This is information on a product in full production.
September 2017 DocID028294 Rev 6 1/255
STM32F777xx STM32F778Ax
STM32F779xx
Arm® Cortex®-M7 32b MCU+FPU, 462DMIPS, up to 2MB Flash/
512+16+4KB RAM, crypto, USB OTG HS/FS, 28 com IF, LCD, DSI
Datasheet - production data
Features
Core: Arm® 32-bit Cortex®-M7 CPU with
DPFPU, ART Accelerator and L1-cache:
16 Kbytes I/D cache, allowing 0-wait state
execution from embedded Flash and external
memories, up to 216 MHz, MPU,
462 DMIPS/2.14 DMIPS/MHz (Dhrystone 2.1),
and DSP instructions.
Memories
Up to 2 Mbytes of Flash memory organized
into two banks allowing read-while-write
SRAM: 512 Kbytes (including 128 Kbytes
of data TCM RAM for critical real-time data)
+ 16 Kbytes of instruction TCM RAM (for
critical real-time routines) + 4 Kbytes of
backup SRAM
Flexible external memory controller with up
to 32-bit data bus: SRAM, PSRAM,
SDRAM/LPSDR SDRAM, NOR/NAND
memories
Dual mode Quad-SPI
Graphics
Chrom-ART Accelerator (DMA2D),
graphical hardware accelerator enabling
enhanced graphical user interface
Hardware JPEG codec
LCD-TFT controller supporting up to XGA
resolution
–MIPI
® DSI host controller supporting up to
720p 30 Hz resolution
Clock, reset and supply management
1.7 V to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
Dedicated USB power
4-to-26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC (1%
accuracy)
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Low-power
Sleep, Stop and Standby modes
–V
BAT supply for RTC, 32×32 bit backup
registers + 4 Kbytes backup SRAM
3×12-bit, 2.4 MSPS ADC: up to 24 channels
Digital filters for sigma delta modulator
(DFSDM), 8 channels / 4 filters
2×12-bit D/A converters
General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
Up to 18 timers: up to thirteen 16-bit (1x low-
power 16-bit timer available in Stop mode) and
two 32-bit timers, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input. All 15 timers
running up to 216 MHz. 2x watchdogs, SysTick
timer
Debug mode
SWD & JTAG interfaces
–Cortex
®-M7 Trace Macrocell
Up to 168 I/O ports with interrupt capability
Up to 164 fast I/Os up to 108 MHz
Up to 166 5 V-tolerant I/Os
LQFP100 (14 × 14 mm) UFBGA176 (10 x 10 mm)
)%*$
TFBGA216 (13 x 13 mm)
LQFP208 (28 x 28 mm)
WLCSP180
(0.4 mm pitch)
LQFP176 (24 × 24 mm)
LQFP144 (20 × 20 mm)
TFBGA100 (8 x 8 mm)
www.st.com
STM32F777xx STM32F778Ax STM32F779xx
2/255 DocID028294 Rev 6
Up to 28 communication interfaces
Up to 4 I2C interfaces (SMBus/PMBus)
Up to 4 USARTs/4 UARTs (12.5 Mbit/s,
ISO7816 interface, LIN, IrDA, modem
control)
Up to 6 SPIs (up to 54 Mbit/s), 3 with
muxed simplex I2S for audio
2 x SAIs (serial audio interface)
3 × CANs (2.0B Active) and 2x SDMMCs
SPDIFRX interface
–HDMI-CEC
MDIO slave interface
Advanced connectivity
USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
8- to 14-bit camera interface up to 54 Mbyte/s
Cryptographic acceleration: hardware
acceleration for AES 128, 192, 256, triple DES,
HASH (MD5, SHA-1, SHA-2), and HMAC
True random number generator
CRC calculation unit
RTC: subsecond accuracy, hardware calendar
96-bit unique ID
Table 1. Device summary
Reference Part number
STM32F777xx STM32F777BI, STM32F777II, STM32F777NI, STM32F777VI, STM32F777ZI
STM32F778Ax STM32F778AI
STM32F779xx STM32F779AI, STM32F779BI, STM32F779II, STM32F779NI
DocID028294 Rev 6 3/255
STM32F777xx STM32F778Ax STM32F779xx Contents
6
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1 Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 21
2.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 AXI-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 25
2.13 JPEG codec (JPEG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.14 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.15 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.16 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.17 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.18 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.18.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.18.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.19 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.19.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.19.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.19.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 35
2.20 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 35
2.21 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.22 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.23 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.23.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 39
Contents STM32F777xx STM32F778Ax STM32F779xx
4/255 DocID028294 Rev 6
2.23.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.23.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.23.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.23.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.23.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.23.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.24 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.25 Universal synchronous/asynchronous receiver transmitters (USART) . . 42
2.26 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 43
2.27 Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.28 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.29 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.30 Audio and LCD PLL (PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.31 SD/SDIO/MMC card host interface (SDMMC) . . . . . . . . . . . . . . . . . . . . . 45
2.32 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 45
2.33 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.34 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 46
2.35 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 46
2.36 High-definition multimedia interface (HDMI) - consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.37 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.38 Management Data Input/Output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . 48
2.39 Cryptographic acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.40 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.41 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.42 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.43 Digital filter for Sigma-Delta Modulators (DFSDM) . . . . . . . . . . . . . . . . . . 49
2.44 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.45 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.46 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.47 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.48 DSI Host (DSIHOST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
DocID028294 Rev 6 5/255
STM32F777xx STM32F778Ax STM32F779xx Contents
6
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . 115
5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . 115
5.3.5 Reset and power control block characteristics . . . . . . . . . . . . . . . . . . 115
5.3.6 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 145
5.3.13 MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.14 MIPI D-PHY PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.15 MIPI D-PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.3.16 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.17 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.3.18 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 156
5.3.19 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.3.20 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.3.21 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.3.22 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.3.23 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.3.24 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Contents STM32F777xx STM32F778Ax STM32F779xx
6/255 DocID028294 Rev 6
5.3.25 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.3.26 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.3.27 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.3.28 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.3.29 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.3.30 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.3.31 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.3.32 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 213
5.3.33 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 214
5.3.34 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 216
5.3.35 DFSDM timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.3.36 SD/SDIO MMC card host interface (SDMMC) characteristics . . . . . . . 219
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.1 LQFP100 14x 14 mm, low-profile quad flat package information . . . . . . 221
6.2 TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array
package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.3 LQFP144 20 x 20 mm, low-profile quad flat package information . . . . . 228
6.4 LQFP176 24 x 24 mm, low-profile quad flat package information . . . . . 232
6.5 LQFP208 28 x 28 mm low-profile quad flat package information . . . . . . 236
6.6 WLCSP 180-bump, 5.5 x 6 mm, wafer level chip scale
package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
6.7 UFBGA176+25, 10 x 10, 0.65 mm ultra thin fine-pitch ball grid
array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
6.8 TFBGA216, 13 x 13 x 0.8 mm thin fine-pitch ball grid
array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.9 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 252
A.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
DocID028294 Rev 6 7/255
STM32F777xx STM32F778Ax STM32F779xx List of tables
10
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32F777xx, STM32F778Ax and STM32F779xx features and peripheral counts . . . . . 16
Table 3. Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 32
Table 4. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 5. Voltage regulator modes in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 6. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 7. I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 8. USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 9. DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 10. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 12. FMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 14. STM32F777xx, STM32F778Ax and STM32F779xx register
boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 15. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 16. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 17. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 18. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 19. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 114
Table 20. VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 21. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 115
Table 22. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . 115
Table 23. Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 24. Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 25. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM RAM, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 26. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode, ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 27. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode, ART ON except prefetch / L1-cache ON),
regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 28. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode) or SRAM on AXI (L1-cache disabled),
regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 29. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode), regulator ON . . . . . . . . . . . . . . . . . . . . . 122
Table 30. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode) on ITCM interface (ART disabled),
regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 31. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode) on ITCM interface (ART disabled),
regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 32. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode, ART ON except prefetch / L1-cache ON)
List of tables STM32F777xx STM32F778Ax STM32F779xx
8/255 DocID028294 Rev 6
or SRAM on AXI (L1-cache ON), regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 33. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode, ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 34. Typical and maximum current consumption in Sleep mode, regulator ON. . . . . . . . . . . . 126
Table 35. Typical and maximum current consumption in Sleep mode, regulator OFF . . . . . . . . . . . 127
Table 36. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . 127
Table 37. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . 128
Table 38. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 129
Table 39. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 40. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 41. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 42. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 43. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 44. HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 45. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 46. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 47. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 48. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 49. PLLI2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 50. PLLISAI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 51. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 52. MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 53. MIPI D-PHY AC characteristics LP mode and HS/LP
transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 54. DSI-PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 55. DSI regulator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 56. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 57. Flash memory programming (single bank configuration
nDBANK=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 58. Flash memory programming (dual bank configuration
nDBANK=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 59. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 60. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 61. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 62. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 63. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 64. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 65. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 66. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 67. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 68. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 69. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 70. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 71. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 72. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 73. ADC static accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 74. ADC static accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 75. ADC static accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 76. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 168
Table 77. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 168
Table 78. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
DocID028294 Rev 6 9/255
STM32F777xx STM32F778Ax STM32F779xx List of tables
10
Table 79. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 80. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 81. internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 82. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 83. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 84. Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 85. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 86. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 87. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 88. Dynamics characteristics: JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 89. Dynamics characteristics: SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 90. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 91. USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 92. USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 93. USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 94. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 95. USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 96. Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 97. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 98. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 99. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 100. MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 101. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 193
Table 102. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings . . . . . . . . . . 193
Table 103. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 194
Table 104. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings. . . . . . . . . . 195
Table 105. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Table 106. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 196
Table 107. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Table 108. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 198
Table 109. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Table 110. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Table 111. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 112. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Table 113. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 114. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Table 115. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Table 116. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Table 117. SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Table 118. LPSDR SDRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 119. Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 120. Quad SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 121. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Table 122. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Table 123. DFSDM measured timing 1.71-3.6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Table 124. Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V . . . . . . . . . . . . . 220
Table 125. Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 220
Table 126. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . . 222
Table 127. TFBGA100, 8 x 8 × 0.8 mm thin fine-pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Table 128. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 227
Table 129. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
List of tables STM32F777xx STM32F778Ax STM32F779xx
10/255 DocID028294 Rev 6
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Table 130. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Table 131. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Table 132. WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Table 133. WLCSP 180-bump, 5.5 x 6 mm, recommended PCB design rules
(0.4 mm pitch). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Table 134. UFBGA176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Table 135. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 245
Table 136. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Table 137. TFBGA216 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 248
Table 138. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Table 139. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Table 140. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 252
Table 141. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
DocID028294 Rev 6 11/255
STM32F777xx STM32F778Ax STM32F779xx List of figures
13
List of figures
Figure 1. Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 2. STM32F777xx, STM32F778Ax and STM32F779xx block diagram . . . . . . . . . . . . . . . . . 19
Figure 3. STM32F777xx, STM32F778Ax and STM32F779xx AXI-AHB
bus matrix architecture(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 4. VDDUSB connected to VDD power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 5. VDDUSB connected to external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 6. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 30
Figure 7. PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 8. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 9. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1,VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 10. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1,VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . 34
Figure 11. STM32F77xxx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 12. STM32F77xxx TFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 13. STM32F77xxx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 14. STM32F77xxx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 15. STM32F779xx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 16. STM32F779Ax/STM32F778Ax WLCSP180 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 17. STM32F77xxx LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 18. STM32F779xx LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 19. STM32F77xxx UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 20. STM32F77xxx TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 21. STM32F779xx TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 22. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 23. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 24. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 25. STM32F769xx/STM32F779xx power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 26. STM32F767xx/STM32F777xx power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 27. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 28. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 29. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 30. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 31. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 32. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 33. ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Figure 34. LSI deviation versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 35. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 36. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 37. MIPI D-PHY HS/LP clock lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 38. MIPI D-PHY HS/LP data lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 39. FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 40. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 41. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 42. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 43. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 44. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 170
Figure 45. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 170
List of figures STM32F777xx STM32F778Ax STM32F779xx
12/255 DocID028294 Rev 6
Figure 46. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 47. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 48. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 49. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 50. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 51. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 52. JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 53. SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 54. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 55. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 56. USB OTG full speed timings: definition of data signal rise and fall time. . . . . . . . . . . . . . 186
Figure 57. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 58. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 59. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 60. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 61. MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Figure 62. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 192
Figure 63. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 194
Figure 64. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 195
Figure 65. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 66. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 67. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Figure 68. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 203
Figure 69. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Figure 70. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Figure 71. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Figure 72. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 207
Figure 73. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 207
Figure 74. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Figure 75. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 76. Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 77. Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 78. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Figure 79. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Figure 80. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Figure 81. Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Figure 82. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 83. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 84. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 221
Figure 85. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Figure 86. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Figure 87. TFBGA100, 8 × 8 × 0.8 mm thin fine-pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Figure 88. TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Figure 89. TFBGA100, 8 × 8 × 0.8mm thin fine-pitch ball grid array package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Figure 90. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 228
Figure 91. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
DocID028294 Rev 6 13/255
STM32F777xx STM32F778Ax STM32F779xx List of figures
13
Figure 92. LQFP144, 20 x 20mm, 144-pin low-profile quad flat package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Figure 93. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 232
Figure 94. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Figure 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Figure 96. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 236
Figure 97. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Figure 98. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Figure 99. WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Figure 100. WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Figure 101. WLCSP180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale
package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Figure 102. UFBGA176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Figure 103. UFBGA176+25, 10 x 10 mm x 0.65 mm, ultra fine-pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Figure 104. UFBGA 176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Figure 105. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Figure 106. TFBGA216, 13 x 13 mm, 0.8 mm pitch, thin fine-pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Figure 107. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array
package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Description STM32F777xx STM32F778Ax STM32F779xx
14/255 DocID028294 Rev 6
1 Description
The STM32F777xx, STM32F778Ax and STM32F779xx devices are based on the high-
performance Arm® Cortex®-M7 32-bit RISC core operating at up to 216 MHz frequency. The
Cortex®-M7 core features a floating point unit (FPU) which supports Arm® double-precision
and single-precision data-processing instructions and data types. It also implements a full
set of DSP instructions and a memory protection unit (MPU) which enhances the application
security.
The STM32F777xx, STM32F778Ax and STM32F779xx devices incorporate high-speed
embedded memories with a Flash memory up to 2 Mbytes, 512 Kbytes of SRAM (including
128 Kbytes of Data TCM RAM for critical real-time data), 16 Kbytes of instruction TCM RAM
(for critical real-time routines), 4 Kbytes of backup SRAM available in the lowest power
modes, and an extensive range of enhanced I/Os and peripherals connected to two APB
buses, two AHB buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect
supporting internal and external memories access.
All the devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-
purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-
bit timers, a true random number generator (RNG), and a cryptographic acceleration cell.
They also feature standard and advanced communication interfaces:
Up to four I2Cs
Six SPIs, three I2Ss in half-duplex mode. To achieve audio class accuracy, the I2S
peripherals can be clocked via a dedicated internal audio PLL or via an external clock
to allow synchronization.
Four USARTs plus four UARTs
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI)
Three CANs
Two SAI serial audio interfaces
Two SDMMC host interfaces
Ethernet and camera interfaces
LCD-TFT display controller
Chrom-ART Accelerator™
SPDIFRX interface
HDMI-CEC
Advanced peripherals include two SDMMC interfaces, a flexible memory control (FMC)
interface, a Quad-SPI Flash memory interface, a camera interface for CMOS sensors and a
cryptographic acceleration cell.
The STM32F777xx, STM32F778Ax and STM32F779xx devices operate in the –40 to
+105 °C temperature range from a 1.7 to 3.6 V power supply. Dedicated supply inputs for
USB (OTG_FS and OTG_HS) and SDMMC2 (clock, command and 4-bit data) are available
on all the packages except LQFP100 for a greater power supply choice.
The supply voltage can drop to 1.7 V with the use of an external power supply supervisor. A
comprehensive set of power-saving mode allows the design of low-power applications.
DocID028294 Rev 6 15/255
STM32F777xx STM32F778Ax STM32F779xx Description
53
The STM32F777xx, STM32F778Ax and STM32F779xx devices offer devices in 11
packages ranging from 100 pins to 216 pins. The set of included peripherals changes with
the device chosen.
These features make the STM32F777xx, STM32F778Ax and STM32F779xx
microcontrollers suitable for a wide range of applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Mobile applications, Internet of Things
Wearable devices: smartwatches
The following table lists the peripherals available on each part number.
Description STM32F777xx STM32F778Ax STM32F779xx
16/255 DocID028294 Rev 6
Table 2. STM32F777xx, STM32F778Ax and STM32F779xx features and peripheral counts
Peripherals STM32F77xVx STM32F77xZx STM32F779Ax STM32F778Ax STM32F77xIx STM32F77xBx STM32F77xNx
Flash memory in Kbytes 1024 2048 1024 2048 1024 2048 2048 1024 2048 1024 2048 1024 2048
SRAM in Kbytes
System 512(368+16+128)
Instruction 16
Backup 4
FMC memory controller Yes(1)
Quad-SPI Yes
Ethernet Yes No Yes
Timers
General-purpose 10
Advanced-control 2
Basic 2
Low-power 1
Random number generator Yes
Communication
interfaces
SPI / I2S 4/3 (simplex)(2) 6/3 (simplex)(2)
I2C 4
USART/UART 4/4
USB OTG FS Yes
USB OTG HS Yes
CAN 3
SAI 2
SPDIFRX 4 inputs
SDMMC1 Yes
SDMMC2 Yes(3)
Camera interface Yes
MIPI-DSI Host(4) No Yes
LCD-TFT Yes
Chrom-ART Accelerator™ (DMA2D) Yes
JPEG codec Yes
Cryptography Yes
STM32F777xx STM32F778Ax STM32F779xx Description
DocID028294 Rev 6 17/255
GPIOs 82 114 129 132 159
DFSDM1 Yes (4 filters)
12-bit ADC
Number of channels
3
16 24
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency 216 MHz(5)
Operating voltage 1.7 to 3.6 V(6)
Operating temperatures
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
Package LQFP100
TFBGA100 LQFP144 WLCSP180 UFBGA176(7)
LQFP176 LQFP208 TFBGA216
1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.
2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. SDMMC2 supports a dedicated power rail for clock, command and data 0..4 lines, feature available starting from 144 pin package.
4. DSI host interface is only available on STM32F779x sales types.
5. 216 MHz maximum frequency for - 40°C to + 85°C ambient temperature range (200 MHz maximum frequency for - 40°C to + 105°C ambient temperature range).
6. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.18.2: Internal reset OFF).
7. UFBGA176 is not available for STM32F779x sales types.
Table 2. STM32F777xx, STM32F778Ax and STM32F779xx features and peripheral counts (continued)
Peripherals STM32F77xVx STM32F77xZx STM32F779Ax STM32F778Ax STM32F77xIx STM32F77xBx STM32F77xNx
Description STM32F777xx STM32F778Ax STM32F779xx
18/255 DocID028294 Rev 6
Full compatibility throughout the family
The STM32F777xx, STM32F778Ax and STM32F779xx devices are fully pin-to-pin,
compatible with the STM32F4xxxx devices, allowing the user to try different peripherals,
and reaching higher performances (higher frequency) for a greater degree of freedom
during the development cycle.
Figure 1 gives compatible board designs between the STM32F7xx and STM32F4xx
families.
Figure 1. Compatible board design for LQFP100 package
The STM32F77x LQFP144, LQFP176, LQFP208, TFBGA216, UFBGA176 packages are
fully pin to pin compatible with STM32F4xx devices.
06Y9








3&
9''
966$
95()
9''$

3$
966
9''
3$
3$
3$
3$
3&
3%
3%
3%
3(
3(
3(
3(
3(
3(
3(
3(
3&
3%
3%
9&$3
9''
3(
670)[[670)[[
670)[[670)[[
670)[[670)[[
670)[[670)[[
670)[[[









966
9''
966
3$
3$
3$
3$
3&
3%
3%
3%
3(
3(
3(
3(
3(
3(
3(
3(
3&
3%
3%
9&$3
9''
3(
3&
966$
95()
9''$
3LQVWRDUHQRWFRPSDWLEOH
3$:.83
3$
3$
3$
3$:.83
3$
3$
DocID028294 Rev 6 19/255
STM32F777xx STM32F778Ax STM32F779xx Description
53
Figure 2. STM32F777xx, STM32F778Ax and STM32F779xx block diagram
1. The timers connected to APB2 are clocked from TIMxCLK up to 216 MHz, while the timers connected to APB1 are clocked
from TIMxCLK either up to 108 MHz or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
06Y9
*3,23257$
$+%$3%
(;7,7:.83
$)
3$>@
7,03:0
FRPSOFKDQ7,0B&+>@1
FKDQ7,0B&+>@(75%.,1DV$)
86$57
5;7;6&.
&76576DV$)
63,,6
$3% 0+]
DQDORJLQSXWVFRPPRQ
WRWKH$'&V
9''5()B$'&
8$57
026,0,626&.
166DV$)
63,,6
7;5;
E[&$1
'$&
DV$)
,7)
::'*
.%%.35$0
26&B,1
26&B287
9''$966$
15(6(7
VPFDUG
LU'$
E
6'00&
'>@
&0'&.DV$)
9%$7 WR9
*3'0$
6&/6'$60%$/DV$)
,&60%86
(WKHUQHW0$&

'0$
),)2
0,,RU50,,DV$)
0',2DV$)
86%
27*+6
'3'0
8/3,&.'>@',56731;7
6&/6'$,17,'9%86
*3'0$
6WUHDPV
),)2
$&&(/
&$&+(
65$0.%
&/.1(>@$>@
'>@12(11:(1
1%/>@6'&/.(>@6'1(>@
6'1:(1/
1:$,7,171
&DPHUD
,7)
+6<1&96<1&
38,;&/.'>@
3+<
86%
27*)6
'3
'0
6&/6'$,17,'9%86
),)2
$+%0+]
3+<
),)2
86$5 7 0%SV
7HPSHUDWXUHVHQVRU
$'&
$'&
$'&
,)
,)
3253'5
%25
6833/<
683(59,6,21
39'
,QW
325
UHVHW
;7$/N+]
0*7
57&
5&+6
5&/6
6WDQGE\
LQWHUIDFH
#9''$
$:8
5&&
5HVHWFRQWURO
3//3//3//
$+%3&/.
9''86% WR9
966
9&$3
92/75(*
9729
9'' %%JHQ32:(501*7
%DFNXSUHJLVWHU
$+%EXVPDWUL[60
$3%0+]PD[
/6
7,0
7,0
FKDQQHOVDV$)
'$&
)/$6+0%
7,0
7,0
7,0
7,0
7,0
7,0
7,0
$3%0+]PD[
65$0.%
$+%0+=
'0$
),)2
*3'0$
6WUHDPV
),)2
3%>@
3&>@
3'>@
3(>@
3)>@
3*>@
3+>@
3,>@
*3,23257%
*3,23257&
*3,23257'
*3,23257(
*3,23257)
*3,23257*
*3,23257+
*3,23257,
7,03:0 E
E
7,0 E
7,0 E
VPFDUG
LU'$ 86$57
FRPSOFKDQ7,0B&+>@1
FKDQ7,0B&+>@(75%.,1DV$)
FKDQQHODV$)
FKDQQHODV$)
5;7;6&.
&76576DV$)
DQDORJLQSXWVFRPPRQ
WRWKH$'&
DQDORJLQSXWVIRU$'&
'$&
DV$)
E
E
E[&$1
,&60%86
,&60%86
6&/6'$60%$/DV$)
6&/6'$60%$/DV$)
63,,6 026,0,626&.
166DV$)
7;5;
5;7;DV$)
5;7;DV$)
5;7;6&.
&76576DV$)
5;7;6&.
&76576DV$)
FKDQQHODV$)
8$57
86$57
86$57
VPFDUG
LU'$
VPFDUG
LU'$
E
E
E
FKDQQHODV$)
7,0
FKDQQHOVDV$)
E
E
E
E
FKDQQHOV
FKDQQHOV(75DV$)
FKDQQHOV(75DV$)
FKDQQHOV(75DV$)
*3'0$
$+%$3%
/6
26&B,1
26&B287
$+%3&/.
;7$/26&
0+]
),)2
63,
6&.166DV$)
63,
6&.166DV$)
026,0,62
026,0,62
63,
6&.166DV$)
026,0,62
5;7;DV$)
8$57
5;7;DV$)
8$57
),)2
/&'7)7
),)2
&+520$57
'0$'
3->@ *3,23257-
3.>@ *3,23257.
6$,
6'6&.)60&/.DV$)
),)2
15$61&$61$'9
/&'B5>@/&'B*>@/&'B%>@
/&'B+6<1&/&'B96<1&/&'B'(
/&'B&/.
57&B76
57&B7$03[
57&B287
$UP&38
&RUWH[0
$;,0
$+%3
$+%6
'7&0
,&70
75$&(&.
75$&('>@
-7567-7',
-7&.6:&/.
-7'26:'-7'2
-7$*6:
19,&
(70
038)38
'7&05$0.%
,7&05$0.%
4XDG63, &/.&6'>@
$+%%860$75,;60
9''00& WR9
:.83>@
/37,0 E
+'0,B&(&DV$)
+'0,&(&
63',)5; 63',)5;>@DV$)
6&/6'$60%$/DV$)
,&60%86
6$,
6'6&.)60&/.DV$)
),)2
(;70(0&7/)0&
65$06'5$0125)ODVK
1$1')ODVK6'5$0
0+]
,&DFKH
.%
'&DFKH
.%
$+%$;,
#9''$
#9''
#9''
#96:
'LJLWDOILOWHU
#9''$
#9''$
)/$6+0%
),)2
-3(*
6'00&
'>@
&0'&.DV$)
')6'0
0',26ODYH
&.,1>@
'$7$,1>@
&.287
&.,1>@
'$7$,1>@
&.287
'$&
'6,B'231'6,B'31
'6,B9&$3'6,B&.31
'6,B9'''6,B966'6,B7(DV$)
3//
#9''$
'6,3+<
/'2
6<6&)*
'6,+267
E[&$1
),)2
7;5;
:'*.
9'' WR9
3:5&75/
)&/.
+&/.
$3%3&/.
$3%3&/.
&5&
6&.166DV$)
026,0,62
),)2
51*
+$6+
'(6
$(6
),)2 ),)2
Functional overview STM32F777xx STM32F778Ax STM32F779xx
20/255 DocID028294 Rev 6
2 Functional overview
2.1 Arm® Cortex®-M7 with FPU
The Arm® Cortex®-M7 with FPU processor is the latest generation of Arm processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering an outstanding computational performance and low interrupt latency.
The Cortex®-M7 processor is a highly efficient high-performance featuring:
Six-stage dual-issue pipeline
Dynamic branch prediction
Harvard caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
64-bit AXI4 interface
64-bit ITCM interface
2x32-bit DTCM interfaces
The processor supports the following memory interfaces:
Tightly Coupled Memory (TCM) interface.
Harvard instruction and data caches and AXI master (AXIM) interface.
Dedicated low-latency AHB-Lite peripheral (AHBP) interface.
The processor supports a set of DSP instructions which allow an efficient signal processing
and a complex algorithm execution.
It supports single and double precision FPU (floating point unit), speeds up software
development by using metalanguage development tools, while avoiding saturation.
Figure 2 shows the general block diagram of the STM32F77xxx family.
Note: The Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core.
2.2 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
DocID028294 Rev 6 21/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
2.3 Embedded Flash memory
The STM32F777xx, STM32F778Ax and STM32F779xx devices embed a Flash memory of
up to 2 Mbytes available for storing programs and data. The Flash interface features:
Single /or Dual bank operating modes,
Read-While-Write (RWW) in Dual bank mode.
2.4 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.
2.5 Embedded SRAM
All the devices feature:
System SRAM up to 512 Kbytes:
SRAM1 on AHB bus Matrix: 368 Kbytes
SRAM2 on AHB bus Matrix: 16 Kbytes
DTCM-RAM on TCM interface (Tighly Coupled Memory interface): 128 Kbytes for
critical real-time data.
Instruction RAM (ITCM-RAM) 16 Kbytes:
It is mapped on TCM interface and reserved only for CPU Execution/Instruction
useful for critical real-time routines.
The Data TCM RAM is accessible by the GP-DMAs and peripherals DMAs through specific
AHB slave of the CPU.The instruction TCM RAM is reserved only for CPU. It is accessed at
CPU clock speed with 0 wait states.
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
2.6 AXI-AHB bus matrix
The STM32F777xx, STM32F778Ax and STM32F779xx system architecture is based on 2
sub-systems:
An AXI to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol:
3x AXI to 32-bit AHB bridges connected to AHB bus matrix
1x AXI to 64-bit AHB bridge connected to the embedded Flash memory
A multi-AHB Bus-Matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs,
Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM,
Functional overview STM32F777xx STM32F778Ax STM32F779xx
22/255 DocID028294 Rev 6
FMC, Quad-SPI, AHB and APB peripherals) and ensures a seamless and efficient
operation even when several high-speed peripherals work simultaneously.
Figure 3. STM32F777xx, STM32F778Ax and STM32F779xx AXI-AHB
bus matrix architecture(1)
1. The above figure has large wires for 64-bits bus and thin wires for 32-bits bus.
06Y9
ƌŵŽƌƚĞdžͲDϳ
ϯϮͲďŝƚƵƐDĂƚƌŝdžͲ^
Zd
&>^,
ϮD
^ZDϭ
ϯϲϴ<
^ZDϮ
ϭϲ<
,
ƉĞƌŝƉŚϮ
&DĞdžƚĞƌŶĂů
DĞŵƚů
YƵĂĚ^W/
,W
y/ƚŽ
ŵƵůƚŝͲ,
,
WĞƌŝƉŚϭ
dDZD
/dDZD
dD
/dD
y/D
ϭϲ<
ϭϮϴ<
ϲϰͲďŝƚ,
ϲϰͲďŝƚƵ^DĂƚƌŝdž
/dD
Wϭ
WϮ
,^
,'&DFKH
.%
'W
Dϭ
'W
DϮ
D
ƚŚĞƌŶĞƚ
h^Kd'
,^
DͺW/
DͺDDϭ
DͺDDϮ
DͺWϮ
d,ZEdͺD
h^ͺ,^ͺD
>Ͳd&d ŚƌŽŵͲZd
>Ͳd&dͺD
DϮ
ĐĐĞůĞƌĂƚŽƌ
;DϮͿ
DocID028294 Rev 6 23/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
2.7 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. The configuration is made by software and the transfer sizes
between the source and the destination are independent.
The DMA can be used with the main peripherals:
SPI and I2S
I2C
USART
General-purpose, basic and advanced-control timers TIMx
DAC
SDMMC
Cryptographic acceleration
Camera interface (DCMI)
ADC
SAI
SPDIFRX
Quad-SPI
HDMI-CEC
JPEG codec
DFSDM1
Functional overview STM32F777xx STM32F778Ax STM32F779xx
24/255 DocID028294 Rev 6
2.8 Flexible memory controller (FMC)
The Flexible memory controller (FMC) includes three memory controllers:
The NOR/PSRAM memory controller
The NAND/memory controller
The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller
The main features of the FMC controller are the following:
Interface with static-memory mapped devices including:
Static random access memory (SRAM)
NOR Flash memory/OneNAND Flash memory
PSRAM (4 memory banks)
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
8-,16-,32-bit data bus width
Independent Chip Select control for each memory bank
Independent configuration for each memory bank
Write FIFO
Read FIFO for SDRAM controller
The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is
HCLK/2
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
2.9 Quad-SPI memory interface (QUADSPI)
All the devices embed a Quad-SPI memory interface, which is a specialized communication
interface targetting Single, Dual or Quad-SPI Flash memories. It can work in:
Direct mode through registers
External Flash status register polling mode
Memory mapped mode.
Up to 256 Mbytes external Flash are memory mapped, supporting 8, 16 and 32-bit access.
Code execution is supported.
The opcode and the frame format are fully programmable. The communication can be either
in Single Data Rate or Dual Data Rate.
DocID028294 Rev 6 25/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
2.10 LCD-TFT controller
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to
XGA (1024x768) resolution with the following features:
2 display layers with dedicated FIFO (64x32-bit)
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
Up to 8 input color formats selectable per layer
Flexible blending between two layers using alpha value (per pixel or constant)
Flexible programmable parameters for each layer
Color keying (transparency color)
Up to 4 programmable interrupt events
2.11 Chrom-ART Accelerator™ (DMA2D)
The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit
blitting, row data copy and pixel format conversion. It supports the following functions:
Rectangle filling with a fixed color
Rectangle copy
Rectangle copy with pixel format conversion
Rectangle composition with blending and pixel format conversion
Various image format codings are supported, from indirect 4bpp color mode up to 32bpp
direct color. It embeds dedicated memory to store color lookup tables.
An interrupt can be generated when an operation is complete or at a programmed
watermark.
All the operations are fully automatized and are running independently from the CPU or the
DMAs.
2.12 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 110 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-
M7 with FPU core.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
Functional overview STM32F777xx STM32F778Ax STM32F779xx
26/255 DocID028294 Rev 6
2.13 JPEG codec (JPEG)
The JPEG codec provides an fast and simple hardware compressor and decompressor of
JPEG images with full management of JPEG headers.
The JPEG codec main features:
8-bit/channel pixel depths
Single clock per pixel encoding and decoding
Support for JPEG header generation and parsing
Up to four programmable quantization tables
Fully programmable Huffman tables (two AC and two DC)
Fully programmable minimum coded unit (MCU)
Encode/decode support (non simultaneous)
Single clock Huffman coding and decoding
Two-channel interface: Pixel/Compress In, Pixel/Compressed Out
Stallable design
Support for single, greyscale component
Functionality to enable/disable header processing
Internal register interface
Fully synchronous design
Configured for high-speed decode mode
2.14 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 25 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected
to the 16 external interrupt lines.
2.15 Clocks and startup
On reset the 16 MHz internal HSI RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can
then select as system clock either the RC oscillator or an external 4-26 MHz clock source.
This clock can be monitored for failure. If a failure is detected, the system automatically
switches back to the internal RC oscillator and a software interrupt is generated (if enabled).
This clock source is input to a PLL thus allowing to increase the frequency up to 216 MHz.
Similarly, full interrupt management of the PLL clock entry is available when necessary (for
example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 216 MHz while the maximum frequency of the high-speed APB domains is
108 MHz. The maximum allowed frequency of the low-speed APB domain is 54 MHz.
DocID028294 Rev 6 27/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
The devices embed two dedicated PLL (PLLI2S and PLLSAI) which allow to achieve audio
class performance. In this case, the I2S and SAI master clock can generate all standard
sampling frequencies from 8 kHz to 192 kHz.
2.16 Boot modes
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF
which includes:
All Flash address space mapped on ITCM or AXIM interface
All RAM address space: ITCM, DTCM RAMs and SRAMs mapped on AXIM interface
The System memory bootloader
The boot loader is located in system memory. It is used to reprogram the Flash memory
through a serial interface. Refer to STM32 microcontroller system memory boot mode
application note (AN2606) for details.
2.17 Power supply schemes
VDD = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Note: VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to
Section 2.18.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode
versus device operating mode to identify the packages supporting this option.
VDDSDMMC can be connected either to VDD or an external independent power supply
(1.8 to 3.6V) for SDMMC2 pins (clock, command, and 4-bit data). For example, when
the device is powered at 1.8V, an independent power supply 2.7V can be connected to
VDDSDMMC.When the VDDSDMMC is connected to a separated power supply, it is
independent from VDD or VDDA but it must be the last supply to be provided and the first
to disappear. The following conditions VDDSDMMC must be respected:
During the power-on phase (VDD < VDD_MIN), VDDSDMMC should be always lower
than VDD
During the power-down phase (VDD < VDD_MIN), VDDSDMMC should be always
lower than VDD
–The V
DDSDMMC rising and falling time rate specifications must be respected
In operating mode phase, VDDSDMMC could be lower or higher than VDD:
All associated GPIOs powered by VDDSDMMC are operating between
VDDSDMMC_MIN and VDDSDMMC_MAX.
VDDUSB can be connected either to VDD or an external independent power supply (3.0
to 3.6V) for USB transceivers (refer to Figure 4 and Figure 5). For example, when the
device is powered at 1.8V, an independent power supply 3.3V can be connected to
VDDUSB. When the VDDUSB is connected to a separated power supply, it is independent
from VDD or VDDA but it must be the last supply to be provided and the first to
Functional overview STM32F777xx STM32F778Ax STM32F779xx
28/255 DocID028294 Rev 6
disappear. The following conditions VDDUSB must be respected:
During the power-on phase (VDD < VDD_MIN), VDDUSB should be always lower
than VDD
During the power-down phase (VDD < VDD_MIN), VDDUSB should be always lower
than VDD
–The V
DDUSB rising and falling time rate specifications must be respected (see
Table 20 and Table 21)
In operating mode phase, VDDUSB could be lower or higher than VDD:
- If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by
VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX.
- The VDDUSB supply both USB transceiver (USB OTG_HS and USB OTG_FS). If
only one USB transceiver is used in the application, the GPIOs associated to the
other USB transceiver are still supplied by VDDUSB.
- If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by
VDDUSB are operating between VDD_MIN and VDD_MAX.
Figure 4. VDDUSB connected to VDD power supply
9
''B0,1
WLPH
9
''
9
''$
9
''86%
3RZHURQ 3RZHUGRZQ
2SHUDWLQJPRGH
9
''B0$;
9''
069
DocID028294 Rev 6 29/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
Figure 5. VDDUSB connected to external power supply
The DSI (Display Serial Interface) sub-system uses several power supply pins which are
independent from the other supply pins:
VDDDSI is an independent DSI power supply dedicated for DSI Regulator and
MIPI D-PHY. This supply must be connected to global VDD.
The VCAPDSI pin is the output of DSI Regulator (1.2V) which must be connected
externally to VDD12DSI.
The VDD12DSI pin is used to supply the MIPI D-PHY, and to supply the clock and data
lanes pins. An external capacitor of 2.2 uF must be connected on the VDD12DSI pin.
The VSSDSI pin is an isolated supply ground used for DSI sub-system.
If the DSI functionality is not used at all, then:
–The V
DDDSI pin must be connected to global VDD.
–The V
CAPDSI pin must be connected externally to VDD12DSI but the external
capacitor is no more needed.
–The V
SSDSI pin must be grounded.
2.18 Power supply supervisor
2.18.1 Internal reset ON
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On the other packages, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default BOR
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
069
9
''86%B0,1
9
''B0,1
WLPH
9
''86%B0$;
86% IXQFWLRQDODUHD
9
''
9
''$
86% QRQ
IXQFWLRQDO
DUHD
9
''86%
3RZHURQ 3RZHUGRZQ
2SHUDWLQJPRGH
86%QRQ
IXQFWLRQDO
DUHD
Functional overview STM32F777xx STM32F778Ax STM32F779xx
30/255 DocID028294 Rev 6
option bytes. The device remains in reset mode when VDD is below a specified threshold,
VPOR/PDR or VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
2.18.2 Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.
An external power supply supervisor should monitor VDD and NRST and should maintain
the device in reset mode as long as VDD is below a specified threshold. PDR_ON should be
connected to VSS. Refer to Figure 6: Power supply supervisor interconnection with internal
reset OFF.
Figure 6. Power supply supervisor interconnection with internal reset OFF
The VDD specified threshold, below which the device must be maintained under reset, is
1.7 V (see Figure 7).
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
The brownout reset (BOR) circuitry must be disabled
The embedded programmable voltage detector (PVD) is disabled
VBAT functionality is no more available and VBAT pin should be connected to VDD.
All the packages, except for the LQFP100, allow to disable the internal reset through the
PDR_ON signal when connected to VSS.
069
1567
9''
3'5B21
([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYHZKHQ
9''9
9''
$SSOLFDWLRQUHVHW
VLJQDO
966
DocID028294 Rev 6 31/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
Figure 7. PDR_ON control with internal reset OFF
2.19 Voltage regulator
The regulator has four operating modes:
Regulator ON
Main regulator mode (MR)
Low power regulator (LPR)
Power-down
Regulator OFF
2.19.1 Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
MR mode used in Run/sleep modes or in Stop modes
In Run/Sleep modes
The MR mode is used either in the normal mode (default mode) or the over-drive
mode (enabled by software). Different voltages scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
The over-drive mode allows operating at a higher frequency than the normal mode
for a given voltage scaling.
In Stop modes
The MR can be configured in two ways during stop mode:
MR operates in normal mode (default mode of MR in stop mode)
MR operates in under-drive mode (reduced leakage mode).
069
9''
WLPH
3'5 9
WLPH
1567
3'5B21 3'5B21
5HVHWE\RWKHUVRXUFHWKDQ
SRZHUVXSSO\VXSHUYLVRU
Functional overview STM32F777xx STM32F778Ax STM32F779xx
32/255 DocID028294 Rev 6
LPR is used in the Stop modes:
The LP regulator mode is configured by software when entering Stop mode.
Like the MR mode, the LPR can be configured in two ways during stop mode:
LPR operates in normal mode (default mode when LPR is ON)
LPR operates in under-drive mode (reduced leakage mode).
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.
Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin.
All packages have the regulator ON feature.
2.19.2 Regulator OFF
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply
externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency.The two 2.2 µF ceramic capacitors should
be replaced by two 100 nF decoupling capacitors.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In the regulator OFF mode, the following features are no more supported:
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
The over-drive and under-drive modes are not available.
The Standby mode is not available.
Table 3. Voltage regulator configuration mode versus device operating mode(1)
1. ‘-’ means that the corresponding configuration is not available.
Voltage regulator
configuration Run mode Sleep mode Stop mode Standby mode
Normal mode MR MR MR or LPR -
Over-drive
mode(2)
2. The over-drive mode is not available when VDD = 1.7 to 2.1 V.
MR MR - -
Under-drive mode - - MR or LPR -
Power-down
mode ---Yes
DocID028294 Rev 6 33/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
Figure 8. Regulator OFF
The following conditions must be respected:
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 9).
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 10).
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
Note: The minimum value of V12 depends on the maximum frequency targeted in the application.
Functional overview STM32F777xx STM32F778Ax STM32F779xx
34/255 DocID028294 Rev 6
Figure 9. Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1,VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 10. Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1,VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
DLJ
9''
WLPH
0LQ9
3'5 RU9 9&$3B9&$3B
9
1567
WLPH
3$
9
''
WLPH
0LQ9

