May 2000 1
© 2000 Actel Corporation
v3.0.1
54SX Family FPGAs
Leading Edge Performance
320 MHz Internal Performance
3.7 ns Clock-to-Out (Pin-to-Pin)
0.1 ns Input Set-Up
0.25 ns Clock Skew
Specifications
12,000 to 48,000 System Gates
Up to 249 User-Programmable I/O Pins
Up to 1080 Flip-Flops
•0.35µ CMOS
Features
•66 MHz PCI
•CPLD and FPGA Integration
Single Chip Solution
100% Resource Utilization with 100% Pin Locking
3.3V Operation with 5.0V Input Tolerance
Very Low Power Consumption
Deterministic, User-Controllable Timing
Unique In-System Diagnostic and Debug capability with
Silicon Explorer II
Boundary Scan Testing in Compliance with IEEE Standard
1149.1 (JTAG)
Secure Programming Technology Prevents Reverse
Engineering and Design Theft
SX Product Profile
A54SX08 A54SX16 A54SX16P A54SX32
Capacity
Typical Gates
System Gates
8,000
12,000
16,000
24,000
16,000
24,000
32,000
48,000
Logic Modules
Combinatorial Cells
768
512
1,452
924
1,452
924
2,880
1800
Register Cells (Dedicated Flip-Flops) 256 528 528 1,080
Maximum User I/Os 130 175 175 249
Clocks 3333
JTAG Ye s Ye s Ye s Ye s
PCI ——Yes
Clock-to-Out 3.7 ns 3.9 ns 4.4 ns 4.6 ns
Input Set-Up (External) 0.8 ns 0.5 ns 0.5 ns 0.1 ns
Speed Grades Std, –1, –2, –3 Std, –1, –2, –3 Std, –1, –2, –3 Std, –1, –2, –3
Temperature Grades C, I, M C, I, M C, I, M C, I, M
Packages (by pin count)
PLCC
PQFP
VQFP
TQFP
PBGA
FBGA
84
208
100
144, 176
144
208
100
176
208
100
144, 176
208
144, 176
313, 329
2
General Description
Actels SX family of FPGAs features a sea-of-modules
architecture that delivers device performance and
integration levels not currently achieved by any other FPGA
architecture. SX devices greatly simplify design time, enable
dramatic reductions in design costs and power
consumption, and further decrease time to market for
performance-intensive applications.
Actels SX architecture features two types of logic modules,
the combinatorial cell (C-cell) and the register cell (R-cell),
each optimized for fast and efficient mapping of synthesized
logic functions. The routing and interconnect resources are
in the metal layers above the logic modules, providing
optimal use of silicon. This enables the entire floor of the
device to be spanned with an uninterrupted grid of
fine-grained, synthesis-friendly logic modules (or
sea-of-modules), which reduces the distance signals have
to travel between logic modules. To minimize signal
propagation delay, SX devices employ both local and general
routing resources. The high-speed local routing resources
(DirectConnect and FastConnect) enable very fast local
signal propagation that is optimal for fast counters, state
machines, and datapath logic. The general system of
segmented routing tracks allows any logic module in the
array to be connected to any other logic or I/O module.
Within this system, propagation delay is minimized by
limiting the number of antifuse interconnect elements to
five (90 percent of connections typically use only three
antifuses). The unique local and general routing structure
featured in SX devices gives fast and predictable
performance, allows 100 percent pin-locking with full logic
utilization, enables concurrent PCB development, reduces
design time, and allows designers to achieve performance
goals with minimum effort.
Further complementing SXs flexible routing structure is a
hard-wired, constantly loaded clock network that has been
tuned to provide fast clock propagation with minimal clock
skew. Additionally, the high performance of the internal
logic has eliminated the need to embed latches or flip-flops
in the I/O cells to achieve fast clock-to-out or fast input
set-up times. SX devices have easy-to-use I/O cells that do
not require HDL instantiation, facilitating design re-use and
reducing design and verification time.
Ordering Information
Application (Temperature Range)
Blank = Commercial (0 to +70°C)
I = Industrial (40 to +85°C)
M = Military (55 to +125°C)
PP = Pre-production
Package Type
BG = Ball Grid Array
PL = Plastic Leaded Chip Carrier
PQ = Plastic Quad Flat Pack
TQ = Thin (1.4 mm) Quad Flat Pack
VQ = Very Thin (1.0 mm) Quad Flat Pack
FG = Fine Pitch Ball Grid Array (1.0 mm)
Speed Grade
Blank = Standard Speed
1 = Approximately 15% Faster than Standard
2 = Approximately 25% Faster than Standard
3 = Approximately 35% Faster than Standard
Part Number
A54SX08 = 12,000 System Gates
A54SX16 = 24,000 System Gates
A54SX16P = 24,000 System Gates
A54SX32 = 48,000 System Gates
Package Lead Count
A54SX16 PQ 2082
Blank = Not PCI Compliant
P = PCI Compliant
P
3
54SX Family FPGAs
Product Plan
Speed Grade* Application
Std 123CI
M
A54SX08 Device
84-Pin Plastic Leaded Chip Carrier (PLCC) ✔✔✔✔ ✔✔
100-Pin Very Thin Plastic Quad Flat Pack (VQFP) ✔✔✔✔ ✔✔
144-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔
144-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔✔✔ ✔✔
176-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔✔✔ ✔✔
A54SX16 Device
100-Pin Very Thin Plastic Quad Flat Pack (VQFP) ✔✔✔✔ ✔✔ P
176-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔ P
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔✔✔ ✔✔ P
A54SX16P Device
100-Pin Very Thin Plastic Quad Flat Pack (VQFP) ✔✔✔✔ ✔✔
144-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔
176-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔✔✔ ✔✔
A54SX32 Device
144-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔ P
176-Pin Thin Quad Flat Pack (TQFP) ✔✔✔✔ ✔✔ P
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔✔✔ ✔✔ P
313-Pin Plastic Ball Grid Array (PBGA) ✔✔✔✔ ✔✔
329-Pin Plastic Ball Grid Array (PBGA) ✔✔✔✔ ✔✔
Contact your Actel sales representative for product availability.
Applications: C = Commercial Availability: = Available *Speed Grade: –1 = Approx. 15% faster than Standard
I = Industrial P = Planned –2 = Approx. 25% faster than Standard
M = Military = Not Planned –3 = Approx. 35% faster than Standard
Only Std, –1, –2 Speed Grade
Only Std, 1 Speed Grade
Plastic Device Resources
User I/Os (including clock buffers)
Device
PLCC
84-Pin
VQFP
100-Pin
PQFP
208-Pin
TQFP
144-Pin
TQFP
176-Pin
PBGA
313-Pin
PBGA
329-Pin
FBGA
144-Pin
A54SX08 69 81 130 113 128 ——111
A54SX16 81 175 147 ———
A54SX16P 81 175 113 147 ———
A54SX32 ——174 113 147 249 249
Package Definitions (Consult your local Actel sales representative for product availability.)
PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack,
PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch (1.0 mm) Ball Grid Array
4
SX Family Architecture
The SX family architecture was designed to satisfy
next-generation performance and integration requirements
for production-volume designs in a broad range of
applications.
Programmable Interconnect Element
The SX family provides efficient use of silicon by locating the
routing interconnect resources between the Metal 2 (M2)
and Metal 3 (M3) layers (Figure 1). This completely
eliminates the channels of routing and interconnect
resources between logic modules (as implemented on SRAM
FPGAs and previous generations of antifuse FPGAs), and
enables the entire floor of the device to be spanned with an
uninterrupted grid of logic modules.
Interconnection between these logic modules is achieved
using Actels patented metal-to-metal programmable
antifuse interconnect elements, which are embedded
between the M2 and M3 layers. The antifuses are normally
open circuit and, when programmed, form a permanent
low-impedance connection.
The extremely small size of these interconnect elements
gives the SX family abundant routing resources and provides
excellent protection against design pirating. Reverse
engineering is virtually impossible because it is extremely
difficult to distinguish between programmed and
unprogrammed antifuses, and there is no configuration
bitstream to intercept.
Additionally, the interconnect (i.e., the antifuses and metal
tracks) have lower capacitance and lower resistance than
any other device of similar capacity, leading to the fastest
signal propagation in the industry.
Logic Module Design
The SX family architecture is described as a
sea-of-modules architecture because the entire floor of
the device is covered with a grid of logic modules with
virtually no chip area lost to interconnect elements or
routing. Actels SX family provides two types of logic
modules, the register cell (R-cell) and the combinatorial
cell (C-cell).
The R-cell contains a flip-flop featuring asynchronous clear,
asynchronous preset, and clock enable (using the S0 and S1
lines) control signals (Figure 2 on page 5). The R-cell
registers feature programmable clock polarity selectable on
a register-by-register basis. This provides additional
flexibility while allowing mapping of synthesized functions
into the SX FPGA. The clock source for the R-cell can be
chosen from either the hard-wired clock or the routed clock.
Figure 1 SX Family Interconnect Elements
Silicon Substrate
Tungsten Plug
Contact
Metal 1
Metal 2
Metal 3
Routing Tracks
Amorphous Silicon/
Dielectric Antifuse
Tungsten Plug Via
Tungsten Plug Via
5
54SX Family FPGAs
The C-cell implements a range of combinatorial functions
up to 5-inputs (Figure 3). Inclusion of the DB input and its
associated inverter function dramatically increases the
number of combinatorial functions that can be
implemented in a single module from 800 options in
previous architectures to more than 4,000 in the SX
architecture. An example of the improved flexibility
enabled by the inversion capability is the ability to integrate
a 3-input exclusive-OR function into a single C-cell. This
facilitates construction of 9-bit parity-tree functions with 2
ns propagation delays. At the same time, the C-cell
structure is extremely synthesis friendly, simplifying the
overall design and reducing synthesis time.
Chip Architecture
The SX familys chip architecture provides a unique
approach to module organization and chip routing that
delivers the best register/logic mix for a wide variety of new
and emerging applications.
Module Organization
Actel has arranged all C-cell and R-cell logic modules into
horizontal banks called Clusters. There are two types of
Clusters: Type 1 contains two C-cells and one R-cell, while
Type 2 contains one C-cell and two R-cells.
To increase design efficiency and device performance, Actel
has further organized these modules into
SuperClusters
(
Figure 4 on page 6
). SuperCluster 1 is a two-wide grouping
of Type 1 clusters. SuperCluster 2 is a two-wide group
containing one Type 1 cluster and one Type 2 cluster. SX
devices feature more SuperCluster 1 modules than
SuperCluster 2 modules because designers typically require
significantly more combinatorial logic than flip-flops.
Figure 2 R-Cell
Figure 3 C-Cell
Direct
Connect
Input
CLKA,
CLKB,
Internal Logic
HCLK
CKS CKP
CLRB
PSETB
YDQ
Routed
Data Input
S0
S1
D0
D1
D2
D3
DB
A0 B0 A1 B1
Sa Sb
Y
6
Routing Resources
Clusters and SuperClusters can be connected through the
use of two innovative local routing resources called
FastConnect and DirectConnect, which enable extremely
fast and predictable interconnection of modules within
Clusters and SuperClusters (Figure 5 and Figure 6 on
page 7). This routing architecture also dramatically reduces
the number of antifuses required to complete a circuit,
ensuring the highest possible performance.
DirectConnect is a horizontal routing resource that provides
connections from a C-cell to its neighboring R-cell in a given
SuperCluster. DirectConnect uses a hard-wired signal path
requiring no programmable interconnection to achieve its
fast signal propagation time of less than 0.1 ns.
FastConnect enables horizontal routing between any two
logic modules within a given SuperCluster and vertical
routing with the SuperCluster immediately below it. Only
one programmable connection is used in a FastConnect
path, delivering maximum pin-to-pin propagation of 0.4 ns.
In addition to DirectConnect and FastConnect, the
architecture makes use of two globally oriented routing
resources known as segmented routing and high-drive
routing. Actels segmented routing structure provides a
variety of track lengths for extremely fast routing between
SuperClusters. The exact combination of track lengths and
antifuses within each path is chosen by the 100 percent
automatic place and route software to minimize signal
propagation delays.
Actels high-drive routing structure provides three clock
networks. The first clock, called HCLK, is hard wired from the
HCLK buffer to the clock select MUX in each R-cell. This
provides a fast propagation path for the clock signal, enabling
the 3.7 ns clock-to-out (pin-to-pin) performance of the SX
devices. The hard-wired clock is tuned to provide clock skew
as low as 0.25 ns. The remaining two clocks (CLKA, CLKB) are
global clocks that can be sourced from external pins or from
internal logic signals within the SX device.
Figure 4 Cluster Organization
Type 1 SuperCluster Type 2 SuperCluster
Cluster 1 Cluster 1 Cluster 2 Cluster 1
R-Cell C-Cell
D0
D1
D2
D3
DB
A0 B0 A1 B1
Sa Sb
Y
Direct
Connect
Input
CLKA,
CLKB,
Internal Logic
HCLK
CKS CKP
CLRB
PSETB
YDQ
Routed
Data Input
S0
S1
7
54SX Family FPGAs
Other Architectural Features
Technology
Actels SX family is implemented on a high-voltage twin-well
CMOS process using 0.35µ design rules. The metal-to-metal
antifuse is made up of a combination of amorphous silicon
and dielectric material with barrier metals and has a
programmed (on state) resistance of 25 with
capacitance of 1.0 fF for low signal impedance.
