHs (max fs = 192 kHz);
TDM - 8CHs (max fs = 96 kHz);
TDM - 16CHs (max fs = 48 kHz).
For all the mentioned data formats, the user must provide the data word following two's
complement representation, starting from the MSB. The data word is composed of 32 bits:
the device processes only the first 24 most significant bits, while it does not care the least
significant 8 bits.
The internal PLL locks on the Clock line signal: when the I2S clock is missing or corrupted,
the PLL consequently unlocks and the device forces the finite state machine in standby
state. Furthermore, since the Clock line frequency is dependent on I2S bus configuration, it
is strictly necessary to configure the I2C bits IB0[6-5] and IB1[7-5] accordingly.
I2S bus interface FDA803D
52/78 DocID031487 Rev 2
13.1 I2S standard mode description
The I2S standard format is shown in Figure 63.
The Clock line frequency is equal to 64 fs.
With a proper I2C configuration, the user can select the channel containing the data to be
processed:
Right channel - IB0[4-1]='0000'
Left channel - IB0[4-1]='0001'
Figure 63. I2S standard mode
13.2 TDM 4CH mode description
The TDM4 format is shown in Figure 64.
The clock line frequency is equal to 128 fs.
With a proper I2C configuration, the user can select the slot containing the data to be
processed:
Slot 0 - IB0[4-1]='0000'’
Slot 1 - IB0[4-1]='0001'’
Slot 2 - IB0[4-1]='0010'’
Slot 3 - IB0[4-1]='0011'.
Figure 64. TDM4 mode
[IV
,6FON
,6ZV
,6GDWD/HIWFKDQQHO 5LJKWFKDQQHO
IV
[IV [IV
7
6&.
*$'*36
,6FON
IV
,6ZV
7
6&.
7
:6+
6ORW 6ORW 6ORW 6ORW ,6GDWD
[IV
*$'*36
DocID031487 Rev 2 53/78
FDA803D I2S bus interface
77
13.3 TDM 8CH mode description
The TDM8 format is shown in Figure 65.
The clock line frequency is equal to 256 fs.
With a proper I2C configuration, the user can select the slot containing the data to be
processed:
Slot 0 - IB0[4-1]='0000',
Slot 1 - IB0[4-1]='0001',
Slot 2 - IB0[4-1]='0010',
Slot 3 - IB0[4-1]='0011',
Slot 4 - IB0[4-1]='0100',
Slot 5 - IB0[4-1]='0101',
Slot 6 - IB0[4-1]='0110',
Slot 7 - IB0[4-1]='0111'.
Figure 65. TDM8 mode
,6FON
IV
,6ZV
,6GDWD
[IV
6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW 6ORW
7
:6+
7
6&.
*$'*36
I2S bus interface FDA803D
54/78 DocID031487 Rev 2
13.4 TDM 16CH mode description
The TDM8 format is shown in Figure 66.
The clock line frequency is equal to 512 fs.
With a proper I2C configuration, the user can select the slot containing the data to be
processed:
Slot 0 - IB0[4-1]='0000',
Slot 1 - IB0[4-1]='0001',
Slot 2 - IB0[4-1]='0010',
Slot 3 - IB0[4-1]='0011',
Slot 4 - IB0[4-1]='0100',
Slot 5 - IB0[4-1]='0101',
Slot 6 - IB0[4-1]='0110',
Slot 7 - IB0[4-1]='0111',
Slot 8 - IB0[4-1]='1000',
Slot 9 - IB0[4-1]='1001',
Slot 10 - IB0[4-1]='1010,'
Slot 11 - IB0[4-1]='1011',
Slot 12 - IB0[4-1]='1100',
Slot 13 - IB0[4-1]='1101',
Slot 14 - IB0[4-1]='1110',
Slot 15 - IB0[4-1]='1111'.
Figure 66. TDM16 mode
,6FON
IV
,6ZV
[IV
6ORW