9
&$3B
9
&$3B
9

3$DVVHUWHGH[WHUQDOO\
1567
WLPH
DLH
3'5 9RU9
DocID028294 Rev 6 35/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
2.19.3 Regulator ON/OFF and internal reset ON/OFF availability
2.20 Real-time clock (RTC), backup SRAM and backup registers
The RTC is an independent BCD timer/counter. It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
Three anti-tamper detection pins with programmable filter.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either
from the VDD supply when present or from the VBAT pin.
The backup registers are 32-bit registers used to store 128 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby mode.
Table 4. Regulator ON/OFF and internal reset ON/OFF availability
Package Regulator ON Regulator OFF Internal reset ON Internal reset OFF
LQFP100
Yes No
Yes No
LQFP144,
LQFP208
Yes
PDR_ON set to VDD
Yes
PDR_ON set to VSS
LQFP176,
UFBGA176,
TFBGA100,
TFBGA216
Yes
BYPASS_REG set
to VSS
Yes
BYPASS_REG set
to VDD
WLCSP180 Yes(1)
1. Available only on dedicated part number. Refer to Section 7: Ordering information.
Functional overview STM32F777xx STM32F778Ax STM32F779xx
36/255 DocID028294 Rev 6
The RTC clock sources can be:
A 32.768 kHz external crystal (LSE)
An external resonator or oscillator(LSE)
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
The high-speed external clock (HSE) divided by 32
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in
all low-power modes.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.
2.21 Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled.
The voltage regulator can be put either in main regulator mode (MR) or in low-power
mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator
modes in stop mode):
Normal mode (default mode when MR or LPR is enabled)
Under-drive mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup and
LPTIM1 asynchronous interrupt).
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Table 5. Voltage regulator modes in stop mode
Voltage regulator
configuration Main regulator (MR) Low-power regulator (LPR)
Normal mode MR ON LPR ON
Under-drive mode MR in under-drive mode LPR in under-drive mode
DocID028294 Rev 6 37/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, PI8, PI11),
or an RTC alarm / wakeup / tamper /time stamp event occurs.
The Standby mode is not supported when the embedded voltage regulator is bypassed
and the 1.2 V domain is controlled by an external power.
2.22 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When the PDR_ON pin is connected to VSS (Internal Reset OFF), the VBAT functionality is
no more available and the VBAT pin should be connected to VDD.
2.23 Timers and watchdogs
The devices include two advanced-control timers, eight general-purpose timers, two basic
timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 6 compares the features of the advanced-control, general-purpose and basic timers.
Functional overview STM32F777xx STM32F778Ax STM32F779xx
38/255 DocID028294 Rev 6
Table 6. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complem
entary
output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)(1)
Advanced
-control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and 65536
Yes 4 Yes 1 08 216
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any
integer
between 1
and 65536
Yes 4 No 54 108/216
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and 65536
Yes 4 No 54 108/216
TIM9 16-bit Up
Any
integer
between 1
and 65536
No 2 No 108 216
TIM10,
TIM11 16-bit Up
Any
integer
between 1
and 65536
No 1 No 108 216
TIM12 16-bit Up
Any
integer
between 1
and 65536
No 2 No 54 108/216
TIM13,
TIM14 16-bit Up
Any
integer
between 1
and 65536
No 1 No 54 108/216
Basic TIM6,
TIM7 16-bit Up
Any
integer
between 1
and 65536
Yes 0 No 54 108/216
1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR
register.
DocID028294 Rev 6 39/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
2.23.1 Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-
100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
2.23.2 General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F77xxx
devices (see Table 6 for differences).
TIM2, TIM3, TIM4, TIM5
The STM32F77xxx include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-
bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent
channels for input capture/output compare, PWM or one-pulse mode output. This gives
up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
2.23.3 Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
Functional overview STM32F777xx STM32F778Ax STM32F779xx
40/255 DocID028294 Rev 6
2.23.4 Low-power timer (LPTIM1)
The low-power timer has an independent clock and is running also in Stop mode if it is
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.
This low-power timer supports the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous / one-shot mode
Selectable software / hardware input trigger
Selectable clock source:
Internal clock source: LSE, LSI, HSI or APB clock
External clock source over LPTIM input (working even with no internal clock source
running, used by the Pulse Counter Application)
Programmable digital glitch filter
Encoder mode
2.23.5 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
2.23.6 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
2.23.7 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source
DocID028294 Rev 6 41/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
2.24 Inter-integrated circuit interface (I2C)
The devices embed 4 I2C. Refer to table Table 7: I2C implementation for the features
implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
I2C-bus specification and user manual rev. 5 compatibility:
Slave and master modes, multimaster capability
Standard-mode (Sm), with a bitrate up to 100 kbit/s
Fast-mode (Fm), with a bitrate up to 400 kbit/s
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
Programmable setup and hold times
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
Address resolution protocol (ARP) support
SMBus alert
Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming.
Programmable analog and digital noise filters
1-byte buffer with DMA capability
Table 7. I2C implementation
I2C features(1)
1. X: supported.
I2C1 I2C2 I2C3 I2C4
Standard-mode (up to 100 kbit/s) X X X X
Fast-mode (up to 400 kbit/s) X X X X
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X X X X
Programmable analog and digital noise filters X X X X
SMBus/PMBus hardware support X X X X
Independent clock X X X X
Functional overview STM32F777xx STM32F778Ax STM32F779xx
42/255 DocID028294 Rev 6
2.25 Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed USART. Refer to Table 8: USART implementation for the features
implementation.
The universal synchronous asynchronous receiver transmitter (USART) offers a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format.
The USART peripheral supports:
Full-duplex asynchronous communications
Configurable oversampling method by 16 or 8 to give flexibility between speed and
clock tolerance
Dual clock domain allowing convenient baud rate programming independent from the
PCLK reprogramming
A common programmable transmit and receive baud rate of up to 27 Mbit/s when the
USART clock source is system clock frequency (max is 216 MHz) and oversampling by
8 is used.
Auto baud rate detection
Programmable data word length (7 or 8 or 9 bits) word length
Programmable data order with MSB-first or LSB-first shifting
Programmable parity (odd, even, no parity)
Configurable stop bits (1 or 1.5 or 2 stop bits)
Synchronous mode and clock output for synchronous communications
Single-wire half-duplex communications
Separate signal polarity control for transmission and reception
Swappable Tx/Rx pin configuration
Hardware flow control for modem and RS-485 transceiver
Multiprocessor communications
LIN master synchronous break send capability and LIN slave break detection capability
IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode
Smartcard mode ( T=0 and T=1 asynchronous protocols for Smartcards as defined in
the ISO/IEC 7816-3 standard )
Support for Modbus communication
Table 8 summarizes the implementation of all U(S)ARTs instances
Table 8. USART implementation
features(1) USART1/2/3/6 UART4/5/7/8
Data Length 7, 8 and 9 bits
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode X -
DocID028294 Rev 6 43/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
2.26 Serial peripheral interface (SPI)/inter- integrated sound
interfaces (I2S)
The devices feature up to six SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 54 Mbits/s,
SPI2 and SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master
mode frequencies and the frame is configurable from 4 to 16 bits. The SPI interfaces
support NSS pulse mode, TI mode and Hardware CRC calculation. All the SPIs can be
served by the DMA controller.
Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They
can be operated in master or slave mode, in simplex communication modes, and can be
configured to operate with a 16-/32-bit resolution as an input or output channel. Audio
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the
I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
2.27 Serial audio interface (SAI)
The devices embed two serial audio interfaces.
The serial audio interface is based on two independent audio subblocks which can operate
as transmitter or receiver with their FIFO. Many audio protocols are supported by each
block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF output,
supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both subblocks can be
configured in master or in slave mode.
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of
the sampling frequency.
The two sub-blocks can be configured in synchronous mode when full-duplex mode is
required.
Smartcard mode X -
Single-wire half-duplex communication X X
IrDA SIR ENDEC block X X
LIN mode X X
Dual clock domain X X
Receiver timeout interrupt X X
Modbus communication X X
Auto baud rate detection X X
Driver Enable X X
1. X: supported.
Table 8. USART implementation (continued)
features(1) USART1/2/3/6 UART4/5/7/8
Functional overview STM32F777xx STM32F778Ax STM32F779xx
44/255 DocID028294 Rev 6
SAI1 and SAI2 can be served by the DMA controller
2.28 SPDIFRX Receiver Interface (SPDIFRX)
The SPDIFRX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958
and IEC-61937. These standards support simple stereo streams up to high sample rate,
and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up
to 5.1).
The main features of the SPDIFRX are the following:
Up to 4 inputs available
Automatic symbol rate detection
Maximum symbol rate: 12.288 MHz
Stereo stream from 32 to 192 kHz supported
Supports Audio IEC-60958 and IEC-61937, consumer applications
Parity bit management
Communication using DMA for audio samples
Communication using DMA for control and user channel information
Interrupt capabilities
The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and
decode the incoming data stream. The user can select the wanted SPDIF input, and when a
valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the
manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the
CPU decoded data, and associated status flags.
The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF
sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.
2.29 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows
to achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the
I2S/SAI flow with an external PLL (or Codec output).
2.30 Audio and LCD PLL (PLLSAI)
An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the
PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or
11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.
The PLLSAI is also used to generate the LCD-TFT clock.
DocID028294 Rev 6 45/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
2.31 SD/SDIO/MMC card host interface (SDMMC)
SDMMC host interfaces are available, that support the MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDMMC Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDMMC/MMC4.2 card at any one time and a
stack of MMC4.1 or previous.
The SDMMC can be served by the DMA controller
2.32 Ethernet MAC interface with dedicated DMA and IEEE 1588
support
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for
ethernet LAN communications through an industry-standard medium-independent interface
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.
The devices include the following features:
Supports 10 and 100 Mbit/s rates
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors
Tagged MAC frame support (VLAN support)
Half-duplex (CSMA/CD) and full-duplex operation
MAC control sublayer (control frames) support
32-bit CRC generation and removal
Several address filtering modes for physical and multicast address (multicast and
group addresses)
32-bit status code for each transmitted or received frame
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the
receive FIFO are both 2 Kbytes.
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
Triggers interrupt when system time becomes greater than target time
Functional overview STM32F777xx STM32F778Ax STM32F779xx
46/255 DocID028294 Rev 6
2.33 Controller area network (bxCAN)
The three CANs are compliant with the 2.0A and B (active) specifications with a bit rate up
to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for CAN1 and CAN2. 512 bytes of SRAM
are dedicated for CAN3.
2.34 Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 2.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is
generated by a PLL connected to the HSE oscillator.
The major features are:
Combined Rx and Tx FIFO size of 1.28 Kbytes with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
12 host channels with periodic OUT support
Software configurable to OTG1.3 and OTG2.0 modes of operation
USB 2.0 LPM (Link Power Management) support
Battery Charging Specification Revision 1.2 support
Internal FS OTG PHY support
HNP/SNP/IP inside (no need for any external resistor)
For the OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
2.35 Universal serial bus on-the-go high-speed (OTG_HS)
The devices embed a USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral.
The USB OTG HS supports both full-speed and high-speed operations. It integrates the
transceivers for full-speed operation (12 Mbit/s) and features a UTMI low-pin interface
(ULPI) for high-speed operation (480 Mbit/s). When using the USB OTG HS in HS mode, an
external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
2.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is
generated by a PLL connected to the HSE oscillator.
The major features are:
Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
8 bidirectional endpoints
16 host channels with periodic OUT support
DocID028294 Rev 6 47/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
Software configurable to OTG1.3 and OTG2.0 modes of operation
USB 2.0 LPM (Link Power Management) support
Battery Charging Specification Revision 1.2 support
Internal FS OTG PHY support
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
Internal USB DMA
HNP/SNP/IP inside (no need for any external resistor)
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
2.36 High-definition multimedia interface (HDMI) - consumer
electronics control (CEC)
The devices embed a HDMI-CEC controller that provides hardware support for the
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC
controller to wakeup the MCU from Stop mode on data reception.
2.37 Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera
interface can sustain a data transfer rate up to 54 Mbytes/s in 8-bit mode at 54 MHz. It
features:
Programmable polarity for the input pixel clock and synchronization signals
Parallel data communication can be 8-, 10-, 12- or 14-bit
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
Supports continuous mode or snapshot (a single frame) mode
Capability to automatically crop the image
Functional overview STM32F777xx STM32F778Ax STM32F779xx
48/255 DocID028294 Rev 6
2.38 Management Data Input/Output (MDIO) slaves
The devices embed a MDIO slave interface it includes the following features:
32 MDIO Registers addresses, each of which is managed using separate input and
output data registers:
32 x 16-bit firmware read/write, MDIO read-only output data registers
32 x 16-bit firmware read-only, MDIO write-only input data registers
Configurable slave (port) address
Independently maskable interrupts/events:
MDIO Register write
MDIO Register read
MDIO protocol error
Able to operate in and wake up from STOP mode
2.39 Cryptographic acceleration
The devices embed a cryptographic accelerator. This cryptographic accelerator provides a
set of hardware acceleration for the advanced cryptographic algorithms usually needed to
provide confidentiality, authentication, data integrity and non repudiation when exchanging
messages with a peer.
These algorithms consist of:
Encryption/Decryption
DES/TDES (data encryption standard/triple data encryption standard): ECB
(electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-,
128- or 192-bit key
AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (counter
mode) chaining algorithms, 128, 192 or 256-bit key
Universal hash
SHA-1 and SHA-2 (secure hash algorithms)
–MD5
–HMAC
The cryptographic accelerator supports DMA request generation.
2.40 Random number generator (RNG)
All the devices embed an RNG that delivers 32-bit random numbers generated by an
integrated analog circuit.
2.41 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
DocID028294 Rev 6 49/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
A fast I/O handling allows a maximum I/O toggling up to 108 MHz.
2.42 Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
2.43 Digital filter for Sigma-Delta Modulators (DFSDM)
The devices embed one DFSDM with 4 digital filters modules and 8 external input serial
channels (transceivers) or alternately 8 internal parallel inputs support. The DFSDM
peripheral is dedicated to interface the external  modulators to microcontroller and then to
perform digital filtering of the received data streams (which represent analog value on 
modulators inputs). The DFSDM can also interface PDM (Pulse Density Modulation)
microphones and perform PDM to PCM conversion and filtering in hardware. The DFSDM
features optional parallel data stream inputs from microcontrollers memory (through
DMA/CPU transfers into DFSDM). The DFSDM transceivers support several serial interface
formats (to support various  modulators). The DFSDM digital filter modules perform
digital processing according user selected filter parameters with up to 24-bit final ADC
resolution.
The DFSDM peripheral supports:
8 multiplexed input digital serial channels:
Configurable SPI interface to connect various SD modulator(s)
Configurable Manchester coded 1 wire interface support
PDM (Pulse Density Modulation) microphone input support
Maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
Clock output for SD modulator(s): 0..20 MHz
Alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
internal sources: device memory data streams (DMA)
4 digital filter modules with adjustable digital signal processing:
Sincxfilter: filter order/type (1..5), oversampling ratio (up to 1..1024)
integrator: oversampling ratio (1..256)
Up to 24-bit output data resolution, signed output data format
Functional overview STM32F777xx STM32F778Ax STM32F779xx
50/255 DocID028294 Rev 6
Automatic data offset correction (offset stored in register by user)
Continuous or single conversion
Start-of-conversion triggered by:
Software trigger
Internal timers
External events
Start-of-conversion synchronously with first digital filter module (DFSDM0)
Analog watchdog feature:
Low value and high value data threshold registers
Dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
Input from final output data or from selected input digital serial channels
Continuous monitoring independently from standard conversion
Short circuit detector to detect saturated analog input values (bottom and top range):
Up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream
Monitoring continuously each input serial channel
Break signal generation on analog watchdog event or on short circuit detector event
Extremes detector:
Storage of minimum and maximum values of final conversion data
Refreshed by software
DMA capability to read the final conversion data
Interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial
channel clock absence
“regular” or “injected” conversions:
“regular” conversions can be requested at any time or even in continuous mode
without having any impact on the timing of “injected” conversions
“injected” conversions for precise timing and with high conversion priority
Table 9. DFSDM implementation
DFSDM features DFSDM1
Number of filters: x (DFSDM_FLTx) 4
Number of input transceivers/channels: y (DFSDM_CHy) 8
Internal ADC parallel input support -
Number of external triggers (JEXTSEL size) 32
ID register support -
DocID028294 Rev 6 51/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
2.44 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with the temperature.
The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the same input channel as VBAT
, ADC1_IN18, which is used to convert the
sensor output voltage into a digital value. When the temperature sensor and VBAT
conversion are enabled at the same time, only VBAT conversion is performed.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
2.45 Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
Two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability for each channel
External triggers for conversion
Input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
2.46 Serial wire JTAG debug port (SWJ-DP)
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins
could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared
with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
2.47 Embedded Trace Macrocell™
The Arm embedded trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F77xxx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
Functional overview STM32F777xx STM32F778Ax STM32F779xx
52/255 DocID028294 Rev 6
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
2.48 DSI Host (DSIHOST)
The DSI Host is a dedicated peripheral for interfacing with MIPI® DSI compliant displays. It
includes a dedicated video interface internally connected to the LTDC and a generic APB
interface that can be used to transmit information to the display.
These interfaces are as follows:
LTDC interface:
Used to transmit information in Video mode, in which the transfers from the host
processor to the peripheral take the form of a real-time pixel stream (DPI).
Through a customized for mode, this interface can be used to transmit information
in full bandwidth in the Adapted Command mode (DBI).
APB slave interface:
Allows the transmission of generic information in Command mode, and follows a
proprietary register interface.
Can operate concurrently with either LTDC interface in either Video mode or
Adapted Command mode.
Video mode pattern generator:
Allows the transmission of horizontal/vertical color bar and D-PHY BER testing
pattern without any kind of stimuli.
The DSI Host main features:
Compliant with MIPI® Alliance standards
Interface with MIPI® D-PHY
Supports all commands defined in the MIPI® Alliance specification for DCS:
Transmission of all Command mode packets through the APB interface
Transmission of commands in low-power and high-speed during Video mode
Supports up to two D-PHY data lanes
Bidirectional communication and escape mode support through data lane 0
Supports non-continuous clock in D-PHY clock lane for additional power saving
Supports Ultra Low-power mode with PLL disabled
ECC and Checksum capabilities
Support for End of Transmission Packet (EoTp)
Fault recovery schemes
3D transmission support
Configurable selection of system interfaces:
AMBA APB for control and optional support for Generic and DCS commands
Video Mode interface through LTDC
Adapted Command mode interface through LTDC
Independently programmable Virtual Channel ID in
DocID028294 Rev 6 53/255
STM32F777xx STM32F778Ax STM32F779xx Functional overview
53
Video mode
Adapted Command mode
APB Slave
Video Mode interfaces features:
LTDC interface color coding mappings into 24-bit interface:
16-bit RGB, configurations 1, 2, and 3
18-bit RGB, configurations 1 and 2
24-bit RGB
Programmable polarity of all LTDC interface signals
Maximum resolution is limited by available DSI physical link bandwidth:
Number of lanes: 2
Maximum speed per lane: 500 Mbps1Gbps
Adapted interface features
Support for sending large amounts of data through the memory_write_start(WMS) and
memory_write_continue(WMC) DCS commands
LTDC interface color coding mappings into 24-bit interface:
16-bit RGB, configurations 1, 2, and 3
18-bit RGB, configurations 1 and 2
24-bit RGB
Video mode pattern generator:
Vertical and horizontal color bar generation without LTDC stimuli
BER pattern without LTDC stimuli
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
54/255 DocID028294 Rev 6
3 Pinouts and pin description
Figure 11. STM32F77xxx LQFP100 pinout
1. The above figure shows the package top view.
ϭϬϬ
ϵϵ
ϵϴ
ϵϳ
ϵϲ
ϵϱ
ϵϰ
ϵϯ
ϵϮ
ϵϭ
ϵϬ
ϴϵ
ϴϴ
ϴϳ
ϴϲ
ϴϱ
ϴϰ
ϴϯ
ϴϮ
ϴϭ
ϴϬ
ϳϵ
ϳϴ
ϳϳ
ϳϲ
ϭ
Ϯ
ϯ
ϰ
ϱ
ϲ
ϳ
ϴ
ϵ
ϭϬ
ϭϭ
ϭϮ
ϭϯ
ϭϰ
ϭϱ
ϭϲ
ϭϳ
ϭϴ
ϭϵ
ϮϬ
Ϯϭ
ϮϮ
Ϯϯ
Ϯϰ
Ϯϱ
ϳϱ
ϳϰ
ϳϯ
ϳϮ
ϳϭ
ϳϬ
ϲϵ
ϲϴ
ϲϳ
ϲϲ
ϲϱ
ϲϰ
ϲϯ
ϲϮ
ϲϭ
ϲϬ
ϱϵ
ϱϴ
ϱϳ
ϱϲ
ϱϱ
ϱϰ
ϱϯ
ϱϮ
ϱϭ
WϮ
Wϯ
Wϰ
Wϱ
Wϲ
WϭϰͲK^ϯϮͺ/E
WϭϱͲK^ϯϮͺKhd
s^^
s
W,ϬͲK^ͺ/E
WϬ
Wϭ
WϮ
Wϯ
s^^
sZ&н
s
s
s^^
sWϮ
Wϵ
Wϴ
Wϳ
Wϲ
s^^
s
Wϰ
Wϭ
WϮ
Wϳ
Wϴ
Wϵ
sWϭ
s
s
s^^
Wϳ
Wϲ
Wϱ
Wϰ
Wϯ
WϮ
Wϭ
WϬ
WϭϮ
Wϭϭ
WϭϬ
Ϯϲ
Ϯϳ
Ϯϴ
Ϯϵ
ϯϬ
ϯϭ
ϯϮ
ϯϯ
ϯϰ
ϯϱ
ϯϲ
ϯϳ
ϯϴ
ϯϵ
ϰϬ
ϰϭ
ϰϮ
ϰϯ
ϰϰ
ϰϱ
ϰϲ
ϰϳ
ϰϴ
ϰϵ
ϱϬ
06Y9
/4)3
WϭϯͲEd/ͺdDW
W,ϭͲK^ͺKhd
WϬͲt<hW
Wϭ
WϮ
Wϯ
Wϱ
Wϲ
Wϳ
Wϰ
WϬ
Wϱ
Wϭϯ
Wϭϰ
Wϭϱ
WϭϬ
Wϭϭ
WϭϬ
WϭϮ
Wϭϭ
s^^
WϭϮ
Wϭϭ
Wϴ
Wϭϱ
Wϭϰ
Wϭϯ
WϭϮ
Wϵ
WϭϬ
Wϭϯ
Wϭϰ
Wϭϱ
Wϵ
Wϴ
WϭϬ
Wϭϭ
WϭϮ
Wϭϯ
Wϭϱ
Wϭϰ
Wϭ
WϬ
Wϵ
Wϴ
KKdϬ
Wϳ
Wϲ
Wϱ
Wϰ
Wϯ
sd
EZ^d
DocID028294 Rev 6 55/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
Figure 12. STM32F77xxx TFBGA100 pinout
1. The above figure shows the package top view.
06Y9
$
%
(
'
&
)
*
+
-
.
3&
1567
3+
3+
3&
9''$
966
9''
3&
966
9%$7
9''
3&
3$
3$
3$
3(
3(
3(
3(
3(
3$
3$
3$
3%
3%
3%
3%
3%
3(
3%
3'
3%
3'
3%
3$
3&
3&
3'
3'
3'
3%
3%
3$
3&
3$
3$
3&
3'
3'
3'
3$
3$
3$
3$
3&
3%
3'
3'

3&
966$
3&
3$
3&
3$
9''
3&
9''
3%
9''86%
3(
3'5B21
3(
9&$3B
3'
3&
3'
3&
3%
3& 3( 3( 3(
3(
3(
3%
%227
3'
3'
3'
3'
966 966 %<3$66
5(* 9&$3B
3% 3( 3( 3%
3(
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
56/255 DocID028294 Rev 6
Figure 13. STM32F77xxx LQFP144 pinout
1. The above figure shows the package top view.
9
''
3'5B21
3(
3(
3%
3%
%227
3%
3%
3%
3%
3%
3*
9
''
9
66
3*
3*
3*
3*
3*
3*
3'
3'
9
''6'00&
9
66
3'
3'
3'
3'
3'
3'
3&
3&
3&
3$
3$
3( 9
''
3( 9
66
3(
3( 3$
3( 3$
9%$7 3$
3& 3$
3& 3$
3& 3$
3) 3&
3) 3&
3) 3&
3) 3&
3) 9
''86%
3) 9
66
9
66
3*
9
''
3*
3) 3*
3) 3*
3) 3*
3) 3*
3) 3*
3+ 3'
3+ 3'
1567 9
''
3& 9
66
3& 3'
3& 3'
3& 3'
9
66$
3'
9
''
3'
9
5()
3'
9
''$
3%
3$ 3%
3$ 3%
3$ 3%
3$
9
66
9
''
3$
3$
3$
3$
3&
3&
3%
3%
3%
3)
3)
9
''
3)
3)
3)
3*
3*
3(
3(
3(
9
66
9
''
3(
3(
3(
3(
3(
3(
3%
3%
9
''



























































































/4)3












































9
&$3B
9
66
069
9
&$3B
DocID028294 Rev 6 57/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
Figure 14. STM32F77xxx LQFP176 pinout
1. The above figure shows the package top view.
069
3'5B21
9''
3(
3(
3%
3%
%227
3%
3%
3%
3%
3%
3*
9''
966
3*
3*
3*
3*
3*
3*
3'
3'
9''6'00&
966
3'
3'
3'
3'
3'
3'
3&
3&
3&
3,
3,
3(
9''
3(
966
3(
3(
3$
3(
3$
9%$7
3$
3,
3$
3&
3$
3&
3$
3)
3&
3)
3&
3)
3&
3)
3&
3)
9''86%
3)
966
3*
3*
3)
3*
3)
3*
3)
3*
3)
3*
3)
3*
3+
3'
3+
3'
1567
9''
3&
966
3&
3'
3&
3'
3&
3'
3'
3'
95()
3'
3%
3$
3%
3$
3%
3$
3%
3$
%<3$66B5(*
9''
3$
3$
3$
3$
3&
3&
3%
3%
3%
3)
3)
966
9''
3)
3)
3)
3*
3*
3(
3(
3(
966
9''
3(
3(
3(
3(
3(
3(
3%
3%
9&$3B
9''



























































































/4)3ZLWKRXW'6,












































9&$3B
3,
3$
3$
9''
966
3,
3,
3,








3+
3+
3+
3+
3+
3+
3+
3+








3,
3,
3+
3+
3+
9''
966
3+
















3&
3,
3,
3,
966
3+
3+
9''
966
9''
9''
966$
9''$
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
58/255 DocID028294 Rev 6
Figure 15. STM32F779xx LQFP176 pinout
1. The above figure shows the package top view.
069
3'5B21
9''
3(
3(
3%
3%
%227
3%
3%
3%
3%
3%
3*
9''
966
3*
3*
3*
3*
3*
3*
3'
3'
9''6'00&
966
3'
3'
3'
3'
3'
3'
3&
3&
3&
3,
3,
3(
9
''
3( 9
66
3(
3(
3$
3(
3$
9%$7
3&
3,
3&
3&
3&
3&
3&
3)
3$
3)
9
3)
3*
3)
3*
3)
9''86%
3)
9
3*
3*
3)
3*
3)
9
3)
'6,B'1
3)
'6,B'3
3)
9
3+
'6,B&.1
3+
'6,B&.3
1567
9''
3& '6,B'3
3& 9
3&
3*
3&
9
3'
3'
95()
3$
3'
3$
3'
3$
3'
3$
%<3$66B5(*
9''
3$
3$
3$
3$
3&
3&
3%
3%
3%
3)
3)
966
9''
3)
3)
3)
3*
3*
3(
3(
3(
966
9''
3(
3(
3(
3(
3(
3(
3%
3%
9&$3B
9''



























































































/4)3ZLWK'6,












































9&$3B
3,
3$
3$
9''
966
3,
3,
3,








3+
3+
3+
3+
3%
3%
3%
3%








3,
3$
3$
3'
3'
3'
















3&
3,
3,
3,
966
3+
3+
9''
966
9''
9''
966$
9''$
66
'6,B'1
3*
66
3$
66'6,
'''6,
'''6,
966'6,
&$3'6,
DocID028294 Rev 6 59/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
Figure 16. STM32F779Ax/STM32F778Ax WLCSP180 ballout
1. NC ball must not be connected to GND nor to VDD.
2. The above figure shows the package top view.
06Y9
$
%
&
'
(
)
*
+
-
.
/
0
1
3
3$:.83

1&966%2273%9663*9''00&3'3'
3$-7&.
6:&/.
1&1&
3,
9''
3(
3%
9''
3*
966
3'
3&
3,
9''
1&
3(
3,
3'5B21
3(
3%
3*
3*
3'
3&
3,
966
9&$3B
3(
3,
3,
3%
3%1-
7567
3*
3'
3'
3&
3,
3$-706
6:',2
3$
3&
26&
B,1
3(
3(
3%
3%-7'2
75$&(6:2
3'
3'
3+
3,
3$
3$
3&
9''
3,
3(
3*
3$-7',
3+
3+
3$
3$
3&
9''86%
966
3)
3)
3,
3*
3&3&
3*
3*
3*
3*
3*
3)
3)
3,
3*
3%9&$3'6,
966'6,
'6,B&.3
'6,B&.1
'6,B'1
'6,B'3
9''
3$
3$
966
3%
3%
3(
3%
3'
9'''6,
'6,B'1
'6,B'3
3+
26&B,1
3)
3+
9''
3)
3)
3(
3%
3+
3'
3'
9'''6,
3&
1567
3+
3$
3)
3*
3(
3%
3+
3'
3'
3'
9''$
966$
3$
3$
9''
3(
3(
3+
3+
3'
3'
966
3+
3+
3$
3)
3*
3(
3(
966
3%
3%
1& 966
1&
3$
3%
966
3)
3(
3(
9&$3B
9''
3+
1&
1&
1&
1&
9%$7
3&
3&
26&B
287
966
3)
3)
966
3+
26&B287
3&
1&
1&

Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
60/255 DocID028294 Rev 6
Figure 17. STM32F77xxx LQFP208 pinout
1. The above figure shows the package top view.
06Y9
W/ϳ
W/ϲ
W/ϱ
W/ϰ
s
s^^
Wϭ
WϬ
Wϵ
Wϴ
Wϳ
Wϲ
Wϱ
Wϰ
Wϯ
W'ϭϱ
W<ϳ
W<ϲ
W<ϱ
W<ϰ
W<ϯ
s
s^^
W'ϭϰ
W'ϭϯ
W'ϭϮ
W'ϭϭ
W'ϭϬ
W'ϵ
W:ϭϱ
W:ϭϰ
W:ϭϯ
W:ϭϮ
Wϳ
Wϲ
s^DD
s^^
Wϱ
Wϰ
Wϯ
WϮ
Wϭ
WϬ
WϭϮ
Wϭϭ
WϭϬ
Wϭϱ
Wϭϰ
s
W/ϯ
ϭϭϱϲ
Ϯϭϱϱ
ϯϭϱϰ
ϰϭϱϯ
ϱϭϱϮ
ϲϭϱϭ
ϳϭϱϬ
ϴϭϰϵ
ϵϭϰϴ
ϭϬ ϭϰϳ
ϭϭ ϭϰϲ
ϭϮ ϭϰϱ
ϭϯ ϭϰϰ
ϭϰ ϭϰϯ
ϭϱ ϭϰϮ
ϭϲ ϭϰϭ
ϭϳ ϭϰϬ
ϭϴ ϭϯϵ
ϭϵ ϭϯϴ
ϮϬ ϭϯϳ
Ϯϭ ϭϯϲ
ϮϮ
Ϯϯ
Ϯϰ
Ϯϱ >Y&WϮϬϴ
Ϯϲ
Ϯϳ
Ϯϴ
Ϯϵ
ϯϬ
ϯϭ
ϯϮ
ϯϯ
ϯϰ
ϯϱ
ϯϲ
ϯϳ
ϯϴ
ϯϵ
ϰϬ
ϰϭ
ϰϮ
ϰϯ
ϰϰ
ϰϱ
ϰϲ
ϰϳ
ϰϴ
ϰϵ
ϱϬ
ϱϭ
ϱϮ
ϱϯ
ϱϰ
ϱϱ
ϱϲ
ϱϳ
ϱϴ
ϱϵ
ϲϬ
ϲϭ
ϲϮ
ϲϯ
ϲϰ
ϲϱ
ϲϲ
ϲϳ
ϲϴ
ϲϵ
ϳϬ
ϳϭ
ϳϮ
ϳϯ
ϳϰ
ϳϱ
ϳϲ
ϳϳ
ϳϴ
ϳϵ
ϴϬ
ϴϭ
ϴϮ
ϴϯ
ϴϰ
ϴϱ
ϴϲ
ϴϳ
ϴϴ
ϴϵ
ϵϬ
ϵϭ
ϵϮ
ϵϯ
ϵϰ
ϵϱ
ϵϲ
ϵϳ
ϵϴ
ϵϵ
ϭϬϬ
ϭϬϭ
ϭϬϮ
ϭϬϯ
ϭϬϰ
WϮ
Wϯ
Wϰ
Wϱ
Wϲ
sd
W/ϴ
Wϭϯ
Wϭϰ
Wϭϱ
W/ϵ
W/ϭϬ
W/ϭϭ
s^^
s
W&Ϭ
W&ϭ
W&Ϯ
W/ϭϮ
W/ϭϯ
W/ϭϰ
W&ϯ
W&ϰ
W&ϱ
s^^
s
W&ϲ
W&ϳ
W&ϴ
W&ϵ
W&ϭϬ
W,Ϭ
W,ϭ
EZ^d
WϬ
Wϭ
WϮ
Wϯ
s
s^^
sZ&н
s
WϬ
Wϭ
WϮ
W,Ϯ
W,ϯ
W,ϰ
W,ϱ
Wϯ
s^^
s
W/Ϯ
W/ϭ
W/Ϭ
W,ϭϱ
W,ϭϰ
W,ϭϯ
s
s^^
sWͺϮ
Wϭϯ
WϭϮ
Wϭϭ
WϭϬ
Wϵ
Wϴ
Wϵ
Wϴ
Wϳ
Wϲ
sh^
s^^
W'ϴ
W'ϳ
W'ϲ
W'ϱ
W'ϰ
W'ϯ
W'Ϯ
W<Ϯ
W<ϭ
W<Ϭ
s^^
s
W:ϭϭ
W:ϭϬ
W:ϵ
W:ϴ
W:ϳ
W:ϲ
Wϭϱ
Wϭϰ
s
s^^
Wϭϯ
WϭϮ
Wϭϭ
WϭϬ
Wϵ
Wϴ
Wϭϱ
Wϭϰ
Wϭϯ
ϭϯϱ
ϭϯϰ
ϭϯϯ
ϭϯϮ
ϭϯϭ
ϭϯϬ
ϭϮϵ
ϭϮϴ
ϭϮϳ
ϭϮϲ
ϭϮϱ
ϭϮϰ
ϭϮϯ
ϭϮϮ
ϭϮϭ
ϭϮϬ
ϭϭϵ
ϭϭϴ
ϭϭϳ
ϭϭϲ
ϭϭϱ
ϭϭϰ
ϭϭϯ
ϭϭϮ
ϭϭϭ
ϭϭϬ
ϭϬϵ
ϭϬϴ
ϭϬϳ
ϭϬϲ
ϭϬϱ
WZͺKE
KKdϬ
ϮϬϴ
ϮϬϳ
ϮϬϲ
ϮϬϱ
ϮϬϰ
ϮϬϯ
ϮϬϮ
ϮϬϭ
ϮϬϬ
ϭϵϵ
ϭϵϴ
ϭϵϳ
ϭϵϲ
ϭϵϱ
ϭϵϰ
ϭϵϯ
ϭϵϮ
ϭϵϭ
ϭϵϬ
ϭϴϵ
ϭϴϴ
ϭϴϳ
ϭϴϲ
ϭϴϱ
ϭϴϰ
ϭϴϯ
ϭϴϮ
ϭϴϭ
ϭϴϬ
ϭϳϵ
ϭϳϴ
ϭϳϳ
ϭϳϲ
ϭϳϱ
ϭϳϰ
ϭϳϯ
ϭϳϮ
ϭϳϭ
ϭϳϬ
ϭϲϵ
ϭϲϴ
ϭϲϳ
ϭϲϲ
ϭϲϱ
ϭϲϰ
ϭϲϯ
ϭϲϮ
ϭϲϭ
ϭϲϬ
ϭϱϵ
ϭϱϴ
ϭϱϳ
Wϰ
Wϱ
Wϲ
Wϳ
Wϰ
Wϱ
s
s^^
WϬ
Wϭ
WϮ
W/ϭϱ
W:Ϭ
W:ϭ
W:Ϯ
W:ϯ
W:ϰ
W&ϭϭ
W&ϭϮ
s^^
s
W&ϭϯ
W&ϭϰ
W&ϭϱ
W'Ϭ
W'ϭ
Wϳ
Wϴ
Wϵ
s^^
s
WϭϬ
Wϭϭ
WϭϮ
Wϭϯ
Wϭϰ
Wϭϱ
WϭϬ
Wϭϭ
sWͺϭ
s^^
s
W:ϱ
W,ϲ
W,ϳ
W,ϴ
W,ϵ
W,ϭϬ
W,ϭϭ
W,ϭϮ
s
WϭϮ
DocID028294 Rev 6 61/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
Figure 18. STM32F779xx LQFP208 pinout
1. The above figure shows the package top view.
06Y9
W/ϳ
W/ϲ
W/ϱ
W/ϰ
s
s^^
Wϭ
WϬ
Wϵ
Wϴ
Wϳ
Wϲ
Wϱ
Wϰ
Wϯ
W'ϭϱ
W<ϳ
W<ϲ
W<ϱ
W<ϰ
W<ϯ
s
s^^
W'ϭϰ
W'ϭϯ
W'ϭϮ
W'ϭϭ
W'ϭϬ
W'ϵ
W:ϭϱ
W:ϭϰ
W:ϭϯ
W:ϭϮ
Wϳ
Wϲ
s^DD
s^^
Wϱ
Wϰ
Wϯ
WϮ
Wϭ
WϬ
WϭϮ
Wϭϭ
WϭϬ
Wϭϱ
Wϭϰ
s
W/ϯ
ϭϭϱϲ
Ϯϭϱϱ
ϯϭϱϰ
ϰϭϱϯ
ϱϭϱϮ
ϲϭϱϭ
ϳϭϱϬ
ϴϭϰϵ
ϵϭϰϴ
ϭϬ ϭϰϳ
ϭϭ ϭϰϲ
ϭϮ ϭϰϱ
ϭϯ ϭϰϰ
ϭϰ ϭϰϯ
ϭϱ ϭϰϮ
ϭϲ ϭϰϭ
ϭϳ ϭϰϬ
ϭϴ ϭϯϵ
ϭϵ ϭϯϴ
ϮϬ ϭϯϳ
Ϯϭ ϭϯϲ
ϮϮ
Ϯϯ
Ϯϰ
Ϯϱ /4)3ZLWK'6,
Ϯϲ
Ϯϳ
Ϯϴ
Ϯϵ
ϯϬ
ϯϭ
ϯϮ
ϯϯ
ϯϰ
ϯϱ
ϯϲ
ϯϳ
ϯϴ
ϯϵ
ϰϬ
ϰϭ
ϰϮ
ϰϯ
ϰϰ
ϰϱ
ϰϲ
ϰϳ
ϰϴ
ϰϵ
ϱϬ
ϱϭ
ϱϮ
ϱϯ
ϱϰ
ϱϱ
ϱϲ
ϱϳ
ϱϴ
ϱϵ
ϲϬ
ϲϭ
ϲϮ
ϲϯ
ϲϰ
ϲϱ
ϲϲ
ϲϳ
ϲϴ
ϲϵ
ϳϬ
ϳϭ
ϳϮ
ϳϯ
ϳϰ
ϳϱ
ϳϲ
ϳϳ
ϳϴ
ϳϵ
ϴϬ
ϴϭ
ϴϮ
ϴϯ
ϴϰ
ϴϱ
ϴϲ
ϴϳ
ϴϴ
ϴϵ
ϵϬ
ϵϭ
ϵϮ
ϵϯ
ϵϰ
ϵϱ
ϵϲ
ϵϳ
ϵϴ
ϵϵ
ϭϬϬ
ϭϬϭ
ϭϬϮ
ϭϬϯ
ϭϬϰ
WϮ
Wϯ
Wϰ
Wϱ
Wϲ
sd
W/ϴ
Wϭϯ
Wϭϰ
Wϭϱ
W/ϵ
W/ϭϬ
W/ϭϭ
s^^
s
W&Ϭ
W&ϭ
W&Ϯ
W/ϭϮ
W/ϭϯ
W/ϭϰ
W&ϯ
W&ϰ
W&ϱ
s^^
s
W&ϲ
W&ϳ
W&ϴ
W&ϵ
W&ϭϬ
W,Ϭ
W,ϭ
EZ^d
WϬ
Wϭ
WϮ
Wϯ
s
s^^
sZ&н
s
WϬ
Wϭ
WϮ
W,Ϯ
W,ϯ
W,ϰ
W,ϱ
Wϯ
s^^
s
W/Ϯ
W/ϭ
W/Ϭ
W,ϭϱ
W,ϭϰ
W,ϭϯ
s
s^^
sWͺϮ
Wϭϯ
WϭϮ
Wϭϭ
WϭϬ
Wϵ
Wϴ
Wϵ
Wϴ
Wϳ
Wϲ
sh^
s^^
W'ϴ
W'ϳ
W'ϲ
W'ϱ
W'ϰ
W'ϯ
W'Ϯ
s^^^/
^/ͺϭE
^/ͺϭW
sϭϮ^/
^/ͺ<E
^/ͺ<W
s^^^/
^/ͺϬE
^/ͺϬW
sW^/
s^/
Wϭϱ
Wϭϰ
s
s^^
Wϭϯ
WϭϮ
Wϭϭ
WϭϬ
Wϵ
Wϴ
Wϭϱ
Wϭϰ
Wϭϯ
ϭϯϱ
ϭϯϰ
ϭϯϯ
ϭϯϮ
ϭϯϭ
ϭϯϬ
ϭϮϵ
ϭϮϴ
ϭϮϳ
ϭϮϲ
ϭϮϱ
ϭϮϰ
ϭϮϯ
ϭϮϮ
ϭϮϭ
ϭϮϬ
ϭϭϵ
ϭϭϴ
ϭϭϳ
ϭϭϲ
ϭϭϱ
ϭϭϰ
ϭϭϯ
ϭϭϮ
ϭϭϭ
ϭϭϬ
ϭϬϵ
ϭϬϴ
ϭϬϳ
ϭϬϲ
ϭϬϱ
WZͺKE
KKdϬ
ϮϬϴ
ϮϬϳ
ϮϬϲ
ϮϬϱ
ϮϬϰ
ϮϬϯ
ϮϬϮ
ϮϬϭ
ϮϬϬ
ϭϵϵ
ϭϵϴ
ϭϵϳ
ϭϵϲ
ϭϵϱ
ϭϵϰ
ϭϵϯ
ϭϵϮ
ϭϵϭ
ϭϵϬ
ϭϴϵ
ϭϴϴ
ϭϴϳ
ϭϴϲ
ϭϴϱ
ϭϴϰ
ϭϴϯ
ϭϴϮ
ϭϴϭ
ϭϴϬ
ϭϳϵ
ϭϳϴ
ϭϳϳ
ϭϳϲ
ϭϳϱ
ϭϳϰ
ϭϳϯ
ϭϳϮ
ϭϳϭ
ϭϳϬ
ϭϲϵ
ϭϲϴ
ϭϲϳ
ϭϲϲ
ϭϲϱ
ϭϲϰ
ϭϲϯ
ϭϲϮ
ϭϲϭ
ϭϲϬ
ϭϱϵ
ϭϱϴ
ϭϱϳ
Wϰ
Wϱ
Wϲ
Wϳ
Wϰ
Wϱ
s
s^^
WϬ
Wϭ
WϮ
W/ϭϱ
W:Ϭ
W:ϭ
W:Ϯ
W:ϯ
W:ϰ
W&ϭϭ
W&ϭϮ
s^^
s
W&ϭϯ
W&ϭϰ
W&ϭϱ
W'Ϭ
W'ϭ
Wϳ
Wϴ
Wϵ
s^^
s
WϭϬ
Wϭϭ
WϭϮ
Wϭϯ
Wϭϰ
Wϭϱ
WϭϬ
Wϭϭ
sWͺϭ
s^^
s
W:ϱ
W,ϲ
W,ϳ
W,ϴ
W,ϵ
W,ϭϬ
W,ϭϭ
W,ϭϮ
s
WϭϮ
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
62/255 DocID028294 Rev 6
Figure 19. STM32F77xxx UFBGA176 ballout
1. The above figure shows the package top view.
069
     
