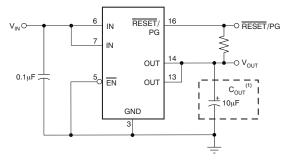


www.ti.com

SLVS232J-SEPTEMBER 1999-REVISED MARCH 2009

TPS775xx with RESET Output, TPS776xx with PG Output FAST-TRANSIENT-RESPONSE 500mA LOW-DROPOUT VOLTAGE REGULATORS


FEATURES

- Open Drain Power-On Reset with 200ms Delay (TPS775xx)
- Open Drain Power Good (TPS776xx)
- 500mA Low-Dropout Voltage Regulator
- Available in Fixed Output and Adjustable Versions
- Dropout Voltage to 169mV (Typ) at 500mA (TPS77x33)
- Ultralow 85µA Typical Quiescent Current
- Fast Transient Response
- 2% Tolerance Over Specified Conditions for Fixed-Output Versions
- 8-Pin SOIC and 20-Pin TSSOP PowerPAD™ (PWP) Packages
- Thermal Shutdown Protection

APPLICATIONS

- FPGA Power
- DSP Core and I/O Voltages

Typical Application Circuit (Fixed Voltage Options)

DESCRIPTION

The TPS775xx and TPS776xx devices are designed to have a fast transient response and be stable with a 10μ F low ESR capacitor. This combination provides high performance at a reasonable cost.

Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (typically 169mV at an output current of 500mA for the TPS77x33) and is directly proportional to the output current. Additionally, since the PMOS pass element is a voltage-driven device, the quiescent current is very low and independent of output loading (typically 85µA over the full range of output current, 0mA to 500mA). These two key specifications yield a significant improvement in operating life for battery-powered systems. This LDO family also features a sleep mode; applying a TTL high signal to EN (enable) shuts down the regulator, reducing the quiescent current to 1µA at $T_J = +25^{\circ}C$.

The RESET output of the TPS775xx initiates a reset in microcomputer and microprocessor systems in the event of an undervoltage condition. An internal comparator in the TPS775xx monitors the output voltage of the regulator to detect an undervoltage condition on the regulated output voltage.

Power good (PG) of the TPS776xx is an active high output, which can be used to implement a power-on reset or a low-battery indicator.

The TPS775xx and TPS776xx are offered in 1.5V, 1.6V (TPS77516 only), 1.8V, 2.5V, 2.8V (TPS77628 only), and 3.3V fixed-voltage versions and in an adjustable version (programmable over the range of 1.5V to 5.5V for the TPS77501 and 1.2V to 5.5V for the TPS77601). Output voltage tolerance is specified as a maximum of 2% over line, load, and temperature ranges. The TPS775xx and TPS776xx families are available in 8-pin SOIC and 20-pin TSSOP packages.

22

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION⁽¹⁾

PRODUCT	V _{OUT} ⁽²⁾
TPS775xx yyyz , TPS776 xxyyyz	 XX is nominal output voltage (for example, 28 = 2.8V, 285 = 2.85V, 01 = Adjustable). YYY is package designator. Z is package quantity.

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(2) Custom fixed output voltages are available; minimum order quantities may apply. Contact factory for details and availability.

ABSOLUTE MAXIMUM RATINGS

Over operating temperature range (unless otherwise noted)⁽¹⁾

PARAMETER	TPS775xx, TPS776xx	UNIT
Input voltage range, V _{IN} ⁽²⁾	-0.3 to +13.5	V
Voltage range at EN	-0.3 to +16.5	V
Maximum RESET voltage (TPS775xx)	16.5	V
Maximum PG voltage (TPS776xx)	16.5	V
Peak output current	Internally limited	
Voltage range at OUT, FB	7	V
Continuous total power dissipation	See Dissipation R	atings Table
Operating junction temperature range, T _J	-40 to +125	°C
Storage junction temperature range , T _{STG}	-65 to +150	°C
ESD rating, HBM	2	kV

(1) Stresses above these ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) All voltages are with respect to network terminal ground.

