Page 1 of 11
Document No. 70-0248-05 www.psemi.com ©2008-2009 Peregrine Semiconductor Corp. All rights reserved.
The PE 43 602 is a HaRP-enhanced, high linearity, 6-bit RF
Digital Step Attenuator (DSA) co vering a 31.5 dB attenuation
range in 0.5 dB steps. This Peregrine 50 RF DSA provides
both a serial and parallel CMOS control interface. It maintains
high attenuation accuracy over frequency and temperature and
exhibits very low insertion loss and low power consumption.
Performance does not change with VDD due to on-board
regulator. This next generation Peregrine DSA is available in a
4x4 mm 24 lead QFN footprint.
The PE43602 is manufactured on Peregrine’s UltraCMOS™
pro cess, a patented variation of silicon-o n-insulator (SOI)
technology on a sapphire substrate, offering the performance
of GaAs with the econom y an d i nte gr ation of conventi on al
CMOS.
Pro duct Specificat ion
50 RF Digital Atte nuator
6-bit, 31.5 dB, 9 kHz - 5.0 GHz
Product Description
PE43602
Features
HaRP ™-enha nced UltraCMOS™ device
Attenuation: 0.5 dB s te ps to 31 .5- d B
Hi gh Linearity : Ty pi c al + 5 8 dBm IIP3
Excellent low-frequency performance
3.3 V or 5.0 V Power Supply Voltage
Fast swit ch settling t ime
Programming Modes:
Direct Parallel
Latc he d Par al lel
Serial
High-attenuation state @ powe r-up (PUP)
CMOS Compatible
No DC b locking capacitors required
Packaged in a 24-lead 4x4x0.85 mm QFN
Figure 1. Package Photo
24-l e ad 4x 4x 0. 85 mm QFN Packag e
Figure 2. Functional Schematic Diagram
Control Logic Interface
RF Input RF Output
Serial In
LE
CLK
Parallel Control
7
P/S
Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com
Product Specification
PE43602
Page 2 of 11
©2008-2009 Peregrine Semiconductor Corp. All rights reserved. Document No. 70-0248-05 UltraCMOS™ RFIC Solutions
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0 4 8 121620242832
Atte nuation Setting (dB)
Attenuation Error (dB)
200MHz 900MHz 1800MHz 2200MHz
3000MHz 4000MHz 5000MHz
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0 1000 2000 3000 4000 5000
Frequency (MHz)
Bit Error (dB)
0.5dB State 1dB State 2dB State 4dB State
8dB State 16dB State 31.5dB State
51015202530035
5
10
15
20
25
30
0
35
Attenuation State
Attenuation dB
PE43602 Attenuation
900 MHz
1800 MHz
2200 MHz
3800 MHz
5000 MHz
(dB)
-0.5
0
0.5
1
0 4 8 12 16 20 24 28 32
Attenuation Setting (dB)
Step Error (dB)
200MHz 900MHz 1800MHz 2200MHz
3000MHz 4000MHz 5000MHz
Table 1. Electrical Specifications @ +25°C, VDD = 3.3 V or 5.0 V
Parameter Test Conditi ons Frequency Min Typical Max Units
Frequency Range 9 kHz 5 GHz
Attenuation Range 0.5 dB Step 0 – 31.5 dB
Insertion Loss 9 kHz 5 GHz 2.2 2.7 dB
Attenuation Error 0 dB - 31.5 dB Atten uatio n se t ti ngs
0 dB - 31.5 dB Atten uatio n se tt i ngs
0 dB - 31.5 dB Atten uatio n se tt i ngs
9 kH z < 4 GHz
4 GHz 5 GHz
4 GHz 5 GHz
±(0.3 + 3)%
+0. 4 + 5%
-0.3 - 3%
dB
dB
dB
Return Loss 9 kHz - 5 GHz 18 dB
Relative Phase All States 9 kHz - 5 GHz 55 deg
P1dB (note 1) Input 20 MHz - 5 GHz 30 32 dBm
IIP3 Two tones at +18 dBm, 20 MHz spacing 20 MHz - 5 GHz 58 dBm
Typical Spurious Value 1 MHz -110 dBm
Video Feed Through 10 mVpp
Switching Time 50% DC CTRL to 10% / 90% RF 650 ns
RF Trise/Tfall 10% / 90% RF 400 ns
Sett ling Time RF settled to within 0.05 dB of final value
RBW = 5 MHz, Averaging ON. 4 µs
Performance Plots
*Monotonicity is held so long as Step-Error does not cross below -0.5
Figure 3. 0.5dB Step Error vs. Frequency*
Fig ure 5. 0.5dB Majo r St at e Bit Err or Fig ure 6. 0.5dB Att en uat io n Erro r vs. Fr eq uency
Figure 4. 1dB Atte nuation vs. Attenuation S tate
Note 1. Please note Maximum Operating Pin (50) of +2 3d Bm as sh ow n in Table 3.
Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com
Product Specification
PE43602
Page 3 of 11
Document No. 70-0248-05 www.psemi.com ©2008-2009 Peregrine Semiconductor Corp. All rights reserved.
30
35
40
45
50
55
60
65
70
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency (MHz)
Input IP3 (dBm)
0dB 0.5dB 1dB 2dB
4dB 8dB 16dB 31.5dB
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0 4 8 12162024 2832
Attenuation Setting (dB)
Attenuation E rror (dB)
-40C +25C +85C
0
20
40
60
80
100
120
140
012 345678
Frequency (GHz)
Relative Phase Error (Deg)
0dB 0.5dB 1dB 2dB
4dB 8dB 16dB 31.5dB
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
0123456789
Frequency (GHz)
Return Loss (dB)
0dB 0.5dB 1dB 2dB
4dB 8dB 16dB 31.5dB
-40
-35
-30
-25
-20
-15
-10
-5
0
0123456789
Freque ncy (GHz)
Input Return Loss (dB)
0dB 0.5dB 1dB 2dB
4dB 8dB 16dB 31.5dB
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
01 23456789
Frequency (GHz)
Insertion Loss (dB)
-40C +25C +85C
Figure 7. Insertion Loss vs. Temperature Figure 8. Input Return Loss vs. Attenua tion
@ T = +25C
Figure 9. Output Return Loss vs. Attenuation
@ T = +25C Figure 10. Relative Phase vs. Frequency
Figure 11. Attenua tion Error vs. Temperature
@ 5 GHz Figure 12. Input IP3 vs. Frequency
Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com
Product Specification
PE43602
Page 4 of 11
©2008-2009 Peregrine Semiconductor Corp. All rights reserved. Document No. 70-0248-05 UltraCMOS™ RFIC Solutions
0
5
10
15
20
25
30
1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09
Hz
Pin dBm
Exposed
Solder
Pad
NC
VDD
P/S
GND GND
LE
CLK
SI
C4
C2
C1
C 0.5
C8
RF1
24
23
22
21
20
19
18
17
16
15
14
13
2
3
4
5
6
1
C16
RF2
GND GND
GND
GND
GND
GND
GND
GND
7
8
9
10
11
12
Figure 13. Pin Configurati on (Top View)
Table 2 . Pin Descriptions
Pin No. Pin Name Description
1 GND Ground
2 VDD Power supply pin
3 P/S Seri al/P ar al lel mo de sel ec t
4 GND Ground
5 RF1 RF1 port
6 - 13 GND Ground
14 RF2 RF2 port
15 GND Ground
16 LE Seri al interfac e Lat c h En ab le inpu t
17 CLK Serial interface Clock input
18 SI Seri al interfac e Dat a input
19 C16 (D6) Parallel control bit, 16 dB
20 C8 (D5) Parallel control bit, 8 dB
21 C4 (D4) Parallel control bit, 4 dB
22 C2 (D3) Parallel control bit, 2 dB
23 C1 (D2) Parallel control bit, 1 dB
24 C0.5 (D1) Parallel control bit, 0.5 dB
Pad dl e G N D Ground f or pr op er operati on
Electrostatic Discharge (ESD) Precautions
When handling this UltraCMOS™ device, obser ve the
same pr ec autions t hat you would us e with other ESD-
sensit iv e devices. Although t his device contains
circ uitry to protect it from dam age due to ES D,
precautions should be taken to avoid exceeding t he
specif ied r ating.