$3(3(
3( 3( 3% 3% 3* 3* 3% 3% 3' 3& 3$ 3$ 3$
%3(3(
3( 3% 3% 3% 3* 3* 3* 3* 3' 3' 3& 3& 3$
&9%$7 3, 3, 3, 3'5B21
9'' 9'' 9''
6'00& 9'' 3* 3' 3' 3, 3, 3$
'3& 3, 3, 3, %227 966 966 966 3' 3' 3' 3+ 3, 3$
(3& 3) 3, 3, 3+ 3+ 3, 3$
)3&
966 9'' 3+ 966 966 966 966 966 966 9&$3 3& 3$
*3+ 966 9'' 3+ 966 966 966 966 966 966 9'' 3& 3&
+3+ 3) 3) 3+ 966 966 966 966 966 966 9''86% 3* 3&
-1567 3) 3+ 966 966 966 966 966 9'' 9'' 3* 3*
.3) 3)
3)
9'' 966 966 966 966 966 3+ 3* 3* 3*
/3) 3)
3)
%<3$66B
5(* 3+ 3+ 3' 3*
0966$3&
3)
3& 3& 3& 3% 3* 966 966 9&$3B 3+ 3+ 3+ 3' 3'
195() 3$ 3$ 3& 3) 3* 9'' 9'' 9'' 3( 3+ 3' 3' 3'
395()
3$ 3$ 3$ 3& 3) 3) 3( 3( 3( 3( 3% 3% 3' 3'
5 9''$ 3$ 3$ 3% 3% 3) 3) 3( 3( 3( 3( 3% 3% 3% 3%
966

3$
DocID028294 Rev 6 63/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
Figure 20. STM32F77xxx TFBGA216 ballout
1. The above figure shows the package top view.
069

$3( 3( 3( 3* 3( 3( 3% 3% 3% 3% 3' 3& 3$ 3$ 3$
%3( 3( 3* 3% 3% 3% 3* 3* 3- 3- 3' 3' 3& 3& 3$
&9%$7 3, 3, 3. 3. 3. 3* 3* 3- 3' 3' 3' 3, 3, 3$
'3& 3) 3, 3, 3, 3, 3. 3. 3* 3- 3' 3' 3+ 3, 3$
(3& 3) 3, 3, 3'5B
21
%227 9'' 9'' 9''
6'00& 9'' 9&$3 3+ 3+ 3, 3$
)3& 966 3, 9'' 9'' 966 966 9'' 3. 3. 3& 3$
*3+ 3) 3, 3, 9'' 966 9''86% 3- 3. 3& 3&
+3+ 3, 3+ 9'' 966 966 9'' 3- 3- 3* 3&
-1567 3) 3+ 3+ 9'' 966 966 9'' 3- 3- 3* 3*
.3) 3) 3) 3+ 9'' 966 966 966 966 966 9'' 3- 3' 3% 3'
/3) 3) 3) 3& %<3$66
5(* 966 9'' 9'' 9'' 9'' 9&$3 3' 3% 3' 3'
0966$ 3& 3& 3& 3% 3) 3* 3) 3- 3' 3' 3* 3* 3- 3+
195() 3$ 3$ 3$ 3& 3) 3* 3- 3( 3' 3* 3* 3+ 3+ 3+
95() 3$ 3$ 3$ 3& 3) 3- 3) 3( 3( 3( 3% 3+ 3+ 3+
3$ 3$ 3% 3% 3- 3- 3( 3( 3( 3( 3( 3% 3% 3%
966
3)
3
5 9''$
966 966 966
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
64/255 DocID028294 Rev 6
Figure 21. STM32F779xx TFBGA216 ballout
1. The above figure shows the package top view.
069