6ORW

6ORW

6ORW

6ORW

6ORW

6ORW

6ORW

6ORW

6ORW
6ORW

6ORW

6ORW

6ORW

6ORW

6ORW

,6GDWD
7
:6+
7
6&.
*$'*36
DocID031487 Rev 2 55/78
FDA803D I2S bus interface
77
13.5 Timing requirements
Figure 67. I2S Interface timings
Figure 68. I2S clock transition timings
Table 10. I2S Interface timings
Symbol Parameter Note Min Max Unit
TSCK
I2S clock period 40.69 ns
I2S clock period tolerance 0.9 x TSCK 1.1 x TSCK
I2S clock duty cycle 40 60 %
TSCKH I2S clock high time 15 ns
TSCKL I2S clock low time 15 ns
TSCKT I2S clock transition time 6 ns
TDS
I2S data (and word select)
setup time (before I2S clock
rising edge)
8ns
TDH
I2S data (and word select)
hold time (after I2S clock rising
edge)
8ns
TWSH I2S word select high time
I2S standard 32 x TSCK
TDM4 format 1 x TSCK 127 x TSCK
TDM8 format 1 x TSCK 255 x TSCK
TDM16 format 1 x TSCK 511 x TSCK
,FON
7
'6
,6GDWD
76&.
7
'+
*$'*36
76&.+ 76&./
76&.7 76&.7
9,+,6 9
9,/,6 9
*$'*36
I2S bus interface FDA803D
56/78 DocID031487 Rev 2
13.6 Group delay
The group delay depends on the sampling frequency fs, properly configured with I2C bits
IB1[7-5]. The typical value for all the configurations is reported in Table 11:
Table 11. Group delay dependency from input sampling frequency
Input sampling frequency fs Group delay
44.1 kHz 465 s
48 kHz 430 s
96 kHz 50 s
192 kHz 30 s
DocID031487 Rev 2 57/78
FDA803D I2C bus interface
77
14 I2C bus interface
Data transmission from microprocessor to the FDA803D and viceversa takes place through
the 2 wires I2C bus interface, consisting of the two lines SDA and SCL (pull-up resistors to
positive supply voltage must be connected).
When I2C bus is active any operating mode of the IC may be modified and the diagnostic
may be controlled and results read back.
The protocol used for the bus is depicted in Figure 69 and comprises:
a start condition (S)
a chip address byte (the LSB bit determines read/write transmission)
a subaddress byte
a sequence of data (N-bytes + acknowledge)
a stop condition (P)
Figure 69. I2C bus protocol description
1. The I2C addresses are:
Address 1 = 1110000
Address 2 = 1110001
Address 3 = 1110010
Address 4 = 1110011
Address 5 = 1110100
Address 6 = 1110101
Address 7 = 1110110
Address 8 = 1110111
Description:
S = Start
R/W = '0' => Receive-Mode (Chip could be programmed by P)
I = Auto increment; when 1, the address is automatically incremented for each
byte transferred
X: not used
A = Acknowledge
P = Stop
MAX CLOCK SPEED 400kbit/sec
 