Expose d Solder Pad Connection
The expos ed s older pad on the bott om of t he pac k age
must be grounded f or pr oper dev ic e oper ation.
Latc h-Up Avoidance
Unlike conventional CMO S dev ices, UltraCMOS™
devices are immune to latc h- up.
Swi tc hing Frequency
The PE 43602 has a maximum 25 kHz switc hing r ate.
Switc hing r ate is def ined to be the speed at which the
DSA can be toggled across attenuation states.
Exceeding abs olute max im um r atings may cause
permanent damage. Operation should be res tricted to
the limits in t he Operating Ranges t able. Operation
between oper ating range max im um and abs olute
maximum for extended per iods m ay r educ e r eliability.
Moist u re Sensitivit y Lev el
The Mois ture Sensitiv ity Level r ating for the PE43602 in
the 24- lead 4x 4 QFN package is M S L1.
Note : 1. Hu ma n B ody M od el ( HBM, MIL_STD 88 3 Meth od 301 5. 7)
Figure 14. Maximum Power Ha ndling Capability
Table 3. Operating Ranges
Table 4. Absolute Maximum Ratings
Symbol Parameter/Conditions Min Max Units
VDD Power supply voltage -0.3 6.0 V
VI Voltage on any Digital input -0.3 5.8 V
TST Storage temperature range -65 150 °C
PIN Input power (50)
9 kH z 20 MHz
20 MHz 5 GH z
Fig. 14
+23
dBm
dBm
VESD ESD voltage (HBM)1
ESD volt age (Ma chine Model ) 500
100 V
V
Parameter Min Typ Max Units
VDD Power Supply Voltage 3.0 3.3 V
IDD Power Supply Current 70 350 µA
Digital Input High 2.6 5.5 V
PIN Input power ( 50):
9 kHz 20 MHz
20 MHz 5 GH z
Fig. 14
+23
dBm
dBm
TOP Operat i ng te m perat u re r a ng e -40 25 85 °C
Digital Input Low 0 1 V
Digital Input Leakage1 15
µA
VDD Power Supply Voltage 5.0 5.5 V
Note 1. Input leakage current per Control pin
Note: Ground C0.5, C1, C2, C4, C8, C16 if not in use.
Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com
Product Specification
PE43602
Page 5 of 11
Document No. 70-0248-05 www.psemi.com ©2008-2009 Peregrine Semiconductor Corp. All rights reserved.
Table 5. Control Voltage
State Bias Condition
Low 0 to +1.0 Vdc at 2 µA (typ)
High +2.6 to +5 Vdc at 10 µA (typ)
Table 6. Latch and Clock Specifications
Latch Enable Function
X Shift Regi st er Cl ocked
Contents of shif t register
trans ferr ed t o attenuat or cor e
Shift Clock
X
Attenuation Wor d Attenuation
Setting
RF1-RF2
D7 D6 D5 D4 D3 D2 D1 D0
(LSB)
L L L L L L L L Reference I.L.