DISSIPATION RATINGS

BOARD	PACKAGE	AIRFLOW (CFM)	T _A < +25°C (mW)	DERATING FACTOR ABOVE T _A = +25°C	T _A = +70°C (mW)	T _A = +85°C (mW)
	ſ	0	568	5.68mW/°C	312	227
_	D	250	904	9.04mW/°C	497	362
Low-K ⁽¹⁾	PWP	0	2350	23.5mW/°C	1300	940
		300	3460	34.6mW/°C	1900	1400
High-K ⁽²⁾	PWP	0	2380	23.8mW/°C	1300	952
		300	5790	57.9mW/°C	3200	2300

(1) This parameter is measured with the recommended copper heat sink pattern on a 1-layer, 5in × 5in printed circuit board (PCB), 1-ounce copper, 2in × 2in coverage (4in²).

(2) This parameter is measured with the recommended copper heat sink pattern on a 8-layer, 1.5in x 2in PCB, 1-ounce copper with layers 1, 2, 4, 5, 7, and 8 at 5% coverage (0.9in²) and layers 3 and 6 at 100% coverage (6in²). For more information, refer to TI technical brief SLMA002.

www.ti.com

ELECTRICAL CHARACTERISTICS

Over recommended operating temperature range ($T_J = -40^{\circ}C$ to $+125^{\circ}C$), $V_{IN} = V_{OUT(TYP)} + 1V$; $I_{OUT} = 1$ mA, $V_{\overline{EN}} = 0V$, $C_{OUT} = 10\mu$ F, unless otherwise noted. Typical values are at $T_J = +25^{\circ}C$.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT		
V _{IN}	Input voltage range			2.7		10	V	
V _{OUT}	Output weltere recent	TPS77501		1.5		5.5	V	
	Output voltage range	TPS77601		1.2		5.5	V	
V _{OUT}	Accuracy		V_{OUT} + 1V $\leq V_{IN} \leq 10V^{(1)}$ 10µA < I _{OUT} < 500mA	-2.0		+2.0	%	
1	Cround pin ourrent		I _{OUT} = 10mA		85		μA	
I _{GND}	Ground pin current		I _{OUT} = 500mA			125	μΑ	
$\Delta V_{OUT}\%/\Delta V_{IN}$	Output voltage line regula	ation	$V_{OUT} + 1V \le V_{IN} \le 10V^{(1)}$		0.01		%/V	
$\Delta V_{OUT}\%/\Delta I_{OUT}$	Load regulation				3		mV	
V _N	Output noise voltage BW = 200Hz to 100kHz		I_{C} = 500mA, C_{OUT} = 10 μ F		53		μV _{RMS}	
		TPS77628	I _{OUT} = 500mA		285	410	mV	
V _{DO}	Dropout voltage ⁽²⁾	TPS77533	I _{OUT} = 500mA		169	287	mV	
		TPS77633	I _{OUT} = 500mA		169	287	mV	
I _{CL}	Output current limit		V _{OUT} = 0V	1.2	1.6	1.9	А	
T _{SD}	Shutdown temperature				150		°C	
TJ	Operating junction temperature range			-40		+125	°C	
	Standby current		$\overline{EN} = V_{IN}, \text{ at } T_J = +25^{\circ}C,$ 2.7V < V_{IN} < 10V		1		μA	
			$\overline{\text{EN}} = \text{V}_{\text{IN}}, 2.7\text{V} < \text{V}_{\text{IN}} < 10\text{V}$			10		
I _{FB}	FB input current	TPS77x01	FB = 1.5V		2		nA	
V _{EN(HI)}	High-level enable input voltage			1.7			V	
V _{EN(LO)}	Low-level enable input voltage					0.9	V	
PSRR	Power-supply ripple rejection		f = 100Hz, C _{OUT} = 10μF		60		dB	
	Minimum input voltage for valid RESET		$I_{OUT(RESET)} = 300\mu A$		1.1		V	
	Trip threshold voltage		V _{OUT} decreasing	92		98	%V _{OL}	
RESET	Hysteresis voltage		Measured at V _{OUT}		0.5		%V _{OL}	
(TPS775xx)	Output low voltage		$V_{IN} = 2.7V, I_{OUT(RESET)} = 1mA$		0.15	0.4	V	
	Leakage current		$V_{(RESET)} = 5V$			1	μΑ	
	RESET time-out delay				200		ms	
PG (TPS776xx)	Minimum input voltage for valid PG		$I_{OUT(PG)} = 300 \mu A$		1.1		V	
	Trip threshold voltage		V _{OUT} decreasing	92		98	%V _{OL}	
	Hysteresis voltage		Measured at V _{OUT}		0.5		%V _{OL}	
	Output low voltage		V _{IN} = 2.7V, I _{OUT(PG)} = 1mA		0.15	0.4	V	
	Leakage current		V _(PG) = 5V			1	μΑ	
			EN = 0V	-1	0	1		
	Input current (EN)		EN = V _{IN}	-1		1	μA	