$3( 3( 3( 3* 3( 3( 3% 3% 3% 3% 3' 3& 3$ 3$ 3$
%3( 3( 3* 3% 3% 3% 3* 3* 3- 3- 3' 3' 3& 3& 3$
&9%$7 3, 3, 3. 3. 3. 3* 3* 3- 3' 3' 3' 3, 3, 3$
'3& 3) 3, 3, 3, 3, 3. 3. 3* 3- 3' 3' 3+ 3, 3$
(3& 3) 3, 3, 3'5B
21 %227 9'' 9'' 9''
6'00& 9'' 9&$3 3+ 3+ 3, 3$
)3& 966 3, 9'' 9'' 966 966 9'' '6,B
'3
'6,B
'1 3& 3$
*3+ 3) 3, 3, 9'' 966 9''86% 966'6, 9''
'6, 3& 3&
+3+ 3, 3+ 9'' 966 966 9'''6, '6,B
&.3
'6,B
&.1 3* 3&
-1567 3) 3+ 3+ 9'' 966 966 9'' '6,B
'3
'6,B
'1 3* 3*
.3) 3) 3) 3+ 9'' 966 966 966 966 966 9'' 9&$3'6, 3' 3% 3'
/3) 3) 3) 3& %<3$66
5(* 966 9'' 9'' 9'' 9'' 9&$3 3' 3% 3' 3'
0966$ 3& 3& 3& 3% 3) 3* 3) 3- 3' 3' 3* 3* 3- 3+
195() 3$ 3$ 3$ 3& 3) 3* 3- 3( 3' 3* 3* 3+ 3+ 3+
95() 3$ 3$ 3$ 3& 3) 3- 3) 3( 3( 3( 3% 3+ 3+ 3+
3$ 3$ 3% 3% 3- 3- 3( 3( 3( 3( 3( 3% 3% 3%
966
3)
3
5 9''$
966 966 966
DocID028294 Rev 6 65/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
Table 10. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
TTa 3.3 V tolerant I/O directly connected to ADC
B Dedicated BOOT pin
RST Bidirectional reset pin with weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
A3 1 1 A2 1 1 A3 E10 1 1 A3 PE2 I/O FT -
TRACECLK, SPI4_SCK,
SAI1_MCLK_A,
QUADSPI_BK1_IO2,
ETH_MII_TXD3, FMC_A23,
EVENTOUT
-
B3 2 2 A1 2 2 A2 F10 2 2 A2 PE3 I/O FT - TRACED0, SAI1_SD_B,
FMC_A19, EVENTOUT -
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
66/255 DocID028294 Rev 6
C3 3 3 B1 3 3 A1 C12 3 3 A1 PE4 I/O FT -
TRACED1, SPI4_NSS,
SAI1_FS_A,
DFSDM1_DATIN3, FMC_A20,
DCMI_D4, LCD_B0,
EVENTOUT
-
D3 4 4 B2 4 4 B1 D12 4 4 B1 PE5 I/O FT -
TRACED2, TIM9_CH1,
SPI4_MISO, SAI1_SCK_A,
DFSDM1_CKIN3, FMC_A21,
DCMI_D6, LCD_G0,
EVENTOUT
-
E3 5 5 B3 5 5 B2 E11 5 5 B2 PE6 I/O FT -
TRACED3, TIM1_BKIN2,
TIM9_CH2, SPI4_MOSI,
SAI1_SD_A, SAI2_MCLK_B,
FMC_A22, DCMI_D7,
LCD_G1, EVENTOUT
-
---- --G6---G6 VSS S-- - -
---- --F5---F5 VDD S-- - -
B2 6 6 C1 6 6 C1 C13 6 6 C1 VBAT S - - - -
- - - D2 7 7 C2 NC 7 7 C2 PI8 I/O FT (2) EVENTOUT
RTC_TAMP2/
RTC_TS/
WKUP5
A2 7 7 D1 8 8 D1 D13 8 8 D1 PC13 I/O FT (2) EVENTOUT
RTC_TAMP1/
RTC_TS/
RTC_OUT/
WKUP4
A1 8 8 E1 9 9 E1 E12 9 9 E1 PC14-
OSC32_IN I/O FT
(2)
(3) EVENTOUT OSC32_IN
B1 9 9 F1 10 10 F1 E13 10 10 F1
PC15-
OSC32_O
UT
I/O FT
(2)
(3) EVENTOUT OSC32_OUT
---- --G5---G5 VDD S-- - -
- - - D3 11 11 E4 G10 11 11 E4 PI9 I/O FT -
UART4_RX, CAN1_RX,
FMC_D30, LCD_VSYNC,
EVENTOUT
-
- - - E3 12 12 D5 H10 12 12 D5 PI10 I/O FT - ETH_MII_RX_ER, FMC_D31,
LCD_HSYNC, EVENTOUT -
- - - E4 13 13 F3 F11 13 13 F3 PI11 I/O FT - LCD_G6, OTG_HS_ULPI_DIR,
EVENTOUT WKUP6
- - - F2 14 14 F2 F13 14 14 F2 VSS S - - - -
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
DocID028294 Rev 6 67/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
- - - F3 15 15 F4 F12 15 15 F4 VDD S - - - -
- - 10 E2 16 16 D2 G11 16 16 D2 PF0 I/O FT - I2C2_SDA, FMC_A0,
EVENTOUT -
- - 11 H3 17 17 E2 G12 17 17 E2 PF1 I/O FT - I2C2_SCL, FMC_A1,
EVENTOUT -
- - 12 H2 18 18 G2 G13 18 18 G2 PF2 I/O FT - I2C2_SMBA, FMC_A2,
EVENTOUT -
- - - - - 19 E3 NC - 19 E3 PI12 I/O FT - LCD_HSYNC, EVENTOUT -
- - - - - 20 G3 NC - 20 G3 PI13 I/O FT - LCD_VSYNC, EVENTOUT -
- - - - - 21 H3 NC - 21 H3 PI14 I/O FT - LCD_CLK, EVENTOUT -
- - 13 J2 19 22 H2 H11 19 22 H2 PF3 I/O FT - FMC_A3, EVENTOUT ADC3_IN9
- - 14 J3 20 23 J2 H12 20 23 J2 PF4 I/O FT - FMC_A4, EVENTOUT ADC3_IN14
- - 15 K3 21 24 K3 H13 21 24 K3 PF5 I/O FT - FMC_A5, EVENTOUT ADC3_IN15
C2 10 16 G2 22 25 H6 J13 22 25 H6 VSS S - - - -
D2 11 17 G3 23 26 H5 J12 23 26 H5 VDD S - - - -
- - 18 K2 24 27 K2 NC 24 27 K2 PF6 I/O FT -
TIM10_CH1, SPI5_NSS,
SAI1_SD_B, UART7_RX,
QUADSPI_BK1_IO3,
EVENTOUT
ADC3_IN4
- - 19 K1 25 28 K1 NC 25 28 K1 PF7 I/O FT -
TIM11_CH1, SPI5_SCK,
SAI1_MCLK_B, UART7_TX,
QUADSPI_BK1_IO2,
EVENTOUT
ADC3_IN5
- - 20 L3 26 29 L3 NC 26 29 L3 PF8 I/O FT -
SPI5_MISO, SAI1_SCK_B,
UART7_RTS, TIM13_CH1,
QUADSPI_BK1_IO0,
EVENTOUT
ADC3_IN6
- - 21 L2 27 30 L2 NC 27 30 L2 PF9 I/O FT -
SPI5_MOSI, SAI1_FS_B,
UART7_CTS, TIM14_CH1,
QUADSPI_BK1_IO1,
EVENTOUT
ADC3_IN7
- - 22 L1 28 31 L1 K11 28 31 L1 PF10 I/O FT - QUADSPI_CLK, DCMI_D11,
LCD_DE, EVENTOUT ADC3_IN8
C1 12 23 G1 29 32 G1 K12 29 32 G1 PH0-
OSC_IN I/O FT (3) EVENTOUT OSC_IN
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
68/255 DocID028294 Rev 6
D1 13 24 H1 30 33 H1 K13 30 33 H1 PH1-
OSC_OUT I/O FT (3) EVENTOUT OSC_OUT
E1 14 25 J1 31 34 J1 L11 31 34 J1 NRST I/O RS
T-- -
F1 15 26 M2 32 35 M2 L12 32 35 M2 PC0 I/O FT -
DFSDM1_CKIN0,
DFSDM1_DATIN4,
SAI2_FS_B,
OTG_HS_ULPI_STP,
FMC_SDNWE, LCD_R5,
EVENTOUT
ADC1_IN10,
ADC2_IN10,
ADC3_IN10
F2 16 27 M3 33 36 M3 L13 33 36 M3 PC1 I/O FT -
TRACED0, DFSDM1_DATIN0,
SPI2_MOSI/I2S2_SD,
SAI1_SD_A, DFSDM1_CKIN4,
ETH_MDC, MDIOS_MDC,
EVENTOUT
ADC1_IN11,
ADC2_IN11,
ADC3_IN11,
RTC_TAMP3/
WKUP3
E2 17 28 M4 34 37 M4 NC 34 37 M4 PC2 I/O FT -
DFSDM1_CKIN1, SPI2_MISO,
DFSDM1_CKOUT,
OTG_HS_ULPI_DIR,
ETH_MII_TXD2, FMC_SDNE0,
EVENTOUT
ADC1_IN12,
ADC2_IN12,
ADC3_IN12
F3 18 29 M5 35 38 L4 NC 35 38 L4 PC3 I/O FT -
DFSDM1_DATIN1,
SPI2_MOSI/I2S2_SD,
OTG_HS_ULPI_NXT,
ETH_MII_TX_CLK,
FMC_SDCKE0, EVENTOUT
ADC1_IN13,
ADC2_IN13,
ADC3_IN13
- - 30 - 36 39 J5 - 36 39 J5 VDD S - - - -
---- --J6---J6 VSS S-- - -
G1 19 31 M1 37 40 M1 M11 37 40 M1 VSSA S - - - -
---N1- -N1- --N1VREF-S-- - -
- 2032P13841P1 - 3841P1 VREF+ S - - - -
H1 21 33 R1 39 42 R1 M12 39 42 R1 VDDA S - - - -
G2 22 34 N3 40 43 N3 M13 40 43 N3 PA0-
WKUP I/O FT (4)
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
USART2_CTS, UART4_TX,
SAI2_SD_B, ETH_MII_CRS,
EVENTOUT
ADC1_IN0,
ADC2_IN0,
ADC3_IN0,
WKUP1
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
DocID028294 Rev 6 69/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
H2 23 35 N2 41 44 N2 J11 41 44 N2 PA1 I/O FT -
TIM2_CH2, TIM5_CH2,
USART2_RTS, UART4_RX,
QUADSPI_BK1_IO3,
SAI2_MCLK_B,
ETH_MII_RX_CLK/ETH_RMII_
REF_CLK, LCD_R2,
EVENTOUT
ADC1_IN1,
ADC2_IN1,
ADC3_IN1
J2 24 36 P2 42 45 P2 J10 42 45 P2 PA2 I/O FT -
TIM2_CH3, TIM5_CH3,
TIM9_CH1, USART2_TX,
SAI2_SCK_B, ETH_MDIO,
MDIOS_MDIO, LCD_R1,
EVENTOUT
ADC1_IN2,
ADC2_IN2,
ADC3_IN2,
WKUP2
- - - F44346K4L104346K4 PH2 I/OFT -
LPTIM1_IN2,
QUADSPI_BK2_IO0,
SAI2_SCK_B, ETH_MII_CRS,
FMC_SDCKE0, LCD_R0,
EVENTOUT
-
- - - G4 44 47 J4 K10 44 47 J4 PH3 I/O FT -
QUADSPI_BK2_IO1,
SAI2_MCLK_B,
ETH_MII_COL, FMC_SDNE0,
LCD_R1, EVENTOUT
-
- - - H4 45 48 H4 N12 45 48 H4 PH4 I/O FT -
I2C2_SCL, LCD_G5,
OTG_HS_ULPI_NXT, LCD_G4,
EVENTOUT
-
- - - J4 46 49 J3 N11 46 49 J3 PH5 I/O FT - I2C2_SDA, SPI5_NSS,
FMC_SDNWE, EVENTOUT -
K2 25 37 R2 47 50 R2 M10 47 50 R2 PA3 I/O FT -
TIM2_CH4, TIM5_CH4,
TIM9_CH2, USART2_RX,
LCD_B2, OTG_HS_ULPI_D0,
ETH_MII_COL, LCD_B5,
EVENTOUT
ADC1_IN3,
ADC2_IN3,
ADC3_IN3
J1 26 38 - - 51 K6 J9 - 51 K6 VSS S - - - -
E6 - - L4 48 - L5 -(5) 48 - L5 BYPASS_
REG IFT- - -
K1 27 39 K4 49 52 K5 K9 49 52 K5 VDD S - - - -
G3 28 40 N4 50 53 N4 L9 50 53 N4 PA4 I/O TTa -
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART2_CK, SPI6_NSS,
OTG_HS_SOF, DCMI_HSYNC,
LCD_VSYNC, EVENTOUT
ADC1_IN4,
ADC2_IN4,
DAC_OUT1
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
70/255 DocID028294 Rev 6
H3 29 41 P4 51 54 P4 P11 51 54 P4 PA5 I/O TTa -
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK/I2S1_CK,
SPI6_SCK,
OTG_HS_ULPI_CK, LCD_R4,
EVENTOUT
ADC1_IN5,
ADC2_IN5,
DAC_OUT2
J3 30 42 P3 52 55 P3 N10 52 55 P3 PA6 I/O FT -
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN, SPI1_MISO,
SPI6_MISO, TIM13_CH1,
MDIOS_MDC, DCMI_PIXCLK,
LCD_G2, EVENTOUT
ADC1_IN6,
ADC2_IN6
K3 31 43 R3 53 56 R3 M9 53 56 R3 PA7 I/O FT -
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI/I2S1_SD,
SPI6_MOSI, TIM14_CH1,
ETH_MII_RX_DV/ETH_RMII_C
RS_DV, FMC_SDNWE,
EVENTOUT
ADC1_IN7,
ADC2_IN7
G4 32 44 N5 54 57 N5 NC 54 57 N5 PC4 I/O FT -
DFSDM1_CKIN2, I2S1_MCK,
SPDIF_RX2,
ETH_MII_RXD0/ETH_RMII_RX
D0, FMC_SDNE0, EVENTOUT
ADC1_IN14,
ADC2_IN14
H4 33 45 P5 55 58 P5 NC 55 58 P5 PC5 I/O FT -
DFSDM1_DATIN2,
SPDIF_RX3,
ETH_MII_RXD1/ETH_RMII_RX
D1, FMC_SDCKE0,
EVENTOUT
ADC1_IN15,
ADC2_IN15
---- -59L7--59L7 VDD S-- - -
---- -60L6--60L6 VSS S-- - -
J4 34 46 R5 56 61 R5 P10 56 61 R5 PB0 I/O FT -
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N,
DFSDM1_CKOUT,
UART4_CTS, LCD_R3,
OTG_HS_ULPI_D1,
ETH_MII_RXD2, LCD_G1,
EVENTOUT
ADC1_IN8,
ADC2_IN8
K4 35 47 R4 57 62 R4 J8 57 62 R4 PB1 I/O FT -
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N,
DFSDM1_DATIN1, LCD_R6,
OTG_HS_ULPI_D2,
ETH_MII_RXD3, LCD_G0,
EVENTOUT
ADC1_IN9,
ADC2_IN9
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
DocID028294 Rev 6 71/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
G5 36 48 M6 58 63 M5 J7 58 63 M5 PB2 I/O FT -
SAI1_SD_A,
SPI3_MOSI/I2S3_SD,
QUADSPI_CLK,
DFSDM1_CKIN1, EVENTOUT
-
- - - - - 64 G4 NC - 64 G4 PI15 I/O FT - LCD_G2, LCD_R0,
EVENTOUT -
- - - - - 65 R6 NC - 65 R6 PJ0 I/O FT - LCD_R7, LCD_R1,
EVENTOUT -
- - - - - 66 R7 NC - 66 R7 PJ1 I/O FT - LCD_R2, EVENTOUT -
- - - - - 67 P7 NC - 67 P7 PJ2 I/O FT - DSI_TE, LCD_R3, EVENTOUT -
- - - - - 68 N8 NC - 68 N8 PJ3 I/O FT - LCD_R4, EVENTOUT -
- - - - - 69 M9 NC - 69 M9 PJ4 I/O FT - LCD_R5, EVENTOUT -
- - 49 R6 59 70 P8 N9 59 70 P8 PF11 I/O FT -
SPI5_MOSI, SAI2_SD_B,
FMC_SDNRAS, DCMI_D12,
EVENTOUT
-
- - 50 P6 60 71 M6 K7 60 71 M6 PF12 I/O FT - FMC_A6, EVENTOUT -
- - 51 M8 61 72 K7 P9 61 72 K7 VSS S --- -
- - 52 N8 62 73 L8 M8 62 73 L8 VDD S --- -
- - 53 N6 63 74 N6 L8 63 74 N6 PF13 I/O FT -
I2C4_SMBA,
DFSDM1_DATIN6, FMC_A7,
EVENTOUT
-
- - 54 R7 64 75 P6 K8 64 75 P6 PF14 I/O FT - I2C4_SCL, DFSDM1_CKIN6,
FMC_A8, EVENTOUT -
- - 55 P7 65 76 M8 P8 65 76 M8 PF15 I/O FT - I2C4_SDA, FMC_A9,
EVENTOUT -
- - 56 N7 66 77 N7 N8 66 77 N7 PG0 I/O FT - FMC_A10, EVENTOUT -
- - 57 M7 67 78 M7 L7 67 78 M7 PG1 I/O FT - FMC_A11, EVENTOUT -
H5 37 58 R8 68 79 R8 M7 68 79 R8 PE7 I/O FT -
TIM1_ETR, DFSDM1_DATIN2,
UART7_RX,
QUADSPI_BK2_IO0, FMC_D4,
EVENTOUT
-
J5 38 59 P8 69 80 N9 N7 69 80 N9 PE8 I/O FT -
TIM1_CH1N, DFSDM1_CKIN2,
UART7_TX,
QUADSPI_BK2_IO1, FMC_D5,
EVENTOUT
-
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
72/255 DocID028294 Rev 6
K5 39 60 P9 70 81 P9 P7 70 81 P9 PE9 I/O FT -
TIM1_CH1, DFSDM1_CKOUT,
UART7_RTS,
QUADSPI_BK2_IO2, FMC_D6,
EVENTOUT
-
- - 61 M9 71 82 K8 - 71 82 K8 VSS S - - - -
- - 62 N9 72 83 L9 - 72 83 L9 VDD S - - - -
G6 40 63 R9 73 84 R9 J6 73 84 R9 PE10 I/O FT -
TIM1_CH2N,
DFSDM1_DATIN4,
UART7_CTS,
QUADSPI_BK2_IO3, FMC_D7,
EVENTOUT
-
H6 41 64 P10 74 85 P10 K6 74 85 P10 PE11 I/O FT -
TIM1_CH2, SPI4_NSS,
DFSDM1_CKIN4, SAI2_SD_B,
FMC_D8, LCD_G3,
EVENTOUT
-
J6 42 65 R10 75 86 R10 L6 75 86 R10 PE12 I/O FT -
TIM1_CH3N, SPI4_SCK,
DFSDM1_DATIN5,
SAI2_SCK_B, FMC_D9,
LCD_B4, EVENTOUT
-
K6 43 66 N11 76 87 R12 P6 76 87 R12 PE13 I/O FT -
TIM1_CH3, SPI4_MISO,
DFSDM1_CKIN5, SAI2_FS_B,
FMC_D10, LCD_DE,
EVENTOUT
-
G7 44 67 P11 77 88 P11 N6 77 88 P11 PE14 I/O FT -
TIM1_CH4, SPI4_MOSI,
SAI2_MCLK_B, FMC_D11,
LCD_CLK, EVENTOUT
-
H7 45 68 R11 78 89 R11 M6 78 89 R11 PE15 I/O FT - TIM1_BKIN, FMC_D12,
LCD_R7, EVENTOUT -
J7 46 69 R12 79 90 P12 K5 79 90 P12 PB10 I/O FT -
TIM2_CH3, I2C2_SCL,
SPI2_SCK/I2S2_CK,
DFSDM1_DATIN7,
USART3_TX,
QUADSPI_BK1_NCS,
OTG_HS_ULPI_D3,
ETH_MII_RX_ER, LCD_G4,
EVENTOUT
-
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
DocID028294 Rev 6 73/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
K7 47 70 R13 80 91 R13 L5 80 91 R13 PB11 I/O FT -
TIM2_CH4, I2C2_SDA,
DFSDM1_CKIN7,
USART3_RX,
OTG_HS_ULPI_D4,
ETH_MII_TX_EN/ETH_RMII_T
X_EN, DSI_TE, LCD_G5,
EVENTOUT
-
F8 48 71 M10 81 92 L11 P5 81 92 L11 VCAP_1 S - - - -
-49- - -93K9N5-93K9 VSS S- - - -
- 50 72 N10 82 94 L10 P4 82 94 L10 VDD S - - - -
- - - - - 95 M14 NC - 95 M14 PJ5 I/O FT - LCD_R6, EVENTOUT -
- - - M11 83 96 P13 NC 83 96 P13 PH6 I/O FT -
I2C2_SMBA, SPI5_SCK,
TIM12_CH1, ETH_MII_RXD2,
FMC_SDNE1, DCMI_D8,
EVENTOUT
-
- - - N12 84 97 N13 NC 84 97 N13 PH7 I/O FT -
I2C3_SCL, SPI5_MISO,
ETH_MII_RXD3,
FMC_SDCKE1, DCMI_D9,
EVENTOUT
-
- - - M12 85 98 P14 M5 - 98 P14 PH8 I/O FT -
I2C3_SDA, FMC_D16,
DCMI_HSYNC, LCD_R2,
EVENTOUT
-
- - - M13 86 99 N14 K4 - 99 N14 PH9 I/O FT -
I2C3_SMBA, TIM12_CH2,
FMC_D17, DCMI_D0,
LCD_R3, EVENTOUT
-
- - - L13 87 100 P15 L4 - 100 P15 PH10 I/O FT -
TIM5_CH1, I2C4_SMBA,
FMC_D18, DCMI_D1,
LCD_R4, EVENTOUT
-
- - - L12 88 101 N15 M4 - 101 N15 PH11 I/O FT -
TIM5_CH2, I2C4_SCL,
FMC_D19, DCMI_D2,
LCD_R5, EVENTOUT
-
- - - K12 89 102 M15 P3 - 102 M15 PH12 I/O FT -
TIM5_CH3, I2C4_SDA,
FMC_D20, DCMI_D3,
LCD_R6, EVENTOUT
-
- - - H12 90 - K10 N4 - - K10 VSS S --- -
- - - J12 91 103 K11 - - 103 K11 VDD S --- -
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
74/255 DocID028294 Rev 6
K8 51 73 P12 92 104 L13 H8 85 104 L13 PB12 I/O FT -
TIM1_BKIN, I2C2_SMBA,
SPI2_NSS/I2S2_WS,
DFSDM1_DATIN1,
USART3_CK, UART5_RX,
CAN2_RX,
OTG_HS_ULPI_D5,
ETH_MII_TXD0/ETH_RMII_TX
D0, OTG_HS_ID, EVENTOUT
-
J8 52 74 P13 93 105 K14 J5 86 105 K14 PB13 I/O FT -
TIM1_CH1N,
SPI2_SCK/I2S2_CK,
DFSDM1_CKIN1,
USART3_CTS, UART5_TX,
CAN2_TX, OTG_HS_ULPI_D6,
ETH_MII_TXD1/ETH_RMII_TX
D1, EVENTOUT
OTG_HS_VB
US
H10 53 75 R14 94 106 R14 N3 87 106 R14 PB14 I/O FT -
TIM1_CH2N, TIM8_CH2N,
USART1_TX, SPI2_MISO,
DFSDM1_DATIN2,
USART3_RTS, UART4_RTS,
TIM12_CH1, SDMMC2_D0,
OTG_HS_DM, EVENTOUT
-
G10 54 76 R15 95 107 R15 N2 88 107 R15 PB15 I/O FT -
RTC_REFIN, TIM1_CH3N,
TIM8_CH3N, USART1_RX,
SPI2_MOSI/I2S2_SD,
DFSDM1_CKIN2,
UART4_CTS, TIM12_CH2,
SDMMC2_D1, OTG_HS_DP,
EVENTOUT
-
K9 55 77 P15 96 108 L15 M3 89 108 L15 PD8 I/O FT -
DFSDM1_CKIN3,
USART3_TX, SPDIF_RX1,
FMC_D13, EVENTOUT
-
J9 56 78 P14 97 109 L14 L3 90 109 L14 PD9 I/O FT -
DFSDM1_DATIN3,
USART3_RX, FMC_D14,
EVENTOUT
-
H9 57 79 N15 98 110 K15 M2 91 110 K15 PD10 I/O FT -
DFSDM1_CKOUT,
USART3_CK, FMC_D15,
LCD_B3, EVENTOUT
-
G9 58 80 N14 99 111 N10 K3 92 111 N10 PD11 I/O FT -
I2C4_SMBA, USART3_CTS,
QUADSPI_BK1_IO0,
SAI2_SD_A,
FMC_A16/FMC_CLE,
EVENTOUT
-
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
DocID028294 Rev 6 75/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
K10 59 81 N13 100 112 M10 J4 93 112 M10 PD12 I/O FT -
TIM4_CH1, LPTIM1_IN1,
I2C4_SCL, USART3_RTS,
QUADSPI_BK1_IO1,
SAI2_FS_A,
FMC_A17/FMC_ALE,
EVENTOUT
-
J10 60 82 M15 101 113 M11 L2 94 113 M11 PD13 I/O FT -
TIM4_CH2, LPTIM1_OUT,
I2C4_SDA,
QUADSPI_BK1_IO3,
SAI2_SCK_A, FMC_A18,
EVENTOUT
-
- - 83 - 102 114 J10 M1 95 114 J10 VSS S --- -
- - 84 J13 103 115 J11 - 96 115 J11 VDD S --- -
H8 61 85 M14 104 116 L12 L1 97 116 L12 PD14 I/O FT - TIM4_CH3, UART8_CTS,
FMC_D0, EVENTOUT -
G8 62 86 L14 105 117 K13 K2 98 117 K13 PD15 I/O FT - TIM4_CH4, UART8_RTS,
FMC_D1, EVENTOUT -
- - - - - 118 K12 - - - - PJ6 I/O FT - LCD_R7, EVENTOUT -
- - - - - 119 J12 - - - - PJ7 I/O FT - LCD_G0, EVENTOUT -
- - - - - 120 H12 - - - - PJ8 I/O FT - LCD_G1, EVENTOUT -
- - - - - 121 J13 - - - - PJ9 I/O FT - LCD_G2, EVENTOUT -
- - - - - 122 H13 - - - - PJ10 I/O FT - LCD_G3, EVENTOUT -
- - - - - 123 G12 - - - - PJ11 I/O FT - LCD_G4, EVENTOUT -
---- -124H11---- VDD S-- - -
- - - - - - - K1 99 118 H11 VDDDSI S - - - -
- - - - - 125 H10 - - - H10 VSS S - - - -
- - - - - - - H6 100 119 K12 VCAPDSI S - - - -
- - - - - - - J3 - - G13 VDD12DSI S - - - -
- - - - - - - J1 101 120 J12 DSI_D0P I/O - - - -
- - - - - - - J2 102 121 J13 DSI_D0N I/O - - - -
- - - - - - - H5 103 122 G12 VSSDSI S - - - -
- - - - - - - H4 104 123 H12 DSI_CKP I/O - - - -
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
76/255 DocID028294 Rev 6
- - - - - - - H3 105 124 H13 DSI_CKN I/O - - - -
- - - - - - - - 106 125 - VDD12DSI S -- --
- - - - - - - H1 107 126 F12 DSI_D1P I/O --- -
- - - - - - - H2 108 127 F13 DSI_D1N I/O --- -
- - - - - - - - 109 128 - VSSDSI S --- -
- - - - - 126 G13 - - - - PK0 I/O FT - LCD_G5, EVENTOUT -
- - - - - 127 F12 - - - - PK1 I/O FT - LCD_G6, EVENTOUT -
- - - - - 128 F13 - - - - PK2 I/O FT - LCD_G7, EVENTOUT -
- - 87 L15 106 129 M13 H9 110 129 M13 PG2 I/O FT - FMC_A12, EVENTOUT -
- - 88 K15 107 130 M12 G9 111 130 M12 PG3 I/O FT - FMC_A13, EVENTOUT -
- - 89 K14 108 131 N12 G1 112 131 N12 PG4 I/O FT - FMC_A14/FMC_BA0,
EVENTOUT -
- - 90 K13 109 132 N11 G2 113 132 N11 PG5 I/O FT - FMC_A15/FMC_BA1,
EVENTOUT -
- - 91 J15 110 133 J15 G3 114 133 J15 PG6 I/O FT - FMC_NE3, DCMI_D12,
LCD_R7, EVENTOUT -
- - 92 J14 111 134 J14 G4 115 134 J14 PG7 I/O FT -
SAI1_MCLK_A, USART6_CK,
FMC_INT, DCMI_D13,
LCD_CLK, EVENTOUT
-
- - 93 H14 112 135 H14 G5 116 135 H14 PG8 I/O FT -
SPI6_NSS, SPDIF_RX2,
USART6_RTS,
ETH_PPS_OUT, FMC_SDCLK,
LCD_G7, EVENTOUT
-
- - 94 G12 113 136 G10 F1 117 136 G10 VSS S --- -
F6 - 95 H13 114 137 G11 F2 118 137 G11 VDDUSB S --- -
F10 63 96 H15 115 138 H15 G6 119 138 H15 PC6 I/O FT -
TIM3_CH1, TIM8_CH1,
I2S2_MCK, DFSDM1_CKIN3,
USART6_TX, FMC_NWAIT,
SDMMC2_D6, SDMMC1_D6,
DCMI_D0, LCD_HSYNC,
EVENTOUT
-
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
DocID028294 Rev 6 77/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
E10 64 97 G15 116 139 G15 F3 120 139 G15 PC7 I/O FT -
TIM3_CH2, TIM8_CH2,
I2S3_MCK, DFSDM1_DATIN3,
USART6_RX, FMC_NE1,
SDMMC2_D7, SDMMC1_D7,
DCMI_D1, LCD_G6,
EVENTOUT
-
F9 65 98 G14 117 140 G14 G8 121 140 G14 PC8 I/O FT -
TRACED1, TIM3_CH3,
TIM8_CH3, UART5_RTS,
USART6_CK,
FMC_NE2/FMC_NCE,
SDMMC1_D0, DCMI_D2,
EVENTOUT
-
E9 66 99 F14 118 141 F14 E1 122 141 F14 PC9 I/O FT -
MCO2, TIM3_CH4, TIM8_CH4,
I2C3_SDA, I2S_CKIN,
UART5_CTS,
QUADSPI_BK1_IO0, LCD_G3,
SDMMC1_D1, DCMI_D3,
LCD_B2, EVENTOUT
--
D9 67 100 F15 119 142 F15 E2 123 142 F15 PA8 I/O FT -
MCO1, TIM1_CH1,
TIM8_BKIN2, I2C3_SCL,
USART1_CK, OTG_FS_SOF,
CAN3_RX, UART7_RX,
LCD_B3, LCD_R6,
EVENTOUT
-
C9 68 101 E15 120 143 E15 F4 124 143 E15 PA9 I/O FT -
TIM1_CH2, I2C3_SMBA,
SPI2_SCK/I2S2_CK,
USART1_TX, DCMI_D0,
LCD_R5, EVENTOUT
OTG_FS_VB
US
D10 69 102 D15 121 144 D15 F5 125 144 D15 PA10 I/O FT -
TIM1_CH3, USART1_RX,
LCD_B4, OTG_FS_ID,
MDIOS_MDIO, DCMI_D1,
LCD_B1, EVENTOUT
-
C10 70 103 C15 122 145 C15 E3 126 145 C15 PA11 I/O FT -
TIM1_CH4,
SPI2_NSS/I2S2_WS,
UART4_RX, USART1_CTS,
CAN1_RX, OTG_FS_DM,
LCD_R4, EVENTOUT
-
B10 71 104 B15 123 146 B15 D1 127 146 B15 PA12 I/O FT -
TIM1_ETR,
SPI2_SCK/I2S2_CK,
UART4_TX, USART1_RTS,
SAI2_FS_B, CAN1_TX,
OTG_FS_DP, LCD_R5,
EVENTOUT
-
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
78/255 DocID028294 Rev 6
A10 72 105 A15 124 147 A15 D2 128 147 A15 PA13(JTM
S-SWDIO) I/O FT - JTMS-SWDIO, EVENTOUT -
E7 73 106 F13 125 148 E11 C1 129 148 E11 VCAP_2 S - - - -
E5 74 107 F12 126 149 F10 C2 130 149 F10 VSS S - - - -
F5 75 108 G13 127 150 F11 B2 131 150 F11 VDD S - - - -
- - - E12 128 151 E12 F6 - 151 E12 PH13 I/O FT -
TIM8_CH1N, UART4_TX,
CAN1_TX, FMC_D21,
LCD_G2, EVENTOUT
-
- - - E13 129 152 E13 F7 - 152 E13 PH14 I/O FT -
TIM8_CH2N, UART4_RX,
CAN1_RX, FMC_D22,
DCMI_D4, LCD_G3,
EVENTOUT
-
- - - D13 130 153 D13 E5 - 153 D13 PH15 I/O FT -
TIM8_CH3N, FMC_D23,
DCMI_D11, LCD_G4,
EVENTOUT
-
- - - E14 131 154 E14 E4 132 154 E14 PI0 I/O FT -
TIM5_CH4,
SPI2_NSS/I2S2_WS,
FMC_D24, DCMI_D13,
LCD_G5, EVENTOUT
-
- - - D14 132 155 D14 B3 133 155 D14 PI1 I/O FT -
TIM8_BKIN2,
SPI2_SCK/I2S2_CK,
FMC_D25, DCMI_D8,
LCD_G6, EVENTOUT
-
- - - C14 133 156 C14 C3 - 156 C14 PI2 I/O FT -
TIM8_CH4, SPI2_MISO,
FMC_D26, DCMI_D9,
LCD_G7, EVENTOUT
-
- - - C13 134 157 C13 D3 134 157 C13 PI3 I/O FT -
TIM8_ETR,
SPI2_MOSI/I2S2_SD,
FMC_D27, DCMI_D10,
EVENTOUT
-
- - - D9 135 - F9 - 135 - F9 VSS S - - - -
- - - C9 136 158 E10 - 136 158 E10 VDD S - - - --
A9 76 109 A14 137 159 A14 A3 137 159 A14 PA14(JTC
K-SWCLK) I/O FT - JTCK-SWCLK, EVENTOUT -
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
DocID028294 Rev 6 79/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
A8 77 110 A13 138 160 A13 F8 138 160 A13 PA15(JTDI
)I/O FT -
JTDI, TIM2_CH1/TIM2_ETR,
HDMI_CEC,
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
SPI6_NSS, UART4_RTS,
CAN3_TX, UART7_TX,
EVENTOUT
-
B9 78 111 B14 139 161 B14 B4 139 161 B14 PC10 I/O FT -
DFSDM1_CKIN5,
SPI3_SCK/I2S3_CK,
USART3_TX, UART4_TX,
QUADSPI_BK1_IO1,
SDMMC1_D2, DCMI_D8,
LCD_R2, EVENTOUT
-
B8 79 112 B13 140 162 B13 C4 140 162 B13 PC11 I/O FT -
DFSDM1_DATIN5,
SPI3_MISO, USART3_RX,
UART4_RX,
QUADSPI_BK2_NCS,
SDMMC1_D3, DCMI_D4,
EVENTOUT
-
C8 80 113 A12 141 163 A12 D4 141 163 A12 PC12 I/O FT -
TRACED3,
SPI3_MOSI/I2S3_SD,
USART3_CK, UART5_TX,
SDMMC1_CK, DCMI_D9,
EVENTOUT
-
D8 81 114 B12 142 164 B12 A4 142 164 B12 PD0 I/O FT -
DFSDM1_CKIN6,
DFSDM1_DATIN7,
UART4_RX, CAN1_RX,
FMC_D2, EVENTOUT
-
E8 82 115 C12 143 165 C12 D5 143 165 C12 PD1 I/O FT -
DFSDM1_DATIN6,
DFSDM1_CKIN7, UART4_TX,
CAN1_TX, FMC_D3,
EVENTOUT
--
B7 83 116 D12 144 166 D12 D6 144 166 D12 PD2 I/O FT -
TRACED2, TIM3_ETR,
UART5_RX, SDMMC1_CMD,
DCMI_D11, EVENTOUT
-
C7 84 117 D11 145 167 C11 B5 145 167 C11 PD3 I/O FT -
DFSDM1_CKOUT,
SPI2_SCK/I2S2_CK,
DFSDM1_DATIN0,
USART2_CTS, FMC_CLK,
DCMI_D5, LCD_G7,
EVENTOUT
-
D7 85 118 D10 146 168 D11 A5 146 168 D11 PD4 I/O FT -
DFSDM1_CKIN0,
USART2_RTS, FMC_NOE,
EVENTOUT
-
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
80/255 DocID028294 Rev 6
B6 86 119 C11 147 169 C10 C5 147 169 C10 PD5 I/O FT - USART2_TX, FMC_NWE,
EVENTOUT -
- - 120 D8 148 170 F8 B6 148 170 F8 VSS S - - - -
- - 121 C8 149 171 E9 A6 149 171 E9 VDDSDM
MC S- - - -
C6 87 122 B11 150 172 B11 E6 150 172 B11 PD6 I/O FT -
DFSDM1_CKIN4,
SPI3_MOSI/I2S3_SD,
SAI1_SD_A, USART2_RX,
DFSDM1_DATIN1,
SDMMC2_CK, FMC_NWAIT,
DCMI_D10, LCD_B2,
EVENTOUT
-
D6 88 123 A11 151 173 A11 E7 151 173 A11 PD7 I/O FT -
DFSDM1_DATIN4,
SPI1_MOSI/I2S1_SD,
DFSDM1_CKIN1,
USART2_CK, SPDIF_RX0,
SDMMC2_CMD, FMC_NE1,
EVENTOUT
-
- - - - - 174 B10 NC - 174 B10 PJ12 I/O FT - LCD_G3, LCD_B0,
EVENTOUT -
- - - - - 175 B9 NC - 175 B9 PJ13 I/O FT - LCD_G4, LCD_B1,
EVENTOUT -
- - - - - 176 C9 NC - 176 C9 PJ14 I/O FT - LCD_B2, EVENTOUT -
- - - - - 177 D10 - - 177 D10 PJ15 I/O FT - LCD_B3, EVENTOUT -
- - 124 C10 152 178 D9 C6 152 178 D9 PG9 I/O FT -
SPI1_MISO, SPDIF_RX3,
USART6_RX,
QUADSPI_BK2_IO2,
SAI2_FS_B, SDMMC2_D0,
FMC_NE2/FMC_NCE,
DCMI_VSYNC, EVENTOUT
-
- - 125 B10 153 179 C8 A7 153 179 C8 PG10 I/O FT -
SPI1_NSS/I2S1_WS, LCD_G3,
SAI2_SD_B, SDMMC2_D1,
FMC_NE3, DCMI_D2,
LCD_B2, EVENTOUT
-
- - 126 B9 154 180 B8 B7 154 180 B8 PG11 I/O FT -
SPI1_SCK/I2S1_CK,
SPDIF_RX0, SDMMC2_D2,
ETH_MII_TX_EN/ETH_RMII_T
X_EN, DCMI_D3, LCD_B3,
EVENTOUT
-
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
DocID028294 Rev 6 81/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
- - 127 B8 155 181 C7 D7 155 181 C7 PG12 I/O FT -
LPTIM1_IN1, SPI6_MISO,
SPDIF_RX1, USART6_RTS,
LCD_B4, SDMMC2_D3,
FMC_NE4, LCD_B1,
EVENTOUT
-
- - 128 A8 156 182 B3 C7 156 182 B3 PG13 I/O FT -
TRACED0, LPTIM1_OUT,
SPI6_SCK, USART6_CTS,
ETH_MII_TXD0/ETH_RMII_TX
D0, FMC_A24, LCD_R0,
EVENTOUT
-
- - 129 A7 157 183 A4 NC 157 183 A4 PG14 I/O FT -
TRACED1, LPTIM1_ETR,
SPI6_MOSI, USART6_TX,
QUADSPI_BK2_IO3,
ETH_MII_TXD1/ETH_RMII_TX
D1, FMC_A25, LCD_B0,
EVENTOUT
-
- - 130 D7 158 184 F7 A8 158 184 F7 VSS S - - - -
- - 131 C7 159 185 E8 B8 159 185 E8 VDD S - - - -
- - - - - 186 D8 NC - 186 D8 PK3 I/O FT - LCD_B4, EVENTOUT -
- - - - - 187 D7 NC - 187 D7 PK4 I/O FT - LCD_B5, EVENTOUT -
- - - - - 188 C6 NC - 188 C6 PK5 I/O FT - LCD_B6, EVENTOUT -
- - - - - 189 C5 NC - 189 C5 PK6 I/O FT - LCD_B7, EVENTOUT -
- - - - - 190 C4 NC - 190 C4 PK7 I/O FT - LCD_DE, EVENTOUT -
- - 132 B7 160 191 B7 F9 160 191 B7 PG15 I/O FT -
USART6_CTS,
FMC_SDNCAS, DCMI_D13,
EVENTOUT
-
A7 89 133 A10 161 192 A10 E8 161 192 A10
PB3
(JTDO/
TRACESW
O)
I/O FT -
JTDO/TRACESWO,
TIM2_CH2,
SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
SPI6_SCK, SDMMC2_D2,
CAN3_RX, UART7_RX,
EVENTOUT
-
A6 90 134 A9 162 193 A9 D8 162 193 A9 PB4(NJTR
ST) I/O FT -
NJTRST, TIM3_CH1,
SPI1_MISO, SPI3_MISO,
SPI2_NSS/I2S2_WS,
SPI6_MISO, SDMMC2_D3,
CAN3_TX, UART7_TX,
EVENTOUT
-
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
82/255 DocID028294 Rev 6
C5 91 135 A6 163 194 A8 A9 163 194 A8 PB5 I/O FT -
UART5_RX, TIM3_CH2,
I2C1_SMBA,
SPI1_MOSI/I2S1_SD,
SPI3_MOSI/I2S3_SD,
SPI6_MOSI, CAN2_RX,
OTG_HS_ULPI_D7,
ETH_PPS_OUT,
FMC_SDCKE1, DCMI_D10,
LCD_G7, EVENTOUT
-
B5 92 136 B6 164 195 B6 B9 164 195 B6 PB6 I/O FT -
UART5_TX, TIM4_CH1,
HDMI_CEC, I2C1_SCL,
DFSDM1_DATIN5,
USART1_TX, CAN2_TX,
QUADSPI_BK1_NCS,
I2C4_SCL, FMC_SDNE1,
DCMI_D5, EVENTOUT
-
A5 93 137 B5 165 196 B5 C8 165 196 B5 PB7 I/O FT -
TIM4_CH2, I2C1_SDA,
DFSDM1_CKIN5,
USART1_RX, I2C4_SDA,
FMC_NL, DCMI_VSYNC,
EVENTOUT
-
D5 94 138 D6 166 197 E6 A10 166 197 E6 BOOT0 I B - - VPP
B4 95 139 A5 167 198 A7 E9 167 198 A7 PB8 I/O FT -
I2C4_SCL, TIM4_CH3,
TIM10_CH1, I2C1_SCL,
DFSDM1_CKIN7, UART5_RX,
CAN1_RX, SDMMC2_D4,
ETH_MII_TXD3, SDMMC1_D4,
DCMI_D6, LCD_B6,
EVENTOUT
-
A4 96 140 B4 168 199 B4 D9 168 199 B4 PB9 I/O FT -
I2C4_SDA, TIM4_CH4,
TIM11_CH1, I2C1_SDA,
SPI2_NSS/I2S2_WS,
DFSDM1_DATIN7, UART5_TX,
CAN1_TX, SDMMC2_D5,
I2C4_SMBA, SDMMC1_D5,
DCMI_D7, LCD_B7,
EVENTOUT
-
D4 97 141 A4 169 200 A6 C9 169 200 A6 PE0 I/O FT -
TIM4_ETR, LPTIM1_ETR,
UART8_RX, SAI2_MCLK_A,
FMC_NBL0, DCMI_D2,
EVENTOUT
-
C4 98 142 A3 170 201 A5 B10 170 201 A5 PE1 I/O FT -
LPTIM1_IN2, UART8_TX,
FMC_NBL1, DCMI_D3,
EVENTOUT
-
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
DocID028294 Rev 6 83/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
E4 99 - D5 - 202 F6 A11 - 202 F6 VSS S - - - -
F7 - 143 C6 171 203 E5 C10 171 203 E5 PDR_ON S - - - -
F4 100 144 C5 172 204 E7 B11 172 204 E7 VDD S - - - -
- - - D4 173 205 C3 D10 173 205 C3 PI4 I/O FT -
TIM8_BKIN, SAI2_MCLK_A,
FMC_NBL2, DCMI_D5,
LCD_B4, EVENTOUT
-
- - - C4 174 206 D3 D11 174 206 D3 PI5 I/O FT -
TIM8_CH1, SAI2_SCK_A,
FMC_NBL3, DCMI_VSYNC,
LCD_B5, EVENTOUT
-
- - - C3 175 207 D6 C11 175 207 D6 PI6 I/O FT -
TIM8_CH2, SAI2_SD_A,
FMC_D28, DCMI_D6, LCD_B6,
EVENTOUT
-
- - - C2 176 208 D4 B12 176 208 D4 PI7 I/O FT -
TIM8_CH3, SAI2_FS_A,
FMC_D29, DCMI_D7, LCD_B7,
EVENTOUT
-
---F6-- - ---- VSS S-- - -
---F7-- - ---- VSS S-- - -
---F8-- - ---- VSS S-- - -
---F9-- - ---- VSS S-- - -
---F10-- - ---- VSS S-- - -
---G6-- - ---- VSS S-- - -
---G7-- - ---- VSS S-- - -
---G8-- - ---- VSS S-- - -
---G9-- - ---- VSS S-- - -
---G10-- - ---- VSS S-- - -
---H6-- - ---- VSS S-- - -
---H7-- - ---- VSS S-- - -
---H8-- - ---- VSS S-- - -
---H9-- - ---- VSS S-- - -
---H10--- ---- VSS S-- - -
---J6--- ---- VSS S-- - -
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
84/255 DocID028294 Rev 6
---J7--- ---- VSS S-- - -
---J8--- ---- VSS S-- - -
---J9--- ---- VSS S-- - -
---J10-- - ---- VSS S-- - -
---K6--- ---- VSS S-- - -
---K7--- ---- VSS S-- - -
---K8--- ---- VSS S-- - -
---K9--- ---- VSS S-- - -
---K10--- ---- VSS S-- - -
1. NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the
output data register to avoid an extra current consumption in low-power modes. list of pins: PI8, PI12, PI13, PI14, PF6,
PF7, PF8, PF9, PC2, PC3, PC4, PC5, PI15, PJ0, PJ1, PJ2, PJ3, PJ4, PJ5, PH6, PH7, PJ12, PJ13, PJ14, PJ15, PG14,
PK3, PK4, PK5, PK6 and PK7.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of
GPIOs PC13 to PC15 and PI8 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These I/Os
must not be used as a current source (e.g. to drive an LED).
3. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
4. If the device is in regulator OFF/internal reset ON mode (BYPASS_REG pin is set to VDD), then PA0 is used as an internal reset (active low).
5. Internally connected to VDD or VSS depending on part number.
Table 11. STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions (continued)
Pin Number
Pin name (function after reset
Pin type
I/O structure
Notes
Alternate functions Additional
functions
STM32F777xx
STM32F778Ax
STM32F779xx
TFBGA100
LQFP100
LQFP144
UFBGA176
LQFP176
LQFP208
TFBGA216
WLCSP180(1)
LQFP176
LQFP208
TFBGA216
DocID028294 Rev 6 85/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
Table 12. FMC pin definition
Pin name NOR/PSRAM/SR
AM
NOR/PSRAM
Mux NAND16 SDRAM
PF0 A0 - - A0
PF1 A1 - - A1
PF2 A2 - - A2
PF3 A3 - - A3
PF4 A4 - - A4
PF5 A5 - - A5
PF12 A6 - - A6
PF13 A7 - - A7
PF14 A8 - - A8
PF15 A9 - - A9
PG0 A10 - - A10
PG1 A11 - - A11
PG2 A12 - - A12
PG3 A13 - - -
PG4 A14 - - BA0
PG5 A15 - - BA1
PD11 A16 A16 CLE -
PD12 A17 A17 ALE -
PD13 A18 A18 - -
PE3 A19 A19 - -
PE4 A20 A20 - -
PE5 A21 A21 - -
PE6 A22 A22 - -
PE2 A23 A23 - -
PG13 A24 A24 - -
PG14 A25 A25 - -
PD14 D0 DA0 D0 D0
PD15 D1 DA1 D1 D1
PD0 D2 DA2 D2 D2
PD1 D3 DA3 D3 D3
PE7 D4 DA4 D4 D4
PE8 D5 DA5 D5 D5
PE9 D6 DA6 D6 D6
PE10 D7 DA7 D7 D7
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
86/255 DocID028294 Rev 6
PE11 D8 DA8 D8 D8
PE12 D9 DA9 D9 D9
PE13 D10 DA10 D10 D10
PE14 D11 DA11 D11 D11
PE15 D12 DA12 D12 D12
PD8 D13 DA13 D13 D13
PD9 D14 DA14 D14 D14
PD10 D15 DA15 D15 D15
PH8 D16 - - D16
PH9 D17 - - D17
PH10 D18 - - D18
PH11 D19 - - D19
PH12 D20 - - D20
PH13 D21 - - D21
PH14 D22 - - D22
PH15 D23 - - D23
PI0 D24 - - D24
PI1 D25 - - D25
PI2 D26 - - D26
PI3 D27 - - D27
PI6 D28 - - D28
PI7 D29 - - D29
PI9 D30 - - D30
PI10 D31 - - D31
PD7 NE1 NE1 - -
PG6 NE3 - - -
PG9 NE2 NE2 NCE -
PG10 NE3 NE3 - -
PG11----
PG12 NE4 NE4 - -
PD3 CLK CLK - -
PD4 NOE NOE NOE -
PD5 NWE NWE NWE -
PD6 NWAIT NWAIT NWAIT -
Table 12. FMC pin definition (continued)
Pin name NOR/PSRAM/SR
AM
NOR/PSRAM
Mux NAND16 SDRAM
DocID028294 Rev 6 87/255
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
101
PB7 NADV NADV - -
PF6 - - - -
PF7 - - - -
PF8 - - - -
PF9 - - - -
PF10----
PG6 - - - -
PG7 - - INT -
PE0 NBL0 NBL0 - NBL0
PE1 NBL1 NBL1 - NBL1
PI4 NBL2 - - NBL2
PI5 NBL3 - - NBL3
PG8 - - - SDCLK
PC0 - - - SDNWE
PF11 - - - SDNRAS
PG15 - - - SDNCAS
PH2 - - - SDCKE0
PH3 - - - SDNE0
PH6 - - - SDNE1
PH7 - - - SDCKE1
PH5 - - - SDNWE
PC2 - - - SDNE0
PC3 - - - SDCKE0
PC6 NWAIT NWAIT NWAIT -
PB5 - - - SDCKE1
PB6 - - - SDNE1
Table 12. FMC pin definition (continued)
Pin name NOR/PSRAM/SR
AM
NOR/PSRAM
Mux NAND16 SDRAM
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
88/255 DocID028294 Rev 6
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
Port A
PA0 -
TIM2_C
H1/TIM2
_ETR
TIM5_C
H1
TIM8_ET
R---
USART2
_CTS
UART4_
TX -SAI2_SD_
B
ETH_MII_
CRS ---
EVEN
TOUT
PA1 - TIM2_C
H2
TIM5_C
H2 ----
USART2
_RTS
UART4_
RX
QUADSP
I_BK1_IO
3
SAI2_MC
K_B
ETH_MII_
RX_CLK/
ETH_RMI
I_REF_C
LK
--LCD_R2
EVEN
TOUT
PA2 - TIM2_C
H3
TIM5_C
H3
TIM9_CH
1---
USART2
_TX
SAI2_SC
K_B --
ETH_MDI
O
MDIOS_
MDIO -LCD_R1
EVEN
TOUT
PA3 - TIM2_C
H4
TIM5_C
H4
TIM9_CH
2---
USART2
_RX -LCD_B2
OTG_HS_
ULPI_D0
ETH_MII_
COL - - LCD_B5 EVEN
TOUT
PA4--- - -
SPI1_NS
S/I2S1_
WS
SPI3_NS
S/I2S3_
WS
USART2
_CK
SPI6_NS
S---
OTG_HS
_SOF
DCMI_H
SYNC
LCD_VS
YNC
EVEN
TOUT
PA5 -
TIM2_C
H1/TIM2
_ETR
-TIM8_CH
1N -
SPI1_SC
K/I2S1_
CK
--
SPI6_SC
K-OTG_HS_
ULPI_CK ---LCD_R4
EVEN
TOUT
PA6 - TIM1_B
KIN
TIM3_C
H1
TIM8_BKI
N-SPI1_MI
SO --
SPI6_MI
SO
TIM13_C
H1 --
MDIOS_
MDC
DCMI_PI
XCLK LCD_G2 EVEN
TOUT
PA7 - TIM1_C
H1N
TIM3_C
H2
TIM8_CH
1N -
SPI1_M
OSI/I2S1
_SD
--
SPI6_MO
SI
TIM14_C
H1 -
ETH_MII_
RX_DV/E
TH_RMII_
CRS_DV
FMC_SD
NWE --
EVEN
TOUT
PA8 MCO1 TIM1_C
H1 -TIM8_BKI
N2
I2C3_SC
L--
USART1
_CK --
OTG_FS_
SOF
CAN3_R
X
UART7_
RX LCD_B3 LCD_R6 EVEN
TOUT
PA9 - TIM1_C
H2 --
I2C3_SM
BA
SPI2_SC
K/I2S2_
CK
-USART1
_TX -- - --
DCMI_D
0LCD_R5 EVEN
TOUT
PA10 - TIM1_C
H3 -- ---
USART1
_RX -LCD_B4
OTG_FS_
ID -MDIOS_
MDIO
DCMI_D
1LCD_B1 EVEN
TOUT
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
DocID028294 Rev 6 89/255
Port A
PA11 - TIM1_C
H4 -- -
SPI2_NS
S/I2S2_
WS
UART4_
RX
USART1
_CTS -CAN1_R
X
OTG_FS_
DM ---LCD_R4
EVEN
TOUT
PA12 - TIM1_ET
R-- -
SPI2_SC
K/I2S2_
CK
UART4_
TX
USART1
_RTS
SAI2_FS
_B
CAN1_T
X
OTG_FS_
DP ---LCD_R5
EVEN
TOUT
PA13 JTMS-
SWDIO -- - - -- - - - - - ---
EVEN
TOUT
PA14 JTCK-
SWCLK -- - - -- - - - - - ---
EVEN
TOUT
PA15 JTDI
TIM2_C
H1/TIM2
_ETR
--
HDMI-
CEC
SPI1_NS
S/I2S1_
WS
SPI3_NS
S/I2S3_
WS
SPI6_NS
S
UART4_
RTS --CAN3_TX
UART7_
TX --
EVEN
TOUT
Port B
PB0 - TIM1_C
H2N
TIM3_C
H3
TIM8_CH
2N --
DFSDM1
_CKOUT -UART4_
CTS LCD_R3 OTG_HS_
ULPI_D1
ETH_MII_
RXD2 - - LCD_G1 EVEN
TOUT
PB1 - TIM1_C
H3N
TIM3_C
H4
TIM8_CH
3N --
DFSDM1
_DATIN1 - - LCD_R6 OTG_HS_
ULPI_D2
ETH_MII_
RXD3 - - LCD_G0 EVEN
TOUT
PB2--- - - -
SAI1_SD
_A
SPI3_MO
SI/I2S3_
SD
-QUADSP
I_CLK
DFSDM1_
CKIN1 - ---
EVEN
TOUT
PB3
JTDO/T
RACES
WO
TIM2_C
H2 -- -
SPI1_SC
K/I2S1_
CK
SPI3_SC
K/I2S3_
CK
-SPI6_SC
K-SDMMC2
_D2
CAN3_R
X
UART7_
RX --
EVEN
TOUT
PB4 NJTRST - TIM3_C
H1 --
SPI1_MI
SO
SPI3_MI
SO
SPI2_NS
S/I2S2_
WS
SPI6_MI
SO -SDMMC2
_D3 CAN3_TX UART7_
TX --
EVEN
TOUT
PB5 - UART5_
RX
TIM3_C
H2 -I2C1_SM
BA
SPI1_M
OSI/I2S1
_SD
SPI3_M
OSI/I2S3
_SD
-SPI6_MO
SI
CAN2_R
X
OTG_HS_
ULPI_D7
ETH_PPS
_OUT
FMC_SD
CKE1
DCMI_D
10 LCD_G7 EVEN
TOUT
PB6 - UART5_
TX
TIM4_C
H1
HDMI-
CEC
I2C1_SC
L-DFSDM1
_DATIN5
USART1
_TX -CAN2_T
X
QUADSPI
_BK1_NC
S
I2C4_SC
L
FMC_SD
NE1
DCMI_D
5-EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
90/255 DocID028294 Rev 6
Port B
PB7 - - TIM4_C
H2 -I2C1_SD
A-DFSDM1
_CKIN5
USART1
_RX -- -
I2S4_SD
AFMC_NL DCMI_V
SYNC -EVEN
TOUT
PB8 - I2C4_SC
L
TIM4_C
H3
TIM10_C
H1
I2C1_SC
L-DFSDM1
_CKIN7
UART5_
RX -CAN1_R
X
SDMMC2
_D4
ETH_MII_
TXD3
SDMMC
_D4
DCMI_D
6LCD_B6 EVEN
TOUT
PB9 - I2C4_SD
A
TIM4_C
H4
TIM11_CH
1
I2C1_SD
A
SPI2_NS
S/I2S2_
WS
DFSDM1
_DATIN7
UART5_T
X-CAN1_T
X
SDMMC2
_D5
I2C4_SM
BA
SDMMC
_D5
DCMI_D
7LCD_B7 EVEN
TOUT
PB10 - TIM2_C
H3 --
I2C2_SC
L
SPI2_SC
K/I2S2_
CK
DFSDM1
_DATIN7
USART3
_TX -
-
QUADSP
I_BK1_N
CS
OTG_HS_
ULPI_D3
ETH_MII_
RX_ER - - LCD_G4 EVEN
TOUT
PB11 - TIM2_C
H4 --
I2C2_SD
A-DFSDM1
_CKIN7
USART3
_RX --
OTG_HS_
ULPI_D4
ETH_MII_
TX_EN/E
TH_RMII_
TX_EN
- DSI_TE LCD_G5 EVEN
TOUT
PB12 - TIM1_B
KIN --
I2C2_SM
BA
SPI2_NS
S/I2S2_
WS
DFSDM1
_DATIN1
USART3
_CK
UART5_
RX
CAN2_R
X
OTG_HS_
ULPI_D5
ETH_MII_
TXD0/ET
H_RMII_T
XD0
OTG_HS
_ID --
EVEN
TOUT
PB13 - TIM1_C
H1N -- -
SPI2_SC
K/I2S2_
CK
DFSDM1
_CKIN1
USART3
_CTS
UART5_T
X
CAN2_T
X
OTG_HS_
ULPI_D6
ETH_MII_
TXD1/ET
H_RMII_T
XD1
---
EVEN
TOUT
PB14 - TIM1_C
H2N -TIM8_CH
2N
USART1_
TX
SPI2_MI
SO
DFSDM1
_DATIN2
USART3
_RTS
UART4_
RTS
TIM12_C
H1
SDMMC2
_D0 -OTG_HS
_DM --
EVEN
TOUT
PB15 RTC_RE
FIN
TIM1_C
H3N -TIM8_CH
3N
USART1_
RX
SPI2_M
OSI/I2S2
_SD
DFSDM1
_CKIN2 -UART4_
CTS
TIM12_C
H2
SDMMC2
_D1 -OTG_HS
_DP --
EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
DocID028294 Rev 6 91/255
Port C
PC0---
DFSDM1_
CKIN0 --
DFSDM1
_DATIN4 -SAI2_FS
_B -
OTG_HS_
ULPI_ST
P
-FMC_SD
NWE -LCD_R5
EVEN
TOUT
PC1 TRACED
0--
DFSDM1_
DATAIN0 -
SPI2_M
OSI/I2S2
_SD
SAI1_SD
_A ---
DFSDM1_
CKIN4
ETH_MD
C
MDIOS_
MDC --
EVEN
TOUT
PC2---
DFSDM1_
CKIN1 -SPI2_MI
SO
DFSDM1
_CKOUT ---
OTG_HS_
ULPI_DIR
ETH_MII_
TXD2
FMC_SD
NE0 --
EVEN
TOUT
PC3---
DFSDM1_
DATAIN1 -
SPI2_M
OSI/I2S2
_SD
----
OTG_HS_
ULPI_NX
T
ETH_MII_
TX_CLK
FMC_SD
CKE0 --
EVEN
TOUT
PC4---
DFSDM1_
CKIN2 -I2S1_M
CK --
SPDIF_R
X2 --
ETH_MII_
RXD0/ET
H_RMII_
RXD0
FMC_SD
NE0 --
EVEN
TOUT
PC5---
DFSDM1_
DATAIN2 ----
SPDIF_R
X3 --
ETH_MII_
RXD1/ET
H_RMII_
RXD1
FMC_SD
CKE0 --
EVEN
TOUT
PC6 - - TIM3_C
H1
TIM8_CH
1-I2S2_M
CK -DFSDM1
_CKIN3
USART6
_TX
FMC_NW
AIT
SDMMC2
_D6 -SDMMC
_D6
DCMI_D
0
LCD_HS
YNC
EVEN
TOUT
PC7 - - TIM3_C
H2
TIM8_
CH2 --
I2S3_M
CK
DFSDM1
_DATAIN
3
USART6
_RX
FMC_NE
1
SDMMC2
_D7 -SDMMC
_D7
DCMI_D
1LCD_G6 EVEN
TOUT
PC8 TRACED
1-TIM3_C
H3
TIM8_
CH3 ---
UART5_
RTS
USART6
_CK
FMC_NE
2/FMC_N
CE
--
SDMMC
_D0
DCMI_D
2-EVEN
TOUT
PC9 MCO2 - TIM3_C
H4
TIM8_
CH4
I2C3_SD
A
I2S_CKI
N-UART5_
CTS -
QUADSP
I_BK1_IO
0
LCD_G3 - SDMMC
_D1
DCMI_D
3LCD_B2 EVEN
TOUT
PC10---
DFSDM1_
CKIN5 --
SPI3_SC
K/I2S3_
CK
USART3
_TX
UART4_T
X
QUADSP
I_BK1_IO
1
--
SDMMC
_D2
DCMI_D
8LCD_R2 EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
92/255 DocID028294 Rev 6
Port C
PC11---
DFSDM1_
DATAIN5 --
SPI3_MI
SO
USART3
_RX
UART4_
RX
QUADSP
I_BK2_N
CS
--
SDMMC
_D3
DCMI_D
4-EVEN
TOUT
PC12 TRACED
3-- - - -
SPI3_M
OSI/I2S3
_SD
USART3
_CK
UART5_T
X---
SDMMC
_CK
DCMI_D
9-EVEN
TOUT
PC13--- - - -- - - - - - ---
EVEN
TOUT
PC14--- - - -- - - - - - ---
EVEN
TOUT
PC15--- - - -- - - - - - ---
EVEN
TOUT
Port D
PD0---
DFSDM1_
CKIN6 --
DFSDM1
_DATAIN
7
-UART4_
RX
CAN1_R
X- - FMC_D2 - - EVEN
TOUT
PD1---
DFSDM1_
DATAIN6 --
DFSDM1
_CKIN7 -UART4_T
X
CAN1_T
X- - FMC_D3 - - EVEN
TOUT
PD2 TRACED
2-TIM3_ET
R-----
UART5_
RX ---
SDMMC
_CMD
DCMI_D
11 -EVEN
TOUT
PD3---
DFSDM1_
CKOUT -
SPI2_SC
K/I2S2_
CK
DFSDM1
_DATAIN
0
USART2
_CTS -- - -
FMC_CL
K
DCMI_D
5LCD_G7 EVEN
TOUT
PD4--- - - -
DFSDM1
_CKIN0
USART2
_RTS -- - -
FMC_N
OE --
EVEN
TOUT
PD5--- - - --
USART2
_TX -- - -
FMC_N
WE --
EVEN
TOUT
PD6---
DFSDM1_
CKIN4 -
SPI3_M
OSI/I2S3
_SD
SAI1_SD
_A
USART2
_RX --
DFSDM1_
DATAIN1
SDMMC2
_CK
FMC_N
WAIT
DCMI_D
10 LCD_B2 EVEN
TOUT
PD7---
DFSDM1_
DATAIN4 -
SPI1_M
OSI/I2S1
_SD
DFSDM1
_CKIN1
USART2
_CK
SPDIF_R
X0 --
SDMMC2
_CMD
FMC_NE
1--
EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
DocID028294 Rev 6 93/255
Port D
PD8---
DFSDM1_
CKIN3 ---
USART3
_TX
SPDIF_R
X1 ---
FMC_D1
3--
EVEN
TOUT
PD9---
DFSDM1_
DATAIN3 ---
USART3
_RX -- - -
FMC_D1
4--
EVEN
TOUT
PD10---
DFSDM1_
CKOUT ---
USART3
_CK -- - -
FMC_D1
5- LCD_B3 EVEN
TOUT
PD11--- -
I2C4_SM
BA --
USART3
_CTS -
QUADSP
I_BK1_IO
0
SAI2_SD_
A-
FMC_A1
6/FMC_
CLE
--
EVEN
TOUT
PD12 - - TIM4_C
H1
LPTIM1_I
N1
I2C4_SC
L--
USART3
_RTS -
QUADSP
I_BK1_IO
1
SAI2_FS_
A-
FMC_A1
7/FMC_
ALE
--
EVEN
TOUT
PD13 - - TIM4_C
H2
LPTIM1_
OUT
I2C4_SD
A-- - -
QUADSP
I_BK1_IO
3
SAI2_SC
K_A -FMC_A1
8--
EVEN
TOUT
PD14 - - TIM4_C
H3 -----
UART8_
CTS ---FMC_D0--
EVEN
TOUT
PD15 - - TIM4_C
H4 -----
UART8_
RTS ---FMC_D1--
EVEN
TOUT
Port E
PE0 - - TIM4_ET
R
LPTIM1_E
TR ----
UART8_
Rx -SAI2_MC
K_A -FMC_NB
L0
DCMI_D
2-EVEN
TOUT
PE1---
LPTIM1_I
N2 ----
UART8_T
x---
FMC_NB
L1
DCMI_D
3-EVEN
TOUT
PE2 TRACEC
LK -- - -
SPI4_SC
K
SAI1_M
CLK_A --
QUADSP
I_BK1_IO
2
-ETH_MII_
TXD3
FMC_A2
3--
EVEN
TOUT
PE3 TRACED
0-- - - -
SAI1_SD
_B --- - -
FMC_A1
9--
EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
94/255 DocID028294 Rev 6
Port E
PE4 TRACED
1-- - -
SPI4_NS
S
SAI1_FS
_A ---
DFSDM1_
DATAIN3 -FMC_A2
0
DCMI_D
4LCD_B0 EVEN
TOUT
PE5 TRACED
2--
TIM9_CH
1-SPI4_MI
SO
SAI1_SC
K_A ---
DFSDM1_
CKIN3 -FMC_A2
1
DCMI_D
6LCD_G0 EVEN
TOUT
PE6 TRACED
3
TIM1_B
KIN2 -TIM9_CH
2-SPI4_M
OSI
SAI1_SD
_A ---
SAI2_MC
K_B -FMC_A2
2
DCMI_D
7LCD_G1 EVEN
TOUT
PE7 - TIM1_ET
R-- --
DFSDM1
_DATAIN
2
-UART7_
Rx -QUADSPI
_BK2_IO0 -FMC_D4- -EVEN
TOUT
PE8 - TIM1_C
H1N -- --
DFSDM1
_CKIN2 -UART7_T
x-QUADSPI
_BK2_IO1 -FMC_D5- -EVEN
TOUT
PE9 - TIM1_C
H1 -- --
DFSDM1
_CKOUT -UART7_
RTS -QUADSPI
_BK2_IO2 -FMC_D6- -EVEN
TOUT
PE10 - TIM1_C
H2N -- --
DFSDM1
_DATAIN
4
-UART7_
CTS -QUADSPI
_BK2_IO3 -FMC_D7- -EVEN
TOUT
PE11 - TIM1_C
H2 -- -
SPI4_NS
S
DFSDM1
_CKIN4 ---
SAI2_SD_
B- FMC_D8 - LCD_G3 EVEN
TOUT
PE12 - TIM1_C
H3N -- -
SPI4_SC
K
DFSDM1
_DATAIN
5
---
SAI2_SC
K_B - FMC_D9 - LCD_B4 EVEN
TOUT
PE13 - TIM1_C
H3 -- -
SPI4_MI
SO
DFSDM1
_CKIN5 ---
SAI2_FS_
B-FMC_D1
0- LCD_DE EVEN
TOUT
PE14 - TIM1_C
H4 -- -
SPI4_M
OSI ----
SAI2_MC
K_B -FMC_D1
1-LCD_CL
K
EVEN
TOUT
PE15 - TIM1_B
KIN -- ------ - -
FMC_D1
2-LCD_R7
EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
DocID028294 Rev 6 95/255
Port F
PF0--- -
I2C2_SD
A-- - - - - -FMC_A0--
EVEN
TOUT
PF1--- -
I2C2_SC
L-- - - - - -FMC_A1--
EVEN
TOUT
PF2--- -
I2C2_SM
BA -- - - - - -FMC_A2--
EVEN
TOUT
PF3--- - - -- - - - - -FMC_A3--
EVEN
TOUT
PF4--- - - -- - - - - -FMC_A4--
EVEN
TOUT
PF5--- - - -- - - - - -FMC_A5--
EVEN
TOUT
PF6---
TIM10_C
H1 -SPI5_NS
S
SAI1_SD
_B -UART7_
Rx
QUADSP
I_BK1_IO
3
- - ---
EVEN
TOUT
PF7---
TIM11_CH
1-SPI5_SC
K
SAI1_M
CLK_B -UART7_T
x
QUADSP
I_BK1_IO
2
- - ---
EVEN
TOUT
PF8--- - -
SPI5_MI
SO
SAI1_SC
K_B -UART7_
RTS
TIM13_C
H1
QUADSPI
_BK1_IO0 - ---
EVEN
TOUT
PF9--- - -
SPI5_M
OSI
SAI1_FS
_B -UART7_
CTS
TIM14_C
H1
QUADSPI
_BK1_IO1 - ---
EVEN
TOUT
PF10--- - - -- - -
QUADSP
I_CLK ---
DCMI_D
11 LCD_DE EVEN
TOUT
PF11--- - -
SPI5_M
OSI ----
SAI2_SD_
B-FMC_SD
NRAS
DCMI_D
12 -EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
96/255 DocID028294 Rev 6
Port F
PF12--- - - -- - - - - -FMC_A6--
EVEN
TOUT
PF13--- -
I2C4_SM
BA -
DFSDM1
_DATAIN
6
--- - -FMC_A7--
EVEN
TOUT
PF14--- -
I2C4_SC
L-DFSDM1
_CKIN6 --- - -FMC_A8--
EVEN
TOUT
PF15--- -
I2C4_SD
A-- - - - - -FMC_A9--
EVEN
TOUT
Port G
PG0--- - - -- - - - - -
FMC_A1
0--
EVEN
TOUT
PG1--- - - -- - - - - -
FMC_A1
1--
EVEN
TOUT
PG2--- - - -- - - - - -
FMC_A1
2--
EVEN
TOUT
PG3--- - - -- - - - - -
FMC_A1
3--
EVEN
TOUT
PG4--- - - -- - - - - -
FMC_A1
4/FMC_
BA0
--
EVEN
TOUT
PG5--- - - -- - - - - -
FMC_A1
5/FMC_
BA1
--
EVEN
TOUT
PG6--- - - -- - - - - -
FMC_NE
3
DCMI_D
12 LCD_R7 EVEN
TOUT
PG7--- - - -
SAI1_M
CLK_A -USART6
_CK ---
FMC_IN
T
DCMI_D
13
LCD_CL
K
EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
DocID028294 Rev 6 97/255
Port G
PG8--- - -
SPI6_NS
S-SPDIF_R
X2
USART6
_RTS --
ETH_PPS
_OUT
FMC_SD
CLK - LCD_G7 EVEN
TOUT
PG9--- - -
SPI1_MI
SO -SPDIF_R
X3
USART6
_RX
QUADSP
I_BK2_IO
2
SAI2_FS_
B
SDMMC2
_D0
FMC_NE
2/FMC_
NCE
DCMI_V
SYNC -EVEN
TOUT
PG10--- - -
SPI1_NS
S/I2S1_
WS
- - - LCD_G3 SAI2_SD_
B
SDMMC2
_D1
FMC_NE
3
DCMI_D
2LCD_B2 EVEN
TOUT
PG11--- - -
SPI1_SC
K/I2S1_
CK
-SPDIF_R
X0 --
SDMMC2
_D2
ETH_MII_
TX_EN/E
TH_RMII_
TX_EN
-DCMI_D
3LCD_B3 EVEN
TOUT
PG12---
LPTIM1_I
N1 -SPI6_MI
SO -SPDIF_R
X1
USART6
_RTS LCD_B4 - SDMMC2
_D3
FMC_NE
4- LCD_B1 EVEN
TOUT
PG13 TRACED
0--
LPTIM1_
OUT -SPI6_SC
K--
USART6
_CTS --
ETH_MII_
TXD0/ET
H_RMII_T
XD0
FMC_A2
4-LCD_R0
EVEN
TOUT
PG14 TRACED
1--
LPTIM1_E
TR -SPI6_M
OSI --
USART6
_TX
QUADSP
I_BK2_IO
3
-
ETH_MII_
TXD1/ET
H_RMII_T
XD1
FMC_A2
5- LCD_B0 EVEN
TOUT
PG15--- - - -- -
USART6
_CTS ---
FMC_SD
NCAS
DCMI_D
13 -EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
98/255 DocID028294 Rev 6
Port H
PH0--- - - -- - - - - - ---
EVEN
TOUT
PH1--- - - -- - - - - - ---
EVEN
TOUT
PH2---
LPTIM1_I
N2 -----
QUADSP
I_BK2_IO
0
SAI2_SC
K_B
ETH_MII_
CRS
FMC_SD
CKE0 -LCD_R0
EVEN
TOUT
PH3--- - - -- - -
QUADSP
I_BK2_IO
1
SAI2_MC
K_B
ETH_MII_
COL
FMC_SD
NE0 -LCD_R1
EVEN
TOUT
PH4--- -
I2C2_SC
L- - - - LCD_G5
OTG_HS_
ULPI_NX
T
- - - LCD_G4 EVEN
TOUT
PH5--- -
I2C2_SD
A
SPI5_NS
S---- - -
FMC_SD
NWE --
EVEN
TOUT
PH6--- -
I2C2_SM
BA
SPI5_SC
K-- -
TIM12_C
H1 -ETH_MII_
RXD2
FMC_SD
NE1
DCMI_D
8-EVEN
TOUT
PH7--- -
I2C3_SC
L
SPI5_MI
SO ---- -
ETH_MII_
RXD3
FMC_SD
CKE1
DCMI_D
9-EVEN
TOUT
PH8--- -
I2C3_SD
A----- - -
FMC_D1
6
DCMI_H
SYNC LCD_R2 EVEN
TOUT
PH9--- -
I2C3_SM
BA -- - -
TIM12_C
H2 --
FMC_D1
7
DCMI_D
0LCD_R3 EVEN
TOUT
PH10 - - TIM5_C
H1 -I2C4_SM
BA ----- - -
FMC_D1
8
DCMI_D
1LCD_R4 EVEN
TOUT
PH11 - - TIM5_C
H2 -I2C4_SC
L----- - -
FMC_D1
9
DCMI_D
2LCD_R5 EVEN
TOUT
PH12 - - TIM5_C
H3 -I2C4_SD
A----- - -
FMC_D2
0
DCMI_D
3LCD_R6 EVEN
TOUT
PH13---
TIM8_CH
1N ----
UART4_T
X
CAN1_T
X--
FMC_D2
1- LCD_G2 EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
DocID028294 Rev 6 99/255
Port H
PH14---
TIM8_CH
2N ----
UART4_
RX
CAN1_R
X--
FMC_D2
2
DCMI_D
4LCD_G3 EVEN
TOUT
PH15---
TIM8_CH
3N ------ - -
FMC_D2
3
DCMI_D
11 LCD_G4 EVEN
TOUT
Port I
PI0 - - TIM5_C
H4 --
SPI2_NS
S/I2S2_
WS
---- - -
FMC_D2
4
DCMI_D
13 LCD_G5 EVEN
TOUT
PI1---
TIM8_BKI
N2 -
SPI2_SC
K/I2S2_
CK
---- - -
FMC_D2
5
DCMI_D
8LCD_G6 EVEN
TOUT
PI2---
TIM8_CH
4-SPI2_MI
SO ---- - -
FMC_D2
6
DCMI_D
9LCD_G7 EVEN
TOUT
PI3---
TIM8_ET
R-
SPI2_M
OSI/I2S2
_SD
---- - -
FMC_D2
7
DCMI_D
10 -EVEN
TOUT
PI4---
TIM8_BKI
N------
SAI2_MC
K_A -FMC_NB
L2
DCMI_D
5LCD_B4 EVEN
TOUT
PI5---
TIM8_CH
1------
SAI2_SC
K_A -FMC_NB
L3
DCMI_V
SYNC LCD_B5 EVEN
TOUT
PI6---
TIM8_CH
2------
SAI2_SD_
A-FMC_D2
8
DCMI_D
6LCD_B6 EVEN
TOUT
PI7---
TIM8_CH
3------
SAI2_FS_
A-FMC_D2
9
DCMI_D
7LCD_B7 EVEN
TOUT
PI8--- - - -- - - - - - ---
EVEN
TOUT
PI9--- - - -- -
UART4_
RX
CAN1_R
X--
FMC_D3
0-LCD_VS
YNC
EVEN
TOUT
PI10--- - - -- - - - -
ETH_MII_
RX_ER
FMC_D3
1-LCD_HS
YNC
EVEN
TOUT
PI11--- - - -- - -LCD_G6
OTG_HS_
ULPI_DIR - ---
EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
Pinouts and pin description STM32F777xx STM32F778Ax STM32F779xx
100/255 DocID028294 Rev 6
Port I
PI12--- - - -- - - - - - --
LCD_HS
YNC
EVEN
TOUT
PI13--- - - -- - - - - - --
LCD_VS
YNC
EVEN
TOUT
PI14--- - - -- - - - - - --
LCD_CL
K
EVEN
TOUT
PI15--- - - -- - -LCD_G2- - --LCD_R0
EVEN
TOUT
Port J
PJ0--- - - -- - -LCD_R7- - --LCD_R1
EVEN
TOUT
PJ1--- - - -- - - - - - --LCD_R2
EVEN
TOUT
PJ2--- - - -- - - - - - -DSI_TELCD_R3
EVEN
TOUT
PJ3--- - - -- - - - - - --LCD_R4
EVEN
TOUT
PJ4--- - - -- - - - - - --LCD_R5
EVEN
TOUT
PJ5--- - - -- - - - - - --LCD_R6
EVEN
TOUT
PJ6--- - - -- - - - - - --LCD_R7
EVEN
TOUT
PJ7--- - - -- - - - - - --LCD_G0
EVEN
TOUT
PJ8--- - - -- - - - - - --LCD_G1
EVEN
TOUT
PJ9--- - - -- - - - - - --LCD_G2
EVEN
TOUT
PJ10--- - - -- - - - - - --LCD_G3
EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
STM32F777xx STM32F778Ax STM32F779xx Pinouts and pin description
DocID028294 Rev 6 101/255
Port J
PJ11--- - - -- - - - - - --LCD_G4
EVEN
TOUT
PJ12--- - - -- - -LCD_G3- - --LCD_B0
EVEN
TOUT
PJ13--- - - -- - -LCD_G4- - --LCD_B1
EVEN
TOUT
PJ14--- - - -- - - - - - --LCD_B2
EVEN
TOUT
PJ15--- - - -- - - - - - --LCD_B3
EVEN
TOUT
Port K
PK0--- - - -- - - - - - --LCD_G5
EVEN
TOUT
PK1--- - - -- - - - - - --LCD_G6
EVEN
TOUT
PK2--- - - -- - - - - - --LCD_G7
EVEN
TOUT
PK3--- - - -- - - - - - --LCD_B4
EVEN
TOUT
PK4--- - - -- - - - - - --LCD_B5
EVEN
TOUT
PK5--- - - -- - - - - - --LCD_B6
EVEN
TOUT
PK6--- - - -- - - - - - --LCD_B7
EVEN
TOUT
PK7--- - - -- - - - - - --LCD_DE
EVEN
TOUT
Table 13. STM32F777xx, STM32F778Ax and STM32F779xx alternate
function mapping (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS
I2C4/UA
RT5/TIM
1/2
TIM3/4/5
TIM8/9/10/
11/LPTIM
1/DFSDM
1/CEC
I2C1/2/3/
4/USART
1/CEC
SPI1/I2S
1/SPI2/I2
S2/SPI3/
I2S3/SPI
4/5/6
SPI2/I2S
2/SPI3/I2
S3/SAI1/
I2C4/UA
RT4/DF
SDM1
SPI2/I2S
2/SPI3/I2
S3/SPI6/
USART1/
2/3/UART
5/DFSDM
1/SPDIF
SPI6/SAI
2/USART
6/UART4/
5/7/8/OT
G_FS/SP
DIF
CAN1/2/T
IM12/13/
14/QUAD
SPI/FMC/
LCD
SAI2/QU
ADSPI/S
DMMC2/D
FSDM1/O
TG2_HS/
OTG1_FS
/LCD
I2C4/CAN
3/SDMM
C2/ETH
UART7/
FMC/SD
MMC1/M
DIOS/OT
G2_FS
DCMI/L
CD/DSI LCD SYS
Memory mapping STM32F777xx STM32F778Ax STM32F779xx
102/255 DocID028294 Rev 6
4 Memory mapping
The memory map is shown in Figure 22.
Figure 22. Memory map
06Y9
0E\WH
%ORFN
&RUWH[0
,QWHUQDO
SHULSKHUDOV
0E\WH
%ORFN
)0&
0E\WH
%ORFN
4XDG63,DQG
)0&EDQN
[
[)))))))
[
[)))))))
[
[)))))))
[
[)))))))
[
[)))))))
[&
[&)))))))
['
[')))))))
[(
[))))))))
65$0.%
5HVHUYHG
[[))))
[[%)))
[[)))))))
[
5HVHUYHG
[)))
[[))))
[
5HVHUYHG [&[)))))))
$+% [[')))))))
$+%
'7&0.%
[%))
[
65$0.% [&[))))
$3%
$3%
[%))
[&[))))
5HVHUYHG
[[)))))))
[))))
$+%
5HVHUYHG
)ODVKPHPRU\RQ$;,0LQWHUIDFH
[)))[))))
[[)))))
[[))))))
[[)))
5HVHUYHG
2SWLRQ%\WHV
5HVHUYHG [)))[)))))))
[
&RUWH[0LQWHUQDO
SHULSKHUDOV [([()))))
5HVHUYHG [([))))))))
0E\WH
%ORFN
)0&
0E\WH
%ORFN
)0&EDQNWR
EDQN
0E\WH
%ORFN
3HULSKHUDOV
0E\WH
%ORFN
65$0
0E\WH
%ORFN
5HVHUYHG [[))())))
)ODVKPHPRU\RQ,7&0LQWHUIDFH [[)))))
[[)))))
[[)))))
,7&05$0
5HVHUYHG
6\VWHPPHPRU\
5HVHUYHG
[[('%)
DocID028294 Rev 6 103/255
STM32F777xx STM32F778Ax STM32F779xx Memory mapping
106
Table 14. STM32F777xx, STM32F778Ax and STM32F779xx register
boundary addresses(1)
Bus Boundary address Peripheral
-0xE00F FFFF - 0xFFFF FFFF Reserved
Cortex-M7 0xE000 0000 - 0xE00F FFFF Cortex-M7 internal peripherals
AHB3
0xD000 0000 - 0xDFFF FFFF FMC bank 6
0xC000 0000 - 0xCFFF FFFF FMC bank 5
0xA000 2000 - 0xBFFF FFFF Reserved
0xA000 1000 - 0xA000 1FFF Quad-SPI control register
0xA000 0000- 0xA000 0FFF FMC control register
0x9000 0000 - 0x9FFF FFFF Quad-SPI
0x8000 0000 - 0x8FFF FFFF FMC bank 3
0x7000 0000 - 0x7FFF FFFF FMC bank 2
0x6000 0000 - 0x6FFF FFFF FMC bank 1
-0x5006 0C00- 0x5FFF FFFF Reserved
AHB2
0x5006 0800 - 0x5006 0BFF RNG
0x5006 0400 - 0x5006 07FF HASH
0x5006 0000 - 0x5006 03FF CRYP
0x5005 2000 - 0x5005 FFFF Reserved
0x5005 1000 - 0x5005 1FFF JPEG codec
0x5005 0000 - 0x5005 03FF DCMI
0x5004 0000- 0x5004 FFFF Reserved
0x5000 0000 - 0x5003 FFFF USB OTG FS
Memory mapping STM32F777xx STM32F778Ax STM32F779xx
104/255 DocID028294 Rev 6
-0x4008 0000- 0x4FFF FFFF Reserved
AHB1
0x4004 0000 - 0x4007 FFFF USB OTG HS
0x4002 BC00- 0x4003 FFFF Reserved
0x4002 B000 - 0x4002 BBFF Chrom-ART (DMA2D)
0x4002 9400 - 0x4002 AFFF Reserved
0x4002 9000 - 0x4002 93FF
ETHERNET MAC
0x4002 8C00 - 0x4002 8FFF
0x4002 8800 - 0x4002 8BFF
0x4002 8400 - 0x4002 87FF
0x4002 8000 - 0x4002 83FF
0x4002 6800 - 0x4002 7FFF Reserved
0x4002 6400 - 0x4002 67FF DMA2
0x4002 6000 - 0x4002 63FF DMA1
0x4002 5000 - 0X4002 5FFF Reserved
0x4002 4000 - 0x4002 4FFF BKPSRAM
0x4002 3C00 - 0x4002 3FFF Flash interface register
0x4002 3800 - 0x4002 3BFF RCC
0X4002 3400 - 0X4002 37FF Reserved
0x4002 3000 - 0x4002 33FF CRC
0x4002 2C00 - 0x4002 2FFF Reserved
0x4002 2800 - 0x4002 2BFF GPIOK
0x4002 2400 - 0x4002 27FF GPIOJ
0x4002 2000 - 0x4002 23FF GPIOI
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 1800 - 0x4002 1BFF GPIOG
0x4002 1400 - 0x4002 17FF GPIOF
0x4002 1000 - 0x4002 13FF GPIOE
0X4002 0C00 - 0x4002 0FFF GPIOD
0x4002 0800 - 0x4002 0BFF GPIOC
0x4002 0400 - 0x4002 07FF GPIOB
0x4002 0000 - 0x4002 03FF GPIOA
Table 14. STM32F777xx, STM32F778Ax and STM32F779xx register
boundary addresses(1) (continued)
Bus Boundary address Peripheral
DocID028294 Rev 6 105/255
STM32F777xx STM32F778Ax STM32F779xx Memory mapping
106
-0x4001 7C00 - 0x4001 FFFF Reserved
APB2
0x4001 7800 - 0x4001 7BFF MDIOS
0x4001 7400 - 0x4001 77FF DFSDM1
0x4001 6C00 - 0x4001 73FF DSI Host
0x4001 6800 - 0x4001 6BFF LCD-TFT
0x4001 6000 - 0x4001 67FF Reserved
0x4001 5C00 - 0x4001 5FFF SAI2
0x4001 5800 - 0x4001 5BFF SAI1
0x4001 5400 - 0x4001 57FF SPI6
0x4001 5000 - 0x4001 53FF SPI5
0x4001 4C00 - 0x4001 4FFF Reserved
0x4001 4800 - 0x4001 4BFF TIM11
0x4001 4400 - 0x4001 47FF TIM10
0x4001 4000 - 0x4001 43FF TIM9
0x4001 3C00 - 0x4001 3FFF EXTI
0x4001 3800 - 0x4001 3BFF SYSCFG
0x4001 3400 - 0x4001 37FF SPI4
0x4001 3000 - 0x4001 33FF SPI1/I2S1
0x4001 2C00 - 0x4001 2FFF SDMMC1
0x4001 2400 - 0x4001 2BFF Reserved
0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3
0x4001 1C00 - 0x4001 1FFF SDMMC2
0x4001 1800 - 0x4001 1BFF Reserved
0x4001 1400 - 0x4001 17FF USART6
0x4001 1000 - 0x4001 13FF USART1
0x4001 0800 - 0x4001 0FFF Reserved
0x4001 0400 - 0x4001 07FF TIM8
0x4001 0000 - 0x4001 03FF TIM1
Table 14. STM32F777xx, STM32F778Ax and STM32F779xx register
boundary addresses(1) (continued)
Bus Boundary address Peripheral
Memory mapping STM32F777xx STM32F778Ax STM32F779xx
106/255 DocID028294 Rev 6
-0x4000 8000- 0x4000 FFFF Reserved
APB1
0x4000 7C00 - 0x4000 7FFF UART8
0x4000 7800 - 0x4000 7BFF UART7
0x4000 7400 - 0x4000 77FF DAC
0x4000 7000 - 0x4000 73FF PWR
0x4000 6C00 - 0x4000 6FFF HDMI-CEC
0x4000 6800 - 0x4000 6BFF CAN2
0x4000 6400 - 0x4000 67FF CAN1
0x4000 6000 - 0x4000 63FF I2C4
0x4000 5C00 - 0x4000 5FFF I2C3
0x4000 5800 - 0x4000 5BFF I2C2
0x4000 5400 - 0x4000 57FF I2C1
0x4000 5000 - 0x4000 53FF UART5
0x4000 4C00 - 0x4000 4FFF UART4
0x4000 4800 - 0x4000 4BFF USART3
0x4000 4400 - 0x4000 47FF USART2
0x4000 4000 - 0x4000 43FF SPDIFRX
0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF SPI2 / I2S2
0x4000 3400 - 0x4000 37FF CAN3
0x4000 3000 - 0x4000 33FF IWDG
0x4000 2C00 - 0x4000 2FFF WWDG
0x4000 2800 - 0x4000 2BFF RTC & BKP Registers
0x4000 2400 - 0x4000 27FF LPTIM1
0x4000 2000 - 0x4000 23FF TIM14
0x4000 1C00 - 0x4000 1FFF TIM13
0x4000 1800 - 0x4000 1BFF TIM12
0x4000 1400 - 0x4000 17FF TIM7
0x4000 1000 - 0x4000 13FF TIM6
0x4000 0C00 - 0x4000 0FFF TIM5
0x4000 0800 - 0x4000 0BFF TIM4
0x4000 0400 - 0x4000 07FF TIM3
0x4000 0000 - 0x4000 03FF TIM2
1. The gray color is used for reserved Flash memory addresses.
Table 14. STM32F777xx, STM32F778Ax and STM32F779xx register
boundary addresses(1) (continued)
Bus Boundary address Peripheral
DocID028294 Rev 6 107/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5 Electrical characteristics
5.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes. Based on characterization, the minimum and maximum
values refer to sample tests and represent the mean value plus or minus three times the
standard deviation (mean±3).
5.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2).
5.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 23.
5.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 24.
Figure 23. Pin loading conditions Figure 24. Pin input voltage
069
& S)
0&8SLQ
069
0&8SLQ
9,1
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
108/255 DocID028294 Rev 6
5.1.6 Power supply scheme
Figure 25. STM32F769xx/STM32F779xx power supply scheme
06Y9
$QDORJ
5&V3//