L L L L L L H L 0.5 dB
L L L L L H L L 1 dB
L L L L H L L L 2 dB
L L L H L L L L 4 dB
L L H L L L L L 8 dB
L H L L L L L L 16 dB
L H H H H H H L 31.5 dB
Table 8. Serial Attenuation Word Truth Table
Table 9. Serial Register Map
Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0
D7 D6 D5 D4 D3 D2 D1 D0
Attenuation Word
LSB (first in)
MSB (last in)
Bits mus t be set to lo gic low
Attenuation Word is derived directly from the attenuation value. For example, to progra m the 12.5 dB state:
Atte nuation Word: Multip ly by 4 and convert to binary 4 * 12.5 dB 50 00110010
Serial Input: 00110010
Parallel Control Setting Attenuation
Setting
RF1-RF2
D5 D4 D3 D2 D1
L L L L L Reference I.L.
L L L L H 0.5 dB
L L L H L 1 dB
L L H L L 2 dB
L H L L L 4 dB
H L L L L 8 dB
L L L L L 16 dB
D6
L
L
L
L
L
L
H
H H H H H H 31.5 dB
Table 7. Parallel Truth Table
Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com
Product Specification
PE43602
Page 6 of 11
©2008-2009 Peregrine Semiconductor Corp. All rights reserved. Document No. 70-0248-05 UltraCMOS™ RFIC Solutions
Programming Options
Parallel/Serial Selection
Either a parallel or serial interface can be used to
control the PE43602. The P/S bit provides this
selection , with P/S =LOW sele c ting the pa rallel
interface and P/S=HIGH selecting the serial
interface.
Parallel Mode Interface
The parallel interface consists of six CMOS-
compatible control lines that select the desired
attenuation state, as shown in T abl e 7.
The parallel interface timing requirements are
defined by Fig. 16 (Parallel Interface Timing
Diagram), Table 11 (Pa rallel In terface AC
Characteristics), and switching speed (Table 1).
For latched-parallel programming the Latch Enable
(LE) should be held LOW while changing attenuation
state control values, then pulse LE HIGH to LOW
(per Fig. 16) to latch new attenuation state into
device.
For direct parallel programming, the Latch Enable
(LE) line should be pulled HIGH. Changing
at tenuation stat e contro l v alues will c hange device
state to new attenuation. Direct Mode is ideal for
manual control of the device (using hardwire,
switches, or jumpers).
Seri al In ter fa ce
The serial interface is a 8-bit serial-in, parallel-out
shift register buffered by a transparent latch. The 8-
bits make up the Attenuation Word that controls the
DSA. Fig. 15 illustrates a exa mple timing diagram f or
programming a state.
The serial-interface is controlled using three CMOS-
compatible signals: Serial-In (SI), Clock (CLK), and
Latch Enable (LE). The SI and CLK inputs allow
data to be serially entered into the shift register.
Serial data is clocked in LSB first.
The shift register must be loaded while LE is held
LOW to prevent the attenuator value from changing
as data is entered. The LE input should then be
toggled HIGH and brought LOW again, latching the
new data into the DSA. Attenuation Word truth table
is listed in Table 8. A programming example of the
serial regis ter is illustrat ed in Table 9. The serial
timing diagra m is illustrat ed in Fig. 15. It is required
that all parallel pins be grounded when the DSA is
used in serial mode.
Power-up Control Setti ngs
The PE4602 will always initialize to the maximum
attenuation setting (31.5 dB) on power-up for both
the serial and latched-parallel modes of operation
and will rema in in this set tin g unt il the use r latches in
the next programming word. In direct-parallel mode,
the DSA can be preset to any state within the 31.5
dB range by pre-setting the parallel control pins prior
to power-up. In this mode, there is a 400-µs delay
between the time the DSA is powered-up to the time
the desired state is set. During this power-up delay,
the device attenuates to the maximum attenuation
setting (31.5 dB) before defaulting to the user
defined state. If the control pins are left floating in
this mode during power-up, the device will de fault to
the minimum attenuation setting (insertion loss
state).
Dynamic operation between serial and parallel
programming modes is possible.
If the DSA powers up in serial mode (P/S = HIGH),
all the parallel control inputs DI[6:1] must be set to
logic low. Prior to toggling to parallel mode, the DSA
must be programmed serially to ensure D[7] is set to
logic lo w.