*$3*36
'DWD
6XEDGGUV
$GGUHVV
$GGUHVV 6XEDGGUHVV$6 $ 'DWD 3
'$7$
,
'$7$
;
'$7$
;
'$7$
68%$
'$7$
68%$
'$7$
68%$
'$7$
68%$
'$7$
68%$
5:
I2C bus interface FDA803D
58/78 DocID031487 Rev 2
14.1 Writing procedure
There are two possible procedures:
1. without increment: the I bit is set to 0 and the register is addressed by the subaddress.
Only this register is written by the data following the subaddress byte.
2. with increment: the I bit is set to 1 and the first register write is the one addressed by
subaddress. The registers are written from this address up to stop bit or the reaching of
last register.
14.2 Reading procedure
The reading procedure is made up only by the device address (sent by master) and the data
(sent by slave) as reported in Figure 70 (a). In particular when a reading procedure is
performed the first register read is the last addressed in a previous access to I2C peripheral.
Hence, to read a particular register also a sort of write action (a write interrupted after the
sub-address is sent) is needed to specify which register has to be read. Figure 70 (b) shows
the complete procedure to read a specific register where:
the master performs a write action by sending just the device address and the
subaddress; the transmission must be interrupted with the stop condition when the
subaddress is sent.
now, the read procedure can be performed: the master starts a new communication
and sends the device address; then the slave (FDA803D) will respond by sending the
data bits.
the read communication is ended by the master which sends a stop condition preceded
by a not-acknowledge.
Instead, performing a start immediately after the stop condition could be possible for
generating the repeated start condition (Sr) which also keeps busy the I2C bus until the stop
is reached (Figure 70 (c)).
Figure 70. Reading procedure
There are two possible reading procedures:
1. without auto-increment (Figure 71 (a)) if the "I" bit of the last I2C writing procedure has
been set to 0: in this case only the register addressed by the sub-address sent in the
previous writing procedure is read;
2. with auto-increment (Figure 71 (b)) if the "I" bit of the last I2C write procedure has been
set to 1: in this case the first register read is the one addressed by sub-address sent in
the previous writing procedure. Only the registers from this address up to the stop bit
are read.
$GGUHVV $ $ 3
6 $ $ 3 $ 3$
6
6 $ $ 6U $ 3$
*$3*36
6XEDGGUHVV
6XEDGGUHVV
6
$GGUHVV
$GGUHVV
$GGUHVV
$GGUHVV
'DWD
'DWD
'DWD
F
E
D
DocID031487 Rev 2 59/78
FDA803D I2C bus interface
77
Figure 71. Without/with auto-increment reading procedure
If a microcontroller tries to read an undefined register, FDA803D will return a "0xFF" data;
for more details refer directly to I2C specification.
14.3 Data validity
The data on the SDA line must be stable during the high period of the clock. The HIGH and
LOW state of the data line can only change when the clock signal on the SCL line is LOW.
14.4 Start and stop conditions
A start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH.
The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.
14.5 Byte format
Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an
acknowledge bit. The MSB is transferred first.
14.6 Acknowledge
The transmitter* puts a resistive HIGH level on the SDA line during the acknowledge clock
pulse. The receiver** has to pull-down (LOW) the SDA line during the acknowledge clock
pulse, so that the SDA line is stable LOW during this clock pulse.
* Transmitter
= master (P) when it writes an address to the FDA803D
= slave (FDA803D) when the P reads a data byte from FDA803D
** Receiver
= slave (FDA803D) when the P writes an address to the FDA803D
= master (P) when it reads a data byte from FDA803D
6 $ $ 6U $ 3$
6 $ $ 6U
$&
$ 3$$
*$3*36