9%$7
%DFNXSFLUFXLWU\
26&.57&
%DFNXSUHJLVWHUV
EDFNXS5$0
:DNHXSORJLF
9%$7
WR9
9''$
95()
95()
966$
$'&
)
95()
Q)
)
9''
3'5B21
5HVHW
FRQWUROOHU
Q)
)
'6,
3+<
'6,
YROWDJH
UHJXODWRU
9&$3'6,
9'''6,
966'6,
9'''6,
9''

.HUQHOORJLF
&38
GLJLWDO
5$0
îQ)
î)
9ROWDJH
UHJXODWRU
966

/HYHOVKLIWHU
9''
)ODVKPHPRU\
&$3B
9&$3B
î)
%<3$66B5(*
27*)6
3+<
Q)
9''86%
)
9''86%
287
,1
,2
9
''6'00&
3*>@3'>@
/RJLF
*3 ,2 V
287
,1
,2
/RJLF
/HYHOVKLIWHU
9
3RZHUVZLWFK
DocID028294 Rev 6 109/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 26. STM32F767xx/STM32F777xx power supply scheme
1. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.18: Power supply supervisor and
Section 2.19: Voltage regulator.
2. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the
voltage regulator is OFF.
3. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
4. VDDA=VDD and VSSA=VSS.
06Y9
$QDORJ
5&V3//

9''$
95()
95()
966$
$'&
)
95()
Q)
)
9''
3'5B21
5HVHW
FRQWUROOHU
Q)
9''

9%$7
.HUQHOORJLF
&38
GLJLWDO
5$0
EDFNXSFLUFXLWU\
26&.57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
EDFNXS5$0
îQ)
î)
9%$7
WR9
9ROWDJH
UHJXODWRU
966

/HYHOVKLIWHU
9''
)ODVKPHPRU\
&$3B
9&$3B
î)
%<3$66B5(*
27*)6
3+<
Q)
9''86%
)
9''86%
287
,1
,2
9
''6'00&
3*>@3'>@
/RJLF
*3 ,2 V
287
,1
,2
/RJLF
/HYHOVKLIWHU
9
/HYHOVKLIWHU
287
,1
,2
3$>@3%>@
/RJLF
Q)
9''6'00&
)
3RZHUVZLWFK
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
110/255 DocID028294 Rev 6
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
5.1.7 Current consumption measurement
Figure 27. Current consumption measurement scheme
5.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics,
Table 16: Current characteristics, and Table 17: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and the functional operation
of the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. The device mission profile (application
conditions) is compliant with JEDEC JESD47 Qualification Standard. Extended mission
profiles are available on demand.
DL
9%$7
9''
9''$
,''B9%$7
,''
Table 15. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA, VDD,
VBAT
, VDDUSB, VDDDSI (1) and VDDSDMMC)(2) 0.3 4.0
V
VIN
Input voltage on FT pins(3) VSS 0.3 VDD+4.0
Input voltage on TTa pins VSS 0.3 4.0
Input voltage on any other pin VSS 0.3 4.0
Input voltage on BOOT pin VSS 9.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS| Variations between all the different ground pins(4) -50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 5.3.18:
Absolute maximum
ratings (electrical
sensitivity)
-
DocID028294 Rev 6 111/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
1. Applicable only for STM32F7x9 sales types.
2. All main power (VDD, VDDA, VDDSDMMC, VDDUSB, VDDDSI) and ground (VSS, VSSA) pins must always be
connected to the external power supply, in the permitted range.
3. VIN maximum value must always be respected. Refer to Table 16 for the values of the maximum allowed
injected current.
4. Include VREF- pin.
Table 16. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD_x power lines (source)(1) 420
mA
Σ IVSS Total current out of sum of all VSS_x ground lines (sink)(1) 420
Σ IVDDUSB Total current into VDDUSB power line (source) 25
Σ IVDDSDMMC Total current into VDDSDMMC power line (source) 60
IVDD Maximum current into each VDD_x power line (source)(1) 100
IVDDSDMMC Maximum current into VDDSDMMC power line (source): PG[12:9], PD[7:6] 100
IVSS Maximum current out of each VSS_x ground line (sink)(1) 100
IIO
Output current sunk by any I/O and control pin 25
Output current sourced by any I/Os and control pin 25
ΣIIO
Total output current sunk by sum of all I/O and control pins (2) 120
Total output current sunk by sum of all USB I/Os 25
Total output current sunk by sum of all SDMMC I/Os 120
Total output current sourced by sum of all I/Os and control pins except USB I/Os(2) 120
IINJ(PIN)
Injected current on FT, FTf, RST and B pins (3) 5/+0
Injected current on TTa pins(4) ±5
ΣIINJ(PIN)(4) Total injected current (sum of all I/O and control pins)(5) ±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be
exceeded. Refer to Table 15: Voltage characteristics for the values of the maximum allowed input voltage.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 17. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range 65 to +150
°C
TJMaximum junction temperature 125
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
112/255 DocID028294 Rev 6
5.3 Operating conditions
5.3.1 General operating conditions
Table 18. General operating conditions
Symbol Parameter Conditions(1) Min Typ Max Unit
fHCLK Internal AHB clock frequency
Power Scale 3 (VOS[1:0] bits in
PWR_CR register = 0x01), Regulator
ON, over-drive OFF
0-144
MHz
Power Scale 2 (VOS[1:0] bits
in PWR_CR register = 0x10),
Regulator ON
Over-
drive
OFF
0
- 168
Over-
drive
ON
- 180
Power Scale 1 (VOS[1:0] bits
in PWR_CR register= 0x11),
Regulator ON
Over-
drive
OFF
0
- 180
Over-
drive
ON
-216
(2)
fPCLK1 Internal APB1 clock frequency
Over-drive OFF 0 - 45
Over-drive ON 0 - 54
fPCLK2 Internal APB2 clock frequency
Over-drive OFF 0 - 90
Over-drive ON 0 - 108
VDD Standard operating voltage - 1.7(3) -3.6
V
VDDA(4)(5)
Analog operating voltage
(ADC limited to 1.2 M samples)
Must be the same potential as VDD(6)
1.7(3) -2.4
Analog operating voltage
(ADC limited to 2.4 M samples) 2.4 - 3.6
VDDUSB
USB supply voltage (supply
voltage for PA11,PA12, PB14
and PB15 pins)
USB not used 1.7 3.3 3.6
USB used 3.0 - 3.6
VBAT Backup operating voltage - 1.65 - 3.6
VDDSDMMC
SDMMC2 supply voltage (supply
voltage for PG[12:9] and PD6
pins)
It can be different from VDD - 1.7 - 3.6
VDDDSI DSI system operating - 1.7 - 3.6
DocID028294 Rev 6 113/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
V12
Regulator ON: 1.2 V internal
voltage on VCAP_1/VCAP_2 pins
Power Scale 3 ((VOS[1:0] bits in
PWR_CR register = 0x01), 144 MHz
HCLK max frequency
1.08 1.14 1.20
V
Power Scale 2 ((VOS[1:0] bits in
PWR_CR register = 0x10), 168 MHz
HCLK max frequency with over-drive
OFF or 180 MHz with over-drive ON
1.20 1.26 1.32
Power Scale 1 ((VOS[1:0] bits in
PWR_CR register = 0x11), 180 MHz
HCLK max frequency with over-drive
OFF or 216 MHz with over-drive ON
1.26 1.32 1.40
Regulator OFF: 1.2 V external
voltage must be supplied from
external regulator on
VCAP_1/VCAP_2 pins(7)
Max frequency 144 MHz 1.10 1.14 1.20
Max frequency 168MHz 1.20 1.26 1.32
Max frequency 180 MHz 1.26 1.32 1.38
VIN
Input voltage on RST and FT
pins(8)
2 V VDD 3.6 V 0.3 - 5.5
VDD 2 V 0.3 - 5.2
Input voltage on TTa pins - 0.3 - VDDA+
0.3
Input voltage on BOOT pin - 0 - 9
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(9)
LQFP100 - - 465
mW
WLCSP180 - - 641
LQFP144 - - 500
LQFP176 - - 526
UFBGA176 - - 513
LQFP208 - - 1053
TFBGA216 - - 690
TFBGA100 - - 552
TA
Ambient temperature for 6 suffix
version
Maximum power dissipation 40 - 85
°C
Low power dissipation(10) 40 - 105
Ambient temperature for 7 suffix
version
Maximum power dissipation 40 - 105
°C
Low power dissipation(10) 40 - 125
TJ Junction temperature range
6 suffix version 40 - 105
°C
7 suffix version 40 - 125
1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.
2. 216 MHz maximum frequency for 6 suffix version (200 MHz maximum frequency for 7 suffix version).
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.18.2:
Internal reset OFF).
4. When the ADC is used, refer to Table 72: ADC characteristics.
5. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
Table 18. General operating conditions (continued)
Symbol Parameter Conditions(1) Min Typ Max Unit
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
114/255 DocID028294 Rev 6
5.3.2 VCAP1/VCAP2 external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor CEXT to
the VCAP1/VCAP2 pins. CEXT is specified in Table 20.
Figure 28. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
6. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
7. The over-drive mode is not supported when the internal regulator is OFF.
8. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
9. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
10. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 19. Limitations depending on the operating power supply range
Operating
power supply
range
ADC operation
Maximum Flash
memory access
frequency with
no wait states
(fFlashmax)
Maximum HCLK
frequency vs Flash
memory wait states
(1)(2)
I/O operation
Possible Flash
memory
operations
VDD =1.7 to
2.1 V(3)
Conversion time
up to 1.2 Msps 20 MHz
180 MHz with 8 wait
states and over-drive
OFF
No I/O
compensation
8-bit erase and
program
operations only
VDD = 2.1 to
2.4 V
Conversion time
up to 1.2 Msps 22 MHz
216 MHz with 9 wait
states and over-drive
ON
No I/O
compensation
16-bit erase and
program
operations
VDD = 2.4 to
2.7 V
Conversion time
up to 2.4 Msps 24 MHz
216 MHz with 8 wait
states and over-drive
ON
I/O compensation
works
16-bit erase and
program
operations
VDD = 2.7 to
3.6 V(4)
Conversion time
up to 2.4 Msps 30 MHz
216 MHz with 6 wait
states and over-drive
ON
I/O compensation
works
32-bit erase and
program
operations
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here
does not impact the execution speed from Flash memory since the ART accelerator or L1-cache allows to achieve a
performance equivalent to 0-wait state program execution.
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.18.2:
Internal reset OFF).
4. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+
pins will be degraded between 2.7 and 3 V.
069
(65
5
/HDN
&
DocID028294 Rev 6 115/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.3 Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
Table 21. Operating conditions at power-up / power-down (regulator ON)
5.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
5.3.5 Reset and power control block characteristics
The parameters given in Table 23 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 18.
Table 20. VCAP1/VCAP2 operating conditions(1)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Conditions
CEXT Capacitance of external capacitor 2.2 µF
ESR ESR of external capacitor < 2 Ω
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 20
µs/V
VDD fall time rate 20
Table 22. Operating conditions at power-up / power-down (regulator OFF)(1)
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 and VCAP_2 rise time rate Power-up 20
VCAP_1 and VCAP_2 fall time rate Power-down 20
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
116/255 DocID028294 Rev 6
Table 23. Reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.09 2.14 2.19 V
PLS[2:0]=000 (falling edge) 1.98 2.04 2.08 V
PLS[2:0]=001 (rising edge) 2.23 2.30 2.37 V
PLS[2:0]=001 (falling edge) 2.13 2.19 2.25 V
PLS[2:0]=010 (rising edge) 2.39 2.45 2.51 V
PLS[2:0]=010 (falling edge) 2.29 2.35 2.39 V
PLS[2:0]=011 (rising edge) 2.54 2.60 2.65 V
PLS[2:0]=011 (falling edge) 2.44 2.51 2.56 V
PLS[2:0]=100 (rising edge) 2.70 2.76 2.82 V
PLS[2:0]=100 (falling edge) 2.59 2.66 2.71 V
PLS[2:0]=101 (rising edge) 2.86 2.93 2.99 V
PLS[2:0]=101 (falling edge) 2.65 2.84 2.92 V
PLS[2:0]=110 (rising edge) 2.96 3.03 3.10 V
PLS[2:0]=110 (falling edge) 2.85 2.93 2.99 V
PLS[2:0]=111 (rising edge) 3.07 3.14 3.21 V
PLS[2:0]=111 (falling edge) 2.95 3.03 3.09 V
VPVDhyst(1) PVD hysteresis - - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge 1.60 1.68 1.76 V
Rising edge 1.64 1.72 1.80 V
VPDRhyst(1) PDR hysteresis - - 40 - mV
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24 V
Rising edge 2.23 2.29 2.33 V
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56 V
Rising edge 2.53 2.59 2.63 V
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88 V
Rising edge 2.85 2.92 2.97 V
VBORhyst(1) BOR hysteresis - - 100 - mV
TRSTTEMPO
(1)(2) POR reset temporization - 0.5 1.5 3.0 ms
IRUSH(1)
InRush current on
voltage regulator power-
on (POR or wakeup
from Standby)
- - 160 250 mA
ERUSH(1)
InRush energy on
voltage regulator power-
on (POR or wakeup
from Standby)
VDD = 1.7 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs --5.4µC
DocID028294 Rev 6 117/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.6 Over-drive switching characteristics
When the over-drive mode switches from enabled to disabled or disabled to enabled, the
system clock is stalled during the internal voltage set-up.
The over-drive switching characteristics are given in Table 24. They are subject to general
operating conditions for TA.
5.3.7 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 27: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
1. Guaranteed by design.
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
Table 24. Over-drive switching characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
Tod_swen Over_drive switch
enable time
HSI -45 -
µs
HSE max for 4 MHz
and min for 26 MHz 45 -100
External HSE
50 MHz -40 -
Tod_swdis Over_drive switch
disable time
HSI -20 -
HSE max for 4 MHz
and min for 26 MHz. 20 -80
External HSE
50 MHz -15 -
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
118/255 DocID028294 Rev 6
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load).
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted both to fHCLK frequency and VDD range
(see Table 19: Limitations depending on the operating power supply range).
When the regulator is ON, the voltage scaling and over-drive mode are adjusted to
fHCLK frequency as follows:
Scale 3 for fHCLK 144 MHz
Scale 2 for 144 MHz < fHCLK 168 MHz
Scale 1 for 168 MHz < fHCLK 216 MHz. The over-drive is only ON at 216 MHz.
When the regulator is OFF, the V12 is provided externally as described in Table 18:
General operating conditions:
The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
External clock frequency is 25 MHz and PLL is ON when fHCLK is higher than 25 MHz.
The typical current consumption values are obtained for 1.7 V VDD 3.6 V voltage
range and for TA= 25 °C unless otherwise specified.
The maximum values are obtained for 1.7 V VDD 3.6 V voltage range and a
maximum ambient temperature (TA) unless otherwise specified.
For the voltage range 1.7 V VDD 3.6 V, the maximum frequency is 180 MHz.
Table 25. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM RAM, regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply
current in
RUN mode
All peripherals
enabled(2)(3)
216 193 221(4) 258(4) -
mA
200 179 207 244 279
180 159 176(4) 210(4) 238(4)
168 142 156 187 211
144 122 135 167 190
60 49 55 81 103
25 23 28 54 76
All peripherals
disabled(3)
216 95 107(4) 153(4) -
200 88 100 146 180
180 78 88(4) 122(4) 147(4)
168 70 78 109 133
144 60 68 99 123
60 24 29 55 76
25 12 16 42 63
1. Guaranteed by characterization results, unless otherwise specified.
DocID028294 Rev 6 119/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
4. Guaranteed by test in production.
Table 26. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode, ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply
current in
RUN mode
All peripherals
enabled(2)(3)
216 190 219 255 -
mA
200 177 205 241 268
180 157 173 208 228
168 139 153 185 204
144 107 117 144 161
60 48 54 81 98
25 23 28 54 71
All peripherals
disabled(3)
216 92 104 150 -
200 86 97 143 170
180 76 85 119 140
168 67 75 107 126
144 52 58 84 101
60 23 28 54 71
25 11 15 42 56
1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
120/255 DocID028294 Rev 6
Table 27. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode, ART ON except prefetch / L1-cache ON),
regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply
current in
RUN mode
All peripherals
enabled(2)(3)
216 190 219 255 -
mA
200 177 204 242 268
180 157 173 208 228
168 139 153 185 204
144 107 117 144 161
60 48 54 81 98
25 23 28 54 71
All peripherals
disabled(3)
216 92 104 150 -
200 86 97 143 170
180 76 85 119 140
168 67 75 107 126
144 52 58 84 101
60 23 28 54 71
25 11 15 42 59
1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
DocID028294 Rev 6 121/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Table 28. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode) or SRAM on AXI (L1-cache disabled),
regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA= 25 °C TA=85 °C TA=105 °C
IDD
Supply
current in
RUN mode
All peripherals
enabled(2)(3)
216 190 209 255 -
mA
200 177 194 241 268
180 160 175 211 232
168 144 156 189 209
144 115 125 152 170
60 56 62 89 107
25 27 32 59 79
All peripherals
disabled(3)
216 92 103 150 -
200 86 96 243 171
180 79 87 123 144
168 71 79 111 131
144 60 65 92 110
60 32 36 63 80
25 16 20 46 64
1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
122/255 DocID028294 Rev 6
Table 29. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode), regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA= 25 °C TA=85 °C TA=105 °C
IDD
Supply
current in
RUN mode
All peripherals
enabled(2)(3)
216 176 194 240 -
mA
200 164 181 227 255
180 149 163 198 220
168 133 145 178 198
144 106 116 143 161
60 54 60 87 105
25 27 31 58 76
All peripherals
disabled(3)
216 77 88 135 -
200 72 82 129 157
180 67 75 110 131
168 60 67 99 120
144 50 56 83 101
60 29 34 60 78
25 15 19 45 63
1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
DocID028294 Rev 6 123/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Table 30. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode) on ITCM interface (ART disabled),
regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA= 25 °C TA=85 °C TA=105 °C
IDD
Supply
current in
RUN mode
All peripherals
enabled(2)(3)
216 215 242 281 -
mA
200 200 218 265 293
180 185 200 237 258
168 166 179 213 233
144 134 144 172 190
60 61 68 95 112
25 29 34 61 78
All peripherals
disabled(3)
216 118 129 177 -
200 110 120 168 196
180 104 113 149 170
168 94 102 135 155
144 79 85 113 130
60 37 42 69 86
25 18 22 48 66
1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
124/255 DocID028294 Rev 6
Table 31. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode) on ITCM interface (ART disabled),
regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA= 25 °C TA=85 °C TA=105 °C
IDD
Supply
current in
RUN mode
All peripherals
enabled(2)(3)
216 191 218 255 -
mA
200 178 195 241 269
180 164 179 214 236
168 147 160 192 212
144 121 130 157 175
60 60 66 93 111
25 28 33 59 77
All peripherals
disabled(3)
216 93 104 150 -
200 87 97 144 171
180 83 92 126 148
168 75 82 114 134
144 65 71 97 115
60 35 40 66 84
25 16 20 47 64
1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
DocID028294 Rev 6 125/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Table 32. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Single bank mode, ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator OFF
Symbol Parameter Conditions fHCLK
(MHz)
Typ
Max(1)
Unit
TA= 25 °C TA= 85 °C TA= 105 °C
IDD12 IDD IDD12 IDD IDD12 IDD IDD12 IDD
IDD12/
IDD
Supply
current in
RUN mode
from V12
and VDD
supply
All
Peripherals
Enabled(2)(3)
180 152 1 167 2 200 2 220 2
mA
168 136 1 148 2 179 2 198 2
144 105 1 115 2 141 2 158 2
60 47 1 53 2 79 2 96 2
25 22 1 27 2 53 2 70 2
All
Peripherals
Disabled(3)
180 74 1 83 2 116 2 136 2
168 65 1 73 2 104 2 123 2
144 50 1 57 2 83 2 100 2
60 22 1 27 2 53 2 70 2
25 10 1 14 2 41 2 58 2
1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
Table 33. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (Dual bank mode, ART ON except prefetch / L1-cache ON)
or SRAM on AXI (L1-cache ON), regulator OFF
Symbol Parameter Conditions fHCLK
(MHz)
Typ
Max(1)
Unit
TA= 25 °C TA= 85 °C TA= 105 °C
IDD12 IDD IDD12 IDD IDD12 IDD IDD12 IDD
IDD12/
IDD
Supply
current in
RUN mode
from V12
and VDD
supply
All
Peripherals
Enabled(2)(3)
180 152 1 167 2 200 2 220 2
mA
168 136 1 148 2 179 2 198 2
144 105 1 115 2 141 2 158 2
60 47 1 53 2 79 2 96 2
25 22 1 27 2 53 2 70 2
All
Peripherals
Disabled(3)
180 74 1 82 2 114 2 137 2
168 65 1 73 2 104 2 123 2
144 50 1 57 2 83 2 100 2
60 22 1 27 2 53 2 70 2
25 10 1 14 2 41 2 58 2
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
126/255 DocID028294 Rev 6
1. Guaranteed by characterization results.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC
for the analog part.
Table 34. Typical and maximum current consumption in Sleep mode, regulator ON
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
IDD
Supply
current in
Sleep mode
All
peripherals
enabled(2)
216 128 144(3) 190(3) -
mA
200 119 134 180 214
180 105 118(3) 153(3) 178(3)
168 93 105 136 156
144 72 80 107 124
60 33 39 65 82
25 17 21 47 65
All
peripherals
disabled
216 18 25(3) 71(3) -
200 17 24 70 112
180 14 20(3) 54(3) 75(3)
168 13 18 49 69
144 10 14 40 58
60 6 10 36 53
25 4 8 34 51
1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. Guaranteed by test in production.
DocID028294 Rev 6 127/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Table 35. Typical and maximum current consumption in Sleep mode, regulator OFF
Symbol Parameter Conditions fHCLK
(MHz)
Typ
Max(1)
Unit
TA= 25 °C TA= 85 °C TA= 105 °C
IDD12 IDD IDD12 IDD IDD12 IDD IDD12 IDD
IDD12/
IDD
Supply
current in
RUN mode
from V12
and VDD
supply
All
Peripherals
Enabled(2)
180 102 1 114 2 148 2 168 2
mA
168 91 1 101 2 132 2 152 2
144 71 1 78 2 105 2 122 2
60 32 1 37 2 64 2 81 2
25 16 1 20 2 46 2 64 2
All
Peripherals
Disabled
180 13 1 18 2 53 2 73 2
168 12 1 16 2 47 2 67 2
144 9 1 13 2 39 2 56 2
60 5 1 9 2 35 2 52 2
25 3 1 7 2 33 2 50 2
1. Guaranteed by characterization results, unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
Table 36. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions
Typ
Max(1)
Unit
VDD = 3.6 V
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD_STOP_NM
(normal mode)
Supply current in Stop
mode, main regulator in
Run mode
Flash memory in Stop mode,
all oscillators OFF, no IWDG 0.55 3 18 27
mA
Flash memory in Deep power
down mode, all oscillators OFF 0.5 3 18 27
Supply current in Stop
mode, main regulator in
Low-power mode
Flash memory in Stop mode, all
oscillators OFF, no IWDG 0.42 2.5 15 24
Flash memory in Deep power
down mode, all oscillators OFF, no
IWDG
0.37 2.5 15 24
IDD_STOP_UDM
(under-drive
mode)
Supply current in Stop
mode, main regulator in
Low voltage and under-
drive modes
Regulator in Run mode, Flash
memory in Deep power down
mode, all oscillators OFF, no
IWDG
0.18 1.2 6 10
Regulator in Low-power mode,
Flash memory in Deep power
down mode, all oscillators OFF, no
IWDG
0.13 1.1 6 10
1. Data based on characterization, tested in production.
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
128/255 DocID028294 Rev 6
Table 37. Typical and maximum current consumptions in Standby mode
Symbol Parameter Conditions
Typ(1) Max(2)
Unit
TA = 25 °C TA =
25 °C
TA =
85 °C
TA =
105 °C
VDD =
1.7 V
VDD=
2.4 V
VDD =
3.3 V VDD = 3.3 V
IDD_STBY
Supply current
in Standby
mode
Backup SRAM OFF, RTC and
LSE OFF 1.1 1.9 2.4 5(3) 18(3) 38(3)
µA
Backup SRAM ON, RTC and
LSE OFF 1.9 2.7 3.2 6(3) 23(3) 48(3)
Backup SRAM OFF, RTC ON
and LSE in low drive mode 1.7 2.7 3.5 7 26 55
Backup SRAM OFF, RTC ON
and LSE in medium low drive
mode
1.7 2.7 3.5 7 26 56
Backup SRAM OFF, RTC ON
and LSE in medium high drive
mode
1.8 2.8 3.6 8 28 57
Backup SRAM OFF, RTC ON
and LSE in high drive mode 1.9 2.9 3.7 8 28 59
Backup SRAM ON, RTC ON
and LSE in low drive mode 2.4 3.4 4.3 8 31 65
Backup SRAM ON, RTC ON
and LSE in Medium low drive
mode
2.4 3.5 4.3 8 31 65
Backup SRAM ON, RTC ON
and LSE in Medium high drive
mode
2.6 3.7 4.5 8 33 68
Backup SRAM ON, RTC ON
and LSE in High drive mode 2.6 3.7 4.5 9 33 68
1. The typical current consumption values are given with PDR OFF (internal reset OFF). When the PDR is OFF (internal reset
OFF), the typical current consumption is reduced by additional 1.2 µA.
2. Guaranteed by characterization results, unless otherwise specified.
3. Guaranteed by test in production.
DocID028294 Rev 6 129/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate a current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 66: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
An additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Table 38. Typical and maximum current consumptions in VBAT mode
Symbol Parameter Conditions(1)
Typ Max(2)
Unit
TA =25 °C TA =85 °C TA =105 °C
VBAT =
1.7 V
VBAT=
2.4 V
VBAT=
3.3 V VBAT = 3.6 V
IDD_VBAT
Supply current
in VBAT mode
Backup SRAM OFF, RTC and
LSE OFF 0.03 0.04 0.04 0.2 0.4
µA
Backup SRAM ON, RTC and
LSE OFF 0.77 0.78 0.83 3.2 7.4
Backup SRAM OFF, RTC ON
and LSE in low drive mode 0.62 0.8 1.13 4.4 10.2
Backup SRAM OFF, RTC ON
and LSE in medium low drive
mode
0.65 0.83 1.17 4.6 10.6
Backup SRAM OFF, RTC ON
and LSE in medium high drive
mode
0.75 0.94 1.28 5.0 11.4
Backup SRAM OFF, RTC ON
and LSE in high drive mode 0.9 1.08 1.43 5.5 12.8
Backup SRAM ON, RTC ON and
LSE in low drive mode 1.35 1.54 1.91 7.3 17.2
Backup SRAM ON, RTC ON and
LSE in Medium low drive mode 1.38 1.57 1.93 7.9 18.4
Backup SRAM ON, RTC ON and
LSE in Medium high drive mode 1.53 1.73 2.11 8.0 18.7
Backup SRAM ON, RTC ON and
LSE in High drive mode 1.67 1.87 2.26 9.0 21.0
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization results.
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
130/255 DocID028294 Rev 6
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid a current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 40: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDD fSW C××=
Table 39. Switching output I/O current consumption(1)
Symbol Parameter Conditions
I/O toggling
frequency (fsw)
MHz
Typ
VDD = 3.3 V
Typ
VDD = 1.8 V Unit
IDDIO
I/O switching
Current
CEXT = 0 pF
C = CINT + CS + CEXT
2 0.1 0.1
mA
8 0.4 0.2
25 1.1 0.7
50 2.4 1.3
60 3.1 1.6
84 4.3 2.4
90 4.9 2.6
100 5.4 2.8
CEXT = 10 pF
C = CINT + CS + CEXT
20.20.1
80.60.3
25 1.8 1.1
50 3.1 2.3
60 4.6 3.4
84 9.7 3.6
90 10.12 5.2
100 14.92 5.4
DocID028294 Rev 6 131/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
On-chip peripheral current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are in analog input configuration.
All peripherals are disabled unless otherwise mentioned.
I/O compensation cell enabled.
The ART/L1-cache is ON.
Scale 1 mode selected, internal digital voltage V12 = 1.32 V.
HCLK is the system clock. fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off
with only one peripheral clocked on
–f
HCLK = 216 MHz (Scale 1 + over-drive ON), fHCLK = 168 MHz (Scale 2),
fHCLK = 144 MHz (Scale 3)
Ambient operating temperature is 25 °C and VDD=3.3 V.
IDDIO
I/O switching
Current
CEXT = 22 pF
C = CINT + CS + CEXT
20.30.1
mA
81.00.5
25 3.5 1.6
50 5.9 4.2
60 10.0 4.4
84 19.12 5.8
90 19.6 -
CEXT = 33 pF
C = CINT + CS + CEXT
20.30.2
81.30.7
25 3.5 2.3
50 10.26 5.19
60 16.53 -
1. CINT + CS, PCB board capacitance including the pad pin is estimated to15 pF.
Table 39. Switching output I/O current consumption(1) (continued)
Symbol Parameter Conditions
I/O toggling
frequency (fsw)
MHz
Typ
VDD = 3.3 V
Typ
VDD = 1.8 V Unit
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
132/255 DocID028294 Rev 6
Table 40. Peripheral current consumption
Peripheral
IDD(Typ)(1)
Unit
Scale 1 Scale 2 Scale 3
AHB1
(up to
216 MHz)
GPIOA 2.9 2.8 2.2
µA/MHz
GPIOB 3.0 2.9 2.2
GPIOC 2.9 2.8 2.2
GPIOD 3.1 3.0 2.3
GPIOE 3.1 3.0 2.3
GPIOF 2.9 2.8 2.2
GPIOG 2.9 2.8 2.2
GPIOH 3.1 3.1 2.4
GPIOI 3.0 2.9 2.2
GPIOJ 2.9 2.9 2.2
GPIOK 2.8 2.8 2.4
CRC 1.0 0.9 0.8
BKPSRAM 0.9 0.9 0.7
DMA1 3.17 x N + 11.63 3.08 x N + 11.39 2.6 x N + 9.64
DMA2 3.33 x N + 12.84 3.27 x N + 11.84 2.75 x N + 10.10
DMA2D 77.7 76.3 63.5
ETH_MAC
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
40.1 39.5 32.8
OTG_HS 58.5 57.4 48.1
OTG_HS+ULPI 58.5 57.4 48.1
AHB2
(up to
216 MHz)
DCMI 2.9 2.8 2.1
µA/MHz
JPEG 74.8 73.4 61.9
CRYP 1.9 1.7 1.4
HASH 4.5 4.4 3.6
RNG 6.7 6.7 5.4
USB_OTG_FS 32.4 31.9 26.7
AHB3
(up to
216 MHz)
FMC 18.6 18.2 15.1
µA/MHz
QSPI 22.3 21.8 18.1
Bus matrix(2) 3.94 3.25 2.12 µA/MHz
DocID028294 Rev 6 133/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
APB1
(up to
54 MHz)
TIM2 19.1 18.7 14.7
µA/MHz
TIM3 14.6 14.0 10.6
TIM4 15.4 14.7 11.4
TIM5 18.1 17.6 13.6
TIM6 3.1 2.7 1.4
TIM7 3.0 2.7 1.1
TIM12 8.1 7.8 5.6
TIM13 5.4 5.1 3.1
TIM14 5.6 5.3 3.3
LPTIM1 9.8 9.6 6.9
WWDG 1.9 1.6 1,4
SPI2/I2S2(3) 3.0 2.9 1.4
SPI3/I2S3(3) 3.0 3.3 1.4
SPDIFRX 2.4 2.0 1.7
USART2 12.6 12.7 9.2
USART3 12.4 12.4 9.4
UART4 10.7 10.9 8.1
UART5 10.7 10.7 8.1
I2C1 8.9 8.9 6.4
I2C2 8.3 8.2 6.1
I2C3 8.1 8.2 6.1
I2C4 8.0 8.2 5.8
CAN1 6.3 6.4 4.4
CAN2 5.7 5.8 3.9
CAN3 7.4 7.1 5.6
HDMI-CEC 2.2 1.8 1.4
PWR 1.3 0.9 0.8
DAC(4) 4.8 4.2 3.6
UART7 10.4 10.4 7.8
UART8 11.1 11.3 8.3
Table 40. Peripheral current consumption (continued)
Peripheral
IDD(Typ)(1)
Unit
Scale 1 Scale 2 Scale 3
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
134/255 DocID028294 Rev 6
APB2
(up to
108 MHz)
TIM1 24.1 23.8 19.6
µA/MHz
TIM8 24.5 24.2 20.0
USART1 17.7 17.4 14.3
USART6 11.9 11.8 9.4
ADC1(5) 4.5 4.7 3.5
ADC2(5) 4.5 4.7 3.3
ADC3(5) 4.5 4.6 3.3
SDMMC1 8.4 8.3 6.9
SDMMC2 8.2 8.2 6.4
SPI1/I2S1(3) 3.9 3.6 3.1
SPI4 3.9 3.6 3.1
SYSCFG 2.5 2.2 1.9
TIM9 8.0 8.0 6.2
TIM10 5.0 5.1 3.7
TIM11 6.9 6.9 5.3
SPI5 2.7 2.8 1.8
SPI6 3.1 3.2 2.2
SAI1 3.2 3.3 2.2
DFSDM1 10.9 10.7 9.0
SAI2 3.9 3.9 2.8
MDIO 7.1 7.0 5.8
LTDC 51.2 50.3 41.8
DSI 8.5 8.4 8.1
1. When the I/O compensation cell is ON, IDD typical value increases by 0.22 mA.
2. The BusMatrix is automatically active when at least one master is ON.
3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.
4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of
0.75 mA per DAC channel for the analog part.
5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of
1.73 mA per ADC for the analog part.
Table 40. Peripheral current consumption (continued)
Peripheral
IDD(Typ)(1)
Unit
Scale 1 Scale 2 Scale 3
DocID028294 Rev 6 135/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.8 Wakeup time from low-power modes
The wakeup times given in Table 41 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep modes: the wakeup event is WFE.
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
Table 41. Low-power mode wakeup timings
Symbol Parameter Conditions Typ(1) Max(1) Unit
tWUSLEEP(2) Wakeup from Sleep - 13 13
CPU
clock
cycles
tWUSTOP(2)
Wakeup from Stop mode
with MR/LP regulator in
normal mode
Main regulator is ON 14 14.9
µs
Main regulator is ON and Flash
memory in Deep power down mode 104.1 107.6
Low power regulator is ON 21.4 24.2
Low power regulator is ON and Flash
memory in Deep power down mode 111.5 116.5
tWUSTOP(2)
Wakeup from Stop mode
with MR/LP regulator in
Under-drive mode
Main regulator in under-drive mode
(Flash memory in Deep power-down
mode)
107.4 113.2
Low power regulator in under-drive
mode
(Flash memory in Deep power-down
mode )
112.7 120
tWUSTDBY
(2)
Wakeup from Standby
mode
Exit Standby mode on rising edge 308 313
Exit Standby mode on falling edge 307 313
1. Guaranteed by characterization results.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
136/255 DocID028294 Rev 6
5.3.9 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 66: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 29.
The characteristics given in Table 42 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 18.
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 66: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 30.
The characteristics given in Table 43 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 18.
Table 42. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1)
-
1-50MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design.
5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --10
Cin(HSE) OSC_IN input capacitance(1) --5-pF
DuCy(HSE) Duty cycle - 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
DocID028294 Rev 6 137/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 29. High-speed external clock source AC timing diagram
Table 43. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1)
-
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD V
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) --5-pF
DuCy(LSE) Duty cycle - 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
1. Guaranteed by design.
DL
26& B, 1
([WHUQDO
670)
FORFNVRXUFH
9+6(+
WI+6( W:+6(
,/