Figure 5 DirectConnect and FastConnect for Type 1 SuperClusters
Figure 6 DirectConnect and FastConnect for Type 2 SuperClusters
Type 1 SuperClusters
Routing Segments
Typically 2 antifuses
• Max. 5 antifuses
Fast Connect
• One antifuse
• 0.4 ns routing delay
Direct Connect
• No antifuses
• 0.1 ns routing delay
Type 2 SuperClusters
Routing Segments
Typically 2 antifuses
Max. 5 antifuses
Fast Connect
One antifuse
0.4 ns routing delay
Direct Connect
No antifuses
0.1 ns routing delay
8
Performance
The combination of architectural features described above
enables SX devices to operate with internal clock
frequencies exceeding 300 MHz, enabling very fast
execution of even complex logic functions. Thus, the SX
family is an optimal platform upon which to integrate the
functionality previously contained in multiple CPLDs. In
addition, designs that previously would have required a gate
array to meet performance goals can now be integrated into
an SX device with dramatic improvements in cost and time
to market. Using timing-driven place and route tools,
designers can achieve highly deterministic device
performance. With SX devices, designers do not need to use
complicated performance-enhancing design techniques
such as the use of redundant logic to reduce fanout on
critical nets or the instantiation of macros in HDL code to
achieve high performance.
I/O Modules
Each I/O on an SX device can be configured as an input, an
output, a tristate output, or a bidirectional pin. Even without
the inclusion of dedicated I/O registers, these I/Os, in
combination with array registers, can achieve clock-to-out
(pad-to-pad) timing as fast as 3.7 ns. I/O cells that have
embedded latches and flip-flops require instantiation in HDL
code; this is a design complication not encountered in SX
FPGAs. Fast pin-to-pin timing ensures that the device will
have little trouble interfacing with any other device in the
system, which in turn enables parallel design of system
components and reduces overall design time.
Power Requirements
The SX family supports 3.3V operation and is designed to
tolerate 5.0V inputs. (Table 1). Power consumption is
extremely low due to the very short distances signals are
required to travel to complete a circuit. Power requirements
are further reduced because of the small number of
low-resistance antifuses in the path. The antifuse
architecture does not require active circuitry to hold a
charge (as do SRAM or EPROM), making it the lowest-power
architecture on the market.
Boundary Scan Testing (BST)
All SX devices are IEEE 1149.1 compliant. SX devices offer
superior diagnostic and testing capabilities by providing
Boundary Scan Testing (BST) and probing capabilities.
These functions are controlled through the special test pins
in conjunction with the program fuse. The functionality of
each pin is described in Table 2.In the dedicated test mode,
TCK, TDI and TDO are dedicated pins and cannot be used as
regular I/Os. In flexible mode, TMS should be set HIGH
through a pull-up resistor of 10k. TMS can be pulled LOW
to initiate the test sequence.
The program fuse determines whether the device is in
dedicated or flexible mode. The default (fuse not blown) is
flexible mode. .
Development Tool Support
The SX devices are fully supported by Actels line of FPGA
development tools, including the Actel DeskTOP series and
Designer Advantage tools. The Actel DeskTOP series is an
integrated design environment for PCs that includes design
entry, simulation, synthesis, and place and route tools.
Designer Advantage, Actels suite of FPGA development
point tools for PCs and Workstations, includes the ACTgen
Macro Builder, Designer with DirectTime timing driven
place and route and analysis tools, and device programming
software.
In addition, the SX devices contain ActionProbe circuitry
that provides built-in access to every node in a design,
enabling 100-percent real-time observation and analysis of a
device's internal logic nodes without design iteration. The
probe circuitry is accessed by Silicon Explorer II, an
easy-to-use integrated verification and logic analysis tool
that can sample data at 100 MHz (asynchronous) or 66 MHz
(synchronous). Silicon Explorer II attaches to a PCs
standard COM port, turning the PC into a fully functional
18-channel logic analyzer. Silicon Explorer II allows
designers to complete the design verification process at
their desks and reduces verification time from several hours
per cycle to only a few seconds.
SX Probe Circuit Control Pins
The Silicon Explorer II tool uses the boundary scan ports
(TDI, TCK, TMS and TDO) to select the desired nets for
verification. The selected internal nets are assigned to the
PRA/PRB pins for observation. Figure 7 illustrates the
Table 1 Supply Voltages
VCCA VCCI VCCR
Input
Tolerance
Output
Drive
A54SX08
A54SX16
A54SX32
3.3V 3.3V 5.0V 3.3V 3.3V
3.3V 3.3V 5.0V 5.0V 3.3V
A54SX16P
3.3V 3.3V 3.3V 3.3V 3.3V
3.3V 3.3V 5.0V 5.0V 3.3V
3.3V 5.0V 5.0V 5.0V 5.0V
Table 2 Boundary Scan Pin Functionality
Program Fuse Blown
(Dedicated Test Mode)
Program Fuse Not Blown
(Flexible Mode)
TCK, TDI, TDO are dedi-
cated BST pins
TCK, TDI, TDO are flexible
and may be used as I/Os
No need for pull-up resistor
for TMS
Use a pull-up resistor of 10k
on TMS
9
54SX Family FPGAs
interconnection between Silicon Explorer II and the FPGA
to perform in-circuit verification. The TRST pin is equipped
with a pull-up resistor. To remove the boundary scan state
machine from the reset state during probing, it is
recommended that the TRST pin be left floating.
Design Considerations
The TDI, TCK, TDO, PRA, and PRB pins should not be used
as input or bidirectional ports. Because these pins are
active during probing, critical signals input through these
pins are not available while probing. In addition, the
Security Fuse should not be programmed because doing so
disables the Probe Circuitry.
Figure 7 Probe Setup
SX FPGA
Silicon Explorer II
TDI
TCK
TDO
TMS
PRA
PRB
Serial Connection
18
Channels
10
3.3V/5V Operating Conditions
Absolute Maximum Ratings1
Symbol Parameter Limits Units
VCCR2DC Supply Voltage30.3 to +6.0 V
VCCA2DC Supply Voltage 0.3 to +4.0 V
VCCI2
DC Supply Voltage
(A54SX08, A54SX16,
A54SX32)
0.3 to +4.0 V
VCCI2DC Supply Voltage
(A54SX16P) 0.3 to +6.0 V
VIInput Voltage 0.5 to +5.5 V
VOOutput Voltage 0.5 to +3.6 V
IIO
I/O Source Sink
Current330 to +5.0 mA
TSTG Storage Temperature 40 to +125 °C
Notes:
1. Stresses beyond those listed under Absolute Maximum
Ratings may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended
periods may affect device reliability. Device should not be
operated outside the Recommended Operating Conditions.
2. VCCR in the A54SX16P must be greater than or equal to VCCI
during power-up and power-down sequences and during
normal operation.
3. Device inputs are normally high impedance and draw
extremely low current. However, when input voltage is greater
than VCC + 0.5V or less than GND 0.5V, the internal protection
diodes will forward-bias and can draw excessive current.
Recommended Operating Conditions
Parameter Commercial Industrial Military Units
Temperature
Range10 to+70 40 to
+85
55 to
+125 °C
3.3V Power
Supply
Tolerance
±10 ±10 ±10 %VCC
5.0V Power
Supply
Tolerance
±5±10 ±10 %VCC
Note:
1. Ambient temperature (TA) is used for commercial and
industrial; case temperature (TC) is used for military.
Electrical Specifications
Commercial Industrial
Symbol Parameter Min. Max. Min. Max. Units
VOH
(IOH = -20uA) (CMOS)
(IOH = -8mA) (TTL)
(IOH = -6mA) (TTL)
(VCCI 0.1)
2.4
VCCI
VCCI
(VCCI 0.1)
2.4
VCCI
VCCI
V
VOL
(IOL= 20uA) (CMOS)
(IOL = 12mA) (TTL)
(IOL = 8mA) (TTL)
0.10
0.50
0.50
V
VIL 0.8 0.8 V
VIH 2.0 2.0 V
tR, tFInput Transition Time tR, tF50 50 ns
CIO CIO I/O Capacitance 10 10 pF
ICC Standby Current, ICC 4.0 4.0 mA
ICC(D) ICC(D) IDynamic VCC Supply Current See Evaluating Power in 54SX Devices on page 18.
11
54SX Family FPGAs
PCI Compliance for the 54SX Family
The 54SX family supports 3.3V and 5V PCI and is compliant
with the PCI Local Bus Specification Rev. 2.1.
A54SX16P DC Specifications (5.0V PCI Operation)
Symbol Parameter Condition Min. Max. Units
VCCA Supply Voltage for Array 3.0 3.6 V
VCCR Supply Voltage required for Internal Biasing 4.75 5.25 V
VCCI Supply Voltage for IOs 4.75 5.25 V
VIH Input High Voltage12.0 VCC + 0.5 V
VIL Input Low Voltage10.5 0.8 V
IIH Input High Leakage Current VIN = 2.7 70 µA
IIL Input Low Leakage Current VIN = 0.5 70 µA
VOH Output High Voltage IOUT = 2 mA 2.4 V
VOL Output Low Voltage2IOUT = 3 mA, 6 mA 0.55 V
CIN Input Pin Capacitance310 pF
CCLK CLK Pin Capacitance 5 12 pF
CIDSEL IDSEL Pin Capacitance48pF
Notes:
1. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull up must have 6 mA; the latter include,
FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).
4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].
12
A54SX16P AC Specifications for (PCI Operation)
Symbol Parameter Condition Min. Max. Units
IOH(AC) Switching Current High
0 < VOUT 1.4144 mA
1.4 VOUT < 2.41, 2 44 + (VOUT 1.4)/0.024 mA
3.1 < VOUT < VCC1, 3 Equation A: on page 13
(Test Point) VOUT = 3.13142 mA
IOL(AC) Switching Current High
VOUT 2.2195 mA
2.2 > VOUT > 0.551VOUT/0.023
0.71 > VOUT > 01, 3 Equation B: on page 13 mA
(Test Point) VOUT = 0.713206 mA
ICL Low Clamp Current 5 < VIN 125 + (VIN + 1)/0.015 mA
slewROutput Rise Slew Rate 0.4V to 2.4V load415V/ns
slewFOutput Fall Slew Rate 2.4V to 0.4V load415V/ns
Notes:
1. Refer to the V/I curves in Figure 8. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here;
i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs.
Switching Current High specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.
2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward
the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.
3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B)
are provided with the respective diagrams in Figure 8. The equation defined maxima should be met by design. In order to facilitate
component testing, a maximum current test point is defined for each side of the output driver.
4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an
unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is
now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to
revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard
designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity
modeling accounts for this. Rise slew rate does not apply to open drain outputs.
output
buffer
1/2 in. max.
VCC
1k
10 pF
1k
pin
13
54SX Family FPGAs
Figure 8 shows the 5.0V PCI V/I curve and the minimum and
maximum PCI drive characteristics of the A54SX16P
family.
Equation A:
IOH = 11.9 * (VOUT 5.25) * (VOUT + 2.45)
for VCC > VOUT > 3.1V
Equation B:
IOL = 78.5 * VOUT * (4.4 VOUT)
for 0V < VOUT < 0.71V
Figure 8 5.0V PCI Curve for A54SX16P Family
123456
0.20
0.15
0.10
0.05
0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
Voltage Out
Current (A)
SX PCI IOL
SX PCI IOH
PCI IOL Maximum
PCI IOH Maximum
PCI IOH Minimum
PCI IOL Minimum
14
A54SX16P DC Specifications (3.3V PCI Operation)
Symbol Parameter Condition Min. Max. Units
VCCA Supply Voltage for Array 3.0 3.6 V
VCCR Supply Voltage required for Internal Biasing 3.0 3.6 V
VCCI Supply Voltage for IOs 3.0 3.6 V
VIH Input High Voltage 0.5VCC VCC + 0.5 V
VIL Input Low Voltage 0.5 0.3VCC V
IIPU Input Pull-up Voltage10.7VCC V
IIL Input Leakage Current20 < VIN < VCC ±10 µA
VOH Output High Voltage IOUT = 500 µA 0.9VCC V
VOL Output Low Voltage IOUT = 1500 µA 0.1VCC V
CIN Input Pin Capacitance310 pF
CCLK CLK Pin Capacitance 5 12 pF
CIDSEL IDSEL Pin Capacitance48pF
Notes:
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated
network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this
input voltage.
2. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.
3. Absolute maximum pin capacitance for a PCI input is 10pF (except for CLK).
4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].