(1) Minimum $V_{IN} = V_{OUT} + V_{DO}$ or 2.7V, whichever is greater. (2) V_{DO} is not measured for fixed output versions with $V_{OUT(NOM)} < 2.8$ V because mimimum $V_{IN} = 2.7$ V.

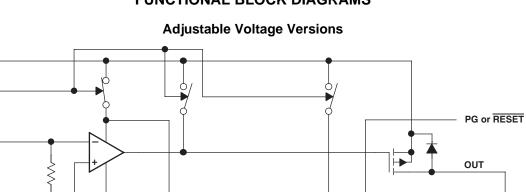
IN

EN

V_{ref} = 1.183V

≶

R

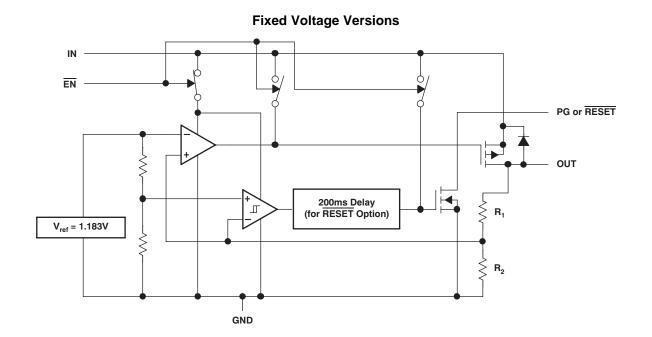

External to the device

FB/NC

> 1 L ≥ \mathbf{R}_{2}

www.ti.com

SLVS232J-SEPTEMBER 1999-REVISED MARCH 2009

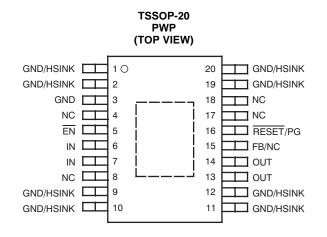

200ms Delay (for RESET Option)

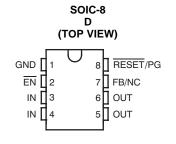
П

GND

H

FUNCTIONAL BLOCK DIAGRAMS




Texas

INSTRUMENTS

SLVS232J-SEPTEMBER 1999-REVISED MARCH 2009

PIN CONFIGURATIONS

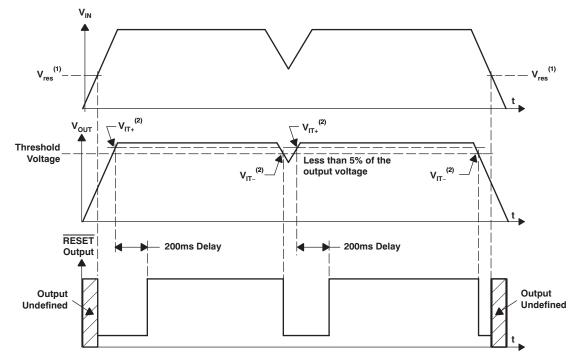
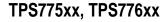