If the DSA powers up in either latched or direct-
parallel mode, all parallel pins DI[6:1] must be set to
logic low prior to toggling to serial mode (P/S
= HIGH), and held low until the DSA has been
programmed serially to ensure bit D[7] is set to logic
low.
The sequencing is only required once on power-
up. Once completed, the DSA may be toggled
between serial and parallel programming modes at
will.
Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com
Product Specification
PE43602
Page 7 of 11
Document No. 70-0248-05 www.psemi.com ©2008-2009 Peregrine Semiconductor Corp. All rights reserved.
Table 11. Parallel and Direct Interface AC Table 10. Serial Interface AC Characteristics
VDD = 3.3 or 5.0 V, -40° C < TA < 85° C, unless otherwise specified
VDD = 3.3 or 5.0 V, -40° C < TA < 85° C, unless otherwise specified
Figure 15. Serial Timing Diagram
Figure 16. Latched-Parallel/Direct-Parallel Timing Diagram
Symbol Parameter Min Max Unit
TLEPW Latch Enable minimum
pulse width 30 - ns
TDISU Para ll el da ta setup time 10 0 - ns
TDIH Parallel data hold time 100 - ns
TPSSU Parallel/Serial setup time 100 - ns
TPSIH Parallel/Serial hold time 100 - ns
TPD Digital register delay
(internal) - 10 ns
TDIPD Digital register delay
(internal, direct mode only) - 5 ns
Characteristics
VALID
T
DISU
T
DIH
DI[6:1]
LE
P/S
T
PSSU
T
PSIH
T
LEPW
VALID
DO[6:1]
T
DIPD
T
PD
Symbol Parameter Min. Max. Unit
FCLK Serial clock frequency - 10 MHz
TCLKH Serial clock HIGH time 30 - ns
TCLKL Serial clock LOW time 30 - ns
TLESU Last serial clock rising e dge
setup time to Latch Enable
rising edge 10 - ns
TLEPW Latch Ena bl e mini mum pu ls e
width 30 - ns
TSISU Seri al data setup ti me 10 - ns
TSIH Serial data hold time 10 - ns
TDISU Para llel da ta set up time 100 - ns
TDIH Parallel data hold time 100 - ns
TASU Address setup time 100 - ns
TAH Address hold time 100 - ns
TPSSU Parallel/Serial setup time 100 - ns
TPSH Parallel/Serial hold time 100 - ns
TPD Digital register delay (internal) - 10 ns
D[0] and D[7] must be set to logic low
Bits can either be set to logic high or logic low
D[0] D[1] D[2] D[3] D[4] D[5] D[7]
T
SISU
T
CLKL
T
LEPW
T
SIH
T
CLKH
SI
CLK
LE
P/S
T
LESU
T
PSSU
T
PSIH
VALID
T
DIS U
T
PD
T
DIH
D[6]
DI[6:1]
DO[6:0]
Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com
Product Specification
PE43602
Page 8 of 11
©2008-2009 Peregrine Semiconductor Corp. All rights reserved. Document No. 70-0248-05 UltraCMOS™ RFIC Solutions
Evaluation Kit
The Di gi tal Att en ua t or E val u ation Kit bo ard w as
designed to eas e c ustomer ev aluation of the
PE43602 Digital Step Attenuator.
Direct-Parallel Programming Procedure
For automated direct-parallel programming,
connect the test harness provided with the EVK
from the parallel port of the PC to the J1 & Serial
header pin and set the D0-D6 SP3T switches to
the ‘MIDDLE’ toggle position. Po sition the
Pa ralle l/Serial (P/S) select switch to the Paralle l
(or left) position. The evaluation software is
written to operate the DSA in either Parallel or
Serial-Addressable Mode. Ensure that the
software is set to program in Direct-Parallel mod e.
Using the software, enable or disable each setting
to the desired attenuation state. The software
automatically programs the DSA each time an
attenuation state is enabled or disabled.