15
54SX Family FPGAs
A 54SX16P AC Specifications (3.3V PCI Operation)
Symbol Parameter Condition Min. Max. Units
Switching Current High
0 < VOUT 0.3VCC1 mA
0.3VCC VOUT < 0.9VCC112VCC mA
IOH(AC) 0.7VCC < VOUT < VCC1, 2 17.1 + (VCC VOUT)Equation C: on page 16
(Test Point) VOUT = 0.7VCC232VCC mA
Switching Current High
VCC > VOUT 0.6VCC1mA
0.6VCC > VOUT > 0.1VCC116VCC mA
IOL(AC) 0.18VCC > VOUT > 01, 2 26.7VOUT on page 16 mA
(Test Point) VOUT = 0.18VCC238VCC
ICL Low Clamp Current 3 < VIN 125 + (VIN + 1)/0.015 mA
ICH High Clamp Current 3 < VIN 1 25 + (VIN VOUT 1)/0.015 mA
slewROutput Rise Slew Rate30.2VCC to 0.6VCC load 1 4 V/ns
slewFOutput Fall Slew Rate30.6VCC to 0.2VCC load 1 4 V/ns
Notes:
1. Refer to the V/I curves in Figure 9. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here;
i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs.
Switching Current High specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D)
are provided with the respective diagrams in Figure 9. The equation defined maxima should be met by design. In order to facilitate
component testing, a maximum current test point is defined for each side of the output driver.
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an
unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum
parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.
output
buffer
1/2 in. max.
VCC
1k
10 pF
1k
pin
16
Figure 9 shows the 3.3V PCI V/I curve and the minimum and
maximum PCI drive characteristics of the A54SX16P family.
Equation C:
IOH = (98.0/VCC) * (VOUT VCC) * (VOUT + 0.4VCC)
for VCC > VOUT > 0.7 VCC
Equation D:
IOL = (256/VCC) * VOUT * (VCC VOUT)
for 0V < VOUT < 0.18 VCC
Figure 9 3.3V PCI Curve for A54SX16P Family
123456
Voltage Out
0.20
0.15
0.10
0.05
0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
Current (A)
SX PCI IOL
SX PCI IOH
PCI IOL Maximum
PCI IOH Maximum
PCI IOH Minimum
PCI IOL Minimum
17
54SX Family FPGAs
Power-Up Sequencing
Power-Down Sequencing
VCCA VCCR VCCI Power-Up Sequence Comments
A54SX08, A54SX16, A54SX32
3.3V 5.0V 3.3V
5.0V First
3.3V Second No possible damage to device.
3.3V First
5.0V Second Possible damage to device.
A54SX16P
3.3V 3.3V 3.3V 3.3V Only No possible damage to device.
3.3V 5.0V 3.3V
5.0V First
3.3V Second No possible damage to device.
3.3V First
5.0V Second Possible damage to device.
3.3V 5.0V 5.0V
5.0V First
3.3V Second No possible damage to device.
3.3V First
5.0V Second No possible damage to device.
VCCA VCCR VCCI Power-Down Sequence Comments
A54SX08, A54SX16, A54SX32
3.3V 5.0V 3.3V
5.0V First
3.3V Second
Possible damage to device.
3.3V First
5.0V Second
No possible damage to device.
A54SX16P
3.3V 3.3V 3.3V 3.3V Only No possible damage to device.
3.3V 5.0V 3.3V
5.0V First
3.3V Second Possible damage to device.
3.3V First
5.0V Second No possible damage to device.
3.3V 5.0V 5.0V
5.0V First
3.3V Second No possible damage to device.
3.3V First
5.0V Second No possible damage to device.
18
Evaluating Power in 54SX Devices
A critical element of system reliability is the ability of
electronic devices to safely dissipate the heat generated
during operation. The thermal characteristics of a circuit
depend on the device and package used, the operating
temperature, the operating current, and the systems ability
to dissipate heat.
You should complete a power evaluation early in the design
process to help identify potential heat-related problems in the
system and to prevent the system from exceeding the devices
maximum allowed junction temperature.
The actual power dissipated by most applications is
significantly lower than the power the package can dissipate.
However, a thermal analysis should be performed for all
projects. To perform a power evaluation, follow these steps:
Estimate the power consumption of the application.
Calculate the maximum power allowed for the device and
package.
Compare the estimated power and maximum power
values.
Estimating Power Consumption
The total power dissipation for the 54SX family is the sum of
the DC power dissipation and the AC power dissipation. Use
Equation 1 to calculate the estimated power consumption of
your application.
PTotal = PDC + PAC (1)
DC Power Dissipation
The power due to standby current is typically a small
component of the overall power. The Standby power is shown
below for commercial, worst case conditions (70°C).
The DC power dissipation is defined in Equation 2 as follows:
PDC = (Istandby)*VCCA + (Istandby)*VCCR +
(Istandby)*VCCI + x*VOL*IOL + y*(VCCI VOH)*VOH (2)
AC Power Dissipation
The power dissipation of the 54SX Family is usually
dominated by the dynamic power dissipation. Dynamic power
dissipation is a function of frequency, equivalent capacitance
and power supply voltage. The AC power dissipation is defined
as follows:
PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net +
POutput Buffer + PInput Buffer (3)
PAC = VCCA2 * [(m * CEQM * fm)Module +
(n * CEQI * fn)Input Buffer+ (p * (CEQO + CL) * fp)Output Buffer+
(0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))RCLKA +
(0.5 * (q2 * CEQCR * fq2)+ (r2 * fq2))RCLKB +
(0.5 * (s1 * CEQHV * fs1) + (CEQHF * fs1))HCLK](4)
Definition of Terms Used in Formula
Table 3
ICC VCC Power
4mA 3.6V 14.4mW
m = Number of logic modules switching at fm
n = Number of input buffers switching at fn
p = Number of output buffers switching at fp
q1= Number of clock loads on the first routed array
clock
q2= Number of clock loads on the second routed
array clock
x = Number of I/Os at logic low
y = Number of I/Os at logic high
r1= Fixed capacitance due to first routed array clock
r2= Fixed capacitance due to second routed array
clock
s1= Number of clock loads on the dedicated array
clock
CEQM = Equivalent capacitance of logic modules in pF
CEQI = Equivalent capacitance of input buffers in pF
CEQO = Equivalent capacitance of output buffers in pF
CEQCR = Equivalent capacitance of routed array clock in
pF
CEQHV = Variable capacitance of dedicated array clock
CEQHF = Fixed capacitance of dedicated array clock
CL= Output lead capacitance in pF
fm= Average logic module switching rate in MHz
fn= Average input buffer switching rate in MHz
fp= Average output buffer switching rate in MHz
fq1 = Average first routed array clock rate in MHz
fq2 = Average second routed array clock rate in MHz
fs1 = Average dedicated array clock rate in MHz
A54SX08 A54SX16 A54SX16P A54SX32
CEQM (pF) 4.0 4.0 4.0 4.0
CEQI (pF) 3.4 3.4 3.4 3.4
CEQO (pF) 4.7 4.7 4.7 4.7
CEQCR (pF) 1.6 1.6 1.6 1.6
CEQHV 0.615 0.615 0.615 0.615
CEQHF 60 96 96 140
r1 (pF) 87 138 138 171
r2 (pF) 87 138 138 171
19
54SX Family FPGAs
Guidelines for Calculating Power
Consumption
The following guidelines are meant to represent worst-case
scenarios so that they can be generally used to predict the
upper limits of power dissipation. These guidelines are as
follow:
Sample Power Calculation
One of the designs used to characterize the A54SX family was
a 528 bit serial in serial out shift register. The design utilized
100% of the dedicated flip-flops of an A54SX16P device. A
pattern of 0101 was clocked into the device at frequencies
ranging from 1 MHz to 200 MHz. Shifting in a series of 0101
caused 50% of the flip-flops to toggle from low to high at every
clock cycle.
Follow the steps below to estimate power consumption. The
values provided for the sample calculation below are for the
shift register design above. This method for estimating power
consumption is conservative and the actual power
consumption of your design may be less than the estimated
power consumption.
The total power dissipation for the 54SX family is the sum of
the AC power dissipation and the DC power dissipation.
PTotal = PAC (dynamic power) + PDC (static power) (5)
AC Power Dissipation
PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net +
POutput Buffer + PInput Buffer (6)
PAC = VCCA2 * [(m * CEQM * fm)Module +
(n * CEQI * fn)Input Buffer+ (p * (CEQO + CL) * fp)Output
Buffer+
(0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))RCLKA +
(0.5 * (q2 * CEQCR * fq2)+ (r2 * fq2))RCLKB +
(0.5 * (s1 * CEQHV * fs1) + (CEQHF * fs1))HCLK](7)
Step #1: Define Terms Used in Formula
Logic Modules (m) = 20% of modules
Inputs Switching (n) = # inputs/4
Outputs Switching (p) = # output/4
First Routed Array Clock Loads (q1) = 20% of register
cells
Second Routed Array Clock Loads (q2) = 20% of register
cells
Load Capacitance (CL)=35 pF
Average Logic Module Switching Rate
(fm)
=f/10
Average Input Switching Rate (fn)=f/5
Average Output Switching Rate (fp)=f/10
Average First Routed Array Clock Rate
(fq1)
=f/2
Average Second Routed Array Clock
Rate (fq2)
=f/2
Average Dedicated Array Clock Rate
(fs1)
=f
Dedicated Clock Array clock loads (s1) = 20% of regular
modules
VCCA 3.3
Module
Number of logic modules switching at fm
(Used 50%)
m264
Average logic modules switching rate
fm (MHz) (Guidelines: f/10)
fm20
Module capacitance CEQM (pF) CEQM 4.0
Input Buffer
Number of input buffers switching at fnn1
Average input switching rate fn (MHz)
(Guidelines: f/5)
fn40
Input buffer capacitance CEQI (pF) CEQI 3.4
Output Buffer
Number of output buffers switching at fpp1
Average output buffers switching rate
fp(MHz) (Guidelines: f/10)
fp20
Output buffers buffer Capacitance CEQO (pF) CEQO 4.7
Output Load capacitance CL (pF) CL35
RCLKA
Number of Clock loads q1q1528
Capacitance of routed array clock (pF) CEQCR 1.6
Average clock rate (MHz) fq1 200
Fixed capacitance (pF) r1138
RCLKB
Number of Clock loads q2q20
Capacitance of routed array clock (pF) CEQCR 1.6
Average clock rate (MHz) fq2 0
Fixed capacitance (pF) r2138
HCLK
Number of Clock loads s10
Variable capacitance of dedicated
array clock (pF)
CEQHV 0.615
Fixed capacitance of dedicated
array clock (pF)
CEQHF 96
Average clock rate (MHz) fs1 0
20
Step #2: Calculate Dynamic Power Consumption
Step #3: Calculate DC Power Dissipation
DC Power Dissipation
PDC = (Istandby)*VCCA + (Istandby)*VCCR + (Istandby)*VCCI +
X*VOL*IOL + Y*(VCCI VOH)*VOH (8)
For a rough estimate of DC Power Dissipation, only use
PDC =(I
standby)*VCCA. The rest of the formula provides a very
small number that can be considered negligible.
PDC = (Istandby)*VCCA
PDC = .55mA*3.3V
PDC = 0.001815W
Step #4: Calculate Total Power Consumption
PTotal = PAC + PDC
PTotal = 1.461 + 0.001815
PTotal = 1.4628W
Step #5: Compare Estimated Power Consumption against
Characterized Power Consumption
The estimated total power consumption for this design is
1.46W. The characterized power consumption for this design
at 200 MHz is 1.0164W. Figure 10 shows the characterized
power dissipation numbers for the shift register design using
frequencies ranging from 1 MHz to 200 MHz.
VCCA*VCCA 10.89
m*fm*CEQM 0.02112
n*fn*CEQI 0.000136
p*fp*(CEQO+CL) 0.000794
0.5*(q1*CEQCR*fq1)+(r1*fq1) 0.11208
0.5*(q2*CEQCR*fq2)+(r2*fq2)0
0.5 *(s1 * CEQHV * fs1)+(CEQHF*fs1)0
PAC = 1.461W
Figure 10 Power Dissipation
0
200
400
600
800
1000
1200
Frequency MHz
Power Dissipation mW
200 40 60 80 100 120 140 160 180 200
21
54SX Family FPGAs
Junction Temperature (TJ)
The temperature that you select in Designer Series software
is the junction temperature, not ambient temperature. This is
an important distinction because the heat generated from
dynamic power consumption is usually hotter than the
ambient temperature. Use the equation below to calculate
junction temperature.
Junction Temperature = T + Ta
Where:
Ta = Ambient Temperature
T = Temperature gradient between junction (silicon) and
ambient
T = θja * P
P = Power calculated from Estimating Power Consumption
section
θja = Junction to ambient of package. θja numbers are located
in Package Thermal Characteristics section.
Package Thermal Characteristics
The device junction to case thermal characteristic is θjc, and
the junction to ambient air characteristic is θja. The thermal
characteristics for θja are shown with two different air flow
rates.
The maximum junction temperature is 150°C.
A sample calculation of the absolute maximum power
dissipation allowed for a TQFP 176-pin package at
commercial temperature and still air is as follows:
Package Type Pin Count θjc
θja
Still Air
θja
300 ft/min Units
Plastic Leaded Chip Carrier (PLCC) 84 12 32 22 °C/W
Thin Quad Flat Pack (TQFP) 144 11 32 24 °C/W
Thin Quad Flat Pack (TQFP) 176 11 28 21 °C/W
Very Thin Quad Flatpack (VQFP) 100 10 38 32 °C/W
Plastic Quad Flat Pack (PQFP) without Heat Spreader 208 8 30 23 °C/W
Plastic Quad Flat Pack (PQFP) with Heat Spreader 208 3.8 20 17 °C/W
Plastic Ball Grid Array (PBGA) 272 3 20 14.5 °C/W
Plastic Ball Grid Array (PBGA) 313 3 23 17 °C/W
Plastic Ball Grid Array (PBGA) 329 3 18 13.5 °C/W
Fine Pitch Ball Grid Array (FBGA) 144 3.8 38.8 26.7 °C/W
Note:
SX08 does not have a heat spreader.