Table 1. PIN DESCRIPTIONS

TPS775xx, TPS776xx		6xx	
NAME	SOIC-8 (D) PIN NO.	TSSOP-20 (PWP) PIN NO.	DESCRIPTION
ĒN	2	5	Negative polarity enable (EN) input
FB	7	15	Adjustable voltage version only; feedback voltage for setting output voltage of the device. Not internally connected on adjustable versions.
GND	1	1, 2, 3, 9, 10, 11, 12, 19, 20	Ground
IN	3, 4	6, 7	Input voltage
OUT	5, 6	13, 14	Regulated output voltage
RESET	8	16	TPS775xx devices only; open-drain RESET output.
PG	8	16	TPS776xx devices only; open-drain power-good (PG) output.
NC	—	4, 8, 17, 18	No internal connection
PAD/TAB	—	—	Should be soldered to ground plane and used for heat sinking.

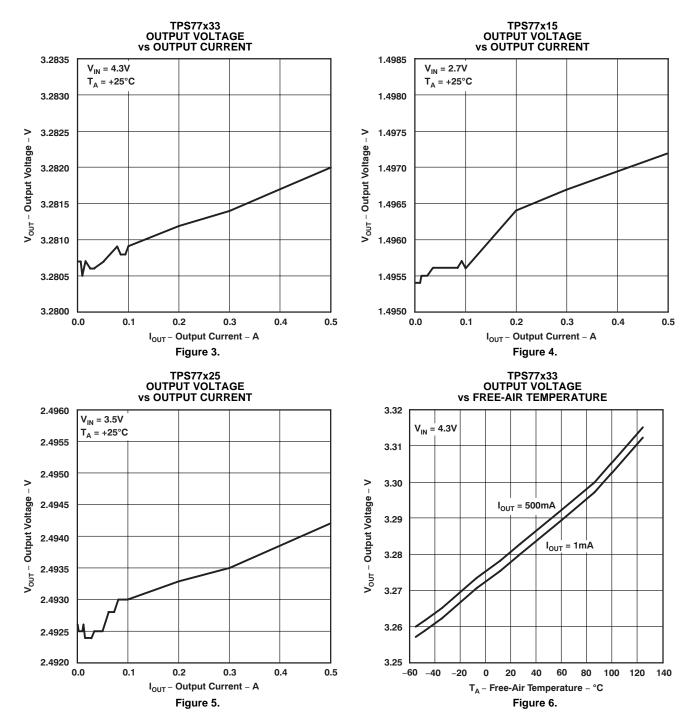


- (1) V_{res} is the minimum input voltage for a valid RESET. The symbol V_{res} is not currently listed within EIA or JEDEC standards for semiconductor symbology.
- (2) V_{IT} : Trip voltage is typically 5% lower than the output voltage (95% V_{OUT}). V_{IT-} to V_{IT+} is the hysteresis voltage.

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE NO.
		vs Output Current	Figure 3, Figure 4, Figure 5
V _{OUT}	Output Voltage	vs Free-Air Temperature	Figure 6, Figure 7, Figure 8
		vs Time	Figure 20
I _{GND}	Ground Current	vs Free-Air Temperature	Figure 9
PSRR	Power-Supply Ripple Rejection	vs Frequency	Figure 10
	Output Spectral Noise Density	vs Frequency	Figure 11
Z _{OUT}	Output Impedance	vs Frequency	Figure 12
N	Dran av ti Valta na	vs Input Voltage	Figure 13
V _{DO}	Dropout Voltage	vs Free-Air Temperature	Figure 14
V _{IN}	Input Voltage (Min)	vs Output Voltage	Figure 15
LINE	Line Transient Response		Figure 16, Figure 18
LOAD	Load Transient Response		Figure 17, Figure 19
ESR	Equivalent Series Resistance	vs Output Current	Figure 22, Figure 23