For manual direct-parallel programming,
disconnect the test harness provided with the EVK
from the J1 and Serial header pins. Position the
Pa ralle l/Serial (P/S) select switch to the Paralle l
(or left) position. The LE pin on the Serial header
must be tied to VDD. Switches D0-D6 are SP3T
switches which enable the user to manually
program the paralle l bits. When any input D0-D6
is toggled ‘UP’, logic high is presented to the
paralle l input . When tog gled ‘DOWN’, logic low is
presented to the parallel input. Setting D0-D6 to
the ‘MID DL E’ toggle positi on pr es ents an OPEN,
which forces an on-chip logic lo w. Table 9 depicts
the parallel programming truth table and Fig. 16
illust rate s the pa ralle l programming timing
diagram.
Latc he d- P ar al l el Pr ogramm i ng Pr ocedur e
For automated latched-parallel programming , the
procedure is identical to the direct-parallel
method. The user only must ensure that Latched-
Parallel is selected in the software.
For manual latched-parallel programming, the
procedure is identical to direct-parallel except now
the LE pin on the Serial header must be logic low
Figure 17. Evaluation Board Layout
Peregr ine S pec ificat ion 101- 0310
as the parallel bits are applied. The user must
then pulse LE from 0V to VDD and back to 0V to
latch the programming word into the DSA. LE
must be logic low prior to programming the next
word.
Seri al Pr ogrammi ng Pr ocedur e
Po sition the Parallel/Serial (P/S) select switch to
the Serial (or right) position. The evalua tion
software is written to operate the DSA in either
Parallel or Serial Mode. Ensure that the software
is set to program in Serial mode. Using the
software, enable or disable each setting to the
desired attenuation state. The software
automatically programs the DSA each time an
attenuation state is enabled or disabled.
Note: Reference Figure 18 f or Evaluation Board Schematic
Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com
Product Specification
PE43602
Page 9 of 11
Document No. 70-0248-05 www.psemi.com ©2008-2009 Peregrine Semiconductor Corp. All rights reserved.
Figure 19. Package Drawing
Figure 18. Evaluation Board Schematic
Peregr ine S pec ificat ion 102- 0379
Z=50 Ohm
De-embeding trace
Z=50 Ohm
Z=50 Ohm
43X0X DS A 50 Ohm 4x4 ML P24
3
1
2
4
D3
C7
100pF
C1
100pF
3
1
2
4
D0
1
2
J4
SMA
5
4
6
P/S
C6
100pF
3
1
2
4
D4
C4
100pF
3
1
2
4
D5
1
13
3
5
5
7
7
22
44
66
88
10 10
12 12
14 14 13
13
9
9
11
11
J1
HE ADER 14
1
2
J7
SMA
C3
100pF
C10
100pF
3
1
2
4
D6
1
2
J5
SMA
3
1
2
4
D1
1
2
J6
SMA
C2
100pF
C8
100p F
C9
0.1µ F
3
1
2
4
D2
C5
100pF
1
2
J3
CON 2
1CLOCK
2DATA
3LE
4GND
SERIAL
HE ADER 4
C13
100pF
C14
100p F
1CP25
2VDD
3S/P
4GND
5RF1
6GND
7GND
8GND
9GND
10 GND
11 GND
12 GND
13
GND
14
RF2
15
GND
16
LE
17
CLK
18
SI
19
C16
20
C8
21
C4
22
C2
23
C1
24
CP5
U1
VDD
VDD
P/S
D3
D1
D4
D5
P/S
D6
D3
D2
D1
D4
D5
D0
D0
D2
D6
CLK
DATA
LE
D1
D2
D3
D4
D5
D6
D0
VDD
Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com
Product Specification
PE43602
Page 10 of 11
©2008-2009 Peregrine Semiconductor Corp. All rights reserved. Document No. 70-0248-05 UltraCMOS™ RFIC Solutions
Table 12. Ordering Information
Order Code Pa rt Marki ng Descripti on Package Shippi ng Method
PE43602 MLI 43602 PE43602G-24QFN 4x4mm-75A Green 24-lead 4x4mm QFN Bulk or tape cut from reel
PE43602 MLI-Z 43602 PE43602G-24QFN 4x4mm-3000C Green 24-lead 4x4mm QFN 3000 units / T&R
EK43602-01 PE43602 -EK PE43602-24QFN 4x4mm-EK Evaluation Kit 1 / Box
Figure 21. Marking Specifi cations
43602
YYWW
ZZZZZ
YYWW = Date Code
ZZZZZ = Last five digits of Lot Number
Figure 20. Tape and Reel Drawing
Device Orientation in Tape
Top of
Device
Pin 1
Tape Feed Dire c tion
A0 = 4.35
B0 = 4.35
K0 = 1.1
Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com
Product Specification
PE43602
Page 11 of 11
Document No. 70-0248-05 www.psemi.com ©2008-2009 Peregrine Semiconductor Corp. All rights reserved.
Sales Offices
The Americas
Peregrine Semiconductor Corporation
9380 Carroll Park Drive
San Diego, CA 92121
Tel: 858-731-9400
Fax: 858-731-9499
Europe
Peregrine Semiconductor Europe
timent Maine
13-15 rue des Quatre Vent s
F-92380 Garches , France
Tel: +33-1-4741-9173
Fax : +33-1 -4741 -917 3
For a list of represent at ives in your area, please r efer to our Web site at: www.psemi .com
Data Sheet Identification
Advance Information
The product is in a f ormative or design stage. The data
sheet contains design target specifications f or product
development. Specifications and features may change in
any manner without notice.
Preliminary Specification
The data sheet contains preliminary data. Additional data
may be added at a later date. Peregrine r eserves the right
to change specifications at any time without notice in order
to supply t he best possible product.
Product Specification
The data sheet con tains final data. In the event Peregrine
dec ide s to cha nge the spe c ific ations, Pereg rine will not ify
customers of t he intended changes by issuing a CNF
(Customer Notification Form).
The information in t his data sheet is believed to be reliable.
Howeve r, Peregrine assume s no liabilit y for the use of this
information. Use shall be entirely at the user’s own risk.
No patent rights or licenses to any circuits described in this
data sheet are implied or gr anted to any third party.
Peregrine’s pr oducts are not designed or int ended for use in
devices or systems intended f or surgical implant, or in other
applications intended t o support or sustain life, or in any
application in which the failure of the Peregrine pr oduct could
create a situat ion in which personal injury or death m ight occur.
Peregr ine assumes no liability for damages, including
consequential or incidental damages, arising out of the use of
its products in such applications.
The Peregrine name, logo, and UTSi are registered tr ademarks
and UltraCMOS, HaRP, MultiSwitch and DuNE are trademarks
of Peregrine Semiconduct or Corp.
High-Reliability and De fense Products
Americas
San Diego, CA, USA
Phone: 858- 731-9475
Fax: 848-731-9499
Europe/Asia-Pacific
Aix-En-Provence Cedex 3, France
Phone: +33- 4-4239-3361
Fax: +33-4-4239-7227
Peregri ne Semiconductor, Asia Pacific (APAC)
Shanghai, 200040, P.R. China
Tel: +86-21-5836-8276
Fax: +86-21-5836-7652
Peregrine Semiconductor, Korea
#B-2607, Kolon Tr ipolis, 210
Geumgok-dong, Bundang- gu, Seongnam-si
Gyeonggi-do, 463-943 Sout h Kor ea
Tel: +82-31-728-3939
Fax: +82-31-728-3940
Peregrine Semiconductor K.K., Japan
Teiko k u Hote l Tower 10B-6
1- 1-1 Uchisa iwai-c h o, Ch iy oda- k u
Tokyo 100-0011 Japan
Tel: +81-3-3502-5211
Fax: +81-3-3502-5213
Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com