Maximum Power Allowed Max. junction temp. (°C) Max. ambient temp. (°C)
θja (°C/W)
------------------------------------------------------------------------------------------------------------------------------ 150°C 70°C
28°C/W
--------------------------------- 2 . 8 6 W===
22
54SX Timing Model*
Hard-Wired Clock
External Set-Up = tINY + tIRD1 + tSUD tHCKH
= 1.5 + 0.3 + 0.5 1.0 = 1.3 ns
Clock-to-Out (Pin-to-Pin)
=t
HCKH + tRCO + tRD1 + tDHL
= 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns
Routed Clock
External Set-Up = tINY + tIRD1 + tSUD tRCKH
= 1.5 + 0.3 + 0.5 1.5 = 0.8 ns
Clock-to-Out (Pin-to-Pin)
=t
RCKH + tRCO + tRD1 + tDHL
= 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns
*Values shown for A54SX08-3, worst-case commercial conditions.
Output DelaysInternal DelaysInput Delays
Hard-Wired
I/O Module
FHMAX = 320 MHz
tINY = 1.5 ns tIRD2 = 0.6 ns
Combinatorial
Cell
tPD =0.6 ns
Register
Cell
I/O Module
tRD1 = 0.3 ns
tDHL = 1.6 ns
I/O Module
Routed
Clock
FMAX = 250 MHz
DQDQ
tDHL = 1.6 ns
tENZH = 2.3 ns
tRD1 = 0.3 ns
tRCO = 0.8 ns
tSUD = 0.5 ns
tHD = 0.0 ns
tRD4 = 1.0 ns
tRD8 = 1.9 ns
Predicted
Routing
Delays
tRCKH = 1.5 ns (100% Load)
tRD1 = 0.3 ns
Register
Cell
tRCO = 0.8 ns
Clock tHCKH = 1.0 ns
23
54SX Family FPGAs
Output Buffer Delays
AC Test Loads
Input Buffer Delays C-Cell Delays
To AC test loads (shown below)
PAD
D
E
TRIBUFF
In
VCC
GND
50%
Out
VOL
VOH
1.5V
tDLH
50%
1.5V
tDHL
En
VCC
GND
50%
Out
VOL
1.5V
tENZL
50%
10%
tENLZ
En
VCC
GND
50%
Out
GND
VOH
1.5V
tENZH
50%
90%
tENHZ
VCC
Load 1
(Used to measure
Load 2
(Used to measure enable delays)
35 pF
To the output
VCC GND
35 pF
To the output
R to VCC for tPZL
R to GND for tPZH
R = 1 k
propagation delay)
under test
under test
Load 3
(Used to measure disable delays)
VCC GND
5 pF
To the output
R to VCC for tPLZ
R to GND for tPHZ
R = 1 k
under test
PA D Y
INBUF
In
3V
0V
1.5V
Out
GND
VCC
50%
tINY
1.5V
50%
tINY
S
A
B
Y
S, A or B
Out
GND
VCC
50%
tPD
Out
GND
GND
VCC
50%
50% 50%
VCC
50% 50%
tPD
tPD
tPD
24
Timing Characteristics
Timing characteristics for 54SX devices fall into three
categories: family-dependent, device-dependent, and
design-dependent. The input and output buffer
characteristics are common to all 54SX family members.
Internal routing delays are device dependent. Design
dependency means actual delays are not determined until
after placement and routing of the users design is complete.
Delay values may then be determined by using the DirectTime
Analyzer utility or performing simulation with post-layout
delays.
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets, which
are used for initial design performance evaluation. Critical
net delays can then be applied to the most time-critical paths.
Critical nets are determined by net property assignment prior
to placement and routing. Up to 6% of the nets in a design may
be designated as critical, while 90% of the nets in a design are
typical.
Long Tracks
Some nets in the design use long tracks. Long tracks are
special routing resources that span multiple rows, columns, or
modules. Long tracks employ three and sometimes five
antifuse connections. This increases capacitance and
resistance, resulting in longer net delays for macros
connected to long tracks. Typically up to 6% of nets in a fully
utilized device require long tracks. Long tracks contribute
approximately 4 ns to 8.4 ns delay. This additional delay is
represented statistically in higher fanout (FO=24) routing
delays in the data sheet specifications section.
Timing Derating
54SX devices are manufactured in a CMOS process.
Therefore, device performance varies according to
temperature, voltage, and process variations. Minimum
timing parameters reflect maximum operating voltage,
minimum operating temperature, and best-case processing.
Maximum timing parameters reflect minimum operating
voltage, maximum operating temperature, and worst-case
processing.
Temperature and Voltage Derating Factors
(Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 3.0V)
Register Cell Timing Characteristics
Flip-Flops
(Positive edge triggered)
D
CLK CLR
Q
D
CLK
Q
CLR
t
HPWH
,
t
WAS YN
t
HD
t
SUD
t
HP
t
HPWL
,
t
RCO
t
CLR
t
RPWL
t
RPWH
PRESET
t
PRESET
PRESET
VCCA
Junction Temperature (TJ)
55 40 0 25 70 85 125
3.0 0.75 0.78 0.87 0.89 1.00 1.04 1.16
3.3 0.70 0.73 0.82 0.83 0.93 0.97 1.08
3.6 0.66 0.69 0.77 0.78 0.87 0.92 1.02
25
54SX Family FPGAs
A54SX08 Timing Characteristics
(Worst-Case Commercial Conditions, VCCR= 4.75V, VCCA,VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.6 0.7 0.8 0.9 ns
Predicted Routing Delays2
tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns
tFC FO=1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns
tRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns
tRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns
tRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns
tRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns
tRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns
tRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.8 1.1 1.2 1.4 ns
tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns
tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns
tSUD Flip-Flop Data Input Set-Up 0.5 0.5 0.7 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns
tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns
Input Module Predicted Routing Delays2
tIRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns
tIRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns
tIRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns
tIRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns
tIRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns
tIRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
26
A54SX08 Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hard-Wired) Array Clock Network
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.0 1.1 1.3 1.5 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.0 1.2 1.4 1.6 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns
tHCKSW Maximum Skew 0.1 0.2 0.2 0.2 ns
tHP Minimum Period 2.7 3.1 3.6 4.2 ns
fHMAX Maximum Frequency 350 320 280 240 MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.3 1.5 1.7 2.0 ns
tRCKL
Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 1.4 1.6 1.8 2.1 ns
tRCKH
Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 1.4 1.7 1.9 2.2 ns
tRCKL
Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 1.5 1.7 2.0 2.3 ns
tRCKH
Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 1.5 1.7 1.9 2.2 ns
tRCKL
Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 1.5 1.8 2.0 2.3 ns
tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns
tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns
tRCKSW Maximum Skew (Light Load) 0.1 0.2 0.2 0.2 ns
tRCKSW Maximum Skew (50% Load) 0.3 0.3 0.4 0.4 ns
tRCKSW Maximum Skew (100% Load) 0.3 0.3 0.4 0.4 ns
TTL Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 1.6 1.9 2.1 2.5 ns
tDHL Data-to-Pad HIGH to LOW 1.6 1.9 2.1 2.5 ns
tENZL Enable-to-Pad, Z to L 2.1 2.4 2.8 3.2 ns
tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 ns
tENLZ Enable-to-Pad, L to Z 1.4 1.7 1.9 2.2 ns
tENHZ Enable-to-Pad, H to Z 1.3 1.5 1.7 2.0 ns
Note:
1. Delays based on 35 pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5 pF.
27
54SX Family FPGAs
A54SX16 Timing Characteristics
(Worst-Case Commercial Conditions, VCCR= 4.75V, VCCA,VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.6 0.7 0.8 0.9 ns
Predicted Routing Delays2
tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns
tFC FO=1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns
tRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns
tRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns
tRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns
tRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns
tRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns
tRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.8 1.1 1.2 1.4 ns
tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns
tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns
tSUD Flip-Flop Data Input Set-Up 0.5 0.5 0.7 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns
tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns
Predicted Input Routing Delays2
tIRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns
tIRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns
tIRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns
tIRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns
tIRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns
tIRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
28
A54SX16 Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hard-Wired) Array Clock Network
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.2 1.4 1.5 1.8 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.2 1.4 1.6 1.9 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns
tHCKSW Maximum Skew 0.2 0.2 0.3 0.3 ns
tHP Minimum Period 2.7 3.1 3.6 4.2 ns
fHMAX Maximum Frequency 350 320 280 240 MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.6 1.8 2.1 2.5 ns
tRCKL
Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 1.8 2.0 2.3 2.7 ns
tRCKH
Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 1.8 2.1 2.5 2.8 ns
tRCKL
Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 2.0 2.2 2.5 3.0 ns
tRCKH
Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 1.8 2.1 2.4 2.8 ns
tRCKL
Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 2.0 2.2 2.5 3.0 ns
tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns
tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns
tRCKSW Maximum Skew (Light Load) 0.5 0.5 0.5 0.7 ns
tRCKSW Maximum Skew (50% Load) 0.5 0.6 0.7 0.8 ns
tRCKSW Maximum Skew (100% Load) 0.5 0.6 0.7 0.8 ns
TTL Output ModuleTiming1
tDLH Data-to-Pad LOW to HIGH 1.6 1.9 2.1 2.5 ns
tDHL Data-to-Pad HIGH to LOW 1.6 1.9 2.1 2.5 ns
tENZL Enable-to-Pad, Z to L 2.1 2.4 2.8 3.2 ns
tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 ns
tENLZ Enable-to-Pad, L to Z 1.4 1.7 1.9 2.2 ns
tENHZ Enable-to-Pad, H to Z 1.3 1.5 1.7 2.0 ns
Note:
1. Delays based on 35 pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5 pF.
29
54SX Family FPGAs
A54SX16P Timing Characteristics
(Worst-Case Commercial Conditions, VCCR= 4.75V, VCCA,VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.6 0.7 0.8 0.9 ns
Predicted Routing Delays2
tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns
tFC FO=1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns
tRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns
tRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns
tRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns
tRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns
tRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns
tRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.9 1.1 1.3 1.4 ns
tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns
tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns
tSUD Flip-Flop Data Input Set-Up 0.5 0.5 0.7 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns
tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns
Predicted Input Routing Delays2
tIRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns
tIRD2 FO=2 Routing Delay 0.6 0.7 0.8 0.9 ns
tIRD3 FO=3 Routing Delay 0.8 0.9 1.0 1.2 ns
tIRD4 FO=4 Routing Delay 1.0 1.2 1.4 1.6 ns
tIRD8 FO=8 Routing Delay 1.9 2.2 2.5 2.9 ns
tIRD12 FO=12 Routing Delay 2.8 3.2 3.7 4.3 ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
30
A54SX16P Timing Characteristics (continued)
(Worst-Case Commercial Conditions, VCCR= 4.75V, VCCA,VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hard-Wired) Array Clock Network
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.2 1.4 1.5 1.8 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.2 1.4 1.6 1.9 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns
tHCKSW Maximum Skew 0.2 0.2 0.3 0.3 ns
tHP Minimum Period 2.7 3.1 3.6 4.2 ns
fHMAX Maximum Frequency 350 320 280 240 MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 1.6 1.8 2.1 2.5 ns
tRCKL
Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 1.8 2.0 2.3 2.7 ns
tRCKH
Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 1.8 2.1 2.5 2.8 ns
tRCKL
Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 2.0 2.2 2.5 3.0 ns
tRCKH
Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 1.8 2.1 2.4 2.8 ns
tRCKL
Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 2.0 2.2 2.5 3.0 ns
tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns
tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns
tRCKSW Maximum Skew (Light Load) 0.5 0.5 0.5 0.7 ns
tRCKSW Maximum Skew (50% Load) 0.5 0.6 0.7 0.8 ns
tRCKSW Maximum Skew (100% Load) 0.5 0.6 0.7 0.8 ns
TTL Output Module Timing
tDLH Data-to-Pad LOW to HIGH 2.4 2.8 3.1 3.7 ns
tDHL Data-to-Pad HIGH to LOW 2.3 2.9 3.2 3.8 ns
tENZL Enable-to-Pad, Z to L 3.0 3.4 3.9 4.6 ns
tENZH Enable-to-Pad, Z to H 3.3 3.8 4.3 5.0 ns
tENLZ Enable-to-Pad, L to Z 2.3 2.7 3.0 3.5 ns
tENHZ Enable-to-Pad, H to Z 2.8 3.2 3.7 4.3 ns
TTL/PCI Output Module Timing
tDLH Data-to-Pad LOW to HIGH 1.5 1.7 2.0 2.3 ns
tDHL Data-to-Pad HIGH to LOW 1.9 2.2 2.4 2.9 ns
tENZL Enable-to-Pad, Z to L 2.3 2.6 3.0 3.5 ns
tENZH Enable-to-Pad, Z to H 1.5 1.7 1.9 2.3 ns
tENLZ Enable-to-Pad, L to Z 2.7 3.1 3.5 4.1 ns
tENHZ Enable-to-Pad, H to Z 2.9 3.3 3.7 4.4 ns
31
54SX Family FPGAs
A54SX16P Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCCR = 3.0V, VCCA, VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
PCI Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 1.8 2.0 2.3 2.7 ns
tDHL Data-to-Pad HIGH to LOW 1.7 2.0 2.2 2.6 ns
tENZL Enable-to-Pad, Z to L 0.8 1.0 1.1 1.3 ns
tENZH Enable-to-Pad, Z to H 1.2 1.2 1.5 1.8 ns
tENLZ Enable-to-Pad, L to Z 1.0 1.1 1.3 1.5 ns
tENHZ Enable-to-Pad, H to Z 1.1 1.3 1.5 1.7 ns
TTL Output Module Timing
tDLH Data-to-Pad LOW to HIGH 2.1 2.5 2.8 3.3 ns
tDHL Data-to-Pad HIGH to LOW 2.0 2.3 2.6 3.1 ns
tENZL Enable-to-Pad, Z to L 2.5 2.9 3.2 3.8 ns
tENZH Enable-to-Pad, Z to H 3.0 3.5 3.9 4.6 ns
tENLZ Enable-to-Pad, L to Z 2.3 2.7 3.1 3.6 ns
tENHZ Enable-to-Pad, H to Z 2.9 3.3 3.7 4.4 ns
Note:
1. Delays based on 10 pF loading.
32
A54SX32 Timing Characteristics
(Worst-Case Commercial Conditions, VCCR= 4.75V, VCCA,VCCI = 3.0V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
C-Cell Propagation Delays1
tPD Internal Array Module 0.6 0.7 0.8 0.9 ns
Predicted Routing Delays2
tDC FO=1 Routing Delay, Direct Connect 0.1 0.1 0.1 0.1 ns
tFC FO=1 Routing Delay, Fast Connect 0.3 0.4 0.4 0.5 ns
tRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns
tRD2 FO=2 Routing Delay 0.7 0.8 0.9 1.0 ns
tRD3 FO=3 Routing Delay 1.0 1.2 1.4 1.6 ns
tRD4 FO=4 Routing Delay 1.4 1.6 1.8 2.1 ns
tRD8 FO=8 Routing Delay 2.7 3.1 3.5 4.1 ns
tRD12 FO=12 Routing Delay 4.0 4.7 5.3 6.2 ns
R-Cell Timing
tRCO Sequential Clock-to-Q 0.8 1.1 1.3 1.4 ns
tCLR Asynchronous Clear-to-Q 0.5 0.6 0.7 0.8 ns
tPRESET Asynchronous Preset-to-Q 0.7 0.8 0.9 1.0 ns
tSUD Flip-Flop Data Input Set-Up 0.5 0.6 0.7 0.8 ns
tHD Flip-Flop Data Input Hold 0.0 0.0 0.0 0.0 ns
tWASYN Asynchronous Pulse Width 1.4 1.6 1.8 2.1 ns
Input Module Propagation Delays
tINYH Input Data Pad-to-Y HIGH 1.5 1.7 1.9 2.2 ns
tINYL Input Data Pad-to-Y LOW 1.5 1.7 1.9 2.2 ns
Predicted Input Routing Delays2
tIRD1 FO=1 Routing Delay 0.3 0.4 0.4 0.5 ns
tIRD2 FO=2 Routing Delay 0.7 0.8 0.9 1.0 ns
tIRD3 FO=3 Routing Delay 1.0 1.2 1.4 1.6 ns
tIRD4 FO=4 Routing Delay 1.4 1.6 1.8 2.1 ns
tIRD8 FO=8 Routing Delay 2.7 3.1 3.5 4.1 ns
tIRD12 FO=12 Routing Delay 4.0 4.7 5.3 6.2 ns
Notes:
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is
based on actual routing delay measurements performed on the device prior to shipment.
33
54SX Family FPGAs
A54SX32 Timing Characteristics (continued)
(Worst-Case Commercial Conditions)
‘–3 Speed ‘–2 Speed ‘–1 Speed Std Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hard-Wired) Array Clock Network
tHCKH Input LOW to HIGH
(Pad to R-Cell Input) 1.9 2.1 2.4 2.8 ns
tHCKL Input HIGH to LOW
(Pad to R-Cell Input) 1.9 2.1 2.4 2.8 ns
tHPWH Minimum Pulse Width HIGH 1.4 1.6 1.8 2.1 ns
tHPWL Minimum Pulse Width LOW 1.4 1.6 1.8 2.1 ns
tHCKSW Maximum Skew 0.3 0.4 0.4 0.5 ns
tHP Minimum Period 2.7 3.1 3.6 4.2 ns
fHMAX Maximum Frequency 350 320 280 240 MHz
Routed Array Clock Networks
tRCKH
Input LOW to HIGH (Light Load)
(Pad to R-Cell Input) 2.4 2.7 3.0 3.5 ns
tRCKL
Input HIGH to LOW (Light Load)
(Pad to R-Cell Input) 2.4 2.7 3.1 3.6 ns
tRCKH
Input LOW to HIGH (50% Load)
(Pad to R-Cell Input) 2.7 3.0 3.5 4.1 ns
tRCKL
Input HIGH to LOW (50% Load)
(Pad to R-Cell Input) 2.7 3.1 3.6 4.2 ns
tRCKH
Input LOW to HIGH (100% Load)
(Pad to R-Cell Input) 2.7 3.1 3.5 4.1 ns
tRCKL
Input HIGH to LOW (100% Load)
(Pad to R-Cell Input) 2.8 3.2 3.6 4.3 ns
tRPWH Min. Pulse Width HIGH 2.1 2.4 2.7 3.2 ns
tRPWL Min. Pulse Width LOW 2.1 2.4 2.7 3.2 ns
tRCKSW Maximum Skew (Light Load) 0.85 0.98 1.1 1.3 ns
tRCKSW Maximum Skew (50% Load) 1.23 1.4 1.6 1.9 ns
tRCKSW Maximum Skew (100% Load) 1.30 1.5 1.7 2.0 ns
TTL Output Module Timing1
tDLH Data-to-Pad LOW to HIGH 1.6 1.9 2.1 2.5 ns
tDHL Data-to-Pad HIGH to LOW 1.6 1.9 2.1 2.5 ns
tENZL Enable-to-Pad, Z to L 2.1 2.4 2.8 3.2 ns
tENZH Enable-to-Pad, Z to H 2.3 2.7 3.1 3.6 ns
tENLZ Enable-to-Pad, L to Z 1.4 1.7 1.9 2.2 ns
tENHZ Enable-to-Pad, H to Z 1.3 1.5 1.7 2.0 ns
Note:
1. Delays based on 35pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5pF.
34
Pin Description
CLKA/B Clock A and B
These pins are 3.3V/5.0V PCI/TTL clock inputs for clock
distribution networks. The clock input is buffered prior to
clocking the R-cells. If not used, this pin must be set LOW or
HIGH on the board. It must not be left floating. (For
A54SX72A, these clocks can be configured as bidirectional.)
GND Ground
LOW supply voltage.
HCLK Dedicated (Hard-wired)
Array Clock
This pin is the 3.3V/5.0V PCI/TTL clock input for sequential
modules. This input is directly wired to each R-cell and offers
clock speeds independent of the number of R-cells being
driven. If not used, this pin must be set LOW or HIGH on the
board. It must not be left floating.
I/O Input/Output
The I/O pin functions as an input, output, tristate, or
bidirectional buffer. Based on certain configurations, input
and output levels are compatible with standard TTL, LVTTL,
3.3V PCI or 5.0V PCI specifications. Unused I/O pins are
automatically tristated by the Designer Series software.
NC No Connection
This pin is not connected to circuitry within the device.
PRA, I/O Probe A
The Probe A pin is used to output data from any user-defined
design node within the device. This independent diagnostic
pin can be used in conjunction with the Probe B pin to allow
real-time diagnostic output of any signal path within the
device. The Probe A pin can be used as a user-defined I/O
when verification has been completed. The pins probe
capabilities can be permanently disabled to protect
programmed design confidentiality.
PRB, I/O Probe B
The Probe B pin is used to output data from any node within
the device. This diagnostic pin can be used in conjunction
with the Probe A pin to allow real-time diagnostic output of
any signal path within the device. The Probe B pin can be
used as a user-defined I/O when verification has been
completed. The pins probe capabilities can be permanently
disabled to protect programmed design confidentiality.
TCK Test Clock
Test clock input for diagnostic probe and device
programming. In flexible mode, TCK becomes active when the
TMS pin is set LOW (refer to Table 2 on page 8). This pin
functions as an I/O when the boundary scan state machine
reaches the logic reset state.
TDI Test Data Input
Serial input for boundary scan testing and diagnostic probe.
In flexible mode, TDI is active when the TMS pin is set LOW
(refer to Table 2 on page 8). This pin functions as an I/O
when the boundary scan state machine reaches the logic
reset state.
TDO Test Data Output
Serial output for boundary scan testing. In flexible mode, TDO
is active when the TMS pin is set LOW (refer to Table 2 on
page 8). This pin functions as an I/O when the boundary scan
state machine reaches the logic reset state.
TMS Test Mode Select
The TMS pin controls the use of the IEEE 1149.1 Boundary
Scan pins (TCK, TDI, TDO). In flexible mode when the TMS
pin is set LOW, the TCK, TDI, and TDO pins are boundary scan
pins (refer to Table 2 on page 8). Once the boundary scan
pins are in test mode, they will remain in that mode until the
internal boundary scan state machine reaches the logic
reset state. At this point, the boundary scan pins will be
released and will function as regular I/O pins. The logic
reset state is reached 5 TCK cycles after the TMS pin is set
HIGH. In dedicated test mode, TMS functions as specified in
the IEEE 1149.1 specifications.
VCCI Supply Voltage
Supply voltage for I/Os. See Table 1 on page 8.
VCCA Supply Voltage
Supply voltage for Array. See Table 1 on page 8.
VCCR Supply Voltage
Supply voltage for input tolerance (required for internal
biasing) See Table 1 on page 8.
35
54SX Family FPGAs
Package Pin Assignments
84-Pin PLCC (Top View)
184
84-Pin
PLCC
36
84-Pin PLCC Package
Pin
Number
A54SX08
Function
Pin
Number
A54SX08
Function
1V
CCR 43 VCCR
2 GND 44 I/O
3V
CCA 45 HCLK
4 PRA, I/O 46 I/O
5 I/O 47 I/O
6 I/O 48 I/O
7V
CCI 49 I/O
8 I/O 50 I/O
9 I/O 51 I/O
10 I/O 52 TDO, I/O
11 TCK, I/O 53 I/O
12 TDI, I/O 54 I/O
13 I/O 55 I/O
14 I/O 56 I/O
15 I/O 57 I/O
16 TMS 58 I/O
17 I/O 59 VCCA
18 I/O 60 VCCI
19 I/O 61 GND
20 I/O 62 I/O
21 I/O 63 I/O
22 I/O 64 I/O
23 I/O 65 I/O
24 I/O 66 I/O
25 I/O 67 I/O
26 I/O 68 VCCA
27 GND 69 GND
28 VCCI 70 I/O
29 I/O 71 I/O
30 I/O 72 I/O
31 I/O 73 I/O
32 I/O 74 I/O
33 I/O 75 I/O
34 I/O 76 I/O
35 I/O 77 I/O
36 I/O 78 I/O
37 I/O 79 I/O
38 I/O 80 I/O
39 I/O 81 I/O
40 PRB, I/O 82 I/O
41 VCCA 83 CLKA
42 GND 84 CLKB
54SX Family FPGAs
37
Package Pin Assignments (continued)
208-Pin PQFP (Top View)
208-Pin PQFP
1
208
38
208-Pin PQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
1 GND GND GND 54 I/O I/O I/O
2 TDI, I/O TDI, I/O TDI, I/O 55 I/O I/O I/O
3 I/O I/O I/O 56 I/O I/O I/O
4 NC I/O I/O 57 I/O I/O I/O
5 I/O I/O I/O 58 I/O I/O I/O
6 NC I/O I/O 59 I/O I/O I/O
7 I/O I/O I/O 60 VCCI VCCI VCCI
8 I/O I/O I/O 61 NC I/O I/O
9 I/O I/O I/O 62 I/O I/O I/O
10 I/O I/O I/O 63 I/O I/O I/O
11 TMS TMS TMS 64 NC I/O I/O
12 VCCI VCCI VCCI 65* I/O I/O NC*
13 I/O I/O I/O 66 I/O I/O I/O
14 NC I/O I/O 67 NC I/O I/O
15 I/O I/O I/O 68 I/O I/O I/O
16 I/O I/O I/O 69 I/O I/O I/O
17 NC I/O I/O 70 NC I/O I/O
18 I/O I/O I/O 71 I/O I/O I/O
19 I/O I/O I/O 72 I/O I/O I/O
20 NC I/O I/O 73 NC I/O I/O
21 I/O I/O I/O 74 I/O I/O I/O
22 I/O I/O I/O 75 NC I/O I/O
23 NC I/O I/O 76 PRB, I/O PRB, I/O PRB, I/O
24 I/O I/O I/O 77 GND GND GND
25 VCCR VCCR VCCR 78 VCCA VCCA VCCA
26 GND GND GND 79 GND GND GND
27 VCCA VCCA VCCA 80 VCCR VCCR VCCR
28 GND GND GND 81 I/O I/O I/O
29 I/O I/O I/O 82 HCLK HCLK HCLK
30 I/O I/O I/O 83 I/O I/O I/O
31 NC I/O I/O 84 I/O I/O I/O
32 I/O I/O I/O 85 NC I/O I/O
33 I/O I/O I/O 86 I/O I/O I/O
34 I/O I/O I/O 87 I/O I/O I/O
35 NC I/O I/O 88 NC I/O I/O
36 I/O I/O I/O 89 I/O I/O I/O
37 I/O I/O I/O 90 I/O I/O I/O
38 I/O I/O I/O 91 NC I/O I/O
39 NC I/O I/O 92 I/O I/O I/O
40 VCCI VCCI VCCI 93 I/O I/O I/O
41 VCCA VCCA VCCA 94 NC I/O I/O
42 I/O I/O I/O 95 I/O I/O I/O
43 I/O I/O I/O 96 I/O I/O I/O
44 I/O I/O I/O 97 NC I/O I/O
45 I/O I/O I/O 98 VCCI VCCI VCCI
46 I/O I/O I/O 99 I/O I/O I/O
47 I/O I/O I/O 100 I/O I/O I/O
48 NC I/O I/O 101 I/O I/O I/O
49 I/O I/O I/O 102 I/O I/O I/O
50 NC I/O I/O 103 TDO, I/O TDO, I/O TDO, I/O
51 I/O I/O I/O 104 I/O I/O I/O
52 GND GND GND 105 GND GND GND
53 I/O I/O I/O 106 NC I/O I/O
* Please note that Pin 65 in the A54SX32PQ208 is a no connect (NC).