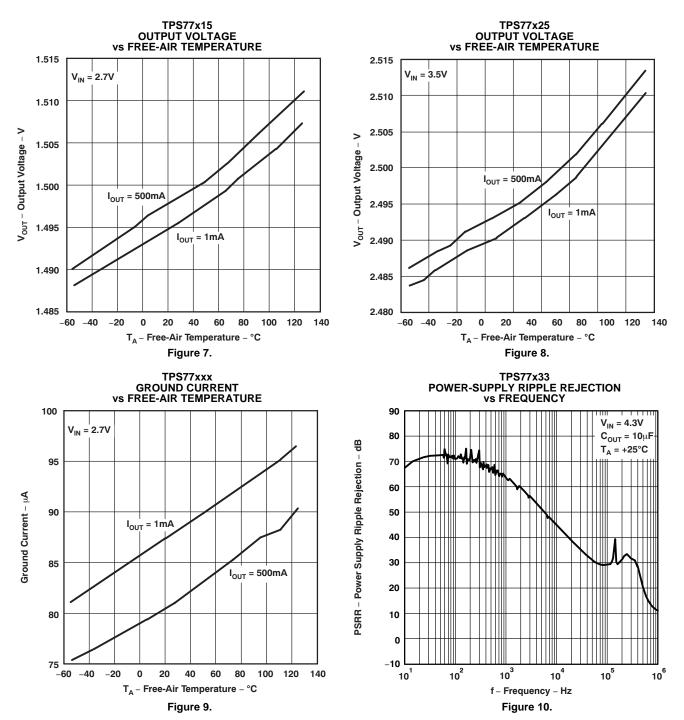

Texas

INSTRUMENTS

SLVS232J-SEPTEMBER 1999-REVISED MARCH 2009

TYPICAL CHARACTERISTICS

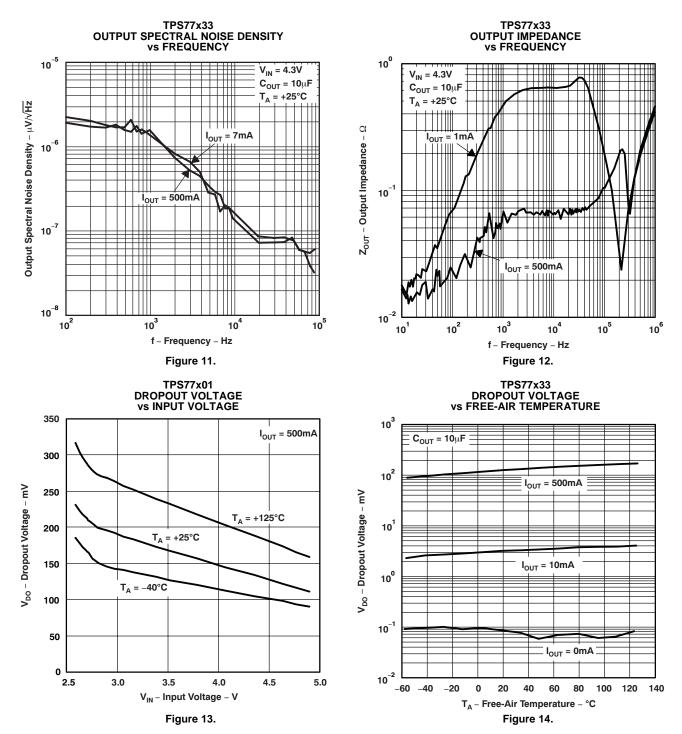
Over operating temperature range (T_J = -40°C to +125°C) unless otherwise noted. Typical values are at T_J = +25°C.