7+6(
W
WU+6( W:+6(
I+6(BH[W
9+6(/
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
138/255 DocID028294 Rev 6
Figure 30. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 44. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 44. HSE 4-26 MHz oscillator characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 4 - 26 MHz
RFFeedback resistor - - 200 - kΩ
IDD HSE current consumption
VDD=3.3 V,
ESR= 30 ,
CL=5 pF@25 MHz
- 450 -
µA
VDD=3.3 V,
ESR= 30 ,
CL=10 pF@25 MHz
- 530 -
ACCHSE(2)
2. This parameter depends on the crystal used in the application. The minimum and maximum values must
be respected to comply with USB standard specifications.
HSE accuracy - 500 - 500 ppm
Gm_crit_max Maximum critical crystal gmStartup - - 1 mA/V
tSU(HSE(3)
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is guaranteed by characterization results. It is measured for a standard
crystal resonator and it can vary significantly with the crystal manufacturer.
Startup time VDD is stabilized - 2 - ms
DL
26&B,1
([WHUQDO
670)
FORFNVRXUFH
9/6(+
WI/6( W:/6(
,/


7/6(
W
WU/6( W:/6(
I/6(BH[W
9/6(/
DocID028294 Rev 6 139/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 31). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. The PCB and MCU pin capacitance must be included
(10 pF can be used as a rough estimate of the combined pin and board capacitance) when
sizing CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 31. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 45. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Table 45. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol Parameter Conditions Min Typ Max Unit
IDD LSE current consumption
LSEDRV[1:0]=00
Low drive capability -250-
nA
LSEDRV[1:0]=10
Medium low drive capability -300-
LSEDRV[1:0]=01
Medium high drive capability -370-
LSEDRV[1:0]=11
High drive capability -480-
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
140/255 DocID028294 Rev 6
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 32. Typical application with a 32.768 kHz crystal
Gm_crit_max Maximum critical crystal gm
LSEDRV[1:0]=00
Low drive capability - - 0.48
µA/V
LSEDRV[1:0]=10
Medium low drive capability - - 0.75
LSEDRV[1:0]=01
Medium high drive capability --1.7
LSEDRV[1:0]=11
High drive capability --2.7
tSU(2) start-up time VDD is stabilized - 2 - s
1. Guaranteed by design.
2. Guaranteed by characterization results. tSU is the start-up time measured from the moment it is enabled
(by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard
crystal resonator and it can vary significantly with the crystal manufacturer.
Table 45. LSE oscillator characteristics (fLSE = 32.768 kHz) (1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DLD
26&B 28 7
26&B ,1 I/6(
&/
5)
670)
N+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
&/
DocID028294 Rev 6 141/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.10 Internal clock source characteristics
The parameters given in Table 46 and Table 47 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 18.
High-speed internal (HSI) RC oscillator
Figure 33. ACCHSI versus temperature
1. Guaranteed by characterization results.
Table 46. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHSI
HSI user trimming step(2)
2. Guaranteed by design.
---1%
Accuracy of the HSI oscillator
TA = –40 to 105 °C(3)
3. Guaranteed by characterization results.
8-4.5%
TA = –10 to 85 °C(3) 4- 4 %
TA = 25 °C(4)
4. Factory calibrated, parts not soldered.
1- 1 %
tsu(HSI)(2) HSI oscillator startup time - - 2.2 4 µs
IDD(HSI)(2) HSI oscillator power consumption - - 60 80 µA
06Y9
Ͳϴ
Ͳϲ
Ͳϰ
ͲϮ
Ϭ
Ϯ
ϰ
ϲ
ͲϰϬ Ϭ Ϯϱ ϱϱ ϴϱ ϭϬϱ ϭϮϱ
,^/;йͿ
d; Σ
Ϳ
DŝŶ DĂdž dLJƉŝĐĂů
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
142/255 DocID028294 Rev 6
Low-speed internal (LSI) RC oscillator
Figure 34. LSI deviation versus temperature
Table 47. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Guaranteed by characterization results.
Frequency 17 32 47 kHz
tsu(LSI)(3)
3. Guaranteed by design.
LSI oscillator startup time - 15 40 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA
069
7HPSHUDWXUH&
ͲϴϬй
ͲϲϬй
ͲϰϬй
ͲϮϬй
ϬϬй
ϮϬй
ϰϬй
ϲϬй
ϴϬй
ͲϰϬΣ ϬΣ ϮϱΣ ϴϱΣ ϭϬϱΣ ϭϮϱΣ
DŝŶ
DĂdž
dLJƉŝĐĂ
ů
1RUPDOL]HGGHYLDWLRQ
DocID028294 Rev 6 143/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.11 PLL characteristics
The parameters given in Table 48 and Table 49 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 18.
Table 48. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) -0.95
(2) 12.10
MHz
fPLL_OUT PLL multiplier output clock - 24 - 216
fPLL48_OUT
48 MHz PLL multiplier output
clock - - 48 75
fVCO_OUT PLL VCO output - 100 - 432
tLOCK PLL lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Cycle-to-cycle jitter
System clock
216 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter
RMS - 15 -
peak
to
peak
-±200 -
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples -32 -
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples -40 -
Bit Time CAN jitter Cycle to cycle at 1 MHz
on 1000 samples -330 -
IDD(PLL)(4) PLL power consumption on VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLL)(4) PLL power consumption on VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization results.
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
144/255 DocID028294 Rev 6
Table 49. PLLI2S characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLI2S_IN PLLI2S input clock(1) -0.95
(2) 12.10
MHz
fPLLI2SP_OUT
PLLI2S multiplier output clock for
SPDIFRX - - - 216
fPLLI2SQ_OUT
PLLI2S multiplier output clock for
SAI - - - 216
fPLLI2SR_OUT
PLLI2S multiplier output clock for
I2S - - - 216
fVCO_OUT PLLI2S VCO output - 100 - 432
tLOCK PLLI2S lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Master I2S clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 - -
peak
to
peak
- ±280 - ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -ps
WS I2S clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 - ps
IDD(PLLI2S)(4) PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLI2S)(4) PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization results.
Table 50. PLLISAI characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLSAI_IN PLLSAI input clock(1) -0.95
(2) 12.10
MHz
fPLLSAIP_OUT
PLLSAI multiplier output clock
for 48 MHz - - 48 75
fPLLSAIQ_OUT
PLLSAI multiplier output clock
for SAI - - - 216
fPLLSAIR_OUT
PLLSAI multiplier output clock
for LCD-TFT - - - 216
fVCO_OUT PLLSAI VCO output - 100 - 432
DocID028294 Rev 6 145/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.12 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 62: EMI characteristics). It is available only on the main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
fPLL_IN and fMod must be expressed in Hz.
As an example:
tLOCK PLLSAI lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Master SAI clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 - -
peak
to
peak
- ±280 - ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -ps
FS clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 - ps
IDD(PLLSAI)(4) PLLSAI power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLSAI)(4) PLLSAI power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization results.
Table 50. PLLISAI characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 51. SSCG parameters constraint
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 KHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP - - - 215 1-
1. Guaranteed by design.
MODEPER round fPLL_IN 4f
Mod
×()[]=
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
146/255 DocID028294 Rev 6
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
As a result:
Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 35. PLL output clock waveforms in center spread mode
MODEPER round 106410
3
×()[]250==
INCSTEP round 215 1()md PLLN××()100 5×MODEPER×()[]=
INCSTEP round 215 1()2 240××()100 5×250×()[]126md(quantitazed)%==
mdquantized% MODEPER INCSTEP×100×5×()215 1()PLLN×()=
mdquantized%250126×100×5×()215 1()240×()2.002%(peak)==
)UHTXHQF\3//B287
7LPH
)
WPRGH [WPRGH
PG
DL
PG
DocID028294 Rev 6 147/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 36. PLL output clock waveforms in down spread mode
5.3.13 MIPI D-PHY characteristics
The parameters given in Table 52 and Table 53 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 18.
)UHTXHQF\3//B287
7LPH
)
WPRGH [WPRGH
[PG
DLE
Table 52. MIPI D-PHY characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
Hi-Speed Input/Output Characteristics
UINST UI instantaneous - 2 - 12.5 ns
VCMTX
HS transmit common mode
voltage - 150 200 250
mV
|VCMTX|VCMTX mismatch when output
is Differential-1 or Differential-0 ---5
|VOD| HS transmit differential voltage - 140 200 270
|VOD|VOD mismatch when output is
Differential-1 or Differential-0 ---14
VOHHS HS output high voltage - - - 360
ZOS
Single ended output
impedance -405062.5
ZOS
Single ended output
impedance mismatch ---10%
tHSr & tHSf 20%-80% rise and fall time - 100 - 0.35*UI ps
LP Receiver Input Characteristics
VIL
Logic 0 input voltage (not in
ULP State) ---550
mV
VIL-ULPS
Logic 0 input voltage in ULP
State ---300
VIH Input high level voltage - 880 - -
Vhys Voltage hysteresis - 25 - -
LP Emitter Output Characteristics
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
148/255 DocID028294 Rev 6
VIL Output low level voltage - 1.1 1.2 1.2 V
VIL-ULPS Output high level voltage - -50 - 50 mV
VIH
Output impedance of LP
transmitter -110--
Vhys 15%-85% rise and fall time - - - 25 ns
LP Contention Detector Characteristics
VILCD Logic 0 contention threshold - - - 200
mV
VIHCD Logic 0 contention threshold - 450 - -
1. Guaranteed based on test during characterization.
Table 53. MIPI D-PHY AC characteristics LP mode and HS/LP
transitions(1)
Symbol Parameter Conditions Min Typ Max Unit
TLPX
Transmitted length of any Low-
Power state period -50--
ns
TCLK-PREPARE
Time that the transmitter drives
the Clock Lane LP-00 Line
state immediately before the
HS-0 Line state starting the HS
transmission.
-38-95
TCLK-PREPARE
+
TCLK-ZERO
Time that the transmitter drives
the HS-0 state prior to starting
the clock.
- 300 - -
TCLK-PRE
Time that the HS clock shall be
driven by the transmitter prior to
any associated Data Lane
beginning the transition from
LP to HS mode.
-8--UI
Table 52. MIPI D-PHY characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID028294 Rev 6 149/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
TCLK-POST
Time that the transmitter
continues to send HS clock
after the last associated Data
Lane has transitioned to LP
Mode.
-62+52*UI--
ns
TCLK-TRAIL
Time that the transmitter drives
the HS-0 state after the last
payload clock bit of an HS
transmission burst.
-60--
THS-PREPARE
Time that the transmitter drives
the Data Lane LP-00 Line state
immediately before the HS-0
Line state starting the HS
transmission.
- 40+4*UI - 85+6*UI
THS-PREPARE
+
THS-ZERO
THS-PREPARE+ Time that the
transmitter drives the HS-0
state prior to transmitting the
Sync sequence.
- 145+10*UI - -
THS-TRAIL
Time that the transmitter drives
the flipped differential state
after last payload data bit of a
HS transmission burst.
-
Max
(n*8*UI,
60+n*4*UI)
--
THS-EXIT
Time that the transmitter drives
LP-11 following a HS burst. - 100 - -
TREOT 30%-85% rise time and fall time - - - 35
TEOT
Transmitted time interval from
the start of THS-TRAIL or
TCLK-TRAIL, to the start of the
LP-11 state following a HS
burst.
---
105+
n*12UI
1. Guaranteed based on test during characterization.
Table 53. MIPI D-PHY AC characteristics LP mode and HS/LP
transitions(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
150/255 DocID028294 Rev 6
Figure 37. MIPI D-PHY HS/LP clock lane transition timing diagram
Figure 38. MIPI D-PHY HS/LP data lane transition timing diagram
5.3.14 MIPI D-PHY PLL characteristics
The parameters given in Table 54 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 18.
069
&ORFN
/DQH
'DWD
/DQH
7/3; 7+635(3$5(
7&/.35(
7&/.=(52
7&/.35(3$5(
7/3;
7+6(;,7
7&/.75$,/
7&/.3267
9,/
9,/
7(27
069
&ORFN
/DQH
7+635(3$5(
7/3;
7+675$,/ 7+6(;,7
/3 /3/3
'DWD
/DQH 9,/
75(27
7(27
7+6=(52
Table 54. DSI-PLL characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock - 4 - 100
MHz
fPLL_INFIN PFD input clock - 4 - 25
fPLL_OUT PLL multiplier output clock - 31.25 - 500
fVCO_OUT PLL VCO output - 500 - 1000
tLOCK PLL lock time - - - 200 µs
DocID028294 Rev 6 151/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.15 MIPI D-PHY regulator characteristics
The parameters given in Table 55 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 18.
IDD(PLL) PLL power consumption on VDD12
fVCO_OUT = 500 MHz - 0.55 0.70
mAfVCO_OUT = 600 MHz - 0.65 0.80
fVCO_OUT = 1000 MHz - 0.95 1.20
1. Based on test during characterization.
Table 54. DSI-PLL characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 55. DSI regulator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDD12DSI 1.2 V internal voltage on VDD12DSI - 1.15 1.20 1.30 V
CEXT External capacitor on VCAPDSI - 1.1 2.2 3.3 F
ESR External Serial Resistor - 0 25 600 m
IDDDSIREG Regulator power consumption - 100 120 125 µA
IDDDSI
DSI system (regulator, PLL and
D-PHY) current consumption on VDDDSI
Ultra Low Power Mode
(Reg. ON + PLL OFF) -290600
µA
Stop State
(Reg. ON + PLL OFF) -290600
IDDDSILP
DSI system current consumption on
VDDDSI in LP mode communication(2)
10 MHz escape clock
(Reg. ON + PLL OFF) -4.35.0
mA
20 MHz escape clock
(Reg. ON + PLL OFF) -4.35.0
IDDDSIHS
DSI system (regulator, PLL and
D-PHY) current consumption on VDDDSI
in HS mode communication(3)
300 Mbps - 1 data lane
(Reg. ON + PLL ON) -8.08.8
mA
300 Mbps - 2data lane
(Reg. ON + PLL ON) - 11.4 12.5
500 Mbps - 1 data lane
(Reg. ON + PLL ON) -13.514.7
500 Mbps - 2data lane
(Reg. ON + PLL ON) -18.019.6
DSI system (regulator, PLL and
D-PHY) current consumption on VDDDSI
in HS mode with CLK like payload
500 Mbps - 2data lane
(Reg. ON + PLL ON) -21.423.3
tWAKEUP Startup delay CEXT = 2.2 µF - 110 - µs
CEXT = 3.3 µF - - 160
IINRUSH Inrush current on VDDDSI External capacitor load at start - 60 200 mA
1. Based on test during characterization.
2. Values based on an average traffic in LP Command Mode.
3. Values based on an average traffic (3/4 HS traffic & 1/4 LP) in Video Mode.
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
152/255 DocID028294 Rev 6
5.3.16 Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 56. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode, VDD = 1.7 V - 14 -
mAWrite / Erase 16-bit mode, VDD = 2.1 V - 17 -
Write / Erase 32-bit mode, VDD = 3.3 V - 24 -
Table 57. Flash memory programming (single bank configuration
nDBANK=1)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2) µs
tERASE32KB Sector (32 KB) erase time
Program/erase
parallelism (PSIZE) = x 8 - 400 800
ms
Program/erase
parallelism (PSIZE) = x 16 - 250 600
Program/erase
parallelism (PSIZE) = x 32 - 200 500
tERASE128KB Sector (128 KB) erase time
Program/erase
parallelism (PSIZE) = x 8 - 1100 2400
ms
Program/erase
parallelism (PSIZE) = x 16 - 800 1400
Program/erase
parallelism (PSIZE) = x 32 -5001100
tERASE256KB Sector (256 KB) erase time
Program/erase
parallelism (PSIZE) = x 8 -2.14
s
Program/erase
parallelism (PSIZE) = x 16 -1.52.6
Program/erase
parallelism (PSIZE) = x 32 -12
tME Mass erase time
Program/erase
parallelism (PSIZE) = x 8 -1632
s
Program/erase
parallelism (PSIZE) = x 16 -1122
Program/erase
parallelism (PSIZE) = x 32 -816
DocID028294 Rev 6 153/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Vprog Programming voltage
32-bit program operation 2.7 - 3 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.7 - 3.6 V
1. Guaranteed by characterization results.
2. The maximum programming time is measured after 100K erase operations.
Table 58. Flash memory programming (dual bank configuration
nDBANK=0)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2) µs
tERASE16KB Sector (16 KB) erase time
Program/erase
parallelism (PSIZE) = x 8 - 400 800
ms
Program/erase
parallelism (PSIZE) = x 16 - 250 600
Program/erase
parallelism (PSIZE) = x 32 - 200 500
tERASE64KB Sector (64 KB) erase time
Program/erase
parallelism (PSIZE) = x 8 - 1100 2400
ms
Program/erase
parallelism (PSIZE) = x 16 - 800 1400
Program/erase
parallelism (PSIZE) = x 32 -5001100
tERASE128KB Sector (128 KB) erase time
Program/erase
parallelism (PSIZE) = x 8 -2.14
s
Program/erase
parallelism (PSIZE) = x 16 -1.52.6
Program/erase
parallelism (PSIZE) = x 32 -12
tME Mass erase time
Program/erase
parallelism (PSIZE) = x 8 -1632
s
Program/erase
parallelism (PSIZE) = x 16 -1122
Program/erase
parallelism (PSIZE) = x 32 -816
Table 57. Flash memory programming (single bank configuration
nDBANK=1) (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
154/255 DocID028294 Rev 6
tBE Bank erase time
Program/erase
parallelism (PSIZE) = x 8 -1632
s
Program/erase
parallelism (PSIZE) = x 16 -1122
Program/erase
parallelism (PSIZE) = x 32 -816
Vprog Programming voltage
32-bit program operation 2.7 - 3 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.7 - 3.6 V
1. Guaranteed by characterization results.
2. The maximum programming time is measured after 100K erase operations.
Table 59. Flash memory programming with VPP
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by design.
Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
-16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE32KB Sector (32 KB) erase time - 180 -
mstERASE128KB Sector (128 KB) erase time - 450 -
tERASE256KB Sector (256 KB) erase time - 900 -
tME Mass erase time - 6.9 - s
Vprog Programming voltage - 2.7 - 3.6 V
VPP VPP voltage range - 7 - 9 V
IPP
Minimum current sunk on
the VPP pin -10--mA
tVPP(3)
3. VPP should only be connected during programming/erasing.
Cumulative time during
which VPP is applied - - - 1 hour
Table 60. Flash memory endurance and data retention
Symbol Parameter Conditions
Value
Unit
Min(1)
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C 30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
Table 58. Flash memory programming (dual bank configuration
nDBANK=0) (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
DocID028294 Rev 6 155/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.17 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 61. They are based on the EMS levels and classes
defined in application note AN1709.
As a consequence, it is recommended to add a serial resistor (1 kΏ) located as close as
possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm
on PCB).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
Table 61. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, TA = +25 °C, fHCLK =
216 MHz, conforms to IEC 61000-
4-2
2B
VFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA =+25 °C, fHCLK =
168 MHz, conforms to IEC 61000-
4-2
5A
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
156/255 DocID028294 Rev 6
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
5.3.18 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/ESDA/JEDEC JS-001-2012 and ANSI/ESD S5.3.1-2009 standards.
Table 62. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
8/200 MHz
SEMI Peak level
VDD = 3.6 V, TA = 25 °C, TFBGA216 package,
conforming to IEC61967-2 ART/L1-cache ON,
over-drive ON, all peripheral clocks enabled,
clock dithering disabled.
0.1 to 30 MHz 5
dBµV
30 to 130 MHz 10
130 MHz to 1 GHz 18
1 GHz to 2 GHz 10
EMI Level 3.5 -
VDD = 3.6 V, TA = 25 °C, TFBGA216 package,
conforming to IEC61967-2 ART/L1-cache ON,
over-drive ON, all peripheral clocks enabled,
clock dithering enabled.
0.1 to 30 MHz 2
dBµV
30 to 130 MHz 9
130 MHz to 1 GHz 14
1 GHz to 2 GHz 9
EMI Level 3 -
DocID028294 Rev 6 157/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
5.3.19 I/O current injection characteristics
As a general rule, a current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during the normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when an abnormal injection accidentally happens, susceptibility tests are performed
on a sample basis during the device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –
5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency
deviation).
A negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 65.
Table 63. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
TA = +25 °C conforming to ANSI/ESDA/JEDEC
JS-001-2012 2 2000
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to ANSI/ESD S5.3.1-
2009, all packages except TFBGA100 3250
TA = +25 °C conforming to ANSI/ESD S5.3.1-
2009, TFBGA100 package 4500
1. Guaranteed by characterization results.
Table 64. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
158/255 DocID028294 Rev 6
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
5.3.20 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 66: I/O static characteristics are
derived from tests performed under the conditions summarized in Tabl e 18. All I/Os are
CMOS and TTL compliant.
Table 65. I/O current injection susceptibility
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0, DSI_D0P, DSI_D0N, DSI_D1P,
DSI_D1N, DSI_CKP, DSI_CKN pin 00
mA
Injected current on NRST pin 0NA
(1)
Injected current on PC0, PC2, PH1_OSCOUT pins 0NA
(1)
Injected current on any other FT pin 5NA
(1)
Injected current on any other pins 5+5
1. Injection is not possible.
Table 66. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
FT, TTa and NRST I/O input
low level voltage 1.7 VVDD3.6 V - -
0.35VDD 0.04(1)
V
0.3VDD(2)
BOOT I/O input low level
voltage
1.75 VVDD 3.6 V,
–40 °CTA 105 °C --
0.1VDD+0.1(1)
1.7 VVDD 3.6 V,
0 °CTA 105 °C --
VIH
FT, TTa and NRST I/O input
high level voltage(5) 1.7 VVDD3.6 V
0.45VDD+0.3(1)
--
V
0.7VDD(2)
BOOT I/O input high level
voltage
1.75 VVDD 3.6 V,
–40 °CTA 105 °C
0.17VDD+0.7(1) --
1.7 VVDD 3.6 V,
0 °CTA 105 °C
VHYS
FT, TTa and NRST I/O input
hysteresis 1.7 VVDD3.6 V 10%VDD(3) --
V
BOOT I/O input hysteresis
1.75 VVDD 3.6 V,
–40 °CTA 105 °C
0.1 - -
1.7 VVDD 3.6 V,
0 °CTA 105 °C
DocID028294 Rev 6 159/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 39.
Ilkg
I/O input leakage current (4) VSS VIN VDD --±1
µA
I/O FT input leakage current
(5) VIN = 5 V - - 3
RPU
Weak pull-up
equivalent
resistor(6)
All pins
except for
PA10/PB12
(OTG_FS_I
D,OTG_HS_
ID) VIN = VSS
30 40 50
kΩ
PA10/PB12
(OTG_FS_I
D,OTG_HS_
ID)
71014
RPD
Weak pull-
down
equivalent
resistor(7)
All pins
except for
PA10/PB12
(OTG_FS_I
D,OTG_HS_
ID) VIN = VDD
30 40 50
PA10/PB12
(OTG_FS_I
D,OTG_HS_
ID)
71014
CIO(8) I/O pin capacitance - - 5 - pF
1. Guaranteed by design.
2. Tested in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 65: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 65: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.
Table 66. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
160/255 DocID028294 Rev 6
Figure 39. FT I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14, PC15 and PI8 which
can sink or source up to ±3mA. When using the PC13 to PC15 and PI8 GPIOs in output
mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 16).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 16).
Output voltage levels
Unless otherwise specified, the parameters given in Table 67 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 18. All I/Os are CMOS and TTL compliant.
069



     



9''9
9,/9,+9
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,+PLQ 9''
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9''
%DVHGRQ'HVLJQVLPXODWLRQV9,/PD[ 9''
77/UHTXLUHPHQW
9,+PLQ 9
77/UHTXLUHPHQW
9,/PD[ 9