54SX Family FPGAs
39
107 I/O I/O I/O 158 I/O I/O I/O
108 NC I/O I/O 159 I/O I/O I/O
109 I/O I/O I/O 160 I/O I/O I/O
110 I/O I/O I/O 161 I/O I/O I/O
111 I/O I/O I/O 162 I/O I/O I/O
112 I/O I/O I/O 163 I/O I/O I/O
113 I/O I/O I/O 164 VCCI VCCI VCCI
114 VCCA VCCA VCCA 165 I/O I/O I/O
115 VCCI VCCI VCCI 166 I/O I/O I/O
116 NC I/O I/O 167 NC I/O I/O
117 I/O I/O I/O 168 I/O I/O I/O
118 I/O I/O I/O 169 I/O I/O I/O
119 NC I/O I/O 170 NC I/O I/O
120 I/O I/O I/O 171 I/O I/O I/O
121 I/O I/O I/O 172 I/O I/O I/O
122 NC I/O I/O 173 NC I/O I/O
123 I/O I/O I/O 174 I/O I/O I/O
124 I/O I/O I/O 175 I/O I/O I/O
125 NC I/O I/O 176 NC I/O I/O
126 I/O I/O I/O 177 I/O I/O I/O
127 I/O I/O I/O 178 I/O I/O I/O
128 I/O I/O I/O 179 I/O I/O I/O
129 GND GND GND 180 CLKA CLKA CLKA
130 VCCA VCCA VCCA 181 CLKB CLKB CLKB
131 GND GND GND 182 VCCR VCCR VCCR
132 VCCR VCCR VCCR 183 GND GND GND
133 I/O I/O I/O 184 VCCA VCCA VCCA
134 I/O I/O I/O 185 GND GND GND
135 NC I/O I/O 186 PRA, I/O PRA, I/O PRA, I/O
136 I/O I/O I/O 187 I/O I/O I/O
137 I/O I/O I/O 188 I/O I/O I/O
138 NC I/O I/O 189 NC I/O I/O
139 I/O I/O I/O 190 I/O I/O I/O
140 I/O I/O I/O 191 I/O I/O I/O
141 NC I/O I/O 192 NC I/O I/O
142 I/O I/O I/O 193 I/O I/O I/O
143 NC I/O I/O 194 I/O I/O I/O
144 I/O I/O I/O 195 NC I/O I/O
145 VCCA VCCA VCCA 196 I/O I/O I/O
146 GND GND GND 197 I/O I/O I/O
147 I/O I/O I/O 198 NC I/O I/O
148 VCCI VCCI VCCI 199 I/O I/O I/O
149 I/O I/O I/O 200 I/O I/O I/O
150 I/O I/O I/O 201 VCCI VCCI VCCI
151 I/O I/O I/O 202 NC I/O I/O
152 I/O I/O I/O 203 NC I/O I/O
153 I/O I/O I/O 204 I/O I/O I/O
154 I/O I/O I/O 205 NC I/O I/O
155 NC I/O I/O 206 I/O I/O I/O
156 NC I/O I/O 207 I/O I/O I/O
157 GND GND GND 208 TCK, I/O TCK, I/O TCK, I/O
208-Pin PQFP (Continued)
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
* Please note that Pin 65 in the A54SX32PQ208 is a no connect (NC).
40
Package Pin Assignments (continued)
144-Pin TQFP (Top View)
1
144
144-Pin
TQFP
54SX Family FPGAs
41
144-Pin TQFP
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
1 GND GND GND 41 I/O I/O I/O
2 TDI, I/O TDI, I/O TDI, I/O 42 I/O I/O I/O
3 I/O I/O I/O 43 I/O I/O I/O
4 I/O I/O I/O 44 VCCI VCCI VCCI
5 I/O I/O I/O 45 I/O I/O I/O
6 I/O I/O I/O 46 I/O I/O I/O
7 I/O I/O I/O 47 I/O I/O I/O
8 I/O I/O I/O 48 I/O I/O I/O
9 TMS TMS TMS 49 I/O I/O I/O
10 VCCI VCCI VCCI 50 I/O I/O I/O
11 GND GND GND 51 I/O I/O I/O
12 I/O I/O I/O 52 I/O I/O I/O
13 I/O I/O I/O 53 I/O I/O I/O
14 I/O I/O I/O 54 PRB, I/O PRB, I/O PRB, I/O
15 I/O I/O I/O 55 I/O I/O I/O
16 I/O I/O I/O 56 VCCA VCCA VCCA
17 I/O I/O I/O 57 GND GND GND
18 I/O I/O I/O 58 VCCR VCCR VCCR
19 VCCR VCCR VCCR 59 I/O I/O I/O
20 VCCA VCCA VCCA 60 HCLK HCLK HCLK
21 I/O I/O I/O 61 I/O I/O I/O
22 I/O I/O I/O 62 I/O I/O I/O
23 I/O I/O I/O 63 I/O I/O I/O
24 I/O I/O I/O 64 I/O I/O I/O
25 I/O I/O I/O 65 I/O I/O I/O
26 I/O I/O I/O 66 I/O I/O I/O
27 I/O I/O I/O 67 I/O I/O I/O
28 GND GND GND 68 VCCI VCCI VCCI
29 VCCI VCCI VCCI 69 I/O I/O I/O
30 VCCA VCCA VCCA 70 I/O I/O I/O
31 I/O I/O I/O 71 TDO, I/O TDO, I/O TDO, I/O
32 I/O I/O I/O 72 I/O I/O I/O
33 I/O I/O I/O 73 GND GND GND
34 I/O I/O I/O 74 I/O I/O I/O
35 I/O I/O I/O 75 I/O I/O I/O
36 GND GND GND 76 I/O I/O I/O
37 I/O I/O I/O 77 I/O I/O I/O
38 I/O I/O I/O 78 I/O I/O I/O
39 I/O I/O I/O 79 VCCA VCCA VCCA
40 I/O I/O I/O 80 VCCI VCCI VCCI
42
81 GND GND GND 113 I/O I/O I/O
82 I/O I/O I/O 114 I/O I/O I/O
83 I/O I/O I/O 115 VCCI VCCI VCCI
84 I/O I/O I/O 116 I/O I/O I/O
85 I/O I/O I/O 117 I/O I/O I/O
86 I/O I/O I/O 118 I/O I/O I/O
87 I/O I/O I/O 119 I/O I/O I/O
88 I/O I/O I/O 120 I/O I/O I/O
89 VCCA VCCA VCCA 121 I/O I/O I/O
90 VCCR VCCR VCCR 122 I/O I/O I/O
91 I/O I/O I/O 123 I/O I/O I/O
92 I/O I/O I/O 124 I/O I/O I/O
93 I/O I/O I/O 125 CLKA CLKA CLKA
94 I/O I/O I/O 126 CLKB CLKB CLKB
95 I/O I/O I/O 127 VCCR VCCR VCCR
96 I/O I/O I/O 128 GND GND GND
97 I/O I/O I/O 129 VCCA VCCA VCCA
98 VCCA VCCA VCCA 130 I/O I/O I/O
99 GND GND GND 131 PRA, I/O PRA, I/O PRA, I/O
100 I/O I/O I/O 132 I/O I/O I/O
101 GND GND GND 133 I/O I/O I/O
102 VCCI VCCI VCCI 134 I/O I/O I/O
103 I/O I/O I/O 135 I/O I/O I/O
104 I/O I/O I/O 136 I/O I/O I/O
105 I/O I/O I/O 137 I/O I/O I/O
106 I/O I/O I/O 138 I/O I/O I/O
107 I/O I/O I/O 139 I/O I/O I/O
108 I/O I/O I/O 140 VCCI VCCI VCCI
109 GND GND GND 141 I/O I/O I/O
110 I/O I/O I/O 142 I/O I/O I/O
111 I/O I/O I/O 143 I/O I/O I/O
112 I/O I/O I/O 144 TCK, I/O TCK, I/O TCK, I/O
113 I/O I/O I/O
144-Pin TQFP (Continued)
Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function Pin Number
A54SX08
Function
A54SX16P
Function
A54SX32
Function
54SX Family FPGAs
43
Package Pin Assignments (continued)
176-Pin TQFP (Top View)
176-Pin
TQFP
176
1
44
176-Pin TQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
1 GND GND GND 45 I/O I/O I/O
2 TDI, I/O TDI, I/O TDI, I/O 46 I/O I/O I/O
3 NC I/O I/O 47 I/O I/O I/O
4 I/O I/O I/O 48 I/O I/O I/O
5 I/O I/O I/O 49 I/O I/O I/O
6 I/O I/O I/O 50 I/O I/O I/O
7 I/O I/O I/O 51 I/O I/O I/O
8 I/O I/O I/O 52 VCCI VCCI VCCI
9 I/O I/O I/O 53 I/O I/O I/O
10 TMS TMS TMS 54 NC I/O I/O
11 VCCI VCCI VCCI 55 I/O I/O I/O
12 NC I/O I/O 56 I/O I/O I/O
13 I/O I/O I/O 57 NC I/O I/O
14 I/O I/O I/O 58 I/O I/O I/O
15 I/O I/O I/O 59 I/O I/O I/O
16 I/O I/O I/O 60 I/O I/O I/O
17 I/O I/O I/O 61 I/O I/O I/O
18 I/O I/O I/O 62 I/O I/O I/O
19 I/O I/O I/O 63 I/O I/O I/O
20 I/O I/O I/O 64 PRB, I/O PRB, I/O PRB, I/O
21 GND GND GND 65 GND GND GND
22 VCCA VCCA VCCA 66 VCCA VCCA VCCA
23 GND GND GND 67 VCCR VCCR VCCR
24 I/O I/O I/O 68 I/O I/O I/O
25 I/O I/O I/O 69 HCLK HCLK HCLK
26 I/O I/O I/O 70 I/O I/O I/O
27 I/O I/O I/O 71 I/O I/O I/O
28 I/O I/O I/O 72 I/O I/O I/O
29 I/O I/O I/O 73 I/O I/O I/O
30 I/O I/O I/O 74 I/O I/O I/O
31 I/O I/O I/O 75 I/O I/O I/O
32 VCCI VCCI VCCI 76 I/O I/O I/O
33 VCCA VCCA VCCA 77 I/O I/O I/O
34 I/O I/O I/O 78 I/O I/O I/O
35 I/O I/O I/O 79 NC I/O I/O
36 I/O I/O I/O 80 I/O I/O I/O
37 I/O I/O I/O 81 NC I/O I/O
38 I/O I/O I/O 82 VCCI VCCI VCCI
39 I/O I/O I/O 83 I/O I/O I/O
40 NC I/O I/O 84 I/O I/O I/O
41 I/O I/O I/O 85 I/O I/O I/O
42 NC I/O I/O 86 I/O I/O I/O
43 I/O I/O I/O 87 TDO, I/O TDO, I/O TDO, I/O
44 GND GND GND 88 I/O I/O I/O
54SX Family FPGAs
45
89 GND GND GND 133 GND GND GND
90 NC I/O I/O 134 I/O I/O I/O
91 NC I/O I/O 135 I/O I/O I/O
92 I/O I/O I/O 136 I/O I/O I/O
93 I/O I/O I/O 137 I/O I/O I/O
94 I/O I/O I/O 138 I/O I/O I/O
95 I/O I/O I/O 139 I/O I/O I/O
96 I/O I/O I/O 140 VCCI VCCI VCCI
97 I/O I/O I/O 141 I/O I/O I/O
98 VCCA VCCA VCCA 142 I/O I/O I/O
99 VCCI VCCI VCCI 143 I/O I/O I/O
100 I/O I/O I/O 144 I/O I/O I/O
101 I/O I/O I/O 145 I/O I/O I/O
102 I/O I/O I/O 146 I/O I/O I/O
103 I/O I/O I/O 147 I/O I/O I/O
104 I/O I/O I/O 148 I/O I/O I/O
105 I/O I/O I/O 149 I/O I/O I/O
106 I/O I/O I/O 150 I/O I/O I/O
107 I/O I/O I/O 151 I/O I/O I/O
108 GND GND GND 152 CLKA CLKA CLKA
109 VCCA VCCA VCCA 153 CLKB CLKB CLKB
110 GND GND GND 154 VCCR VCCR VCCR
111 I/O I/O I/O 155 GND GND GND
112 I/O I/O I/O 156 VCCA VCCA VCCA
113 I/O I/O I/O 157 PRA, I/O PRA, I/O PRA, I/O