SLVS232J-SEPTEMBER 1999-REVISED MARCH 2009

www.ti.com

TYPICAL CHARACTERISTICS (continued)

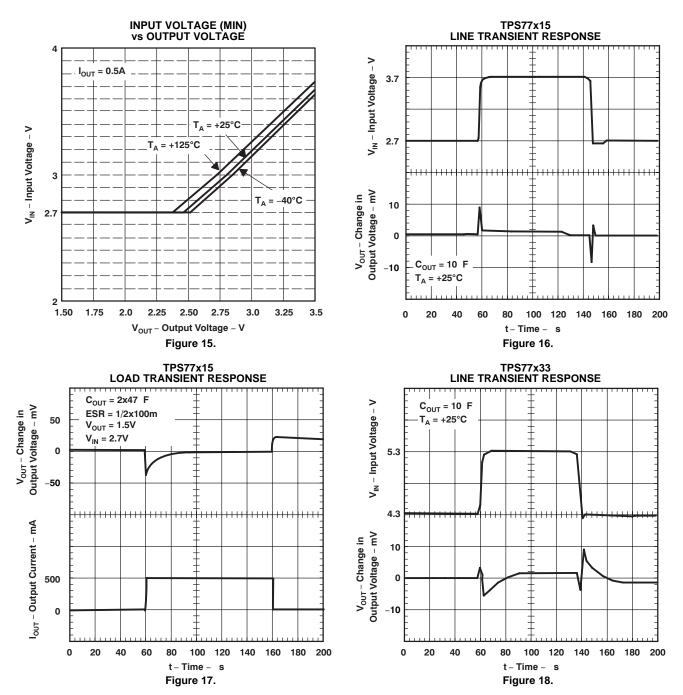
Over operating temperature range (T_J = -40°C to +125°C) unless otherwise noted. Typical values are at T_J = +25°C.



SLVS232J-SEPTEMBER 1999-REVISED MARCH 2009

TYPICAL CHARACTERISTICS (continued)

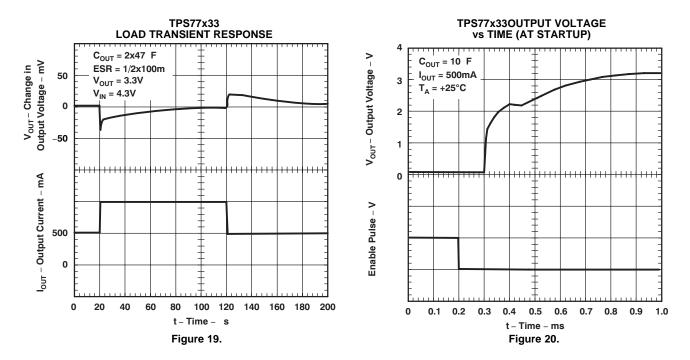
Over operating temperature range (T_J = -40°C to +125°C) unless otherwise noted. Typical values are at T_J = +25°C.


SLVS232J-SEPTEMBER 1999-REVISED MARCH 2009

www.ti.com

TYPICAL CHARACTERISTICS (continued)

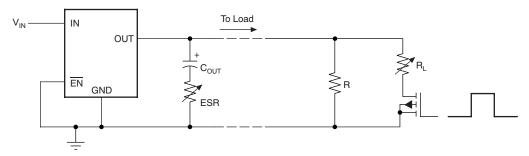
Over operating temperature range (T_J = -40°C to +125°C) unless otherwise noted. Typical values are at T_J = +25°C.



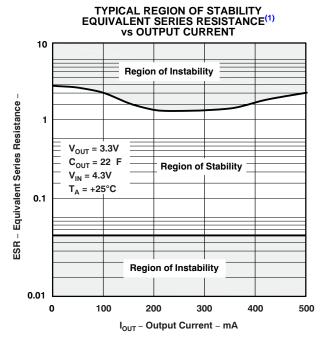
www.ti.com

TYPICAL CHARACTERISTICS (continued)

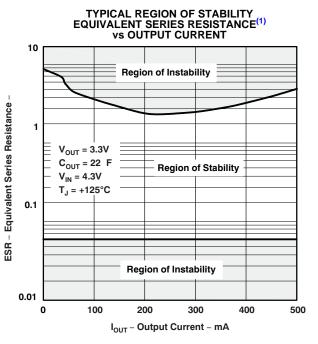
Over operating temperature range (T_J = -40°C to +125°C) unless otherwise noted. Typical values are at T_J = +25°C.