ELQFUHPHQWDOUHDGRIDDDDDDQGDDDDDUHJLVWHUV
DQRLQFUHPHQWDOUHDGRIDDDDDUHJLVWHUV
;;DDDDD
;;DDDDD


'DWD
'DWD
'DWD
I2C bus interface FDA803D
60/78 DocID031487 Rev 2
14.7 I2C timing
This paragraph describes more in detail the I2C bus protocol used and its timings.
Please refer to Table 12 and Figure 72 below.
Figure 72. I2C bus interface timing
Table 12. I2C bus interface timing
Symbol Parameter Min Max Unit
Fscl SCL (clock line) frequency - 400 kHz
Tscl SCL period 2500 - ns
Tsclh SCL high time 0.6 - s
Tscll SCL low time 1.3 - s
Tsstart Setup time for start condition 0.6 - s
Thstart Hold time for start condition 0.6 - s
Tsstop Setup time for stop condition 0.6 - s
Tbuf Bus free time between a stop and a start condition 1.3 - s
Tssda Setup time for data line 100 - ns
Thsda Hold time for data line 0(1)
1. Device must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined
region of the falling edge of SCL.
-ns
Tf Fall time for SCL and SDA - 300 ns
'!0'03
4BUF
3#,
3$! -3" -3" !#+
4SSTART
START
4HSTART 4SSDA 4HSDA
4SCLP
4SSTOP
STOP
4SCLL
4SCLH
DocID031487 Rev 2 61/78
FDA803D I2C bus interface
77
14.8 I2S, I2C and Enable relationship
FDA803D provides both I2C and I2S communication by means of two different digital
interfaces but connected to each other interfaces and clock domains.
To program the I2C interface the I2S clock must be present, and at least 10 ms should have
passed from the Enable pins setting event.
In FDA803D the digital part has different clock domains:
The I2C programming block clock is the I2C clock
The I2S receiver clock which is the I2S clock
The system clock which is generated by an internal PLL.
The I2C commands are not effective if I2S clock is not present. However they will remain
memorized inside I2C registers.
If I2S clock is lost the digital machine goes in standby.
I2S clock (SCK) should be given to device before enabling it (Enable pins set to ‘out of
standby’).
I2C register FDA803D
62/78 DocID031487 Rev 2
15 I2C register
15.1 Instruction bytes- “I00xxxxx”
Table 13. IB0-ADDR: “I0000000”
Data bit Default value Definition
D7 0
Lock bit:
0 - Write on IBs is enable
1 - Write on IBs is disable
D6
00
Digital input settings:
D5
D4-D1 0000
4 bits for channel position selection for I2S standard, TDM4, 8 and 16:
D4-D1 Position selection
0000 slot 0 (TDM mode) - right ch. (I2S mode
0001 slot 1 (TDM mode) - left ch. (I2S mode)
0010 slot 2 (TDM mode)
0011 slot 3 (TDM mode)
0100 slot 4 (TDM 8 and 16 mode)
0101 slot 5 (TDM 8 and 16 mode)
0110 slot 6 (TDM 8 and 16 mode)
0111 slot 7 (TDM 8 and 16 mode)
1000 slot 8 (TDM 16 mode)
1001 slot 9 (TDM 16 mode)
1010 slot 10 (TDM 16 mode)
1011 slot 11 (TDM 16 mode)
1100 slot 12 (TDM 16 mode)
1101 slot 13 (TDM 16 only)
1110 slot 14 (TDM 16 only)
1111 slot 15 (TDM 16 only)
D0 0 0 - Standard voltage mode
1 - Low voltage mode
D6-D5 Input setting
00 I2S standard
01 TDM – 4 CHs
10 TDM – 8 CHs
11 TDM – 16 CHs
DocID031487 Rev 2 63/78
FDA803D I2C register
77
Table 14. IB1-ADDR: “I0000001”
Data bit Default value Definition
D7 - D6 00
Digital input frame sync frequency (Fs):
D7-D6 Frame sync (WS) frequency
00 44.1 kHz
01 48 kHz
10 96 kHz
11 192 kHz
D5 0 Reserved
D4 - D3 00
Switching frequency expressed in kHz.