114 I/O I/O I/O 158 I/O I/O I/O
115 I/O I/O I/O 159 I/O I/O I/O
116 I/O I/O I/O 160 I/O I/O I/O
117 I/O I/O I/O 161 I/O I/O I/O
118 NC I/O I/O 162 I/O I/O I/O
119 I/O I/O I/O 163 I/O I/O I/O
120 NC I/O I/O 164 I/O I/O I/O
121 NC I/O I/O 165 I/O I/O I/O
122 VCCA VCCA VCCA 166 I/O I/O I/O
123 GND GND GND 167 I/O I/O I/O
124 VCCI VCCI VCCI 168 NC I/O I/O
125 I/O I/O I/O 169 VCCI VCCI VCCI
126 I/O I/O I/O 170 I/O I/O I/O
127 I/O I/O I/O 171 NC I/O I/O
128 I/O I/O I/O 172 NC I/O I/O
129 I/O I/O I/O 173 NC I/O I/O
130 I/O I/O I/O 174 I/O I/O I/O
131 NC I/O I/O 175 I/O I/O I/O
132 NC I/O I/O 176 TCK, I/O TCK, I/O TCK, I/O
176-Pin TQFP (Continued)
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function
A54SX32
Function
46
Package Pin Assignments (continued)
100-Pin VQFP (Top View)
1
100-Pin
VQFP
100
54SX Family FPGAs
47
100-VQFP
Pin Number
A54SX08
Function
A54SX16,
A54SX16P
Function Pin Number
A54SX08
Function
A54SX16
A54SX16P
Function
1 GND GND 51 GND GND
2 TDI, I/O TDI, I/O 52 I/O I/O
3 I/O I/O 53 I/O I/O
4 I/O I/O 54 I/O I/O
5 I/O I/O 55 I/O I/O
6 I/O I/O 56 I/O I/O
7TMSTMS 57V
CCA VCCA
8V
CCI VCCI 58 VCCI VCCI
9 GND GND 59 I/O I/O
10 I/O I/O 60 I/O I/O
11 I/O I/O 61 I/O I/O
12 I/O I/O 62 I/O I/O
13 I/O I/O 63 I/O I/O
14 I/O I/O 64 I/O I/O
15 I/O I/O 65 I/O I/O
16 I/O I/O 66 I/O I/O
17 I/O I/O 67 VCCA VCCA
18 I/O I/O 68 GND GND
19 I/O I/O 69 GND GND
20 VCCI VCCI 70 I/O I/O
21 I/O I/O 71 I/O I/O
22 I/O I/O 72 I/O I/O
23 I/O I/O 73 I/O I/O
24 I/O I/O 74 I/O I/O
25 I/O I/O 75 I/O I/O
26 I/O I/O 76 I/O I/O
27 I/O I/O 77 I/O I/O
28 I/O I/O 78 I/O I/O
29 I/O I/O 79 I/O I/O
30 I/O I/O 80 I/O I/O
31 I/O I/O 81 I/O I/O
32 I/O I/O 82 VCCI VCCI
33 I/O I/O 83 I/O I/O
34 PRB, I/O PRB, I/O 84 I/O I/O
35 VCCA VCCA 85 I/O I/O
36 GND GND 86 I/O I/O
37 VCCR VCCR 87 CLKA CLKA
38 I/O I/O 88 CLKB CLKB
39 HCLK HCLK 89 VCCR VCCR
40 I/O I/O 90 VCCA VCCA
41 I/O I/O 91 GND GND
42 I/O I/O 92 PRA, I/O PRA, I/O
43 I/O I/O 93 I/O I/O
44 VCCI VCCI 94 I/O I/O
45 I/O I/O 95 I/O I/O
46 I/O I/O 96 I/O I/O
47 I/O I/O 97 I/O I/O
48 I/O I/O 98 I/O I/O
49 TDO, I/O TDO, I/O 99 I/O I/O
50 I/O I/O 100 TCK, I/O TCK, I/O
48
Package Pin Assignments (continued)
313-Pin PBGA (Top View)
12345 6789101112131415
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
16 17 18 19 20 21 22 23 24 25
12345 678910111213141516171819202122232425
54SX Family FPGAs
49
313-Pin PBGA
Pin Number
A54SX32
Function Pin Number
A54SX32
Function Pin Number
A54SX32
Function Pin Number
A54SX32
Function
A1 GND AC15 I/O C5 NC F20 I/O
A3 NC AC17 I/O C7 I/O F22 I/O
A5 I/O AC19 I/O C9 I/O F24 I/O
A7 I/O AC21 I/O C11 I/O G1 I/O
A9 I/O AC23 I/O C13 VCCI G3 TMS
A11 I/O AC25 NC C15 I/O G5 I/O
A13 VCCR AD2 GND C17 I/O G7 I/O
A15 I/O AD4 I/O C19 VCCI G9 VCCI
A17 I/O AD6 VCCI C21 I/O G11 I/O
A19 I/O AD8 I/O C23 I/O G13 CLKB
A21 I/O AD10 I/O C25 NC G15 I/O
A23 NC AD12 PRB, I/O D2 I/O G17 I/O
A25 GND AD14 I/O D4 NC G19 I/O
AA1 I/O AD16 I/O D6 I/O G21 I/O
AA3 I/O AD18 I/O D8 I/O G23 I/O
AA5 NC AD20 I/O D10 I/O G25 I/O
AA7 I/O AD22 NC D12 I/O H2 I/O
AA9 NC AD24 I/O D14 I/O H4 I/O
AA11 I/O AE1 NC D16 I/O H6 I/O
AA13 I/O AE3 I/O D18 I/O H8 I/O
AA15 I/O AE5 I/O D20 I/O H10 I/O
AA17 I/O AE7 I/O D22 I/O H12 PRA, I/O
AA19 I/O AE9 I/O D24 NC H14 I/O
AA21 I/O AE11 I/O E1 I/O H16 I/O
AA23 NC AE13 VCCA E3 NC H18 NC
AA25 I/O AE15 I/O E5 I/O H20 I/O
AB2 NC AE17 I/O E7 I/O H22 VCCI
AB4 NC AE19 I/O E9 I/O H24 I/O
AB6 I/O AE21 I/O E11 I/O J1 I/O
AB8 I/O AE23 TDO, I/O E13 VCCA J3 I/O
AB10 I/O AE25 GND E15 I/O J5 I/O
AB12 I/O B2 TCK, I/O E17 I/O J7 NC
AB14 I/O B4 I/O E19 I/O J9 I/O
AB16 I/O B6 I/O E21 I/O J11 I/O
AB18 VCCI B8 I/O E23 I/O J13 CLKA
AB20 NC B10 I/O E25 I/O J15 I/O
AB22 I/O B12 I/O F2 I/O J17 I/O
AB24 I/O B14 I/O F4 I/O J19 I/O
AC1 I/O B16 I/O F6 NC J21 GND
AC3 I/O B18 I/O F8 I/O J23 I/O
AC5 I/O B20 I/O F10 NC J25 I/O
AC7 I/O B22 I/O F12 I/O K2 I/O
AC9 I/O B24 I/O F14 I/O K4 I/O
AC11 I/O C1 TDI, I/O F16 NC K6 I/O
AC13 VCCR C3 I/O F18 I/O K8 VCCI
50
K10 I/O N3 VCCA R21 I/O V18 I/O
K12 I/O N5 VCCR R23 I/O V20 I/O
K14 I/O N7 I/O R25 I/O V22 VCCA
K16 I/O N9 VCCI T2 I/O V24 VCCI
K18 I/O N11 GND T4 I/O W1 I/O
K20 VCCA N13 GND T6 I/O W3 I/O
K22 I/O N15 GND T8 I/O W5 I/O
K24 I/O N17 I/O T10 I/O W7 NC
L1 I/O N19 I/O T12 I/O W9 I/O
L3 I/O N21 I/O T14 HCLK W11 I/O
L5 I/O N23 VCCR T16 I/O W13 VCCI
L7 I/O N25 VCCA T18 I/O W15 I/O
L9 I/O P2 I/O T20 I/O W17 I/O
L11 I/O P4 I/O T22 I/O W19 I/O
L13 GND P6 I/O T24 I/O W21 I/O
L15 I/O P8 I/O U1 I/O W23 I/O
L17 I/O P10 I/O U3 I/O W25 I/O
L19 I/O P12 GND U5 VCCI Y2 I/O
L21 I/O P14 GND U7 I/O Y4 I/O
L23 I/O P16 I/O U9 I/O Y6 I/O
L25 I/O P18 I/O U15 I/O Y8 I/O
M2 I/O P20 NC U17 I/O Y10 I/O
M4 I/O P22 I/O U19 I/O Y12 I/O
M6 I/O P24 I/O U21 I/O Y14 I/O
M8 I/O R1 I/O U23 I/O Y16 I/O
M10 I/O R3 I/O U25 I/O Y18 I/O
M12 GND R5 I/O V2 VCCA Y20 NC
M14 GND R7 I/O V4 I/O Y22 I/O
M16 VCCI R9 I/O V6 I/O Y24 NC
M18 I/O R11 I/O V8 I/O
M20 I/O R13 GND V10 I/O
M22 I/O R15 I/O V12 I/O
M24 I/O R17 I/O V14 I/O
N1 I/O R19 I/O V16 NC
313-Pin PBGA (Continued)
Pin Number
A54SX32
Function Pin Number
A54SX32
Function Pin Number
A54SX32
Function Pin Number
A54SX32
Function
54SX Family FPGAs
51
Package Pin Assignments (continued)
329-Pin PBGA (Top View)
2322212019181716151410 11 12 13987654321
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
52
329-Pin PBGA
Pin Number
A54SX32
Function Pin Number
A54SX32
Function Pin Number
A54SX32
Function Pin Number
A54SX32
Function
A1 GND AA23 VCCI AC22 VCCI C21 VCCI
A2 GND AB1 I/O AC23 GND C22 GND
A3 VCCI AB2 GND B1 VCCI C23 NC
A4 NC AB3 I/O B2 GND D1 I/O
A5 I/O AB4 I/O B3 I/O D2 I/O
A6 I/O AB5 I/O B4 I/O D3 I/O
A7 VCCI AB6 I/O B5 I/O D4 TCK, I/O
A8 NC AB7 I/O B6 I/O D5 I/O
A9 I/O AB8 I/O B7 I/O D6 I/O
A10 I/O AB9 I/O B8 I/O D7 I/O
A11 I/O AB10 I/O B9 I/O D8 I/O
A12 I/O AB11 PRB, I/O B10 I/O D9 I/O
A13 CLKB AB12 I/O B11 I/O D10 I/O
A14 I/O AB13 HCLK B12 PRA, I/O D11 VCCA
A15 I/O AB14 I/O B13 CLKA D12 VCCR
A16 I/O AB15 I/O B14 I/O D13 I/O
A17 I/O AB16 I/O B15 I/O D14 I/O
A18 I/O AB17 I/O B16 I/O D15 I/O
A19 I/O AB18 I/O B17 I/O D16 I/O
A20 I/O AB19 I/O B18 I/O D17 I/O
A21 NC AB20 I/O B19 I/O D18 I/O
A22 VCCI AB21 I/O B20 I/O D19 I/O
A23 GND AB22 GND B21 I/O D20 I/O
AA1 VCCI AB23 I/O B22 GND D21 I/O
AA2 I/O AC1 GND B23 VCCI D22 I/O
AA3 GND AC2 VCCI C1 NC D23 I/O
AA4 I/O AC3 NC C2 TDI, I/O E1 VCCI
AA5 I/O AC4 I/O C3 GND E2 I/O
AA6 I/O AC5 I/O C4 I/O E3 I/O
AA7 I/O AC6 I/O C5 I/O E4 I/O
AA8 I/O AC7 I/O C6 I/O E20 I/O
AA9 I/O AC8 I/O C7 I/O E21 I/O
AA10 I/O AC9 VCCI C8 I/O E22 I/O
AA11 I/O AC10 I/O C9 I/O E23 I/O
AA12 I/O AC11 I/O C10 I/O F1 I/O
AA13 I/O AC12 I/O C11 I/O F2 TMS
AA14 I/O AC13 I/O C12 I/O F3 I/O
AA15 I/O AC14 I/O C13 I/O F4 I/O
AA16 I/O AC15 NC C14 I/O F20 I/O
AA17 I/O AC16 I/O C15 I/O F21 I/O
AA18 I/O AC17 I/O C16 I/O F22 I/O
AA19 I/O AC18 I/O C17 I/O F23 I/O
AA20 TDO, I/O AC19 I/O C18 I/O G1 I/O
AA21 VCCI AC20 I/O C19 I/O G2 I/O
AA22 I/O AC21 NC C20 I/O G3 I/O
54SX Family FPGAs
53
G4 I/O L22 I/O R20 I/O Y10 I/O
G20 I/O L23 NC R21 I/O Y11 I/O