SLVS232J-SEPTEMBER 1999-REVISED MARCH 2009


TYPICAL CHARACTERISTICS (continued)

Over operating temperature range (T_J = -40°C to +125°C) unless otherwise noted. Typical values are at T_J = +25°C.


Test Circuit for Typical Regions of Stability (Figure 22 and Figure 23) (Fixed Output Options)

 Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to C_{OUT}. Figure 22.

 Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to C_{OUT}. Figure 23.

SLVS232J-SEPTEMBER 1999-REVISED MARCH 2009

APPLICATION INFORMATION

The TPS775xx and TPS776xx feature very low quiescent current, which remains virtually constant even with varying loads. Conventional LDO regulators use a pnp pass element, the base current of which is directly proportional to the load current through the regulator ($I_B = I_C/\beta$). The TPS775xx and TPS776xx use a PMOS transistor to pass current; because the gate of the PMOS is voltage driven, operating current is low and invariable over the full load range.

Another pitfall associated with the pnp-pass element is its tendency to saturate when the device goes into dropout. The resulting drop in β forces an increase in I_B to maintain the load. During power up, this I_B increase translates to large start-up currents. Systems with limited supply current may fail to start up. In battery-powered systems, it means rapid battery discharge when the voltage decays below the minimum required for regulation. The TPS775xx and TPS776xx quiescent currents remain low even when the regulator drops out, eliminating both problems.

The TPS775xx and TPS776xx families also feature a shutdown mode that places the output in the high-impedance state (essentially equal to the feedback-divider resistance) and reduces quiescent current to 2μ A. If the shutdown feature is not used, EN should be tied to ground.

Minimum Load Requirements

The TPS775xx and TPS776xx families are stable at zero load; no minimum load is required for operation.

FB—Pin Connection (Adjustable Version Only)

The FB pin is an input pin to sense the output voltage and close the loop for the adjustable option. The output voltage is sensed through a resistor divider network to close the loop as it is shown in Figure 25. Normally, this connection should be as short as possible; however, the connection can be made near a critical circuit to improve performance at that point. Internally, FB connects to a high-impedance wide-bandwidth amplifier and noise pickup feeds through to the regulator output. Routing the FB connection to minimize/avoid noise pickup is essential.

External Capacitor Requirements

An input capacitor is not usually required; however, a ceramic bypass capacitor (0.047µF or larger) improves load transient response and noise rejection if the TPS775xx or TPS776xx are located more than a few inches from the power supply. A higher-capacitance electrolytic capacitor may be necessary if large (hundreds of milliamps) load transients with fast rise times are anticipated.

Like all low dropout regulators, the TPS775xx and TPS776xx require an output capacitor connected between OUT and GND to stabilize the internal control loop. The minimum recommended capacitance value is 10μ F and the ESR (equivalent series resistance) must be between $50m\Omega$ and 1.5Ω . Capacitor values 10μ F or larger are acceptable, provided the ESR is less than 1.5Ω . Solid tantalum electrolytic, aluminum electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described previously.

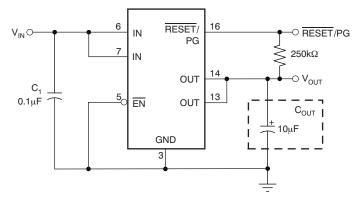


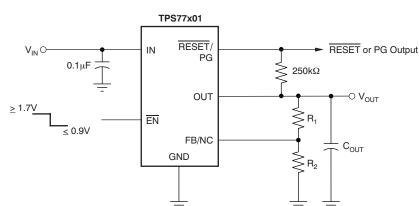

Figure 24. Typical Application Circuit (Fixed Versions)