D4-D3 I2S frame sync frequencies (WS) [kHz]
44.1 48 96 192
00 308.7 336 384 384
01 352.8 384 384 384
10 396.9 432 384 384
11 Reserved Reserved Reserved Reserved
D2 0 0 - PWM amplifier clock not dithered
1 - PWM amplifier clock dithered
D1 0 Reserved
D0 0 0 - PWM in phase
1 - PWM out of phase
I2C register FDA803D
64/78 DocID031487 Rev 2
Table 15. IB2-ADDR: “I0000010”
Data bit Default value Definition
D7-D6 00
"DiagShort2Supply" timing selection:
D7-D6 Timing
00 90 ms
01 70 ms
10 45 ms
11 20 ms
D5 0 Reserved
D4 0 0 - Low radiation function OFF
1 - Low radiation function ON
D3 - D0 0000
Power limiting Function configuration
D3-D0 Power limiting Config
0000 Power limiter disabled
0001 Power limited with maximum voltage scale at 15%
0010 Power limited with maximum voltage scale at 20%
0011 Power limited with maximum voltage scale at 25%
0100 Power limited with maximum voltage scale at 30%
0101 Power limited with maximum voltage scale at 35%
0110 Power limited with maximum voltage scale at 40%
0111 Power limited with maximum voltage scale at 45%
1000 Power limited with maximum voltage scale at 50%
1001 Power limited with maximum voltage scale at 60%
1010 Power limited with maximum voltage scale at 70%
1011 Power limited with maximum voltage scale at 80%
1100 Reserved
1101 Reserved
1110 Reserved
1111 Reserved
DocID031487 Rev 2 65/78
FDA803D I2C register
77
Table 16. IB3-ADDR: “I0000011”
Data bit Default value Definition
D7 - D7 0 Reserved
D5 0 0 - Output Voltage offset detector disable
1 - Output Voltage offset detector enable
D4 0 0 - Input offset detector disable
1 - Input offset detector enable
D3 0 0 - Output Current offset / hot spot detector disable
1 - Output Current offset / hot spot detector enable
D2 0 0 - No Highpass in the DAC
1 - Highpass in the DAC
D1 0 0 - Noise gating enable
1 - Noise gating disable
D0 0 0 - Open Load detection in play disable
1 - Open Load detection in play enable
Table 17. IB4-ADDR: “I0000100” - CDDiag pin configuration
Data bit Default value Definition
D7 0 0 - No Output Voltage offset information on CDDiag pin
1 - Output Voltage offset information on CDDiag pin
D6-D4 00
Temperature warning information on CD/DIAG pin:
D6-D4 CDDiag configuration
000 No thermal warning
001 TW1
010 TW2
011 TW3
100 TW4
101 Reserved
110 Reserved
111 Reserved
D3 0 0 - No Overcurrent information on CD/DIAG pin
1 - Overcurrent information on CD/DIAG pin
D2 0 0 - No Input Offset information on CD/DIAG pin
1 - Input Offset information on CD/DIAG pin
D1 0 0 - No Short to Vcc / Short to GND information on CD/DIAG pin
1 - Short to Vcc / Short to GND information on CD/DIAG pin
D0 0 0 - No High Voltage Mute information on CD/Diag pin
1 - High Voltage Mute information on CD/Diag pin
I2C register FDA803D
66/78 DocID031487 Rev 2
Table 18. IB5-ADDR: “I0000101” - CDDiag pin configuration
Data bit Default value Definition
D7 0 0 - No UVLOVCC information on CDDiag pin
1 - UVLOVCC information on CDDiag pin
D6 0 0 - No Thermal shutdown information on CDDiag pin
1 - Thermal shutdown information on CDDiag pin
D5-D4 00
Clipping information on CDDiag pin:
D5-D4 CDDiag configuration
00 No clipping information
01 PWM Pulse Skipping detector
10 Reserved
11 Reserved
D3-D0 0000 Reserved
Table 19. IB6-ADDR: “I0000110”
Data bit Default value Definition
D7-D6 00
Mute timing setup, (values with fsample = 44.1 kHz):
D7-D6 Type of mute Mute time Unit
00 Very Fast 3 ms
01 Fast 45 ms
10 Slow 90 ms
11 Very Slow 185 ms
D5 0
Audio signal gain control:
0 - standard digital audio gain
1 - +6 db digital audio gain
D4 0 0 - standard gain
1 - low gain
D3-D0 0000 Reserved
Table 20. IB7-ADDR: “I0000111”
Data bit Default value Definition
D7-D6 00
Diagnostic ramp time selection:
D7-D6 Timing
00 Normal
01 x2
10 x4
11 /2
D5-D4 00
Diagnostic Hold Time selection:
D5-D4 Timing
00 Normal
01 x2
10 x4
11 /2
D3-D0 0000 Reserved
DocID031487 Rev 2 67/78
FDA803D I2C register
77
Table 21. IB8-ADDR: “I0001000” - CHANNEL CONTROLS
Data bit Default value Definition
D7-D6 11 Reserved
D5 0 0 - Channel in TRISTATE (PWM OFF)
1 - Channel with PWM ON
D4 0 0 - Channel DC Diag disable
1 - Channel DC Diag start
D3-D1 000
I2Stest pin configuration:
D3-D1 Function
000 High impedance configuration
001 Reserved
010 Reserved
011 Reserved
100 Reserved
101 Output: PWM synchronization signal
110 Reserved
111 Reserved
D0 0 0 - Channel in MUTE
1 - Channel in PLAY
Table 22. IB9-ADDR: “I0001001”
Data bit Default value Definition
D7-D5 000 Reserved
D4 0 0 - watch-dog for word select managing
1 - no watch-dog for word select managing
D3-D0 0000 Reserved
Table 23. IB10-ADDR: “I0001010”
Data bit Default value Definition
D7 0
Short load impedance threshold (DC Diagnostic):
0 - 0.75
1 - 0.5
D6 0
Open load impedance threshold (DC Diagnostic & Open load in play
detector):
0 - 25
1 - 15
D5 0 Reserved
I2C register FDA803D
68/78 DocID031487 Rev 2
D4-D3 10
Output Current Offset Detector threshold configuration
D3-D2 Offset Detector threshold
00 Reserved
01 0.25 A (i.e. 2 V with 8 load)
10 0.5 A (i.e. 2 V with 4 load)
11 1.0 A (i.e. 2 V with 2 load)
D2-D0 000 Reserved
Table 23. IB10-ADDR: “I0001010” (continued)
Data bit Default value Definition
Table 24. IB11-ADDR: “I0001011”
Data bit Default value Definition
D7-D6 00 Reserved
D5-D4 0
Over current protection level selection:
D5 D4 Iprot VDD>5.4VIprot VDD<5.4V
00 11A 6A
0 1 8A 6A
1 0 6A 4A
1 1 4A 4A
D3 0 0 - Deafult
1 - PWM Slow Slope
D2-D0 000 Reserved
Table 25. IB12-ADDR: “I0001100”
Data bit Default value Definition
D7 0 0 - Standard thermal warning
1 - Thermal warning shift -15 °C
D6-D0 0001000 Reserved
DocID031487 Rev 2 69/78
FDA803D I2C register
77
Table 26. IB13-ADDR: “I0001101”
Data bit Default value Definition
D7 0 Reserved
D6 0
0 - Digital mute enabled in PLAY when StartAnalogMute without Thermal
Warning 1 occurs
1 - Digital mute disabled in PLAY when StartAnalogMute without Thermal
Warning 1 occurs
D5-D0 100000 Reserved
Table 27. IB14-ADDR: “I0001110”
Data bit Default value Definition
D7-D5 000 Reserved
D4 0 0 - feedback on LC filter
1 - feedback on Out Pin
D3
100
LC filter setup:
D2
D1
D0 0 0 – FIRST setup not programmed via I2C
1 – FIRST setup programmed – ready to work
d3-d2-d1 LC filter
000 Reserved
001 10 H + 2.2 F Out Phase
010 10 H + 2.2 F In Phase
011 10 H + 3.3 F Out Phase
100 10 H + 3.3 F In Phase
101 10 H + 4.7 F Out Phase
110 10 H + 4.7 F In Phase
111 Reserved
I2C register FDA803D
70/78 DocID031487 Rev 2
15.2 Data bytes - “I01xxxxx”
Legend:
Type "S/C": the hardware can only set the flag. An I2C reading operation clears the
flag.
Type "SR/C": the hardware can set or reset the flag. An I2C reading operation clears
the flag.
Type "SR": the hardware can set or reset the flag. An I2C reading operation doesn't
affect the flag.
Table 28. DB0-ADDR: “I0100000”
Data bit Type Definition
D7 S/C 0 – Offset at input not present
1 – Offset at input present
D6 SR/C 0 – Output Current offset not valid
1 – Output Current offset valid
D5 SR/C 0 – Output Current offset not present
1 – Output Current offset present
D4 S/C Reserved
D3 S/C 0 – Output Voltage offset not present
1 – Output Voltage offset present
D2 SR/C 0 – Open Load in Play test not ended
1 – Open Load in Play test ended
D1 SR/C 0 – Open Load in Play test input signal not valid
1 – Open Load in Play test input signal valid
D0 SR/C 0 – Open Load in Play not detected
1 – Open Load in Play detected
DocID031487 Rev 2 71/78
FDA803D I2C register
77
Table 29. DB1-ADDR: “I0100001”
Data bit Type Definition
D7 SR/C 0 – Thermal warning 1 not active
1 – Thermal warning 1 active
D6 SR/C 0 – Thermal warning 2 not active
1 – Thermal warning 2 active
D5 SR/C 0 – Thermal warning 3 not active
1 – Thermal warning 3 active
D4 SR/C 0 – Thermal warning 4 not active
1 – Thermal warning 4 active
D3 SR/C 0 - PLL not locked
1 - PLL locked
D2 S/C
0 - UVLOALL not detected
1 - UVLOALL detected
(NOTE: after turn-on, the first reading of this flag will be always 1)
D1 S/C 0 - No Overvoltage Shutdown detected
1 - Overvoltage Shutdown detected
D0 S/C 0 - PWM pulse skipping not detected
1 - PWM pulse skipping detected
Table 30. DB2-ADDR:"I0100010"
Data bit Type Definition
D7 SR/C 0 – Channel DC diagnostic pulse not ended
1 – Channel DC diagnostic pulse ended
D6 SR/C 0 – Channel DC diagnostic data not valid
1 – Channel DC diagnostic data valid
D5 S/C 0 – Channel Over current not detected
1 – Channel Over current protection triggered
D4 SR/C 0 – No Short Load on Channel
1 – Short Load on Channel
D3 SR 0 – No Short to Vcc on Channel
1 – Short to Vcc on Channel
D2 SR 0 – No short to Gnd on Channel
1 – Short to Gnd on Channel
D1 SR/C 0 – No Open Load on Channel
1 – Open Load on Channel
D0 SR/C 0 – Channel in mute
1 – Channel in play
I2C register FDA803D
72/78 DocID031487 Rev 2
Table 31. DB3-ADDR: “I0100011” DC Diagnostic Error code
Data bit Type Definition
D7
SR/C DC Diagnostic Error code
D6
D5
D4
D3
D2
D1
D0
Table 32. DB6-ADDR:"I0100110"
Data bit Type Definition
D7 S/C 0 – High Voltage Mute not Started
1 – High Voltage Mute Started
D6 S/C 0 – UVLOVCC not detected
1 – UVLOVCC detected
D5 S/C 0 – Thermal shutdown not detected
1 – Thermal shutdown detected
D4 S/C 0 – No analog mute started
1 – Start analog mute (-0.5 dB attenuation reached)
D3 S/C Reserved
D2 SR/C 0 – watch-dog for word select not occured
1 – watch-dog for word select occurred
D1 S/C 0 – no error frame checked
1 – error frame checked
D0 S/C Reserved
DocID031487 Rev 2 73/78
FDA803D Package information
77
16 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
16.1 PowerSSO-36 (exposed pad) package information
Figure 73. PowerSSO-36 (exposed pad) package outline
B,B(+
E
FF
E
%$6(0(7$/
:,7+3/$7,1*
+
(
'
JJJ &$% '
JJJ &$% '
ș
*$8*(3/$1(
/
6
ș
/
/
%
%
K
K
ș
ș
(
'
$$
$
H
E
GGG &'
&
FFF &
6($7,1*3/$1(
 HHH &
'
III &$%
[
$
(
'
EEE &
[17,36
(
$
$
1
1
%
DDD &'
[
(
'
LQGH[DUHD
'[(
SLQLQGLFDWRU
5
5
*[
*
*
*
*
%RWWRPYLHZ
7RSYLHZ
*$3*36
6HFWLRQ$$
6HFWLRQ%%
VHH6HFWLRQ$$
VHH6HFWLRQ%%
0
0
0
Package information FDA803D
74/78 DocID031487 Rev 2
Table 33. PowerSSO-36 exposed pad (D1 and E2 use the option variation B) package
mechanical data
Ref
Dimensions
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
- -
1 - 10° - 10°
20°- -0°- -
A 2.15 - 2.45 0.0846 - 0.0965
A1 0.0 - 0.1 0.0 - 0.0039
A2 2.15 - 2.35 0.0846 - 0.0925
b 0.18 - 0.32 0.0071 - 0.0126
b1 0.13 0.25 0.3 0.0051 0.0098 0.0118
c 0.23 - 0.32 0.0091 - 0.0126
c1 0.2 0.2 0.3 0.0079 0.0079 0.0118
D(2) 10.30 BSC 0.4055 BSC
D1 VARIATION
D2 - 3.65 - - 0.1437 -
D3 - 4.3 - - 0.1693 -
e 0.50 BSC 0.0197 BSC
E 10.30 BSC 0.4055 BSC
E1(2) 7.50 BSC 0.2953 BSC
E2 VARIATION
E3 - 2.3 - - 0.0906 -
E4 - 2.9 - - 0.1142 -
G1 - 1.2 - - 0.0472 -
G2 - 1 - - 0.0394 -
G3 - 0.8 - - 0.0315 -
h 0.3 - 0.4 0.0118 - 0.0157
L 0.55 0.7 0.85 0.0217 - 0.0335
L1 1.40 REF 0.0551 REF
L2 0.25 BSC 0.0098 BSC
N 36 1.4173
R 0.3 - - 0.0118 - -
R1 0.2 - - 0.0079 - -
S 0.25 - - 0.0098 - -
DocID031487 Rev 2 75/78
FDA803D Package information
77
Tolerance of form and position
aaa 0.2 0.0079
bbb 0.2 0.0079
ccc 0.1 0.0039
ddd 0.2 0.0079
eee 0.1 0.0039
ffff 0.2 0.0079
ggg 0.15 0.0059
VARIATIONS
Option A
D1 6.5 - 7.1 0.2559 - 0.2795
E2 4.1 - 4.7 0.1614 - 0.1850
Option B
D1 4.9 - 5.5 0.1929 - 0.2165
E2 4.1 - 4.7 0.1614 - 0.1850
Option C
D1 6.9 - 7.5 0.2717 - 0.2953
E2 4.3 - 5.2 0.1693 - 0.2047
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimensions D and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is ‘0.25
mm’ per side D and ‘0.15 mm’ per side E1. D and E1 are Maximum plastic body size dimensions including
mold mismatch.
Table 33. PowerSSO-36 exposed pad (D1 and E2 use the option variation B) package
mechanical data (continued)
Ref
Dimensions
Millimeters Inches(1)
Min. Typ. Max. Min. Typ. Max.
Package information FDA803D
76/78 DocID031487 Rev 2
16.2 Package marking information
Figure 74. PowerSSO-36 (exp. pad) marking information
Note: Engineering Samples: these samples are clearly identified by last two digits ‘ES’ in the
marking of each unit. These samples are intended to be used for electrical compatibility
evaluation only; usage for any other purpose may be agreed only upon written authorization
by ST. ST is not liable for any customer usage in production and/or in reliability qualification
trials.
Commercial Samples: Fully qualified parts from ST standard production with no usage
restrictions.
3RZHU6627239,(:
QRWLQVFDOH
/DVWWZRGLJLWV
(6(QJLQHHULQJVDPSOH
EODQN!&RPPHUFLDOVDPSOH
0DUNLQJDUHD
*$3*36B(6
DocID031487 Rev 2 77/78
FDA803D Revision history
77
17 Revision history
Table 34. Document revision history
Date Revision Changes
19-Feb-2018 1 Initial release.
03-May-2018 2 Datasheet changed from Confidentiality level to Public.
FDA803D
78/78 DocID031487 Rev 2
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2018 STMicroelectronics – All rights reserved