$UHDQRWGHWHUPLQHG


%DVHGRQ'HVLJQVLPXODWLRQV9,+PLQ 9''
DocID028294 Rev 6 161/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 40 and
Table 68, respectively.
Table 67. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 16.
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin
CMOS port(2)
IIO = +8 mA
2.7 V VDD 3.6 V
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 16 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin
except PC14
CMOS port(2)
IIO = -8 mA
2.7 V VDD 3.6 V
VDD 0.4 -
VOH(3) Output high level voltage for PC14
CMOS port(2)
IIO = -2 mA
2.7 V VDD 3.6 V
VDD 0.4 -
VOL (1) Output low level voltage for an I/O pin
TTL port(2)
IIO =+8mA
2.7 V VDD 3.6 V
-0.4
V
VOH (3) Output high level voltage for an I/O pin
except PC14
TTL port(2)
IIO =-8mA
2.7 V VDD 3.6 V
2.4 -
VOL(1) Output low level voltage for an I/O pin IIO = +20 mA
2.7 V VDD 3.6 V -1.3
(4)
4. Based on characterization data.
V
VOH(3) Output high level voltage for an I/O pin
except PC14
IIO = -20 mA
2.7 V VDD 3.6 V VDD 1.3(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +6 mA
1.8 V VDD 3.6 V -0.4
(4)
V
VOH(3) Output high level voltage for an I/O pin
except PC14
IIO = -6 mA
1.8 V VDD 3.6 V VDD 0.4(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +4 mA
1.7 V VDD 3.6V -0.4
(5)
5. Guaranteed by design.
VVOH(3) Output high level voltage for an I/O pin
except PC14
IIO = -4 mA
1.7 V VDD 3.6V VDD 0.4(5) -
VOH(3) Output high level voltage for PC14 IIO = -1 mA
1.7 V VDD 3.6V VDD 0.4(5) -
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
162/255 DocID028294 Rev 6
Unless otherwise specified, the parameters given in Table 68 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Tabl e 18.
Table 68. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.7 V - - 4
MHz
CL = 50 pF, VDD 1.7 V - - 2
CL = 10 pF, VDD 2.7 V - - 8
CL = 10 pF, VDD 1.8 V - - 4
CL = 10 pF, VDD 1.7 V - - 3
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD = 1.7 V to
3.6 V --100ns
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.7 V - - 25
MHz
CL = 50 pF, VDD 1.8 V - - 12.5
CL = 50 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 2.7 V - - 50
CL = 10 pF, VDD 1.8 V - - 20
CL = 10 pF, VDD 1.7 V - - 12.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD 2.7 V - - 10
ns
CL = 10 pF, VDD 2.7 V - - 6
CL = 50 pF, VDD 1.7 V - - 20
CL = 10 pF, VDD 1.7 V - - 10
10
fmax(IO)out Maximum frequency(3)
CL = 40 pF, VDD 2.7 V - - 50(4)
MHz
CL = 10 pF, VDD 2.7 V - - 100(4)
CL = 40 pF, VDD 1.7 V - - 25
CL = 10 pF, VDD 1.8 V - - 50
CL = 10 pF, VDD 1.7 V - - 42.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 40 pF, VDD 2.7 V - - 6
ns
CL = 10 pF, VDD 2.7 V - - 4
CL = 40 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 1.7 V - - 6
DocID028294 Rev 6 163/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 40. I/O AC characteristics definition
11
fmax(IO)out Maximum frequency(3)
CL = 30 pF, VDD 2.7 V - - 100(4)
MHz
CL = 30 pF, VDD 1.8 V - - 50
CL = 30 pF, VDD 1.7 V - - 42.5
CL = 10 pF, VDD 2.7 V - - 180(4)
CL = 10 pF, VDD 1.8 V - - 100
CL = 10 pF, VDD 1.7 V - - 72.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 30 pF, VDD 2.7 V - - 4
ns
CL = 30 pF, VDD 1.8 V - - 6
CL = 30 pF, VDD 1.7 V - - 7
CL = 10 pF, VDD 2.7 V - - 2.5
CL = 10 pF, VDD 1.8 V - - 3.5
CL = 10 pF, VDD 1.7 V - - 4
- tEXTIpw
Pulse width of external signals
detected by the EXTI
controller
-10--ns
1. Guaranteed by design.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F76xxx and STM32F77xxx reference
manual for a description of the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 40.
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.
Table 68. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
DLG



WU,2RXW
287387
(;7(51$/
21&/
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´



7
WI,2RXW
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
164/255 DocID028294 Rev 6
5.3.21 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 66: I/O static characteristics).
Unless otherwise specified, the parameters given in Table 69 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Tabl e 18.
Figure 41. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as
possible to the chip.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 69. Otherwise the reset is not taken into account by the device.
Table 69. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU Weak pull-up equivalent resistor(1) VIN = VSS 30 40 50 kΩ
VF(NRST)(2) NRST Input filtered pulse - - - 100 ns
VNF(NRST)(2) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design.
DLF
670)
538
1567

9''
)LOWHU
,QWHUQDO5HVHW
)
([WHUQDO
UHVHWFLUFXLW 
DocID028294 Rev 6 165/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.22 TIM timer characteristics
The parameters given in Table 70 are guaranteed by design.
Refer to Section 5.3.20: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
5.3.23 RTC characteristics
5.3.24 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 72 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 18.
Table 70. TIMx characteristics(1)(2)
1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.
2. Guaranteed by design.
Symbol Parameter Conditions(3)
3. The maximum timer frequency on APB1 or APB2 is up to 216 MHz, by setting the TIMPRE bit in the
RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCLK, otherwise TIMxCLK =
4x PCLKx.
Min Max Unit
tres(TIM) Timer resolution time
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
216 MHz
1-
tTIMxCLK
AHB/APBx
prescaler>4, fTIMxCLK =
100 MHz
1-
tTIMxCLK
fEXT Timer external clock
frequency on CH1 to CH4 fTIMxCLK = 216 MHz
0fTIMxCLK/2 MHz
ResTIM Timer resolution - 16/32 bit
tMAX_COUNT Maximum possible count
with 32-bit counter --
65536 ×
65536 tTIMxCLK
Table 71. RTC characteristics
Symbol Parameter Conditions Min Max
-f
PCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4-
Table 72. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply VDDA VREF+ < 1.2 V 1.7(1) -3.6V
VREF+ Positive reference voltage 1.7(1) -V
DDA V
fADC ADC clock frequency VDDA = 1.7(1) to 2.4 V 0.6 15 18 MHz
VDDA = 2.4 to 3.6 V 0.6 30 36 MHz
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
166/255 DocID028294 Rev 6
fTRIG(2) External trigger frequency
fADC = 30 MHz,
12-bit resolution - - 1764 kHz
---171/f
ADC
VAIN Conversion voltage range(3) -
0
(VSSA or VREF-
tied to ground)
-V
REF+ V
RAIN(2) External input impedance See Equation 1 for
details --50kΩ
RADC(2)(4) Sampling switch resistance - 1.5 - 6 kΩ
CADC(2) Internal sample and hold
capacitor --47pF
tlat(2) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
---3
(5) 1/fADC
tlatr(2) Regular trigger conversion
latency
fADC = 30 MHz - - 0.067 µs
---2
(5) 1/fADC
tS(2) Sampling time fADC = 30 MHz 0.100 - 16 µs
- 3 - 480 1/fADC
tSTAB(2) Power-up time - - 2 3 µs
tCONV(2) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution 0.50 - 16.40 µs
fADC = 30 MHz
10-bit resolution 0.43 - 16.34 µs
fADC = 30 MHz
8-bit resolution 0.37 - 16.27 µs
fADC = 30 MHz
6-bit resolution 0.30 - 16.20 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
fS(2)
Sampling rate
(fADC = 36 MHz, and
tS = 3 ADC cycles)
12-bit resolution
Single ADC - - 2.4 Msps
12-bit resolution
Interleave Dual ADC
mode
- - 4.5 Msps
12-bit resolution
Interleave Triple ADC
mode
- - 7.2 Msps
Table 72. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID028294 Rev 6 167/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
- - 300 500 µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
--1.61.8mA
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.18.2:
Internal reset OFF).
2. Guaranteed by characterization results.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 72.
Table 72. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 73. ADC static accuracy at fADC = 18 MHz
Symbol Parameter Test conditions Typ Max(1)
1. Guaranteed by characterization results.
Unit
ET Total unadjusted error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±3 ±4
LSB
EO Offset error ±2 ±3
EG Gain error ±1 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±2 ±3
Table 74. ADC static accuracy at fADC = 30 MHz
Symbol Parameter Test conditions Typ Max(1)
1. Guaranteed by characterization results.
Unit
ET Total unadjusted error
fADC = 30 MHz,
RAIN < 10 kΩ,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA VREF < 1.2 V
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±4
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
RAIN
k0.5()
fADC CADC 2N2+
()ln××
-------------------------------------------------------------- RADC
=
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
168/255 DocID028294 Rev 6
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 5.3.20 does not affect the ADC accuracy.
Table 75. ADC static accuracy at fADC = 36 MHz
Symbol Parameter Test conditions Typ Max(1)
1. Guaranteed by characterization results.
Unit
ET Total unadjusted error
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±4 ±7
LSB
EO Offset error ±2 ±3
EG Gain error ±3 ±6
ED Differential linearity error ±2 ±3
EL Integral linearity error ±3 ±6
Table 76. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
10.3 10.4 - bits
SINAD Signal-to-noise and distortion ratio 64 64.2 -
dBSNR Signal-to-noise ratio 64 65 -
THD Total harmonic distortion 67 72 -
1. Guaranteed by characterization results.
Table 77. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC =36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 KHz
Temperature = 25 °C
10.6 10.8 - bits
SINAD Signal-to noise and distortion ratio 66 67 -
dBSNR Signal-to noise ratio 64 68 -
THD Total harmonic distortion 70 72 -
1. Guaranteed by characterization results.
DocID028294 Rev 6 169/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 42. ADC accuracy characteristics
1. See also Table 74.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 43. Typical connection diagram using the ADC
1. Refer to Table 72 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
DLF
(2
(*
/ 6%,'($/



    


(7
('
(/

9''$
966$
95()
 RUGHSHQGLQJRQSDFNDJH@
9''$

>/6% ,'($/
DL
670)
9''
$,1[
,/$
9
97
5$,1
&SDUDVLWLF
9$,1
9
97
5$'&
&$'&
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
170/255 DocID028294 Rev 6
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 44 or Figure 45,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 44. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ input is available on all packages except TFBGA100 whereas the VREF– s available only on
UFBGA176 and TFBGA216. When VREF- is not available, it is internally connected to VDDA and VSSA.
Figure 45. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ input is available on all packages except TFBGA100 whereas the VREF– s available only on
UFBGA176 and TFBGA216. When VREF- is not available, it is internally connected to VDDA and VSSA.
670)
)Q)
)Q)
95()
9''$
966$95()
DLE
670)
)Q)
DLF
95()9''$
95()966$ 

DocID028294 Rev 6 171/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.25 Temperature sensor characteristics
5.3.26 VBAT monitoring characteristics
5.3.27 Reference voltage
The parameters given in Table 81 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 18.
Table 78. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 - mV/°C
V25(1) Voltage at 25 °C - 0.76 - V
tSTART(2) Startup time - 6 10 µs
TS_temp(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs
1. Guaranteed by characterization results.
2. Guaranteed by design.
Table 79. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FF0 F44C - 0x1FF0 F44D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FF0 F44E - 0x1FF0 F44F
Table 80. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-KΩ
QRatio on VBAT measurement - 4 - -
Er(1) Error on Q –1 - +1 %
TS_vbat(2)(2) ADC sampling time when reading the VBAT
1 mV accuracy 5--µs
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
Table 81. internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V
TS_vrefint(1) ADC sampling time when reading the
internal reference voltage -10--µs
VREFINT_s(2) Internal reference voltage spread over the
temperature range VDD = 3V ± 10mV - 3 5 mV
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
172/255 DocID028294 Rev 6
5.3.28 DAC electrical characteristics
TCoeff(2) Temperature coefficient - - 30 50 ppm/°C
tSTART(2) Startup time - - 6 10 µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Table 81. internal reference voltage (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 82. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL Raw data acquired at temperature of 30 °C VDDA = 3.3 V 0x1FF0 F44A - 0x1FF0 F44B
Table 83. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
VDDA Analog supply voltage 1.7(1) -3.6 V -
VREF+ Reference supply voltage 1.7(1) -3.6VV
REF+ VDDA
VSSA Ground 0 - 0 V -
RLOAD(2) Resistive load
with buffer ON
Connected to
VSSA
5- -
kΩ-
Connected to
VDDA
25 - -
RO(2) Impedance output with buffer
OFF --15kΩ
When the buffer is OFF, the Minimum
resistive load between DAC_OUT and
VSS to have a 1% accuracy is 1.5 MΩ
CLOAD(2) Capacitive load - - 50 pF Maximum capacitive load at DAC_OUT
pin (when the buffer is ON).
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer ON 0.2 - - V
It gives the maximum output excursion of
the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ = 3.6 V and
(0x1C7) to (0xE38) at VREF+ = 1.7 V
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer ON --
VDDA
0.2 V
DAC_OUT
min(2)
Lower DAC_OUT voltage
with buffer OFF -0.5 - mV
It gives the maximum output excursion of
the DAC.
DAC_OUT
max(2)
Higher DAC_OUT voltage
with buffer OFF --
VREF+
1LSB V
DocID028294 Rev 6 173/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
IVREF+(4)
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
-170240
µA
With no load, worst code (0x800) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
-5075
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
IDDA(4)
DAC DC VDDA current
consumption in quiescent
mode(3)
-280380µA
With no load, middle code (0x800) on the
inputs
-475625µA
With no load, worst code (0xF1C) at
VREF+ = 3.6 V in terms of DC
consumption on the inputs
DNL(4)
Differential non linearity
Difference between two
consecutive code-1LSB)
- - ±0.5 LSB Given for the DAC in 10-bit configuration.
- - ±2 LSB Given for the DAC in 12-bit configuration.
INL(4)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
- - ±1 LSB Given for the DAC in 10-bit configuration.
- - ±4 LSB Given for the DAC in 12-bit configuration.
Offset(4)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
- - ±10 mV Given for the DAC in 12-bit configuration
--±3LSB
Given for the DAC in 10-bit at VREF+ =
3.6 V
--±12LSB
Given for the DAC in 12-bit at VREF+ =
3.6 V
Gain
error(4) Gain error - - ±0.5 % Given for the DAC in 12-bit configuration
tSETTLING(4)
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
highest input codes when
DAC_OUT reaches final
value ±4LSB
-3 6µs
CLOAD 50 pF,
RLOAD 5 kΩ
THD(4) Total Harmonic Distortion
Buffer ON -- -dB
CLOAD 50 pF,
RLOAD 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-- 1MS/s
CLOAD 50 pF,
RLOAD 5 kΩ
Table 83. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
174/255 DocID028294 Rev 6
Figure 46. 12-bit buffered /non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
5.3.29 Communications interfaces
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s.
Fast-mode Plus (Fm+): with a bit rate up to 1Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (refer to RM0410 reference manual) and when the I2CCLK frequency is greater
than the minimum shown in the table below:
tWAKEUP(4)
Wakeup time from off state
(Setting the ENx bit in the
DAC Control register)
- 6.5 10 µs
CLOAD 50 pF, RLOAD 5 kΩ
input code between lowest and highest
possible ones.
PSRR+ (2)
Power supply rejection ratio
(to VDDA) (static DC
measurement)
- –67 –40 dB No RLOAD, CLOAD = 50 pF
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.18.2:
Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed by characterization results.
Table 83. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
5/
&/
%XIIHUHG1RQEXIIHUHG'$&
'$&B287[
%XIIHU
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
DL9
DocID028294 Rev 6 175/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
The SDA and SCL I/O requirements are met with the following restrictions:
The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain,
the PMOS connected between the I/O pin and VDD is disabled, but is still present.
The 20mA output drive requirement in Fast-mode Plus is not supported. This limits the
maximum load Cload supported in Fm+, which is given by these formulas:
Tr(SDA/SCL)=0.8473xRpxCload
Rp(min)= (VDD-VOL(max))/IOL(max)
Where Rp is the I2C lines pull-up. Refer to
Section 5.3.20: I/O port characteristics
for the
I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to Table 85 for the analog filter
characteristics:
Table 84. Minimum I2CCLK frequency in all I2C modes
Symbol Parameter Condition Min Unit
f(I2CCLK) I2CCLK
frequency
Standard-mode - 2
MHz
Fast-mode
Analog filter ON
DNF=0 8
Analog filter OFF
DNF=1 9
Fast-mode Plus
Analog filter ON
DNF=0 16
Analog filter OFF
DNF=1 16
Table 85. I2C analog filter characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter 50(2)
2. Spikes with widths below tAF(min) are filtered.
70(3)
3. Spikes with widths above tAF(max) are not filtered.
ns
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
176/255 DocID028294 Rev 6
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 86 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 18, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 86. SPI dynamic characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode
SPI1,4,5,6
2.7VDD3.6
--
54(2)
MHz
Master mode
SPI1,4,5,6
1.71VDD3.6
27
Master transmitter mode
SPI1,4,5,6
1.71VDD3.6
54
Slave receiver mode
SPI1,4,5,6
1.71VDD3.6
54
Slave mode transmitter/full
duplex
SPI1,4,5,6
2.7VDD3.6
50(3)
Slave mode transmitter/full
duplex
SPI1,4,5,6
1.71VDD3.6
37(3)
Master & Slave mode
SPI2,3
1.71VDD3.6
27
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*TPLCK --
ns
th(NSS) NSS hold time Slave mode, SPI presc = 2 2*TPLCK --
tw(SCKH)
tw(SCKL) SCK high and low time Master mode TPLCK - 2 TPLCK TPLCK + 2
DocID028294 Rev 6 177/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 47. SPI timing diagram - slave mode and CPHA = 0
tsu(MI)
Data input setup time
Master mode 4
9(4) --
ns
tsu(SI) Slave mode 4.5 - -
th(MI)
Data input hold time
Master mode 3
0(4) --
th(SI) Slave mode 2 - -
ta(SO) Data output access time Slave mode 7 - 21
tdis(SO) Data output disable time Slave mode 5 - 12
tv(SO)
Data output valid time
Slave mode 2.7VDD3.6V - 6.5 10
Slave mode 1.71VDD3.6V - 6.5 13.5
tv(MO) Master mode - 2 6
th(SO) Data output hold time
Slave mode
1.71VDD3.6V 4.5 - -
th(MO) Master mode 0 - -
1. Guaranteed by characterization results.
2. Excepting SPI1 with SCK IO pin mapped on PA5. In this configuration, Maximum achievable frequency is 40MHz.
3. Maximum Frequency of Slave Transmitter is determined by sum of Tv(SO) and Tsu(MI) intervals which has to fit into SCK
level phase preceding the SCK sampling edge.This value can be achieved when it communicates with a Master having
Tsu(MI)=0 while signal Duty(SCK)=50%.
4. Only for SPI6.
Table 86. SPI dynamic characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
06Y9
166LQSXW
&3+$ 
&32/ 
6&.LQSXW
&3+$ 
&32/ 
0,62RXWSXW
026,LQSXW
WVX6,
WK6,
WZ6&./
WZ6&.+
WF6&.
WU6&.
WK166
WGLV62
WVX166
WD62 WY62
1H[WELWV,1
/DVWELW287
)LUVWELW,1
)LUVWELW287 1H[WELWV287
WK62 WI6&.
/DVWELW,1
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
178/255 DocID028294 Rev 6
Figure 48. SPI timing diagram - slave mode and CPHA = 1(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
Figure 49. SPI timing diagram - master mode(1)
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
06Y9
166LQSXW
&3+$ 
&32/ 
6&.LQSXW
&3+$ 
&32/ 
0,62RXWSXW
026,LQSXW
WVX6, WK6,
WZ6&./
WZ6&.+
WVX166
WF6&.
WD62 WY62
)LUVWELW287 1H[WELWV287
1H[WELWV,1
/DVWELW287
WK62 WU6&.
WI6&. WK166
WGLV62
)LUVWELW,1 /DVWELW,1
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
DocID028294 Rev 6 179/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 87 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 18, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Note: Refer to RM0410 reference manual I2S section for more details about the sampling
frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The
values of these parameters might be slightly impacted by the source clock precision. DCK
depends mainly on the value of ODD bit. The digital contribution leads to a minimum value
of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
Table 87. I2S dynamic characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S Main clock output - 256x8K 256xFs(2) MHz
fCK I2S clock frequency
Master data - 64xFs
MHz
Slave data - 64xFs
DCK I2S clock frequency duty cycle Slave receiver 30 70 %
tv(WS) WS valid time Master mode - 3
ns
th(WS) WS hold time Master mode 0 -
tsu(WS) WS setup time Slave mode 5 -
th(WS) WS hold time Slave mode 2 -
tsu(SD_MR) Data input setup time
Master receiver 2.5 -
tsu(SD_SR) Slave receiver 2.5 -
th(SD_MR) Data input hold time
Master receiver 3.5 -
th(SD_SR) Slave receiver 2 -
tv(SD_ST) Data output valid time
Slave transmitter (after enable edge) - 12
tv(SD_MT) Master transmitter (after enable edge) - 3
th(SD_ST) Data output hold time
Slave transmitter (after enable edge) 5 -
th(SD_MT) Master transmitter (after enable edge) 0 -
1. Guaranteed by characterization results.
2. The maximum value of 256xFs is 49.152 MHz (APB1 maximum frequency).
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
180/255 DocID028294 Rev 6
Figure 50. I2S slave timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 51. I2S master timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
&.,QSXW
&32/ 
&32/ 
WF&.
:6LQSXW
6'WUDQVPLW
6'UHFHLYH
WZ&.+ WZ&./
WVX:6 WY6'B67 WK6'B67
WK:6
WVX6'B65 WK6'B65
06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH
06%WUDQVPLW %LWQWUDQVPLW /6%WUDQVPLW
069
/6%UHFHLYH

/6%WUDQVPLW

&.RXWSXW
&32/ 
&32/ 
WF&.
:6RXWSXW
6'UHFHLYH
6'WUDQVPLW
WZ&.+
WZ&./
WVX6'B05
WY6'B07 WK6'B07
WK:6
WK6'B05
06%UHFHLYH %LWQUHFHLYH /6%UHFHLYH
06%WUDQVPLW %LWQWUDQVPLW /6%WUDQVPLW
069
WI&. WU&.
WY:6
/6%UHFHLYH