G21 I/O M1 I/O R22 I/O Y12 VCCA
G22 I/O M2 I/O R23 I/O Y13 VCCR
G23 GND M3 I/O T1 I/O Y14 I/O
H1 I/O M4 VCCA T2 I/O Y15 I/O
H2 I/O M10 GND T3 I/O Y16 I/O
H3 I/O M11 GND T4 I/O Y17 I/O
H4 I/O M12 GND T20 I/O Y18 I/O
H20 VCCA M13 GND T21 I/O Y19 I/O
H21 I/O M14 GND T22 I/O Y20 GND
H22 I/O M20 VCCA T23 I/O Y21 I/O
H23 I/O M21 I/O U1 I/O Y22 I/O
J1 NC M22 I/O U2 I/O Y23 I/O
J2 I/O M23 VCCI U3 VCCA
J3 I/O N1 I/O U4 I/O
J4 I/O N2 I/O U20 I/O
J20 I/O N3 I/O U21 VCCA
J21 I/O N4 I/O U22 I/O
J22 I/O N10 GND U23 I/O
J23 I/O N11 GND V1 VCCI
K1 I/O N12 GND V2 I/O
K2 I/O N13 GND V3 I/O
K3 I/O N14 GND V4 I/O
K4 I/O N20 NC V20 I/O
K10 GND N21 I/O V21 I/O
K11 GND N22 I/O V22 I/O
K12 GND N23 I/O V23 I/O
K13 GND P1 I/O W1 I/O
K14 GND P2 I/O W2 I/O
K20 I/O P3 I/O W3 I/O
K21 I/O P4 I/O W4 I/O
K22 I/O P10 GND W20 I/O
K23 I/O P11 GND W21 I/O
L1 I/O P12 GND W22 I/O
L2 I/O P13 GND W23 NC
L3 I/O P14 GND Y1 NC
L4 VCCR P20 I/O Y2 I/O
L10 GND P21 I/O Y3 I/O
L11 GND P22 I/O Y4 GND
L12 GND P23 I/O Y5 I/O
L13 GND R1 I/O Y6 I/O
L14 GND R2 I/O Y7 I/O
L20 VCCR R3 I/O Y8 I/O
L21 I/O R4 I/O Y9 I/O
329-Pin PBGA
Pin Number
A54SX32
Function Pin Number
A54SX32
Function Pin Number
A54SX32
Function Pin Number
A54SX32
Function
54
Package Pin Assignments (Continued)
144-Pin FBGA (Top View)
12345678910 11 12
A
B
C
D
E
F
G
H
J
K
L
M
55
54SX Family FPGAs
144-Pin FBGA
Pin Number
A54SX08
Function Pin Number
A54SX08
Function Pin Number
A54SX08
Function
A1 I/O E1 I/O J1 I/O
A2 I/O E2 I/O J2 I/O
A3 I/O E3 I/O J3 I/O
A4 I/O E4 I/O J4 I/O
A5 VCCA E5 TMS J5 I/O
A6 GND E6 VCCI J6 PRB, I/O
A7 CLKA E7 VCCI J7 I/O
A8 I/O E8 VCCI J8 I/O
A9 I/O E9 VCCA J9 I/O
A10 I/O E10 I/O J10 I/O
A11 I/O E11 GND J11 I/O
A12 I/O E12 I/O J12 VCCA
B1 I/O F1 I/O K1 I/O
B2 GND F2 I/O K2 I/O
B3 I/O F3 VCCR K3 I/O
B4 I/O F4 I/O K4 I/O
B5 I/O F5 GND K5 I/O
B6 I/O F6 GND K6 I/O
B7 CLKB F7 GND K7 GND
B8 I/O F8 VCCI K8 I/O
B9 I/O F9 I/O K9 I/O
B10 I/O F10 GND K10 GND
B11 GND F11 I/O K11 I/O
B12 I/O F12 I/O K12 I/O
C1 I/O G1 I/O L1 GND
C2 I/O G2 GND L2 I/O
C3 TCK, I/O G3 I/O L3 I/O
C4 I/O G4 I/O L4 I/O
C5 I/O G5 GND L5 I/O
C6 PRA, I/O G6 GND L6 I/O
C7 I/O G7 GND L7 HCLK
C8 I/O G8 VCCI L8 I/O
C9 I/O G9 I/O L9 I/O
C10 I/O G10 I/O L10 I/O
C11 I/O G11 I/O L11 I/O
C12 I/O G12 I/O L12 I/O
D1 I/O H1 I/O M1 I/O
D2 VCCI H2 I/O M2 I/O
D3 TDI, I/O H3 I/O M3 I/O
D4 I/O H4 I/O M4 I/O
D5 I/O H5 VCCA M5 I/O
D6 I/O H6 VCCA M6 I/O
D7 I/O H7 VCCI M7 VCCA
D8 I/O H8 VCCI M8 I/O
D9 I/O H9 VCCA M9 I/O
D10 I/O H10 I/O M10 I/O
D11 I/O H11 I/O M11 TDO, I/O
D12 I/O H12 VCCR M12 I/O
56
Package Mechanical Drawings
Plastic Leaded Chip Carrier (PLCC)
E3
E1
E
DD1D3
.048 (1.219)
.042 (1.067)
e1
.049 (1.244)
A
0.006
A1
.032 (0.812)
MAX
B2
B
C
.075 (1.905)
MAX
.020 (0.508)
MIN
.044
(1.117)
.035 RAD
(0.889)
.005 (0.127)
After Lead
Finish
Base Line
D2/E2
54SX Family FPGAs
57
Notes:
1. All dimensions are in millimeters.
2. BSCBasic Spacing between Centers.
Plastic Leaded Chip Carrier Packages (PLCC)
JEDEC Equiv
PLCC 84
MS007 AE VAR
Dimension Min. Max
A 3.94 4.45
A1 2.29 3.30
B 0.33 0.69
B2 0.66 0.81
C 0.13 0.28
D/E 29.72 30.73
D1/E1 28.96 29.46
D2/E2 27.69 28.70
D3/E3 25.4 nominal
e1 1.27 BSC
58
Package Mechanical Drawings (continued)
Plastic Quad Flat Pack (PQFP, TQFP, VQFP)
E
E1
D
D1
A2 A
L
A1
10 Typ
Theta
0.20 RAD Typ
0.20 RAD Typ
b
e
Detail A
See Detail A
C
ccc
54SX Family FPGAs
59
Package Mechanical Drawings (continued)
Plastic Quad Flat Pack
Rectangular Package (PQFP)
E
E1
D
D1
A2 A
L
A1
10 Typ
Theta
0.20 RAD Typ
0.20 RAD Typ
b
e
Detail A
See Detail A
C
ccc
60
Plastic Quad Flat Packs (PQFP)
JEDEC Equiv
PQFP 208
MO-143
Dimension Min. Nom Max
A 3.70 4.10
A1 0.25 0.38
A2 3.20 3.40 3.60
b 0.17 0.27
c 0.09 0.20
D/E 30.25 30.60 30.85
D1/E1 27.90 28.00 28.10
e0.50 BSC
L 0.50 0.60 0.75
ccc 0.10
Theta 0 7 deg
Diameter 19.82 20.32 20.82
Thin Quad Flat Packs (TQFP)
JEDEC Equiv
TQFP 144
MO-136
TQFP 176
MO-136
Dimension Min. Nom Max Min Nom Max
A 1.60 1.60
A1 0.05 0.10 0.15 0.05 0.10 0.15
A2 1.35 1.40 1.45 1.35 1.40 1.45
b 0.17 0.27 0.17 0.27
c 0.09 0.20 0.09 0.20
D/E 21.75 22.00 22.25 25.75 26.00 26.25
D1/E1 19.90 20.00 20.10 23.90 24.00 24.10
e 0.50 BSC 0.50 BSC
L 0.45 0.60 0.75 0.45 0.60 0.75
ccc 0.10 0.10
Theta 0 7 deg 0 7 deg
Notes:
1. All dimensions are in millimeters.
2. BSCBasic Spacing between Centers.
54SX Family FPGAs
61
Thin Quad Flat Packs (VQFP)
JEDEC Equiv
VQFP 100
MO-136
Dimension Min Nom Max
A 1.20
A1 0.05 0.10 0.15
A2 0.95 1.00 1.05
b0.17 0.27
c 0.09 0.20
D/E 15.75 16.00 16.25
D1/E1 13.90 14.00 14.10
e0.50 BSC
L 0.45 0.60 0.75
ccc 0.10
Theta 0 7 deg
Notes:
1. All dimensions are in millimeters.
2. BSCBasic Spacing between Centers.
62
Package Mechanical Drawings (continued)
144-Pin FBGA
e
1
2
34567
89
101112
A
B
C
D
E
F
G
H
J
K
L
M
E1
D1
Detail A
A2
// ccc C
// bbb C
c
A1
b
A
aaa C
C
D1/E1 SQ
Detail A
Side View
D/D2
E/E2
Top View Bottom View
Pin One Corner
54SX Family FPGAs
63
Fine Pitch Ball Grid Array (FBGA)
FBGA 144
Dimension Min. Nom. Max.
A 1.35 1.45 1.55
A1 0.35 0.40 0.45
A2 0.65 0.70 0.75
aaa 0.15
b 0.45 0.50 0.55
bbb 0.20
c0.35
ccc 0.25
D 12.80 13.00 13.20
D1 11.00 BSC
D2 12.80 13.00 13.20
E 12.80 13.00 13.20
E1 11.00 BSC
E2 12.80 13.00 13.20
e 0.9 1.00 1.10
Notes:
1. All dimensions are in millimeters.
2. BSCBasic Spacing between Centers.
64
Package Mechanical Drawings (continued)
Plastic Ball Grid Array (PBGA313)
R0.025 Typ.
Detail A
30 A2
// ccc C
// bbb C
c
A1
b
A
aaa C
C
E2
E
D2
D
Top View
D1/E1 SQ
Detail A
Side View
Bottom View
r (dia.)
Pin One Corner
Pin One
Corner
e
1357911131519212325 17 246810121418202224 16
E1
D1
C
E
G
J
L
N
R
U
W
AA
AC
D
F
H
K
M
P
T
V
Y
AB
AD
B
AE
A
65
54SX Family FPGAs
Package Mechanical Drawings (continued)
Plastic Ball Grid Array (PBGA329)
R0.025 Typ.
Detail A
30 A2
// ccc C
// bbb C
c
A1
b
A
aaa C
C
E2
E
D2
D
Top View
D1/E1 SQ
Detail A
Side View
Bottom View
Pin One Corner
Pin One
Corner
e
13579111315192123 17 2468101214182022 16
E1
D1
C
E
G
J
L
N
R
U
W
AA
AC
D
F
H
K
M
P
T
V
Y
AB
B
A
66
Plastic Ball Grid Array (PBGA)
JEDEC
Equivalent PBGA313 PBGA329
Dimension Min. Nom. Max. Min. Nom. Max.
A 2.12 2.33 2.52 2.17 2.33 2.70
A1 0.50 0.60 0.70 0.50 0.60 0.70
A2 1.12 1.17 1.22 1.10 1.20 1.30
D 34.80 35.00 35.20 30.80 31.00 31.20
D1 30.48 BSC 27.94 BSC
D2 29.50 30.00 30.70 27.90 28.00 28.10
E 34.80 35.00 35.20 30.80 31.00 31.20
E1 30.48 BSC 27.94 BSC
E2 29.50 30.00 30.70 27.90 28.00 28.10
b 0.60 0.76 0.90 0.60 0.76 0.90
c 0.53 0.56 0.61 0.53 0.60 0.70
aaa 0.15 0.20
bbb N/A 0.20
ccc 0.35 0.25
e 1.27 typ. 1.27 typ.
Notes:
1. All dimensions are in millimeters.
2. BSCBasic Spacing between Centers.
67
54SX Family FPGAs
68
69
54SX Family FPGAs
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
http://www.actel.com
Actel Europe Ltd.
Daneshill House, Lutyens Close
Basingstoke, Hampshire RG24 8AG
United Kingdom
Tel: +44-(0)125-630-5600
Fax: +44-(0)125-635-5420
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81-(0)3-3445-7671
Fax: +81-(0)3-3445-7668
5172137-3/5.00