SLVS232J-SEPTEMBER 1999-REVISED MARCH 2009

Resistors R₁ and R₂ should be chosen for approximately 10µA divider current. Lower value resistors can be used, but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase the output voltage error. The recommended design procedure is to choose R₂ = 110k Ω to set the divider current at approximately 10µA and then calculate R₁ using Equation 2:

$$R_1 = (\frac{V_{OUT}}{V_{ref}} - 1) \times R_2$$

Reset Indicator


The TPS775xx features a RESET output that can be used to monitor the status of the regulator. The internal comparator monitors the output voltage: when the output drops to between 92% and 98% of its nominal regulated value, the RESET output transistor turns on, taking the signal low. The open-drain output requires a pullup resistor. If not used, it can be left floating. RESET can be used to drive power-on reset circuitry or as a low-battery indicator. RESET does not assert itself when the regulated output voltage falls outside the specified 2% tolerance, but instead reports an output voltage low relative to its nominal regulated value (refer to Timing Diagram for start-up sequence).

Power-Good Indicator

The TPS776xx features a power-good (PG) output that can be used to monitor the status of the regulator. The internal comparator monitors the output voltage: when the output drops to between 92% and 98% of its nominal regulated value, the PG output transistor turns on, taking the signal low. The open-drain output requires a pullup resistor. If not used, it can be left floating. PG can be used to drive power-on reset circuitry or used as a low-battery indicator.

The output voltage of the TPS77x01 adjustable regulator is programmed using an external resistor divider as shown in Figure 25. The output voltage is calculated using Equation 1:

$$V_{OUT} = V_{ref} \times (1 + \frac{R_1}{R_2})$$

PROGRAMMING GUIDE					
OUTPUT VOLTAGE	R ₁	R ₂	UNIT		
2.5V	121	110	kΩ		
3.3V	196	110	kΩ		
3.6V	226	110	kΩ		
4.75V	332	110	kΩ		

OUTPUT VOLTAGE

(2)

(1)

www.ti.com

Regulator Protection

The TPS775xx and TPS776xx PMOS-pass transistors have a built-in back diode that conducts reverse currents when the input voltage drops below the output voltage (for example, during power down). Current is conducted from the output to the input and is not internally limited. When extended reverse voltage is anticipated, external limiting may be appropriate.

The TPS775xx and TPS776xx also feature internal current limiting and thermal protection. During normal operation, the TPS775xx and TPS776xx limit output current to approximately 1.7A. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds +150°C(typ), thermal-protection circuitry shuts it down. Once the device has cooled below +130°C(typ), regulator operation resumes.

Power Dissipation and Junction Temperature

Specified regulator operation is assured to a junction temperature of +125°C; the maximum junction temperature should be restricted to +125°C under normal operating conditions. This restriction limits the power dissipation the regulator can handle in any given application. To ensure the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$, and the actual dissipation, P_D , which must be less than or equal to $P_{D(max)}$.

The maximum-power-dissipation limit is determined using the following equation:

$$\mathsf{P}_{\mathsf{D}(\mathsf{max})} = \frac{\mathsf{T}_{\mathsf{J}(\mathsf{max})} - \mathsf{T}_{\mathsf{A}}}{\mathsf{R}_{\mathsf{\theta}\mathsf{J}\mathsf{A}}}$$

where:

- T_{J(max)} is the maximum allowable junction temperature
- $R_{\theta JA}$ is the thermal resistance junction-to-ambient for the package, and is calculated as
 - derating factor from the dissipation rating tables
- T_A is the ambient temperature

The regulator dissipation is calculated using:

 $\mathsf{P}_{\mathsf{D}} = (\mathsf{V}_{\mathsf{IN}} - \mathsf{V}_{\mathsf{OUT}}) \times \mathsf{I}_{\mathsf{OUT}}$

Power dissipation resulting from quiescent current is negligible. Excessive power dissipation will trigger the thermal protection circuit.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments:

<u>TPS77533PWPR</u> <u>TPS77533D</u> <u>TPS77533DG4</u> <u>TPS77533DR4</u> <u>TPS77533DRG4</u> <u>TPS77533PWPG4</u> TPS77533PWPRG4