/6%WUDQVPLW

DocID028294 Rev 6 181/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
JATG/SWD characteristics
Unless otherwise specified, the parameters given in Table 88 for JTAG/SWD are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage conditions summarized in Table 18, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C=30 pF
Measurement points are performed at CMOS levels: 0.5VDD
Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (SCK,SD,WS).
Table 88. Dynamics characteristics: JTAG characteristics
Symbol Parameter Conditions Min Typ Max Unit
Fpp
TCK clock frequency
2.7V <VDD< 3.6V - - 40
MHz
1/tc(TCK) 1.71 <VDD< 3.6V --35
tw(TCKH)
SCK high and low time - TPCLK 1T
PCLK TPCLK + 1
ns
tw(TCKL)
tsu(TMS) TMS input setup time - 3 - -
th(TMS) TMS input hold time - 0 - -
tsu(TDI) TDI input setup time - 0.5 - -
th(TDI) TDI input hold time - 2 - -
tov (TDO) TDO output valid time
2.7V <VDD< 3.6V - 9 11
1.71 <VDD< 3.6V -913
toh(TDO) TDO output hold time - 7.5 - -
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
182/255 DocID028294 Rev 6
JTAG/SWD timing diagrams
Figure 52. JTAG timing diagram
Table 89. Dynamics characteristics: SWD characteristics
Symbol Parameter Conditions Min Typ Max Unit
Fpp
SWCLK clock frequency
2.7V <VDD< 3.6V - - 80
MHz
1/tc(SWCLK) 1.71 <VDD< 3.6V --50
tw(SWCLKH)
SCK high and low time - TPCLK 1T
PCLK TPCLK + 1
ns
tw(SWCLKL)
tsu(SWDIO) SWDIO input setup time - 3.5 - -
th(SWDIO) SWDIO input hold time - 0 - -
tov (SWDIO) SWDIO output valid time
2.7V <VDD< 3.6V - 11 12
1.71 <VDD< 3.6V - 11 16.5
toh(SWDIO) SWDIO output hold time - 9 - -
06Y9
7',706
7&.
7'2
W
F7&.
W
Z7&./
W
Z7&.+
W
K7067',
W
VX7067',
W
RY7'2
W
RK7'2
DocID028294 Rev 6 183/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 53. SWD timing diagram
SAI characteristics:
Unless otherwise specified, the parameters given in Table 90 for SAI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 18, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C=30 pF
Measurement points are performed at CMOS levels: 0.5VDD
Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (SCK,SD,WS).
06Y9
6:',2
6:&/.
6:',2
W
F6:&/.
W
Z6:&/./
W
Z6:&/.+
W
K6:',2
W
VX6:',2
W
RY6:',2
W
RK6:',2
UHFHLYH
WUDQVPLW
Table 90. SAI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK SAI Main clock output - 256 x 8K 256xFs MHz
FCK SAI clock frequency(2)
Master data: 32 bits - 128xFs(3)
MHz
Slave data: 32 bits - 128xFs
tv(FS) FS valid time
Master mode
2.7VDD3.6V -15
ns
Master mode
1.71VDD3.6V -20
tsu(FS) FS setup time Slave mode 7 -
th(FS) FS hold time
Master mode 1 -
Slave mode 1 -
tsu(SD_A_MR) Data input setup time
Master receiver 3 -
tsu(SD_B_SR) Slave receiver 3.5 -
th(SD_A_MR) Data input hold time
Master receiver 5 -
th(SD_B_SR) Slave receiver 1 -
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
184/255 DocID028294 Rev 6
Figure 54. SAI master timing waveforms
tv(SD_B_ST) Data output valid time
Slave transmitter (after enable edge)
2.7VDD3.6V -12
ns
Slave transmitter (after enable edge)
1.71VDD3.6V -20
th(SD_B_MT) Data output hold time Slave transmitter (after enable edge) 5 -
tv(SD_MT)_A Data output valid time
Master transmitter (after enable edge)
2.7VDD3.6V -15
Master transmitter (after enable edge)
1.71VDD3.6V -20
th(SD_A_MT) Data output hold time Master transmitter (after enable edge) 5 -
1. Guaranteed by characterization results.
2. APB clock frequency must be at least twice SAI clock frequency.
3. With FS=192kHz.
Table 90. SAI characteristics(1) (continued)
Symbol Parameter Conditions Min Max Unit
069
6$,B6&.B;
6$,B)6B;
RXWSXW
I6&.
6$,B6'B;
WUDQVPLW
WY)6
6ORWQ
6$,B6'B;
UHFHLYH
WK)6
6ORWQ
WY6'B07 WK6'B07
6ORWQ
WVX6'B05 WK6'B05
DocID028294 Rev 6 185/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 55. SAI slave timing waveforms
USB OTG full speed (FS) characteristics
This interface is present in both the USB OTG HS and USB OTG FS controllers.
Table 91. USB OTG full speed startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design.
USB OTG full speed transceiver startup time 1 µs
Table 92. USB OTG full speed DC electrical characteristics
Symbol Parameter Conditions Min.
(1) Typ. Max.
(1) Unit
Input
levels
VDDUSB
USB OTG full speed
transceiver operating
voltage
-3.0
(2) -3.6V
VDI(3) Differential input sensitivity I(USB_FS_DP/DM,
USB_HS_DP/DM) 0.2 - -
VVCM(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE(3) Single ended receiver
threshold -1.3-2.0
Output
levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(4) --0.3
V
VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6
069
6$,B6&.B;
6$,B)6B;
LQSXW
6$,B6'B;
WUDQVPLW
WVX)6
6ORWQ
6$,B6'B;
UHFHLYH
WZ&.+B; WK)6
6ORWQ
WY6'B67 WK6'B67
6ORWQ
WVX6'B65
WZ&./B;
WK6'B65
I6&.
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
186/255 DocID028294 Rev 6
Note: When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state
(floating input), not as alternate function. A typical 200 µA current consumption of the
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 and PB13 when the feature is enabled.
Figure 56. USB OTG full speed timings: definition of data signal rise and fall time
RPD
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
VIN = VDD
17 21 24
kΩ
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
2.4 5.2 8
RPU
PA12, PB15 (USB_FS_DP,
USB_HS_DP) VIN = VSS 1.5 1.8 2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS 0.55 0.95 1.35
1. All the voltages are measured from the local ground potential.
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed
electrical characteristics which are degraded in the 2.7-to-3.0 V VDDUSB voltage range.
3. Guaranteed by design.
4. RL is the load connected on the USB OTG full speed drivers.
Table 92. USB OTG full speed DC electrical characteristics (continued)
Symbol Parameter Conditions Min.
(1) Typ. Max.
(1) Unit
Table 93. USB OTG full speed electrical characteristics(1)
1. Guaranteed by design.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2) CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage - 1.3 2.0 V
ZDRV Output driver impedance(3) Driving high or
low 28 44 Ω
DLE
&URVVRYHU
SRLQWV
'LIIHUHQWLDO
GDWDOLQHV
9&56
966
WIWU
DocID028294 Rev 6 187/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
USB high speed (HS) characteristics
Unless otherwise specified, the parameters given in Table 96 for ULPI are derived from
tests performed under the ambient temperature, fHCLK frequency summarized in Table 95
and VDD supply voltage conditions summarized in Table 94, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11, unless otherwise specified
Capacitive load C = 20 pF, unless otherwise specified
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 5.3.20: I/O port characteristics for more details on the input/output
characteristics.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching
impedance is included in the embedded driver.
Table 94. USB HS DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD USB OTG HS operating voltage 1.7 3.6 V
Table 95. USB HS clock timing parameters(1)
1. Guaranteed by design.
Symbol Parameter Min Typ Max Unit
-fHCLK value to guarantee proper operation of
USB HS interface 30 - - MHz
FSTART_8BIT Frequency (first transition) 8-bit ±10% 54 60 66 MHz
FSTEADY Frequency (steady state) ±500 ppm 59.97 60 60.03 MHz
DSTART_8BIT Duty cycle (first transition) 8-bit ±10% 40 50 60 %
DSTEADY Duty cycle (steady state) ±500 ppm 49.975 50 50.025 %
tSTEADY
Time to reach the steady state frequency and
duty cycle after the first transition --1.4ms
tSTART_DEV Clock startup time after the
de-assertion of SuspendM
Peripheral - - 5.6
ms
tSTART_HOST Host - - -
tPREP
PHY preparation time after the first transition
of the input clock ---µs
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
188/255 DocID028294 Rev 6
Figure 57. ULPI timing diagram
Ethernet characteristics
Unless otherwise specified, the parameters given in Table 97, Table 98 and Table 99 for
SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK
frequency summarized in Table 18, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 20 pF
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 5.3.20: I/O port characteristics for more details on the input/output
characteristics.
Table 97 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 58 shows the corresponding timing diagram.
Table 96. Dynamic characteristics: USB ULPI(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
tSC Control in (ULPI_DIR, ULPI_NXT) setup time - 2 - -
ns
tHC Control in (ULPI_DIR, ULPI_NXT) hold time - 1.5 - -
tSD Data in setup time - 2 - -
tHD Data in hold time - 1 - -
tDC/tDD Data/control output delay
2.7 V < VDD < 3.6 V,
CL = 20 pF -6.58
--
6.5 11
1.7 V < VDD < 3.6 V,
CL = 15 pF -
1. Guaranteed by characterization results.
DocID028294 Rev 6 189/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 58. Ethernet SMI timing diagram
Table 98 gives the list of Ethernet MAC signals for the RMII and Figure 59 shows the
corresponding timing diagram.
Figure 59. Ethernet RMII timing diagram
Table 97. Dynamics characteristics: Ethernet MAC signals for SMI(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Typ Max Unit
tMDC MDC cycle time(2.38 MHz) 400 400 403
ns
Td(MDIO) Write data valid time THCLK + 1 THCLK + 1.5 THCLK + 3
tsu(MDIO) Read data setup time 12.5 - -
th(MDIO) Read data hold time 0 - -
069
(7+B0'&
(7+B0',22
(7+B0',2,
W0'&
WG0',2
WVX0',2 WK0',2
DLE
50,,B5()B&/.
50,,B7;B(1
50,,B7;'>@
50,,B5;'>@
50,,B&56B'9
WG7;(1
WG7;'
WVX5;'
WVX&56
WLK5;'
WLK&56
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
190/255 DocID028294 Rev 6
Table 99 gives the list of Ethernet MAC signals for MII and Figure 59 shows the
corresponding timing diagram.
Figure 60. Ethernet MII timing diagram
Table 98. Dynamics characteristics: Ethernet MAC signals for RMII(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 1 - -
ns
tih(RXD) Receive data hold time 2 - -
tsu(CRS) Carrier sense setup time 2 - -
tih(CRS) Carrier sense hold time 2 - -
td(TXEN) Transmit enable valid delay time 7.5 8 12
td(TXD) Transmit data valid delay time 7 7.5 12.5
Table 99. Dynamics characteristics: Ethernet MAC signals for MII(1)
Symbol Parameter Min Typ Max Unit
tsu(RXD) Receive data setup time 1 - -
ns
tih(RXD) Receive data hold time 2.5 - -
tsu(DV) Data valid setup time 1.5 - -
tih(DV) Data valid hold time 0.5 - -
tsu(ER) Error setup time 2.5 - -
tih(ER) Error hold time 0.5 - -
td(TXEN) Transmit enable valid delay time 10 8 13
td(TXD) Transmit data valid delay time 9 7.5 13
DLE
0,,B5;B&/.
0,,B5;'>@
0,,B5;B'9
0,,B5;B(5
WG7;(1
WG7;'
WVX5;'
WVX(5
WVX'9
WLK5;'
WLK(5
WLK'9
0,,B7;B&/.
0,,B7;B(1
0,,B7;'>@
DocID028294 Rev 6 191/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
The MDIO controller is mapped on APB2 domain. The frequency of the APB bus should at
least 1.5 times the MDC frequency: FPCLK2 1.5 * FMDC
Figure 61. MDIO Slave timing diagram
CAN (controller area network) interface
Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (CANx_TX and CANx_RX).
5.3.30 FMC characteristics
Unless otherwise specified, the parameters given in Table 101 to Table 114 for the FMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 18, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Measurement points are done at CMOS levels: 0.5VDD
1. Guaranteed by characterization results.
Table 100. MDIO Slave timing parameters
Symbol Parameter Min Typ Max Unit
FsDC Management Data clock - - 40 MHz
td(MDIO) Management Data input/output output valid time 7820
nstsu(MDIO) Management Data input/output setup time 4--
th(MDIO) Management Data input/output hold time 1--
06Y9
WVX0',2
W0'&
WK0',2
WG0',2
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
192/255 DocID028294 Rev 6
Refer to Section 5.3.20: I/O port characteristics for more details on the input/output
characteristics.
Asynchronous waveforms and timings
Figure 62 through Figure 65 represent asynchronous waveforms and Table 101 through
Table 108 provide the corresponding timings. The results shown in these tables are
obtained with the following FMC configuration:
AddressSetupTime = 0x1
AddressHoldTime = 0x1
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
BusTurnAroundDuration = 0x0
Capcitive load CL = 30 pF
In all timing tables, the THCLK is the HCLK clock period
Figure 62. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
DocID028294 Rev 6 193/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Table 101. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)
1. CL = 30 pF.
2. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 2THCLK 12 T
HCLK +1
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 0 0.5
tw(NOE) FMC_NOE low time 2THCLK 12T
HCLK + 1
th(NE_NOE) FMC_NOE high to FMC_NE high hold time 0 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0.5
th(A_NOE) Address hold time after FMC_NOE high 0 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
th(BL_NOE) FMC_BL hold time after FMC_NOE high 0 -
tsu(Data_NE) Data to FMC_NEx high setup time THCLK 1-
tsu(Data_NOE) Data to FMC_NOEx high setup time THCLK 1-
th(Data_NOE) Data hold time after FMC_NOE high 0 -
th(Data_NE) Data hold time after FMC_NEx high 0 -
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0
tw(NADV) FMC_NADV low time - THCLK + 1
Table 102. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT
timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 7THCLK +1 7THCLK +1
ns
tw(NOE) FMC_NWE low time 5THCLK 15T
HCLK +1
tw(NWAIT) FMC_NWAIT low time THCLK 0.5 -
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK +1.5 -
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4THCLK+1 -
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
194/255 DocID028294 Rev 6
Figure 63. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Table 103. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3THCLK 13T
HCLK + 1
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low THCLK 1T
HCLK + 0.5
tw(NWE) FMC_NWE low time THCLK 1.5 THCLK + 0.5
th(NE_NWE) FMC_NWE high to FMC_NE high hold time THCLK -
tv(A_NE) FMC_NEx low to FMC_A valid - 0
th(A_NWE) Address hold time after FMC_NWE high THCLK 0.5 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK 0.5 -
tv(Data_NE) Data to FMC_NEx low to Data valid - THCLK + 2
th(Data_NWE) Data hold time after FMC_NWE high THCLK+0.5 -
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0
tw(NADV) FMC_NADV low time - THCLK + 1
DocID028294 Rev 6 195/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 64. Asynchronous multiplexed PSRAM/NOR read waveforms
Table 104. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT
timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8THCLK 1 8T
HCLK + 1
ns
tw(NWE) FMC_NWE low time 6THCLK 1.5 6THCLK + 0.5
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK 1-
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK + 2 -
1%/
'DWD
)0&B 1%/>@
)0&B $'>@
W
Y%/B1(
WK'DWDB1(
$GGUHVV
)0&B $>@
W
Y$B1(
)0&B1:(
WY$B1(
069
$GGUHVV
)0&B1$'9
WY1$'9B1(
WZ1$'9
WVX'DWDB1(
W
K$'B1$'9
)0&B 1(
)0&B12(
WZ1(
WZ12(
WY12(B1( WK1(B12(
WK$B12(
WK%/B12(
WVX'DWDB12( WK'DWDB12(
)0&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
196/255 DocID028294 Rev 6
Table 105. Asynchronous multiplexed PSRAM/NOR read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3THCLK 13T
HCLK + 1
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 2THCLK 2THCLK + 0.5
ttw(NOE) FMC_NOE low time THCLK 1T
HCLK + 1
th(NE_NOE) FMC_NOE high to FMC_NE high hold time 0 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0.5
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 0.5
tw(NADV) FMC_NADV low time THCLK 0.5 THCLK+1
th(AD_NADV)
FMC_AD(address) valid hold time after
FMC_NADV high) THCLK + 0.5 -
th(A_NOE) Address hold time after FMC_NOE high THCLK 0.5 -
th(BL_NOE) FMC_BL time after FMC_NOE high 0 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
tsu(Data_NE) Data to FMC_NEx high setup time THCLK 1 -
tsu(Data_NOE) Data to FMC_NOE high setup time THCLK 1 -
th(Data_NE) Data hold time after FMC_NEx high 0 -
th(Data_NOE) Data hold time after FMC_NOE high 0 -
Table 106. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8THCLK 18T
HCLK + 1
ns
tw(NOE) FMC_NWE low time 5THCLK 1.5 5THCLK + 0.5
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK + 1.5 -
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK+ 1 -
DocID028294 Rev 6 197/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 65. Asynchronous multiplexed PSRAM/NOR write waveforms
Table 107. Asynchronous multiplexed PSRAM/NOR write timings(1)
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 4THCLK 14T
HCLK + 1
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low THCLK 1T
HCLK + 0.5
tw(NWE) FMC_NWE low time 2THCLK 0.5 2THCLK+ 0.5
th(NE_NWE) FMC_NWE high to FMC_NE high hold time THCLK 0.5 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 0.5
tw(NADV) FMC_NADV low time THCLK THCLK+ 1
th(AD_NADV)
FMC_AD(adress) valid hold time after
FMC_NADV high) THCLK 0.5 -
th(A_NWE) Address hold time after FMC_NWE high THCLK + 0.5 -
th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK 0.5 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 0.5
tv(Data_NADV) FMC_NADV high to Data valid - THCLK + 2
th(Data_NWE) Data hold time after FMC_NWE high THCLK + 0.5 -
1%/
'DWD
)0&B 1([
)0&B 1%/>@
)0&B $'>@
W
Y%/B1(
WK'DWDB1:(
)0&B12(
$GGUHVV
)0&B $>@
W
Y$B1(
WZ1:(
)0&B1:(
WY1:(B1( WK1(B1:(
WK$B1:(
WK%/B1:(
WY$B1(
WZ1(
069
$GGUHVV
)0&B1$'9
WY1$'9B1(
WZ1$'9
WY'DWDB1$'9
W
K$'B1$'9
)0&B1:$,7
WVX1:$,7B1(
WK1(B1:$,7
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
198/255 DocID028294 Rev 6
Synchronous waveforms and timings
Figure 66 through Figure 69 represent synchronous waveforms and Table 109 through
Table 112 provide the corresponding timings. The results shown in these tables are
obtained with the following FMC configuration:
BurstAccessMode = FMC_BurstAccessMode_Enable;
MemoryType = FMC_MemoryType_CRAM;
WriteBurst = FMC_WriteBurst_Enable;
CLKDivision = 1;
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
CL = 30 pF on data and address lines. CL = 10 pF on FMC_CLK unless otherwise
specified.
In all the timing tables, the THCLK is the HCLK clock period.
–For 2.7 VVDD3.6 V, maximum FMC_CLK = 100 MHz at CL=20 pF or 90 MHz at
CL=30 pF (on FMC_CLK).
–For 1.71 VVDD<2.7 V, maximum FMC_CLK = 70 MHz at CL=10 pF (on FMC_CLK).
1. Guaranteed by characterization results.
Table 108. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 9THCLK – 1 9THCLK + 1
ns
tw(NWE) FMC_NWE low time 7THCLK – 0.5 7THCLK + 0.5
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK + 2 -
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK – 1 -
DocID028294 Rev 6 199/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 66. Synchronous multiplexed NOR/PSRAM read timings
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
200/255 DocID028294 Rev 6
Table 109. Synchronous multiplexed NOR/PSRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2THCLK 0.5 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2
td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK + 0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1.
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 1.5
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high THCLK 0.5 -
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
tsu(ADV-CLKH) FMC_A/D[15:0] valid data before FMC_CLK high 1.5 -
th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high 3.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 3.5 -
DocID028294 Rev 6 201/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 67. Synchronous multiplexed PSRAM write timings
)0&B&/.
)0&B1([
)0&B1$'9
)0&B$>@
)0&B1:(
)0&B$'>@ $'>@ ' '
)0&B1:$,7
:$,7&)* E
:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
%867851 
WG&/./1([/ WG&/.+1([+
WG&/./1$'9/
WG&/./$9
WG&/./1$'9+
WG&/.+$,9
WG&/.+1:(+
WG&/./1:(/
WG&/.+1%/+
WG&/./$'9
WG&/./$',9 WG&/./'DWD
WVX1:$,79&/.+ WK&/.+1:$,79
069
WG&/./'DWD
)0&B1%/
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
202/255 DocID028294 Rev 6
Table 110. Synchronous multiplexed PSRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2THCLK 0.5 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK + 0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 1
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2 .5
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 1.5
t(CLKH-NWEH) FMC_CLK high to FMC_NWE high THCLK + 0.5 -
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low - 3.5
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 2
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK + 0.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 3.5 -
DocID028294 Rev 6 203/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 68. Synchronous non-multiplexed NOR/PSRAM read timings
Table 111. Synchronous non-multiplexed NOR/PSRAM read timings(1)
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2THCLK 0.5 -
ns
t(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK + 0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0.5
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 1.5
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high THCLK + 0.5 -
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high 1.5 -
th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high 3.5 -
t(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 3.5 -
)0&B&/.
)0&B1([
)0&B$>@
)0&B12(
)0&B'>@ ' '
)0&B1:$,7
:$,7&)* E
:$,732/E
)0&B1:$,7
:$,7&)* E
:$,732/E
WZ&/. WZ&/.
'DWDODWHQF\ 
WG&/./1([/ WG&/.+1([+
WG&/./$9 WG&/.+$,9
WG&/./12(/ WG&/.+12(+
WVX'9&/.+ WK&/.+'9
WVX'9&/.+ WK&/.+'9
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
WVX1:$,79&/.+ WK&/.+1:$,79
069
)0&B1$'9
WG&/./1$'9/ WG&/./1$'9+
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
204/255 DocID028294 Rev 6
Figure 69. Synchronous non-multiplexed PSRAM write timings
1. Guaranteed by characterization results.
DocID028294 Rev 6 205/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
NAND controller waveforms and timings
Figure 70 through Figure 73 represent synchronous waveforms, and Table 113 and
Table 114 provide the corresponding timings. The results shown in this table are obtained
with the following FMC configuration:
COM.FMC_SetupTime = 0x01;
COM.FMC_WaitSetupTime = 0x03;
COM.FMC_HoldSetupTime = 0x02;
COM.FMC_HiZSetupTime = 0x01;
ATT.FMC_SetupTime = 0x01;
ATT.FMC_WaitSetupTime = 0x03;
ATT.FMC_HoldSetupTime = 0x02;
ATT.FMC_HiZSetupTime = 0x01;
Bank = FMC_Bank_NAND;
MemoryDataWidth = FMC_MemoryDataWidth_16b;
ECC = FMC_ECC_Enable;
ECCPageSize = FMC_ECCPageSize_512Bytes;
TCLRSetupTime = 0;
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Table 112. Synchronous non-multiplexed PSRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
t(CLK) FMC_CLK period 2THCLK 0.5 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2
t(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK + 0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0.5
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 1.5
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high THCLK + 1 -
td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low - 3.5
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low - 2
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK + 1 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 2 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 3.5 -
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
206/255 DocID028294 Rev 6
Figure 70. NAND controller waveforms for read access
Figure 71. NAND controller waveforms for write access
)0&B1:(
)0&B12(15(
)0&B'>@
WVX'12( WK12('
069
$/()0&B$
&/()0&B$
)0&B1&([
WG$/(12( WK12($/(
069
WK1:('
WY1:('
)0&B1:(
)0&B12(15(
)0&B'>@
$/()0&B$
&/()0&B$
)0&B1&([
WG$/(1:( WK1:($/(
DocID028294 Rev 6 207/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 72. NAND controller waveforms for common memory read access
Figure 73. NAND controller waveforms for common memory write access
Table 113. Switching characteristics for NAND Flash read cycles(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(N0E) FMC_NOE low width 4THCLK 0.5 4THCLK + 0.5
ns
tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high 11 -
th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high 0 -
td(ALE-NOE) FMC_ALE valid before FMC_NOE low - 3THCLK + 1
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid 4THCLK 2-
069
)0&B1:(
)0&B12(
)0&B'>@
WZ12(
WVX'12( WK12('
$/()0&B$
&/()0&B$
)0&B1&([
WG$/(12( WK12($/(
069
WZ1:(
WK1:('
WY1:('
)0&B1:(
)0&B1
2(
)0&B'>@
WG'1:(
$/()0&B$
&/()0&B$
)0&B1&([
WG$/(12( WK12($/(
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
208/255 DocID028294 Rev 6
SDRAM waveforms and timings
CL = 30 pF on data and address lines. CL = 10 pF on FMC_SDCLK unless otherwise
specified.
In all timing tables, the THCLK is the HCLK clock period.
–For 3.0 VVDD3.6 V, maximum FMC_SDCLK = 100 MHz at CL=20 pF (on
FMC_SDCLK).
–For 2.7 VVDD3.6 V, maximum FMC_SDCLK = 90 MHz at CL=30 pF (on FMC_SDCLK).
–For 1.71 VVDD<1.9 V, maximum FMC_SDCLK = 70 MHz at CL=10 pF (on
FMC_SDCLK).
Figure 74. SDRAM read access waveforms (CL = 1)
Table 114. Switching characteristics for NAND Flash write cycles(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(NWE) FMC_NWE low width 4THCLK 0.5 4THCLK + 0.5
ns
tv(NWE-D) FMC_NWE low to FMC_D[15-0] valid 0 -
th(NWE-D) FMC_NWE high to FMC_D[15-0] invalid 2THCLK 1-
td(D-NWE) FMC_D[15-0] valid before FMC_NWE high 5THCLK 1-
td(ALE-NWE) FMC_ALE valid before FMC_NWE low - 3THCLK + 1
th(NWE-ALE) FMC_NWE high to FMC_ALE invalid 2THCLK 2-
DocID028294 Rev 6 209/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Table 115. SDRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2THCLK 0.5 2THCLK + 0.5
ns
tsu(SDCLKH _Data) Data input setup time 1.5 -
th(SDCLKH_Data) Data input hold time 1.5 -
td(SDCLKL_Add) Address valid time - 3.5
td(SDCLKL- SDNE) Chip select valid time - 1.5
th(SDCLKL_SDNE) Chip select hold time 0.5 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 1
th(SDCLKL_SDNRAS) SDNRAS hold time 0.5 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
Table 116. LPSDR SDRAM read timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tW(SDCLK) FMC_SDCLK period 2THCLK 0.5 2THCLK + 0.5
ns
tsu(SDCLKH_Data) Data input setup time 0 -
th(SDCLKH_Data) Data input hold time 4.5 -
td(SDCLKL_Add) Address valid time - 2.5
td(SDCLKL_SDNE) Chip select valid time - 2.5
th(SDCLKL_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS SDNRAS valid time - 0.5
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 1.5
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
210/255 DocID028294 Rev 6
Figure 75. SDRAM write access waveforms
Table 117. SDRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2THCLK 0.5 2THCLK + 0.5
ns
td(SDCLKL _Data) Data output valid time - 3
th(SDCLKL _Data) Data output hold time 0 -
td(SDCLKL_Add) Address valid time - 3.5
td(SDCLKL_SDNWE) SDNWE valid time - 1.5
th(SDCLKL_SDNWE) SDNWE hold time 0.5 -
td(SDCLKL_ SDNE) Chip select valid time - 1.5
th(SDCLKL-_SDNE) Chip select hold time 0.5 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 1
th(SDCLKL_SDNRAS) SDNRAS hold time 0.5 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 1
td(SDCLKL_SDNCAS) SDNCAS hold time 0.5 -
DocID028294 Rev 6 211/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.31 Quad-SPI interface characteristics
Unless otherwise specified, the parameters given in Table 119 and Table 120 for Quad-SPI
are derived from tests performed under the ambient temperature, fAHB frequency and VDD
supply voltage conditions summarized in Table 18: General operating conditions, with the
following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 20 pF
Measurement points are done at CMOS levels: 0.5 VDD
Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 118. LPSDR SDRAM write timings(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2THCLK 0.5 2THCLK + 0.5
ns
td(SDCLKL _Data) Data output valid time - 2.5
th(SDCLKL _Data) Data output hold time 0 -
td(SDCLKL_Add) Address valid time - 2.5
td(SDCLKL-SDNWE) SDNWE valid time - 2.5
th(SDCLKL-SDNWE) SDNWE hold time 0 -
td(SDCLKL- SDNE) Chip select valid time - 0.5
th(SDCLKL- SDNE) Chip select hold time 0 -
td(SDCLKL-SDNRAS) SDNRAS valid time - 1.5
th(SDCLKL-SDNRAS) SDNRAS hold time 0 -
td(SDCLKL-SDNCAS) SDNCAS valid time - 1.5
td(SDCLKL-SDNCAS) SDNCAS hold time 0 -
Table 119. Quad-SPI characteristics in SDR mode(1)
Symbol Parameter Conditions Min Typ Max Unit
Fck1/t(CK) Quad-SPI clock
frequency
2.7 VVDD<3.6 V
CL=20 pF --108
MHz
1.71 V<VDD<3.6 V
CL=15 pF --100
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
212/255 DocID028294 Rev 6
tw(CKH) Quad-SPI clock high and
low time -
t(CK)/2 - 1 - t(CK)/2
ns
tw(CKL) t(CK)/2 - t(CK)/2 + 1
ts(IN) Data input setup time
-
0.5 - -
th(IN) Data input hold time 3 - -
tv(OUT) Data output valid time
2.7 V<VDD<3.6 V - 1.5 3.5
1.71 V<VDD<3.6 V - 1.5 2
th(OUT) Data output hold time - 0.5 - -
1. Guaranteed by characterization results.
Table 120. Quad SPI characteristics in DDR mode(1)
1. Guaranteed by characterization results.
Symbol Parameter Conditions Min Typ Max Unit
Fck1/t(CK) Quad-SPI clock
frequency
2.7 V<VDD<3.6 V
CL=20 pF --80
MH
z
1.8 V<VDD<3.6 V
CL=15 pF --80
1.71 V<VDD<3.6 V
CL=10 pF --80
tw(CKH)
Quad-SPI clock high
and low time -
t(CK)/2 - 1 - t(CK)/2
ns
tw(CKL) t(CK)/2 - t(CK)/2
+ 1
ts(IN),
tsf(IN) Data input setup time
2.7 V<VDD<3.6 V 0.75 - -
1.71 V<VDD<2 V 0.5 - -
thr(IN),
thf(IN) Data input hold time
2.7 V<VDD<3.6 V 2 - -
1.71 V<VDD<2 V 3 - -
tvr(OUT),
tvf(OUT) Data output valid time
2.7 V<VDD<3.6 V - 8.5 10
1.71 V<VDD<3.6 V
DHHC=0 -812
DHHC=1
Pres=1, 2... -THCLK/2 +
1.5
THCLK/2
+ 2.5
thr(OUT),
thf(OUT) Data output hold time
DHHC=0 7.5 - -
DHHC=1
Pres=1, 2...
THCLK/2
+ 0.5 --
Table 119. Quad-SPI characteristics (continued)in SDR mode(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID028294 Rev 6 213/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 76. Quad-SPI timing diagram - SDR mode
Figure 77. Quad-SPI timing diagram - DDR mode
5.3.32 Camera interface (DCMI) timing specifications
Unless otherwise specified, the parameters given in Table 121 for DCMI are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage summarized in Table 18, with the following configuration:
DCMI_PIXCLK polarity: falling
DCMI_VSYNC and DCMI_HSYNC polarity: high
Data formats: 14 bits
06Y9
'DWDRXWSXW ' ' '
&ORFN
'DWDLQSXW ' ' '
W&. WZ&.+ WZ&./
WU&. WI&.
WV,1 WK,1
WY287 WK287
06Y9
'DWDRXWSXW ' ' '
&ORFN
'DWDLQSXW ' ' '
W&. WZ&.+ WZ&./
WU&. WI&.
WVI,1 WKI,1
WYI287 WKU287
' ' '
' ' '
WYU287 WKI287
WVU,1 WKU,1
Table 121. DCMI characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
- Frequency ratio DCMI_PIXCLK/fHCLK -0.4 -
DCMI_PIXCLK Pixel clock input - 54 MHz
DPixel Pixel clock input duty cycle 30 70 %
tsu(DATA) Data input setup time 2 -
ns
th(DATA) Data input hold time 0.5 -
tsu(HSYNC)
tsu(VSYNC)
DCMI_HSYNC/DCMI_VSYNC input setup time 2.5 -
th(HSYNC)
th(VSYNC)
DCMI_HSYNC/DCMI_VSYNC input hold time 3 -
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
214/255 DocID028294 Rev 6
Figure 78. DCMI timing diagram
5.3.33 LCD-TFT controller (LTDC) characteristics
Unless otherwise specified, the parameters given in Table 122 for LCD-TFT are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage summarized in Table 18, with the following configuration:
LCD_CLK polarity: high
LCD_DE polarity: low
LCD_VSYNC and LCD_HSYNC polarity: high
Pixel formats: 24 bits
069
'&0,B3,;&/.
WVX96<1&
WVX+6<1&
'&0,B+6<1&
'&0,B96<1&
'$7$>@
'&0,B3,;&/.
WK+6<1&
WK+6<1&
WVX '$7$ WK'$7$
Table 122. LTDC characteristics (1)
1. Guaranteed by characterization results.
Symbol Parameter Min Max Unit
fCLK LTDC clock output frequency - 83 MHz
DCLK LTDC clock output duty cycle 45 55 %
tw(CLKH),
tw(CLKL)
Clock High time, low time tw(CLK)/20.5 tw(CLK)/2+0.5
ns
tv(DATA) Data output valid time - 6
th(DATA) Data output hold time 0 -
tv(HSYNC),
tv(VSYNC),
tv(DE)
HSYNC/VSYNC/DE output valid time - 3.5
th(HSYNC),
th(VSYNC),
th(DE)
HSYNC/VSYNC/DE output hold time 0.5 -
DocID028294 Rev 6 215/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
Figure 79. LCD-TFT horizontal timing diagram
Figure 80. LCD-TFT vertical timing diagram
069
/&'B&/.
WY+6<1&
/&'B+6<1&
/&'B'(
/&'B5>@
/&'B*>@
/&'B%>@
W&/.
/&'B96<1&
WY+6<1&
WY'( WK'(
1JYFM
1JYFM
WY'$7$
WK'$7$
1JYFM
/
+6<1&
ZLGWK
+RUL]RQWDO
EDFNSRUFK
$FWLYHZLGWK +RUL]RQWDO
EDFNSRUFK
2QHOLQH
069
/&'B&/.
WY96<1&
/&'B5>@
/&'B*>@
/&'B%>@
W&/.
/&'B96<1&
WY96<1&
0OLQHVGDWD
96<1&
ZLGWK
9HUWLFDO
EDFNSRUFK
$FWLYHZLGWK 9HUWLFDO
EDFNSRUFK
2QHIUDPH
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
216/255 DocID028294 Rev 6
5.3.34 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics
Unless otherwise specified, the parameters given in Table 123 for DFSDM are derived from
tests performed under the ambient temperature, fPCLK2 frequency and VDD supply voltage
summarized in Table 18, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30pF
Measurement points are done at CMOS levels: 0.5 x VDD
Refer to Section 5.3.20: I/O port characteristics for more details on the input/output alternate
function characteristics (DFSDM1_CKINx, DFSDM1_DATINx, DFSDM1_CKOUT for
DFSDM1).
Table 123. DFSDM measured timing 1.71-3.6V
Symbol Parameter Conditions Min Typ Max Unit
fDFSDMCLK DFSDM clock 1.71 < VDD < 3.6 V - - fSYSCLK
MHz
fCKIN
(1/TCKIN)
Input clock
frequency
SPI mode (SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
1.71 < VDD < 3.6 V
--
20
(fDFSDMCLK/4)
SPI mode (SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
2.7 < VDD < 3.6 V
--
20
(fDFSDMCLK/4)
SPI mode (SITP[1:0]=0,1),
Internal clock mode
(SPICKSEL[1:0]0),
1.71 < VDD < 3.6 V
--
20
(fDFSDMCLK/4)
SPI mode (SITP[1:0]=0,1),
Internal clock mode
(SPICKSEL[1:0]0),
2.7 < VDD < 3.6 V
--
20
(fDFSDMCLK/4)
fCKOUT
Output clock
frequency 1.71 < VDD < 3.6 V - - 20
DuCyCKOUT
Output clock
frequency duty
cycle
1.71 < VDD < 3.6 V 45 50 55 %
DocID028294 Rev 6 217/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
twh(CKIN)
twl(CKIN)
Input clock high
and low time
SPI mode (SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
1.71 < VDD < 3.6 V
TCKIN/2 - 0.5 TCKIN/2 -
ns
tsu
Data input setup
time
SPI mode (SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
1.71 < VDD < 3.6 V
2--
th
Data input hold
time
SPI mode (SITP[1:0]=0,1),
External clock mode
(SPICKSEL[1:0]=0),
1.71 < VDD < 3.6 V
3--
TManchester
Manchester data
period (recovered
clock period)
Manchester mode
(SITP[1:0]=2,3),
Internal clock mode
(SPICKSEL[1:0]0),
1.71 < VDD < 3.6 V
(CKOUTDIV+1)
* TDFSDMCLK
-(2*CKOUTDIV)
* TDFSDMCLK
Table 123. DFSDM measured timing 1.71-3.6V (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
218/255 DocID028294 Rev 6
5.3.35 DFSDM timing diagrams
Figure 81. Channel transceiver timing diagrams
069
6,73 
')6'0B&.287
')6'0B'$7,1\
6,73 
WVX WK
WVX WK
WIWU
WZO WZK
63,WLPLQJ63,&.6(/ 
UHFRYHUHGFORFN
6,73 
')6'0B'$7,1\
6,73 
0DQFKHVWHUWLPLQJ
UHFRYHUHGGDWD

6,73 
')6'0B&.,1\')6'0B'$7,1\
6,73 
WVX WK
WVX WK
WIWU
WZO WZK
63,WLPLQJ63,&.6(/ 
63,&.6(/ 
63,&.6(/ 
63,&.6(/ 
63,&.6(/ 
DocID028294 Rev 6 219/255
STM32F777xx STM32F778Ax STM32F779xx Electrical characteristics
220
5.3.36 SD/SDIO MMC card host interface (SDMMC) characteristics
Unless otherwise specified, the parameters given in Table 124 for the SDIO/MMC interface
are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD
supply voltage conditions summarized in Table 18, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.20: I/O port characteristics for more details on the input/output
characteristics.
Figure 82. SDIO high-speed mode
Figure 83. SD default mode
Electrical characteristics STM32F777xx STM32F778Ax STM32F779xx
220/255 DocID028294 Rev 6
Table 124. Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V(1)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDMMC_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fpp =50 MHz 9.5 10.5 -
ns
tW(CKH) Clock high time fpp =50 MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU Input setup time HS fpp =50 MHz 3.5 - -
ns
tIH Input hold time HS fpp =50 MHz 2.5 - -
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time HS fpp =50 MHz - 11 12
ns
tOH Output hold time HS fpp =50 MHz 9 - -
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD fpp =25 MHz 3.5 - -
ns
tIHD Input hold time SD fpp =25 MHz 2.5 - -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD fpp =25 MHz -0.51.5
ns
tOHD Output hold default time SD fpp =25 MHz 0--
1. Guaranteed by characterization results.
Table 125. Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDMMC_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fpp =50 MHz 9.5 10.5 -
ns
tW(CKH) Clock high time fpp =50 MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in eMMC mode
tISU Input setup time HS fpp =50 MHz 3 - -
ns
tIH Input hold time HS fpp =50 MHz 4 - -
CMD, D outputs (referenced to CK) in eMMC mode
tOV Output valid time HS fpp =50 MHz - 11 15.5
ns
tOH Output hold time HS fpp =50 MHz 9.5 - -
1. Guaranteed by characterization results.
2. Cload = 20 pF.
DocID028294 Rev 6 221/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
6 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
6.1 LQFP100 14x 14 mm, low-profile quad flat package
information
Figure 84. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline
1. Drawing is not to scale.
H
,'(17,),&$7,21
3,1
*$8*(3/$1(
PP
6($7,1*3/$1(
'
'
'
(
(
(
.
FFF &
&




 

/B0(B9
$
$
$
/
/
F
E
$
Package information STM32F777xx STM32F778Ax STM32F779xx
222/255 DocID028294 Rev 6
Table 126. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical
data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
DocID028294 Rev 6 223/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
Figure 85. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
 
 

 
 




DLF
Package information STM32F777xx STM32F778Ax STM32F779xx
224/255 DocID028294 Rev 6
LQFP100 device making
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 86. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package
top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
069
670)
9,7 5
3URGXFWLGHQWLILFDWLRQ 
5HYLVLRQFRGH
::<
'DWHFRGH
3LQLGHQWLILHU
DocID028294 Rev 6 225/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
6.2 TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array
package information
Figure 87. TFBGA100, 8 × 8 × 0.8 mm thin fine-pitch ball grid array
package outline
1. Drawing is not to scale.
Table 127. TFBGA100, 8 x 8 × 0.8 mm thin fine-pitch ball grid array
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.100 - - 0.0433
A1 0.150 - - 0.0059 - -
A2 - 0.760 - - 0.0299 -
b 0.350 0.400 0.450 0.0138 0.0157 0.0177
6($7,1*
3/$1(

.
-
+
*
)
(
'
&
%
$
$
$
$
&
GGG &
%$//6
E
HHH
III
&$%
&
'
(
)
H
%
*H
$EDOO
LGHQWLILHU
$EDOO
LQGH[
DUHD
$
$4B0(B9
'
(
%277209,(: 7239,(:
Package information STM32F777xx STM32F778Ax STM32F779xx
226/255 DocID028294 Rev 6
Figure 88. TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid array
package recommended footprint
1. Dimensions are expressed in millimeters.
D 7.850 8.000 8.150 0.3091 0.3150 0.3209
D1 - 7.200 - - 0.2835 -
E 7.850 8.000 8.150 0.3091 0.3150 0.3209
E1 - 7.200 - - 0.2835 -
e - 0.800 - - 0.0315 -
F - 0.400 - - 0.0157 -
G - 0.400 - - 0.0157 -
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 127. TFBGA100, 8 x 8 × 0.8 mm thin fine-pitch ball grid array
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
'SDG
'VP
DocID028294 Rev 6 227/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
TFBGA100 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 89. TFBGA100, 8 × 8 × 0.8mm thin fine-pitch ball grid array package
top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
Table 128. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA)
Dimension Recommended values
Pitch 0.8
Dpad 0.400 mm
Dsm 0.470 mm typ (depends on the soldermask
registration tolerance)
Stencil opening 0.400 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.120 mm
069
%DOO$
LGHQWLILHU
'DWHFRGH
<::
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
670)
9,+
Package information STM32F777xx STM32F778Ax STM32F779xx
228/255 DocID028294 Rev 6
6.3 LQFP144 20 x 20 mm, low-profile quad flat package
information
Figure 90. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline
1. Drawing is not to scale.
H
,'(17,),&$7,21
3,1
*$8*(3/$1(
PP
6($7,1*
3/$1(
'
'
'
(
(
(
.
FFF &
&




 

$B0(B9
$
$
$
/
/
F
E
$
DocID028294 Rev 6 229/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
Table 129. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.874
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.689 -
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
Package information STM32F777xx STM32F778Ax STM32F779xx
230/255 DocID028294 Rev 6
Figure 91. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
DocID028294 Rev 6 231/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
LQFP144 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 92. LQFP144, 20 x 20mm, 144-pin low-profile quad flat package
top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
069
3LQ
LGHQWLILHU
5
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
<::
670)=,7
Package information STM32F777xx STM32F778Ax STM32F779xx
232/255 DocID028294 Rev 6
6.4 LQFP176 24 x 24 mm, low-profile quad flat package
information
Figure 93. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package outline
1. Drawing is not to scale.
7B0(B9
$
$
H
(+(
'
+'
='
=(
E
PP
JDXJHSODQH
$ /
/
N
F
,'(17,),&$7,21
3,1
6HDWLQJSODQH
&
$
DocID028294 Rev 6 233/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
Table 130. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 - 1.450 0.0531 - 0.0060
b 0.170 - 0.270 0.0067 - 0.0106
C 0.090 - 0.200 0.0035 - 0.0079
D 23.900 - 24.100 0.9409 - 0.9488
E 23.900 - 24.100 0.9409 - 0.9488
e - 0.500 - - 0.0197 -
HD 25.900 - 26.100 1.0200 - 1.0276
HE 25.900 - 26.100 1.0200 - 1.0276
L 0.450 - 0.750 0.0177 - 0.0295
L1 - 1.000 - - 0.0394 -
ZD - 1.250 - - 0.0492 -
ZE - 1.250 - - 0.0492 -
ccc - - 0.080 - - 0.0031
k0 °-7 °0 °-7 °
Package information STM32F777xx STM32F778Ax STM32F779xx
234/255 DocID028294 Rev 6
Figure 94. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
7B)3B9






 







DocID028294 Rev 6 235/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
LQFP176 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package
top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
069
::<
3LQ
LGHQWLILHU
670),,7
5
'DWHFRGH
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
Package information STM32F777xx STM32F778Ax STM32F779xx
236/255 DocID028294 Rev 6
6.5 LQFP208 28 x 28 mm low-profile quad flat package
information
Figure 96. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package outline
1. Drawing is not to scale.
'
'
'
(
(
(
H
/
*$8*(3/$1(
PP
E
&
6($7,1*
3/$1(
FFF &
,'(17,),&$7,21
3,1







F
/
$
$
$
$
6)@.&@7
.
DocID028294 Rev 6 237/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
Table 131. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A - - 1.600 -- - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 29.800 30.000 30.200 1.1732 1.1811 1.1890
D1 27.800 28.000 28.200 1.0945 1.1024 1.1102
D3 - 25.500 - - 1.0039 -
E 29.800 30.000 30.200 1.1732 1.1811 1.1890
E1 27.800 28.000 28.200 1.0945 1.1024 1.1102
E3 - 25.500 - - 1.0039 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 3.5° 7.0° 3.5° 7.0°
ccc - - 0.080 - - 0.0031
Package information STM32F777xx STM32F778Ax STM32F779xx
238/255 DocID028294 Rev 6
Figure 97. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
DocID028294 Rev 6 239/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
LQFP208 device marking
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 98. LQFP208, 28 x 28 mm, 208-pin low-profile quad flat package
top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
069
::<
3LQ
LGHQWLILHU 'DWHFRGH \HDUZHHN
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
670)%,7
Package information STM32F777xx STM32F778Ax STM32F779xx
240/255 DocID028294 Rev 6
6.6 WLCSP 180-bump, 5.5 x 6 mm, wafer level chip scale
package information
Figure 99. WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
7239,(: %277209,(:
'
(
$
25,(17$7,21
5()(5(1&(
*
)
H $%$//
/2&$7,21
H
H
H
$
$
$
'(7$,/$
6,'(9,(:
$*B:/&63B0(B9
'(7$,/$
527$7('R
%803
6($7,1*3/$1(
DocID028294 Rev 6 241/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
Table 132. WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.230
A1 - 0.175 - - 0.0069 -
A2 - 0.380 - - 0.0150 -
A3 - 0.025 - - 0.0010 -
b(2)
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
0.220 0.250 0.280 0.0087 0.0098 0.0110
D 5.502 5.537 5.572 0.2166 0.2180 0.2194
E 6.060 6.095 6.130 0.2386 0.2400 0.2413
e - 0.400 - - 0.0157 -
e1 - 4.800 - - 0.1890 -
e2 - 5.200 - - 0.2047 -
F - 0.368 - - 0.0145 -
G - 0.477 - - 0.0188 -
aaa - 0.110 - - 0.0043 -
bbb - 0.110 - - 0.0043 -
ccc - 0.110 - - 0.0043 -
ddd - 0.050 - - 0.0020 -
eee - 0.050 - - 0.0020 -
Package information STM32F777xx STM32F778Ax STM32F779xx
242/255 DocID028294 Rev 6
Figure 100. WLCSP 180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint
1. Dimensions are expressed in millimeters.
Table 133. WLCSP 180-bump, 5.5 x 6 mm, recommended PCB design rules
(0.4 mm pitch)
Dimension Recommended values
Pitch 0.4
Dpad 0.225 mm
Dsm 0.290 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.1 mm
'SDG
'VP
$*B:/&63B)3B9
DocID028294 Rev 6 243/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
WLCSP180 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 101. WLCSP180-bump, 5.5 x 6 mm, 0.4 mm pitch wafer level chip scale
package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
069
::
%DOO$
LGHQWLILHU
<
'DWHFRGH 5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
5
670)$,<
Package information STM32F777xx STM32F778Ax STM32F779xx
244/255 DocID028294 Rev 6
6.7 UFBGA176+25, 10 x 10, 0.65 mm ultra thin fine-pitch ball grid
array package information
Figure 102. UFBGA176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
package outline
1. Drawing is not to scale.
Table 134. UFBGA176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.002 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
b 0.230 0.280 0.330 0.0091 0.0110 0.0130
D 9.950 10.000 10.050 0.3917 0.3937 0.3957
E 9.950 10.000 10.050 0.3917 0.3937 0.3957
e - 0.650 - - 0.0256 -
F 0.400 0.450 0.500 0.0157 0.0177 0.0197
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0031
ϬϳͺDͺsϲ
^ĞĂƚŝŶŐƉůĂŶĞ
Ϯ ĚĚĚ
ϭ
Ğ&
&
Ğ
Z
ϭϱ ϭ
KddKDs/t
dKWs/t
EEDOOV
$
HHH 0
III0
&
&
$
&
$EDOO
LGHQWLILHU
$EDOO
LQGH[
DUHD
ď
ϰ
DocID028294 Rev 6 245/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
Figure 103. UFBGA176+25, 10 x 10 mm x 0.65 mm, ultra fine-pitch ball grid array
package recommended footprint
Table 135. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)
Dimension Recommended values
Pitch 0.65 mm
Dpad 0.300 mm
Dsm 0.400 mm typ. (depends on the soldermask reg-
istration tolerance)
Stencil opening 0.300 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.100 mm
Ϭϳͺ&Wͺsϭ
'SDG
'VP
Package information STM32F777xx STM32F778Ax STM32F779xx
246/255 DocID028294 Rev 6
UFBGA 176+25 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 104. UFBGA 176+25, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array
package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
069
5HYLVLRQFRGH
670)
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
<::
%DOO$
LQGHQWLILHU
,,.
5
DocID028294 Rev 6 247/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
6.8 TFBGA216, 13 x 13 x 0.8 mm thin fine-pitch ball grid
array package information
Figure 105. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array
package outline
1. Drawing is not to scale.
Table 136. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.100 - - 0.0433
A1 0.150 - - 0.0059 - -
A2 - 0.760 - - 0.0299 -
b 0.350 0.400 0.450 0.0138 0.0157 0.0177
D 12.850 13.000 13.150 0.5118 0.5118 0.5177
D1 - 11.200 - - 0.4409 -
E 12.850 13.000 13.150 0.5118 0.5118 0.5177
E1 - 11.200 - - 0.4409 -
e - 0.800 - - 0.0315 -
F - 0.900 - - 0.0354 -
$/B0(B9
6HDWLQJSODQH
$
H)
*
'
5
EEDOOV
$
(
7239,(:%277209,(:

H
$
$
<
;
=
GGG =
'
(
HHH = < ;
III
0
0=
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
Package information STM32F777xx STM32F778Ax STM32F779xx
248/255 DocID028294 Rev 6
Figure 106. TFBGA216, 13 x 13 mm, 0.8 mm pitch, thin fine-pitch ball grid array
package recommended footprint
G - 0.900 - - 0.0354 -
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 137. TFBGA216 recommended PCB design rules (0.8 mm pitch BGA)
Dimension Recommended values
Pitch 0.8
Dpad 0.400 mm
Dsm 0.470 mm typ. (depends on the soldermask reg-
istration tolerance)
Stencil opening 0.400 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.120 mm
Table 136. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
$/B)3B9
'SDG
'VP
DocID028294 Rev 6 249/255
STM32F777xx STM32F778Ax STM32F779xx Package information
254
TFBGA216 device marking
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 107. TFBGA216, 13 × 13 × 0.8 mm thin fine-pitch ball grid array
package top view example
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
069
%DOO$
LGHQWLILHU 'DWHFRGH
<::
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
670)
1,+
5
Package information STM32F777xx STM32F778Ax STM32F779xx
250/255 DocID028294 Rev 6
6.9 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 138. Package thermal characteristics
Symbol Parameter Value Unit
ΘJA
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 43
°C/W
Thermal resistance junction-ambient
TFBGA100 - 8 × 8 mm / 0.8 mm pitch 36.2
Thermal resistance junction-ambient
WLCSP180 - 0.4 mm pitch 30
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch 40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch 38
Thermal resistance junction-ambient
LQFP208 - 28 × 28 mm / 0.5 mm pitch 19
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.5 mm pitch 39
Thermal resistance junction-ambient
TFBGA216 - 13 × 13 mm / 0.8 mm pitch 29
DocID028294 Rev 6 251/255
STM32F777xx STM32F778Ax STM32F779xx Ordering information
254
7 Ordering information
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 139. Ordering information scheme
Example: STM32 F 77x V G T 6 xxx
Device family
STM32 = Arm-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
777= STM32F777xx, USB OTG FS/HS, camera interface,
Ethernet, LCD-TFT, cryptographic acceleration
778 = STM32F778Ax, USB OTG FS/HS, camera interface,
DSI host, WLCSP with internal regulator OFF, cryptographic acceleration
779= STM32F779xx, USB OTG FS/HS, camera interface,
Ethernet, DSI host, cryptographic acceleration
Pin count
V = 100 pins
Z = 144 pins
I = 176 pins
A = 180 pins
B = 208 pins
N = 216 pins
Flash memory size
G = 1024 Kbytes of Flash memory
I = 2048 Kbytes of Flash memory
Package
T = LQFP
K = UFBGA
H = TFBGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and reel
Recommendations when using internal reset OFF STM32F777xx STM32F778Ax STM32F779xx
252/255 DocID028294 Rev 6
Appendix A Recommendations when using internal reset
OFF
When the internal reset is OFF, the following integrated features are no longer supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
The brownout reset (BOR) circuitry must be disabled
The embedded programmable voltage detector (PVD) is disabled
VBAT functionality is no more available and VBAT pin should be connected to VDD
The over-drive mode is not supported
A.1 Operating conditions
Table 140. Limitations depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
Maximum Flash
memory access
frequency with
wait states (1)(2)
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no
wait state is required.
2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states
given here does not impact the execution speed from the Flash memory since the ART accelerator or L1-
cache allows to achieve a performance equivalent to 0-wait state program execution.
I/O operation
Possible Flash
memory
operations
VDD =1.7 to
2.1 V(3)
3. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to
Section 2.18.1: Internal reset ON).
Conversion
time up to
1.2 Msps
20 MHz
168 MHz with 8
wait states and
over-drive OFF
No I/O
compensation
8-bit erase and
program
operations only
DocID028294 Rev 6 253/255
STM32F777xx STM32F778Ax STM32F779xx Revision history
254
Revision history
Table 141. Document revision history
Date Revision Changes
21-Mar-2016 1 Initial release.
26-Apr-2016 2
DFSDM replaced by DFSDM1 in:
Table 11: STM32F777xx, STM32F778Ax and STM32F779xx pin and
ball definitions.
Table 13: STM32F777xx, STM32F778Ax and STM32F779xx
alternate function mapping.
Table 14: STM32F777xx, STM32F778Ax and STM32F779xx register
boundary addresses.
Section 5.3.34: Digital filter for Sigma-Delta Modulators (DFSDM)
characteristics.
Updated Table 2: STM32F777xx, STM32F778Ax and STM32F779xx
features and peripheral counts adding DFSDM1 features.
Updated Table 40: Peripheral current consumption adding DFSDM1
current consumption.
Updated cover in 2 pages.
Updated cover replacing for SPI ‘up to 50 Mbit/s’ by ‘up to
54 Mbit/s’.
06-May-2016 3
Updated Table 2: STM32F777xx, STM32F778Ax and STM32F779xx
features and peripheral counts GPIO number.
Updated Table 13: STM32F777xx, STM32F778Ax and STM32F779xx
alternate function mapping adding CAN3_RX alternate function on
PA8/AF11.
22-Dec-2016 4
Updated Table 98: Dynamics characteristics: Ethernet MAC signals for
RMII.
Updated Table 72: ADC characteristics sampling rate.
Updated all the notes removing ‘not tested in production’.
Updated Figure 47: SPI timing diagram - slave mode and CPHA = 0
and Figure 48: SPI timing diagram - slave mode and CPHA = 1(1) with
modified NSS timing waveforms (among other changes).
Updated Table 122: LTDC characteristics clock output frequency at
65 MHz.
Updated Section 5.2: Absolute maximum ratings.
Updated Section 6: Package information adding information about
other optional marking or inset/upset marks.
Revision history STM32F777xx STM32F778Ax STM32F779xx
254/255 DocID028294 Rev 6
09-Aug-2017 5
Updated note 1 below all the package device marking figures.
Updated cover title.
Updated Section 1: Description.
Updated Section 2.48: DSI Host (DSIHOST) video mode interface
features.
Added Table 9: DFSDM implementation.
Updated Figure 11: STM32F77xxx LQFP100 pinout pin 43 and pin 44.
Updated Table 65: I/O current injection susceptibility note by ‘injection is
not possible’.
Updated Table 122: LTDC characteristics LTDC clock frequency at
83 MHz.
Updated Table 72: ADC characteristics RADC min at 1.5 Kohm.
Updated Figure 41: Recommended NRST pin protection note about the
0.1uF capacitor.
Updated Table 83: DAC characteristics RLOAD feature.
11-Sep-2017 6
Added TFBGA100 package:
Updated cover page.
Updated Table 2: STM32F777xx, STM32F778Ax and STM32F779xx
features and peripheral counts.
Updated Table 4: Regulator ON/OFF and internal reset ON/OFF
availability.
Added Figure 12: STM32F77xxx TFBGA100 pinout.
Updated Table 11: STM32F777xx, STM32F778Ax and
STM32F779xx pin and ball definitions.
Updated Table 18: General operating conditions.
Updated Table 63: ESD absolute maximum ratings.
Updated note below Figure 44: Power supply and reference
decoupling (VREF+ not connected to VDDA).
Updated note below Figure 45: Power supply and reference
decoupling (VREF+ connected to VDDA).
Added Section 6.2: TFBGA100, 8 x 8 x 0.8 mm thin fine-pitch ball grid
array package information.
Updated Table 138: Package thermal characteristics.
Table 141. Document revision history (continued)
Date Revision Changes
DocID028294 Rev 6 255/255
STM32F777xx STM32F778Ax STM32F779xx
255
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved